
Dataplicity Lomond Documentation
Release 0.3.1

Dataplicity

Jul 05, 2018

Guide

1 Sponsor 3

2 Support 5
2.1 Introduction . 5
2.2 Installing . 5
2.3 Example . 5
2.4 Basic Usage . 6
2.5 Events . 7
2.6 Compression . 7
2.7 Closing the WebSocket . 8
2.8 Pings and Pongs . 8
2.9 Polling . 9
2.10 Proxies . 9
2.11 WebSockets and Threading . 10
2.12 Persistent Connections . 10
2.13 Exceptions . 10
2.14 Events . 11
2.15 Persist . 13
2.16 Status . 13
2.17 Response . 13
2.18 WebSocket . 14

3 Indices and tables 19

Python Module Index 21

i

ii

Dataplicity Lomond Documentation, Release 0.3.1

Lomond is a Pythonic WebSockets client library designed for reliability and ease of use.

Guide 1

Dataplicity Lomond Documentation, Release 0.3.1

2 Guide

CHAPTER 1

Sponsor

Lomond was sponsored by Dataplicity – Control your Raspberry Pi from anywhere!

3

https://www.dataplicity.com/

Dataplicity Lomond Documentation, Release 0.3.1

4 Chapter 1. Sponsor

CHAPTER 2

Support

For questions or comments about this library, either open an issue or contact support@dataplicity.com.

2.1 Introduction

Lomond is a websocket client library designed to make adding websocket support to your application as tranquil as
the Scottish Loch it was named after.

2.2 Installing

You can install Lomond with pip as follows:

pip install lomond

Or to upgrade to the most recent version:

pip install lomond --upgrade

Alternatively, if you would like to install from source, check out the code from Github.

You may wish to install wsaccel, which is a C module containing optimizations for some websocket operations.
Lomond will use it if available:

pip install wsaccel

2.3 Example

To whet your appetite, the following is an example of how to connect to a WebSocket endpoint and interact with the
server:

5

mailto:support@dataplicity.com
https://en.wikipedia.org/wiki/Loch_Lomond
https://github.com/wildfoundry/dataplicity-lomond

Dataplicity Lomond Documentation, Release 0.3.1

from lomond import WebSocket
websocket = WebSocket('wss://ws-feed.gdax.com')

for event in websocket:
if event.name == "ready":

websocket.send_json(
type='subscribe',
product_ids=['BTC-USD'],
channels=['ticker']

)
elif event.name == "text":

print(event.json)

This code connects to a Gdax, a Bitcoin exchange, and subscribes to realtime notifications about the price of Bit-
coin–which it writes to the terminal.

This example is in the Lomond library. You can run it with the following:

python -m lomond.examples.btcticker

2.4 Basic Usage

To connect to a websocket server, first construct a WebSocket object, with a ws:// or wss:// URL. Here is an
example:

from lomond.websocket import WebSocket
ws = WebSocket('wss://echo.websocket.org')

No socket connection is made by a freshly constructed WebSocket object. To connect and interact with a websocket
server, iterate over the WebSocket instance, which will yield a number of Event objects. Here’s an example:

for event in ws:
print(event)

Here is an example of the output you might get from the above code:

Connecting(url='wss://echo.websocket.org')
Connected(url='wss://echo.websocket.org')
Ready(<response HTTP/1.1 101 Web Socket Protocol Handshake>, protocol=None,
→˓extensions=set([]))

The Ready event indicates a successful connection to a websocket server. You may now use the send_text() and
send_binary() methods to send data to the server.

When you receive data from the server, a Text or Binary event will be generated.

2.4.1 Connect Method

Iterating over the WebSocket instance calls the connect() method with default parameters, i.e. it is equivalent to
the following:

for event in ws.connect():
print(event)

You may want to call connect() explicitly to customize the WebSocket behaviour.

6 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

2.5 Events

Events inform your application when data is received from the server or when the websocket state changes.

All events are derived from Event and will contain at least 2 attributes; received_time is the epoch time the
event was received, and name is the name of the event. Some events have additional attributes with more information.
See the Events for details.

When handling events, you can either check the type with isinstance or by looking at the name attribute.

For example, the following two lines are equivalent:

if isinstance(event, events.Ready):

or:

if event.name == "ready":

Note: The isinstance method is possibly uglier, but has the advantage that you are less likely to introduce a bug
with a typo in the event name.

