
logisland Documentation
Release 1.1.1

bailet.thomas

Apr 15, 2019

Contents

1 Contents: 3
1.1 Introduction . 3
1.2 Core concepts . 3
1.3 Architecture . 4
1.4 User Documentation . 6
1.5 Developer Documentation . 133
1.6 Plugins . 152
1.7 Connectors . 154
1.8 Tutorials . 158
1.9 API design . 281
1.10 Logisland REST API . 287
1.11 What’s new in logisland ? . 299
1.12 Frequently Asked Questions. 302

2 Indices and tables 307

i

ii

logisland Documentation, Release 1.1.1

Chat with us on Gitter

Download the latest release build and unzip on an edge node.

Contents 1

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Contents:

1.1 Introduction

you can find a quick presentation below :

1.2 Core concepts

The main goal of LogIsland framework is to provide tools to automatically extract valuable knowledge from historical
log data. To do so we need two different kind of processing over our technical stack :

1. Grab events from logs

2. Perform Event Pattern Mining (EPM)

What we know about Log/Event properties :

• they’re naturally temporal

• they carry a global type (user request, error, operation, system failure. . .)

• they’re semi-structured

• they’re produced by software, so we can deduce some templates from them

• some of them are correlated

• some of them are frequent (or rare)

• some of them are monotonic

• some of them are of great interest for system operators

3

logisland Documentation, Release 1.1.1

1.2.1 What is a pattern ?

Patterns, actually are a set of items subsequences or substructures that occur frequently together in a data set we call
this strongly correlated. Patterns usually represent intrinsic and important properties of data.

1.2.2 From raw to structure

The first part of the process is to extract semantics from semi-structured data such as logs. The main objective of this
phase is to introduce a canonical semantics in log data that we will call Event which will be easier for us to process
with data mining algorithm

• log parser

• log classification/clustering

• event generation

• event summarization

1.2.3 Event pattern mining

Once we have a cannonical semantic in the form of events we can perform time window processing over our events
set. All the algorithms we can run on it will help us to find some of the following properties :

• sequential patterns

• events burst

• frequent pattern

• rare event

• highly correlated events

• correlation between time series & events

1.3 Architecture

Is there something clever out there ?

Most of the systems in this data world can be observables through their events. You just have to look at the event
sourcing pattern to get an idea of how we could define any system state as a sequence of temporal events. The main
source of events are the logs files, application logs, transaction logs, sensor data, etc.

Large and complex systems, made of number of heterogeneous components are not easy to monitor, especially when
have to deal with distributed computing. Most of the time of IT resources is spent in maintenance tasks, so there’s a
real need for tools to help achieving them.

Note: Basicaly LogIsland will help us to handle system events from log files.

4 Chapter 1. Contents:

https://msdn.microsoft.com/en-us/library/dn589792.aspx
https://msdn.microsoft.com/en-us/library/dn589792.aspx

logisland Documentation, Release 1.1.1

1.3.1 Data driven architecture

1.3.2 Technical design

LogIsland is an event processing framework based on Kafka and Spark. The main goal of this Open Source platform
is to abstract the level of complexity of complex event processing at scale. Of course many people start with an ELK
stack, which is really great but not enough to elaborate a really complete system monitoring tool. So with LogIsland,
you’ll move the log processing burden to a powerful distributed stack.

Kafka acts a the distributed message queue middleware while Spark is the core of the distributed processing. LogIsland
glue those technologies to simplify log complex event processing at scale.

1.3. Architecture 5

logisland Documentation, Release 1.1.1

1.4 User Documentation

Contents:

1.4.1 Components

Contents:

Engines Documentation

Contents:

Engine-spark

ConsoleStructuredStreamProviderService

No description provided.

6 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.stream.spark.structured.provider.ConsoleStructuredStreamProviderService

Tags

None.

Properties

This component has no required or optional properties.

DummyRecordStream

No description provided.

Class

com.hurence.logisland.stream.spark.DummyRecordStream

Tags

None.

Properties

This component has no required or optional properties.

KafkaConnectBaseProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectBaseProviderService

Tags

None.

1.4. User Documentation 7

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 1: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kc.connector.classThe class canonical name of the kafka con-
nector to use.

null false false

kc.connector.propertiesThe properties (key=value) for the connec-
tor.

false false

kc.data.key.converterKey converter class null false false
kc.data.key.converter.propertiesKey converter properties false false
kc.data.value.converterValue converter class null false false
kc.data.value.converter.propertiesValue converter properties false false
kc.worker.tasks.maxMax number of threads for this connector 1 false false
kc.partitions.maxMax number of partitions for this connector. null false false
kc.connector.offset.backing.storeThe underlying backing store to be used. memory (Stan-

dalone in memory
offset backing
store. Not suitable
for clustered de-
ployments unless
source is unique
or stateless), file
(Standalone filesys-
tem based offset
backing store. You
have to specify
the property off-
set.storage.file.filename
for the file path.Not
suitable for clus-
tered deployments
unless source is
unique or stan-
dalone), kafka
(Distributed kafka
topic based offset
backing store. See
the javadoc of class
org.apache.kafka.connect.storage.KafkaOffsetBackingStore
for the configura-
tion options.This
backing store is
well suited for
distributed deploy-
ments.)

memory false false

kc.connector.offset.backing.store.propertiesProperties to configure the offset backing
store

false false

8 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

KafkaConnectStructuredSinkProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSinkProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 9

logisland Documentation, Release 1.1.1

Table 2: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kc.connector.classThe class canonical name of the kafka con-
nector to use.

null false false

kc.connector.propertiesThe properties (key=value) for the connec-
tor.

false false

kc.data.key.converterKey converter class null false false
kc.data.key.converter.propertiesKey converter properties false false
kc.data.value.converterValue converter class null false false
kc.data.value.converter.propertiesValue converter properties false false
kc.worker.tasks.maxMax number of threads for this connector 1 false false
kc.partitions.maxMax number of partitions for this connector. null false false
kc.connector.offset.backing.storeThe underlying backing store to be used. memory (Stan-

dalone in memory
offset backing
store. Not suitable
for clustered de-
ployments unless
source is unique
or stateless), file
(Standalone filesys-
tem based offset
backing store. You
have to specify
the property off-
set.storage.file.filename
for the file path.Not
suitable for clus-
tered deployments
unless source is
unique or stan-
dalone), kafka
(Distributed kafka
topic based offset
backing store. See
the javadoc of class
org.apache.kafka.connect.storage.KafkaOffsetBackingStore
for the configura-
tion options.This
backing store is
well suited for
distributed deploy-
ments.)

memory false false

kc.connector.offset.backing.store.propertiesProperties to configure the offset backing
store

false false

KafkaConnectStructuredSourceProviderService

No description provided.

10 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 11

logisland Documentation, Release 1.1.1

Table 3: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kc.connector.classThe class canonical name of the kafka con-
nector to use.

null false false

kc.connector.propertiesThe properties (key=value) for the connec-
tor.

false false

kc.data.key.converterKey converter class null false false
kc.data.key.converter.propertiesKey converter properties false false
kc.data.value.converterValue converter class null false false
kc.data.value.converter.propertiesValue converter properties false false
kc.worker.tasks.maxMax number of threads for this connector 1 false false
kc.partitions.maxMax number of partitions for this connector. null false false
kc.connector.offset.backing.storeThe underlying backing store to be used. memory (Stan-

dalone in memory
offset backing
store. Not suitable
for clustered de-
ployments unless
source is unique
or stateless), file
(Standalone filesys-
tem based offset
backing store. You
have to specify
the property off-
set.storage.file.filename
for the file path.Not
suitable for clus-
tered deployments
unless source is
unique or stan-
dalone), kafka
(Distributed kafka
topic based offset
backing store. See
the javadoc of class
org.apache.kafka.connect.storage.KafkaOffsetBackingStore
for the configura-
tion options.This
backing store is
well suited for
distributed deploy-
ments.)

memory false false

kc.connector.offset.backing.store.propertiesProperties to configure the offset backing
store

false false

KafkaRecordStreamDebugger

No description provided.