If an event is generated that you aren’t familiar with, then you should simply ignore it. This is important for backwards
compatibility; future versions of Lomond may introduce new event types.

Be careful with code that responds to events. Should there be an unhandled exception within the event loop, Lomond
will disconnect the socket without sending a close packet. It’s up to your application to ensure that programming
errors don’t prevent the websocket from closing gracefully.

You may wish to adopt an defensive approach to handling WebSocket events, such as the following:

for event in websocket:
try:

on_event(event)
except:

log.exception('error handling %r', event)
websocket.close()

2.6 Compression

Lomond supports the permessage-deflate extension to the WebSocket specification to compress WebSocket frames.
To enable compression, construct the WebSocket with the compress parameter set to True:

ws = WebSocket('wss://ws.example.org', compress=True)

This tells the server in the initial request to enabled compression if it is supported. If the server supports compression
then Lomond may receive text or binary messages in compressed form. The decompression happens automatically so
you will see the decompressed data in Text and Binary events.

You can send compressed messages by setting the compress parameter on the send_text() and
send_binary() methods. This parameter is True by default, but you might want to set it to False if you
know the data is already compressed.

If the server does not support compression, then setting the compress parameter will have no effect. The
supports_compression property will be set to True if compression is enabled or False if the server does
not support compression.

2.5. Events 7

Dataplicity Lomond Documentation, Release 0.3.1

2.7 Closing the WebSocket

The websocket protocol specifies how to close the websocket cleanly. The procedure for closing depends on whether
the close is initiated by the client or the server.

2.7.1 Client

To close a websocket, call the close() method to initiate a websocket close handshake. You may call this method
from within the websocket loop, or from another thread.

When you call close(), Lomond sends a close packet to the server. The server will respond by sending a close
packet of its own. Only when this echoed close packet is received will the WebSocket close the underlaying tcp/ip
socket. This allows both ends of the connection to finish what they are doing without worrying the remote end has
stopped responding to messages.

Note: When you call the close() method, you will no longer be able to send data, but you may still receive packets
from the server until the close has completed.

When the websocket has been closed, you will receive a Closed event, followed by a Disconnected event, and
the event loop will exit.

It’s possible a malfunctioning server may not respond to a close packet, which would leave a WebSocket in a permanent
closing state. As a precaution, Lomond will force close the socket after 30 seconds, if the server doesn’t respond to a
close packet. You can change or disable this timeout with the close_timeout parameter, on connect().

2.7.2 Server

The websocket server will send a close packet when it wished to close. When Lomond receives that packet, a
Closing event will be generated. You may send text or binary messages in response to the Closing event, but
afterwards Lomond echos the close packet and no further data may be sent. The server will then close the socket, and
you will receive a Disconnected event, followed by the event loop ending.

2.7.3 Non-graceful Closes

A non-graceful close is when a the tcp/ip connection is closed without completing the closing handshake. This can
occur if the server is misbehaving or if connectivity has been interrupted.

The Disconnected event contains a boolean attribute graceful, which will be False if the closing handshake
was not completed.

2.8 Pings and Pongs

Both the websocket server and client may send ‘ping’ packets, which should be responded to with a ‘pong’ packet.
This allows both ends of the connection to know if the other end is really listening.

By default, Lomond will send pings packets every 30 seconds. If you wish to change this rate or disable ping packets
entirely, you may use the connect() method.

Here’s how you would disable pings:

8 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

websocket = Websocket('wss://ws.example.org')
for event in WebSocket.connect(ping_rate=0):

on_event(event)

Lomond will also automatically respond to ping requests. Since this is a requirement of the websocket specification,
you probably don’t want to change this behaviour. But it may be disabled with the auto_pong flag in connect().

When Lomond receives a ping packet from the server, a Ping event will be generated. When the server sends you a
pong packet, a Pong event will be generated.

You can send a ping / pong packet at any time with send_ping() and send_pong().

Note: The server may send pong packets not in response to a ping packet (see https://tools.ietf.org/html/rfc6455#
section-5.5.3 for details).

2.9 Polling

Lomond checks for automatic pings and performs other housekeeping tasks at a regular intervals. This polling is
exposed as Poll events. Your application can use these events to do any processing that needs to be invoked at
regular intervals.

The default poll rate of 5 seconds is granular enough for Lomond’s polling needs, while having negligible impact on
CPU. If your application needs to process at a faster rate, you may set the poll parameter of connect().

Note: If your application needs to be more realtime than polling once a second, you should probably use threads in
tandem with the event loop.