12 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamDebugger

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 13

logisland Documentation, Release 1.1.1

Table 4: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kafka.error.topicsSets the error topics Kafka topic name _errors false false
kafka.input.topicsSets the input Kafka topic name _raw false false
kafka.output.topicsSets the output Kafka topic name _records false false
avro.input.schemathe avro schema definition null false false
avro.output.schemathe avro schema definition for the output se-

rialization
null false false

kafka.input.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.output.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.error.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

kafka.topic.autoCreatedefine wether a topic should be created au-
tomatically if not already exists

true false false

kafka.topic.default.partitionsif autoCreate is set to true, this will set the
number of partition at topic creation time

20 false false

kafka.topic.default.replicationFactorif autoCreate is set to true, this will set the
number of replica for each partition at topic
creation time

3 false false

kafka.metadata.broker.lista comma separated list of host:port brokers sandbox:9092 false false
kafka.zookeeper.quorumNo Description Provided. sandbox:2181 false false
kafka.manual.offset.resetWhat to do when there is no initial offset in

Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

kafka.batch.sizemeasures batch size in total bytes instead of
the number of messages. It controls how
many bytes of data to collect before send-
ing messages to the Kafka broker. Set this
as high as possible, without exceeding avail-
able memory. The default value is 16384.
If you increase the size of your buffer, it
might never get full.The Producer sends the
information eventually, based on other trig-
gers, such as linger time in milliseconds.
Although you can impair memory usage by
setting the buffer batch size too high, this
does not impact latency.
If your producer is sending all the time,
you are probably getting the best throughput
possible. If the producer is often idle, you
might not be writing enough data to warrant
the current allocation of resources.

16384 false false

kafka.linger.mslinger.ms sets the maximum time to buffer
data in asynchronous mode. For example, a
setting of 100 batches 100ms of messages to
send at once. This improves throughput, but
the buffering adds message delivery latency.
By default, the producer does not wait. It
sends the buffer any time data is available.
Instead of sending immediately, you can set
linger.ms to 5 and send more messages in
one batch. This would reduce the number
of requests sent, but would add up to 5 mil-
liseconds of latency to records sent, even if
the load on the system does not warrant the
delay.
The farther away the broker is from the pro-
ducer, the more overhead required to send
messages. Increase linger.ms for higher la-
tency and higher throughput in your pro-
ducer.

5 false false

kafka.acks The number of acknowledgments the pro-
ducer requires the leader to have received
before considering a request complete. This
controls the durability of records that are
sent. The following settings are common:
 <code>acks=0</code> If set to
zero then the producer will not wait for
any acknowledgment from the server at
all. The record will be immediately added
to the socket buffer and considered sent.
No guarantee can be made that the server
has received the record in this case, and
the <code>retries</code> configuration will
not take effect (as the client won’t gener-
ally know of any failures). The offset given
back for each record will always be set to -1.
<code>acks=1</code> This will mean
the leader will write the record to its local
log but will respond without awaiting full
acknowledgement from all followers. In this
case should the leader fail immediately after
acknowledging the record but before the fol-
lowers have replicated it then the record will
be lost. <code>acks=all</code> This
means the leader will wait for the full set of
in-sync replicas to acknowledge the record.
This guarantees that the record will not be
lost as long as at least one in-sync replica re-
mains alive. This is the strongest available
guarantee.

all false false

window.durationall the elements in seen in a sliding window
of time over. windowDuration = width of
the window; must be a multiple of batching
interval

null false false

slide.duration sliding interval of the window (i.e., the inter-
val after which the new DStream will gener-
ate RDDs); must be a multiple of batching
interval

null false false

14 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

KafkaRecordStreamHDFSBurner

No description provided.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamHDFSBurner

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 15

logisland Documentation, Release 1.1.1

Table 5: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kafka.error.topicsSets the error topics Kafka topic name _errors false false
kafka.input.topicsSets the input Kafka topic name _raw false false
kafka.output.topicsSets the output Kafka topic name _records false false
avro.input.schemathe avro schema definition null false false
avro.output.schemathe avro schema definition for the output se-

rialization
null false false

kafka.input.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.output.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.error.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

kafka.topic.autoCreatedefine wether a topic should be created au-
tomatically if not already exists

true false false

kafka.topic.default.partitionsif autoCreate is set to true, this will set the
number of partition at topic creation time

20 false false

kafka.topic.default.replicationFactorif autoCreate is set to true, this will set the
number of replica for each partition at topic
creation time

3 false false

kafka.metadata.broker.lista comma separated list of host:port brokers sandbox:9092 false false
kafka.zookeeper.quorumNo Description Provided. sandbox:2181 false false
kafka.manual.offset.resetWhat to do when there is no initial offset in

Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

kafka.batch.sizemeasures batch size in total bytes instead of
the number of messages. It controls how
many bytes of data to collect before send-
ing messages to the Kafka broker. Set this
as high as possible, without exceeding avail-
able memory. The default value is 16384.
If you increase the size of your buffer, it
might never get full.The Producer sends the
information eventually, based on other trig-
gers, such as linger time in milliseconds.
Although you can impair memory usage by
setting the buffer batch size too high, this
does not impact latency.
If your producer is sending all the time,
you are probably getting the best throughput
possible. If the producer is often idle, you
might not be writing enough data to warrant
the current allocation of resources.

16384 false false

kafka.linger.mslinger.ms sets the maximum time to buffer
data in asynchronous mode. For example, a
setting of 100 batches 100ms of messages to
send at once. This improves throughput, but
the buffering adds message delivery latency.
By default, the producer does not wait. It
sends the buffer any time data is available.
Instead of sending immediately, you can set
linger.ms to 5 and send more messages in
one batch. This would reduce the number
of requests sent, but would add up to 5 mil-
liseconds of latency to records sent, even if
the load on the system does not warrant the
delay.
The farther away the broker is from the pro-
ducer, the more overhead required to send
messages. Increase linger.ms for higher la-
tency and higher throughput in your pro-
ducer.

5 false false

kafka.acks The number of acknowledgments the pro-
ducer requires the leader to have received
before considering a request complete. This
controls the durability of records that are
sent. The following settings are common:
 <code>acks=0</code> If set to
zero then the producer will not wait for
any acknowledgment from the server at
all. The record will be immediately added
to the socket buffer and considered sent.
No guarantee can be made that the server
has received the record in this case, and
the <code>retries</code> configuration will
not take effect (as the client won’t gener-
ally know of any failures). The offset given
back for each record will always be set to -1.
<code>acks=1</code> This will mean
the leader will write the record to its local
log but will respond without awaiting full
acknowledgement from all followers. In this
case should the leader fail immediately after
acknowledging the record but before the fol-
lowers have replicated it then the record will
be lost. <code>acks=all</code> This
means the leader will wait for the full set of
in-sync replicas to acknowledge the record.
This guarantees that the record will not be
lost as long as at least one in-sync replica re-
mains alive. This is the strongest available
guarantee.

all false false

window.durationall the elements in seen in a sliding window
of time over. windowDuration = width of
the window; must be a multiple of batching
interval

null false false

slide.duration sliding interval of the window (i.e., the inter-
val after which the new DStream will gener-
ate RDDs); must be a multiple of batching
interval

null false false

output.folder.paththe location where to put files : file:///tmp/
out

null false false

output.format can be parquet, orc csv parquet, txt, json,
json

null false false

record.type the type of event to filter null false false
num.partitions the numbers of physical files on HDFS 4 false false
exclude.errors do we include records with errors ? true false false
date.format The format of the date for the partition yyyy-MM-

dd
false false

input.format Used to load data from a raw record_value.
Only json supported

false false

16 Chapter 1. Contents:

file:///tmp/out
file:///tmp/out

logisland Documentation, Release 1.1.1

KafkaRecordStreamParallelProcessing

No description provided.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 17

logisland Documentation, Release 1.1.1

Table 6: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kafka.error.topicsSets the error topics Kafka topic name _errors false false
kafka.input.topicsSets the input Kafka topic name _raw false false
kafka.output.topicsSets the output Kafka topic name _records false false
avro.input.schemathe avro schema definition null false false
avro.output.schemathe avro schema definition for the output se-

rialization
null false false

kafka.input.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.output.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.error.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

kafka.topic.autoCreatedefine wether a topic should be created au-
tomatically if not already exists

true false false

kafka.topic.default.partitionsif autoCreate is set to true, this will set the
number of partition at topic creation time

20 false false

kafka.topic.default.replicationFactorif autoCreate is set to true, this will set the
number of replica for each partition at topic
creation time

3 false false

kafka.metadata.broker.lista comma separated list of host:port brokers sandbox:9092 false false
kafka.zookeeper.quorumNo Description Provided. sandbox:2181 false false
kafka.manual.offset.resetWhat to do when there is no initial offset in

Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

kafka.batch.sizemeasures batch size in total bytes instead of
the number of messages. It controls how
many bytes of data to collect before send-
ing messages to the Kafka broker. Set this
as high as possible, without exceeding avail-
able memory. The default value is 16384.
If you increase the size of your buffer, it
might never get full.The Producer sends the
information eventually, based on other trig-
gers, such as linger time in milliseconds.
Although you can impair memory usage by
setting the buffer batch size too high, this
does not impact latency.
If your producer is sending all the time,
you are probably getting the best throughput
possible. If the producer is often idle, you
might not be writing enough data to warrant
the current allocation of resources.

16384 false false

kafka.linger.mslinger.ms sets the maximum time to buffer
data in asynchronous mode. For example, a
setting of 100 batches 100ms of messages to
send at once. This improves throughput, but
the buffering adds message delivery latency.
By default, the producer does not wait. It
sends the buffer any time data is available.
Instead of sending immediately, you can set
linger.ms to 5 and send more messages in
one batch. This would reduce the number
of requests sent, but would add up to 5 mil-
liseconds of latency to records sent, even if
the load on the system does not warrant the
delay.
The farther away the broker is from the pro-
ducer, the more overhead required to send
messages. Increase linger.ms for higher la-
tency and higher throughput in your pro-
ducer.

5 false false

kafka.acks The number of acknowledgments the pro-
ducer requires the leader to have received
before considering a request complete. This
controls the durability of records that are
sent. The following settings are common:
 <code>acks=0</code> If set to
zero then the producer will not wait for
any acknowledgment from the server at
all. The record will be immediately added
to the socket buffer and considered sent.
No guarantee can be made that the server
has received the record in this case, and
the <code>retries</code> configuration will
not take effect (as the client won’t gener-
ally know of any failures). The offset given
back for each record will always be set to -1.
<code>acks=1</code> This will mean
the leader will write the record to its local
log but will respond without awaiting full
acknowledgement from all followers. In this
case should the leader fail immediately after
acknowledging the record but before the fol-
lowers have replicated it then the record will
be lost. <code>acks=all</code> This
means the leader will wait for the full set of
in-sync replicas to acknowledge the record.
This guarantees that the record will not be
lost as long as at least one in-sync replica re-
mains alive. This is the strongest available
guarantee.

all false false

window.durationall the elements in seen in a sliding window
of time over. windowDuration = width of
the window; must be a multiple of batching
interval

null false false

slide.duration sliding interval of the window (i.e., the inter-
val after which the new DStream will gener-
ate RDDs); must be a multiple of batching
interval

null false false

18 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

KafkaRecordStreamSQLAggregator

This is a stream capable of SQL query interpretations.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator

Tags

stream, SQL, query, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 19

logisland Documentation, Release 1.1.1

Table 7: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kafka.error.topicsSets the error topics Kafka topic name _errors false false
kafka.input.topicsSets the input Kafka topic name _raw false false
kafka.output.topicsSets the output Kafka topic name _records false false
avro.input.schemathe avro schema definition null false false
avro.output.schemathe avro schema definition for the output se-

rialization
null false false

kafka.input.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.output.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.error.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

kafka.topic.autoCreatedefine wether a topic should be created au-
tomatically if not already exists

true false false

kafka.topic.default.partitionsif autoCreate is set to true, this will set the
number of partition at topic creation time

20 false false

kafka.topic.default.replicationFactorif autoCreate is set to true, this will set the
number of replica for each partition at topic
creation time

3 false false

kafka.metadata.broker.lista comma separated list of host:port brokers sandbox:9092 false false
kafka.zookeeper.quorumNo Description Provided. sandbox:2181 false false
kafka.manual.offset.resetWhat to do when there is no initial offset in

Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

kafka.batch.sizemeasures batch size in total bytes instead of
the number of messages. It controls how
many bytes of data to collect before send-
ing messages to the Kafka broker. Set this
as high as possible, without exceeding avail-
able memory. The default value is 16384.
If you increase the size of your buffer, it
might never get full.The Producer sends the
information eventually, based on other trig-
gers, such as linger time in milliseconds.
Although you can impair memory usage by
setting the buffer batch size too high, this
does not impact latency.
If your producer is sending all the time,
you are probably getting the best throughput
possible. If the producer is often idle, you
might not be writing enough data to warrant
the current allocation of resources.