2.10 Proxies

Lomond can work with WebSockets over HTTP proxy. By default, Lomond will autodetect the proxy from
HTTP_PROXY and HTTPS_PROXY environment variables, used for the ws and wss protocols respectively.

You may set the proxy manually by supplying a dictionary with the keys http and https (which may contain the
same value). Here’s an example:

ws = Websocket(
'wss://echo.example.org',
proxies = {

'http': 'http://127.0.0.1:8888',
'https': 'http://127.0.0.1:8888'

}
)

Note: If you want to disable automatic proxy detection, then set the proxies parameter to an empty dictionary.

2.9. Polling 9

https://tools.ietf.org/html/rfc6455#section-5.5.3
https://tools.ietf.org/html/rfc6455#section-5.5.3

Dataplicity Lomond Documentation, Release 0.3.1

2.11 WebSockets and Threading

WebSocket objects are thread safe, but Lomond does not need to launch any threads to run a websocket. For many
applications, responding to data and poll events is all you will need. However, if your application needs to do more
than communicate with a websocket server, you may want to run a websocket in a thread of its own.

2.12 Persistent Connections

Lomond supports a simple mechanism for persistent connections – you can tell Lomond to continually retry a web-
socket connection if it is dropped for any reason. This allows an application to maintain a websocket connection even
if there are any outages in connectivity.

To run a persistent connection, wrap a WebSocket instance with persist(). Here is an example:

from lomond.persist import persist
websocket = WebSocket('wss://ws.example.org')
for event in persist(websocket):

handle event

You will receive events as normal with the above loop.

If the connection is dropped for any reason, you will receive Disconnected as usual, followed by Connecting
when Lomond retries the connection. Lomond will keep retrying the connection until it is successful, and a Ready
event is generated.

The persist() function implements exponential backoff. If the websocket object fails to connect, it will wait for
a random period between zero seconds and an upper limit. Every time the connection fails, it will double the upper
limit until it connects, or a maximum delay is reached.

The exponential backoff prevents a client from hammering a server that may already be overloaded. It also prevents
the client from being stuck in a cpu intensive spin loop.

2.13 Exceptions

Lomond takes great care not to leak any socket or system related exceptions. During normal usage of WebSocket
objects you can expect only the following exception hierarchy to be thrown.

exception lomond.errors.CompressionParameterError(msg, *args, **kwargs)
Raised when the headers contain invalid compression parameters.

exception lomond.errors.ConnectFail(msg, *args, **kwargs)
An error connecting to a socket.

exception lomond.errors.CriticalProtocolError(msg, *args, **kwargs)
Critical protocol error. An egregious error in the protocol resulting in an immediate disconnect.

exception lomond.errors.FrameBuildError(msg, *args, **kwargs)
Raised when trying to build an invalid websocket frame.

exception lomond.errors.HandshakeError(msg, *args, **kwargs)
Raised when the server doesn’t respond correctly to the websocket handshake.

exception lomond.errors.PayloadTooLarge(msg, *args, **kwargs)
The payload length field is too large.

10 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

Websocket messages have a maximum payload of 2**63 bytes. In practice it may be impossible to generate
such a packet for real, but its feasible a corrupt packet header could make it appear that such a packet was being
sent.

exception lomond.errors.ProtocolError(msg, *args, **kwargs)
Raised in response to a protocol violation.

exception lomond.errors.TransportFail(msg, *args, **kwargs)
The transport (socket) failed when sending.

Likely indicating connectivity issues.

exception lomond.errors.WebSocketClosed(msg, *args, **kwargs)
Raised when attempting to send over a closed websocket.

exception lomond.errors.WebSocketClosing(msg, *args, **kwargs)
Raised when attempting to send over a closing websocket.

exception lomond.errors.WebSocketError(msg, *args, **kwargs)
Base exception.

exception lomond.errors.WebSocketUnavailable(msg, *args, **kwargs)
The websocket can not be used.

2.14 Events

class lomond.events.BackOff(delay)
Generated when a persistent connection has to wait before re- attempting a connection.

Parameters delay (float) – The delay (in seconds) before Lomond will re- attempt to connect.

class lomond.events.Binary(data)
Generated when Lomond receives a binary message from the server.

Parameters data (bytes) – The binary payload.

class lomond.events.Closed(code, reason)
Generated when the websocket was closed. The websocket may no longer send packets after this event has been
received. This event will be followed by Disconnected.

Parameters

• code – The closed code returned from the server.

• reason (str) – An optional description why the websocket was closed, as returned from
the server.

class lomond.events.Closing(code, reason)
Generated when the server is closing the connection.

No more messages will be received from the server, but you may still send messages while handling this event.
A Disconnected event should be generated shortly after this event.

Parameters

• code – The closed code returned from the server.

• reason (str) – An optional description why the websocket was closed, as returned from
the server.

class lomond.events.ConnectFail(reason)
Generate when Lomond was unable to connect to a Websocket server.

2.14. Events 11

Dataplicity Lomond Documentation, Release 0.3.1

Parameters reason (str) – A short description of the reason for the failure.

class lomond.events.Connected(url, proxy=None)
Generated when Lomond has connected to a server but not yet negotiated the websocket upgrade.

Parameters

• url (str) – The websocket URL connected to.

• proxy (str) – The proxy URL connected to (or None).

class lomond.events.Connecting(url)
Generated prior to establishing a websocket connection to a server.

Parameters url – The websocket URL the websocket is connecting to.

class lomond.events.Disconnected(reason=u’closed’, graceful=False)
Generated when a websocket connection has been dropped.

Parameters

• reason (str) – A description of why the websocket was closed.

• graceful (bool) – Flag indicating if the connection was dropped gracefully (True), or
disconnected due to a socket failure (False) or other problem.

class lomond.events.Event
Base class for a websocket ‘event’.

class lomond.events.Ping(data)
Generated when Lomond received a ping packet from the server.

Parameters data (bytes) – Ping payload data.

class lomond.events.Poll
A generated poll event.

class lomond.events.Pong(data)
Generated when Lomond receives a pong packet from the server.

Parameters data (bytes) – The pong payload data.

class lomond.events.ProtocolError(error, critical)
Generated when the server deviates from the protocol.

Parameters

• error (str) – A description of the error.

• critical (bool) – Indicates if the error is considered ‘critical’. If True, Lomond will
disconnect immediately. If False, Lomond will send a close message to the server.

class lomond.events.Ready(response, protocol, extensions)
Generated when Lomond has connected to the server, and successfully negotiated the websocket upgrade.

Parameters

• response – A Response object.

• protocol (str) – A websocket protocol or None if no protocol was supplied.

• extensions (set) – A set of negotiated websocket extensions. Currently only the
'permessage-deflate' extension is supported.

class lomond.events.Rejected(response, reason)
Server rejected WS connection.

12 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

class lomond.events.Text(text)
Generated when Lomond receives a text message from the server.

Parameters text (str) – The text payload.

json
Text decoded as JSON.

Calls json.loads to decode the text attribute, and may throw the same exceptions if the text is not
valid json.

class lomond.events.UnknownMessage(message)
An application message was received, with an unknown opcode.

class lomond.events.Unresponsive
The server has not responding to pings within ping_timeout seconds.

Will be followed by a Disconnected event.

2.15 Persist

Maintains a persistent websocket connection.

lomond.persist.persist(websocket, poll=5, min_wait=5, max_wait=30, ping_rate=30,
ping_timeout=None, exit_event=None)

Run a websocket, with a retry mechanism and exponential back-off.

Parameters

• websocket – A Websocket instance.

• poll (float) – The websocket poll rate, in seconds.

• min_wait (float) – The minimum time to wait between reconnect attempts (seconds).

• max_wait (float) – The maximum time to wait between reconnect attempts (seconds).

• ping_rate (float) – Delay between pings (seconds), or 0 for no auto ping.

• ping_timeout (float) – Maximum time in seconds to wait for a pong response before
disconnecting. Set to None (default) to disable. If set, double ping_rate would be a good
starting point.

• exit_event – A threading event object, which can be used to exit the persist loop if it is
set. Set to None to use an internal event object.

lomond.persist.random()→ x in the interval [0, 1).

2.16 Status

class lomond.status.Status

2.17 Response

A simple abstraction for an HTTP response.

A response object is supplied in the Ready event.

2.15. Persist 13

Dataplicity Lomond Documentation, Release 0.3.1

class lomond.response.Response(header_data)
A HTTP response.

Parameters header_data (bytes) – Raw response.

get(name, default=None)
Get a header.

Parameters

• name (str) – Name of the header to retrieve.

• default – Default value if header is not present.

Return type str

get_list(name)
Extract a list from a header.

Parameters name (bytes) – Name of the header to retrieve.

Return type str

Returns A list of strings in the header.

2.18 WebSocket

Abstract websocket functionality.

class lomond.websocket.WebSocket(url, proxies=None, protocols=None, agent=None, com-
press=False)

IO independent websocket functionality.

Parameters

• url (str) – A websocket URL, must have a ws:// or wss:// protocol.

• proxies (dict) – A dict containing 'http' or 'https' urls to a proxy server, or
None to attempt to auto-detect proxies from environment. Pass an empty dict to disable
proxy.

• protocols (list) – A list of supported protocols (defaults to no protocols).

• agent (str) – A user agent string to be sent in the header. The default uses the value
USER_AGENT defined in lomond.constants.

add_header(header, value)
Add a custom header to the websocket request.

Parameters

• header (bytes) – Name of the header.

• value (bytes) – Value of the header.

build_request()
Get the websocket request (in bytes).

This method is called from the session, and should not be invoked explicitly.

close(code=1000, reason=’goodbye’)
Close the websocket.

Parameters

14 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

• code (int) – A closing code, which should probably be one of the enumerations in
lomond.status.Status or a valid value as specified in https://tools.ietf.org/html/
rfc6455#section-7.4

• reason (str) – A short descriptive reason why the websocket is closing. This value is
intended for the remote end to help in debugging.

Note: Closing the websocket won’t exit the main loop immediately; it will put the websocket in to
a closing state while it waits for the server to echo back a close packet. No data may be sent by the
application when the websocket is closing.

connect(session_class=<class ’lomond.session.WebsocketSession’>, poll=5.0, ping_rate=30.0,
ping_timeout=None, auto_pong=True, close_timeout=30.0)

Connect the websocket to a session.

Parameters

• session_class – An object to manage the session. This object is an extension mech-
anism that will allow the WebSocket to be driven by different back-ends. For now, treat it
as an implementation detail and leave it as the default.

• poll (float) – Rate (in seconds) that poll events should be generated.

• ping_rate (float) – Rate that ping packets should be sent. Set to 0 to disable auto
pings.

• ping_timeout (float) – Maximum time in seconds to wait for a pong response be-
fore disconnecting. Set to None (default) to disable. If set, double ping_rate would be a
good starting point.

• auto_pong (bool) – Enable (default) automatic response to ping events.

• close_timeout (float) – Seconds to wait for server to respond to a close packet,
before closing the socket. Set to None or 0 to disable the timeout.

Returns An iterable of Event instances.

feed(data)
Feed with data from the socket, and yield any events.

This method is called by the Session object, and is not needed for normal use.

Parameters data (bytes) – data received over a socket.

force_disconnect()
Force the socket to disconnect.

is_active
Boolean that indicates the socket is ‘active’ i.e. not in a closing state.

is_closed
Flag that indicates if the websocket is closed.

is_closing
Boolean that indicates if the websocket is in a closing state. No further messages may be sent when a
websocket is closing.

is_secure
Boolean that indicates if the websocket is over ssl (i.e. the wss protocol).

on_disconnect()
Called on disconnect.

2.18. WebSocket 15

https://tools.ietf.org/html/rfc6455#section-7.4
https://tools.ietf.org/html/rfc6455#section-7.4

Dataplicity Lomond Documentation, Release 0.3.1

on_response(response)
Called when the HTTP response has been received.

process_extensions(extensions)
Process extension headers.

reset()
Reset the state.

send_binary(data, compress=True)
Send a binary message.

Parameters

• data (bytes) – Binary data to send.

• compress (bool) – Send data in compressed form, if compression is enabled on the
server.

Raises TypeError – If data is not bytes.

send_json(_obj=Ellipsis, **kwargs)
Encode an object as JSON and send a text message.

The object to encode may be specified as a single positional argument OR if as keyword arguments which
will be encoded as a JSON object. The following two lines will send the same JSON:

websocket.send_json({'foo': 'bar'})
websocket.send_json(foo='bar')

Parameters obj – An object to be encoded as JSON.

Raises TypeError – If obj could not be encoded as JSON.

send_ping(data=”)
Send a ping packet.

Parameters data (bytes) – Data to send in the ping message (must be <= 125 bytes).

Raises

• TypeError – If data is not bytes.

• ValueError – If data is > 125 bytes.

send_pong(data)
Send a pong packet.

Parameters data (bytes) – Data to send in the ping message (must be <= 125 bytes).

A pong may be sent in response to a ping, or unsolicited to keep the connection alive.

Raises

• TypeError – If data is not bytes.

• ValueError – If data is > 125 bytes.

send_text(text, compress=True)
Send a text message.

Parameters

• text (str) – Text to send.

16 Chapter 2. Support

Dataplicity Lomond Documentation, Release 0.3.1

• compress (bool) – Send the text in compressed form, if compression is enabled on the
server.

Raises TypeError – If data is not str (or unicode on Py2).

sent_close_time
The time (seconds since session start) when a close packet was sent (or None if no close packet has been
sent).

supports_compression
Boolean that indicates if the server has compression enabled.

2.18. WebSocket 17

Dataplicity Lomond Documentation, Release 0.3.1

18 Chapter 2. Support

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

Dataplicity Lomond Documentation, Release 0.3.1

20 Chapter 3. Indices and tables

Python Module Index

l
lomond.errors, 10
lomond.events, 11
lomond.persist, 13
lomond.response, 13
lomond.websocket, 14

21

Dataplicity Lomond Documentation, Release 0.3.1

22 Python Module Index

Index

A
add_header() (lomond.websocket.WebSocket method),

14

B
BackOff (class in lomond.events), 11
Binary (class in lomond.events), 11
build_request() (lomond.websocket.WebSocket method),

14

C
close() (lomond.websocket.WebSocket method), 14
Closed (class in lomond.events), 11
Closing (class in lomond.events), 11
CompressionParameterError, 10
connect() (lomond.websocket.WebSocket method), 15
Connected (class in lomond.events), 12
ConnectFail, 10
ConnectFail (class in lomond.events), 11
Connecting (class in lomond.events), 12
CriticalProtocolError, 10

D
Disconnected (class in lomond.events), 12

E
Event (class in lomond.events), 12

F
feed() (lomond.websocket.WebSocket method), 15
force_disconnect() (lomond.websocket.WebSocket

method), 15
FrameBuildError, 10

G
get() (lomond.response.Response method), 14
get_list() (lomond.response.Response method), 14

H
HandshakeError, 10

I
is_active (lomond.websocket.WebSocket attribute), 15
is_closed (lomond.websocket.WebSocket attribute), 15
is_closing (lomond.websocket.WebSocket attribute), 15
is_secure (lomond.websocket.WebSocket attribute), 15

J
json (lomond.events.Text attribute), 13

L
lomond.errors (module), 10
lomond.events (module), 11
lomond.persist (module), 13
lomond.response (module), 13
lomond.websocket (module), 14

O
on_disconnect() (lomond.websocket.WebSocket

method), 15
on_response() (lomond.websocket.WebSocket method),

15

P
PayloadTooLarge, 10
persist() (in module lomond.persist), 13
Ping (class in lomond.events), 12
Poll (class in lomond.events), 12
Pong (class in lomond.events), 12
process_extensions() (lomond.websocket.WebSocket

method), 16
ProtocolError, 11
ProtocolError (class in lomond.events), 12

R
random() (in module lomond.persist), 13
Ready (class in lomond.events), 12
Rejected (class in lomond.events), 12
reset() (lomond.websocket.WebSocket method), 16
Response (class in lomond.response), 13

23

Dataplicity Lomond Documentation, Release 0.3.1

S
send_binary() (lomond.websocket.WebSocket method),

16
send_json() (lomond.websocket.WebSocket method), 16
send_ping() (lomond.websocket.WebSocket method), 16
send_pong() (lomond.websocket.WebSocket method), 16
send_text() (lomond.websocket.WebSocket method), 16
sent_close_time (lomond.websocket.WebSocket at-

tribute), 17
Status (class in lomond.status), 13
supports_compression (lomond.websocket.WebSocket

attribute), 17

T
Text (class in lomond.events), 12
TransportFail, 11

U
UnknownMessage (class in lomond.events), 13
Unresponsive (class in lomond.events), 13

W
WebSocket (class in lomond.websocket), 14
WebSocketClosed, 11
WebSocketClosing, 11
WebSocketError, 11
WebSocketUnavailable, 11

24 Index

	Sponsor
	Support
	Introduction
	Installing
	Example
	Basic Usage
	Events
	Compression
	Closing the WebSocket
	Pings and Pongs
	Polling
	Proxies
	WebSockets and Threading
	Persistent Connections
	Exceptions
	Events
	Persist
	Status
	Response
	WebSocket

	Indices and tables
	Python Module Index