16384 false false

kafka.linger.mslinger.ms sets the maximum time to buffer
data in asynchronous mode. For example, a
setting of 100 batches 100ms of messages to
send at once. This improves throughput, but
the buffering adds message delivery latency.
By default, the producer does not wait. It
sends the buffer any time data is available.
Instead of sending immediately, you can set
linger.ms to 5 and send more messages in
one batch. This would reduce the number
of requests sent, but would add up to 5 mil-
liseconds of latency to records sent, even if
the load on the system does not warrant the
delay.
The farther away the broker is from the pro-
ducer, the more overhead required to send
messages. Increase linger.ms for higher la-
tency and higher throughput in your pro-
ducer.

5 false false

kafka.acks The number of acknowledgments the pro-
ducer requires the leader to have received
before considering a request complete. This
controls the durability of records that are
sent. The following settings are common:
 <code>acks=0</code> If set to
zero then the producer will not wait for
any acknowledgment from the server at
all. The record will be immediately added
to the socket buffer and considered sent.
No guarantee can be made that the server
has received the record in this case, and
the <code>retries</code> configuration will
not take effect (as the client won’t gener-
ally know of any failures). The offset given
back for each record will always be set to -1.
<code>acks=1</code> This will mean
the leader will write the record to its local
log but will respond without awaiting full
acknowledgement from all followers. In this
case should the leader fail immediately after
acknowledging the record but before the fol-
lowers have replicated it then the record will
be lost. <code>acks=all</code> This
means the leader will wait for the full set of
in-sync replicas to acknowledge the record.
This guarantees that the record will not be
lost as long as at least one in-sync replica re-
mains alive. This is the strongest available
guarantee.

all false false

window.durationall the elements in seen in a sliding window
of time over. windowDuration = width of
the window; must be a multiple of batching
interval

null false false

slide.duration sliding interval of the window (i.e., the inter-
val after which the new DStream will gener-
ate RDDs); must be a multiple of batching
interval

null false false

max.results.countthe max number of rows to output. (-1 for
no limit)

-1 false false

sql.query The SQL query to execute, please note that
the table name must exists in input topics
names

null false false

output.record.typethe output type of the record aggregation false false

20 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

KafkaStreamProcessingEngine

No description provided.

Class

com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 8: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

spark.app.nameTha application name logisland false false
spark.master The url to Spark Master local[2] false false
spark.monitoring.driver.portThe port for exposing monitoring metrics null false false
spark.yarn.deploy-
mode

The yarn deploy mode null false false

spark.yarn.queueThe name of the YARN queue default false false
spark.driver.memoryThe memory size for Spark driver 512m false false
spark.executor.memoryThe memory size for Spark executors 1g false false
spark.driver.coresThe number of cores for Spark driver 4 false false
spark.executor.coresThe number of cores for Spark driver 1 false false
spark.executor.instancesThe number of instances for Spark app null false false
spark.serializer Class to use for serializing objects that will

be sent over the network or need to be
cached in serialized form

org.apache.spark.serializer.KryoSerializerfalse false

spark.streaming.blockIntervalInterval at which data received by Spark
Streaming receivers is chunked into blocks
of data before storing them in Spark. Mini-
mum recommended - 50 ms

350 false false

spark.streaming.kafka.maxRatePerPartitionMaximum rate (number of records per sec-
ond) at which data will be read from each
Kafka partition

5000 false false

spark.streaming.batchDurationNo Description Provided. 2000 false false
Continued on next page

1.4. User Documentation 21

logisland Documentation, Release 1.1.1

Table 8 – continued from previous page
Name Description Allowable Values Default

Value
SensitiveEL

spark.streaming.backpressure.enabledThis enables the Spark Streaming to control
the receiving rate based on the current batch
scheduling delays and processing times so
that the system receives only as fast as the
system can process.

false false false

spark.streaming.unpersistForce RDDs generated and persisted by
Spark Streaming to be automatically unper-
sisted from Spark’s memory. The raw input
data received by Spark Streaming is also au-
tomatically cleared. Setting this to false will
allow the raw data and persisted RDDs to be
accessible outside the streaming application
as they will not be cleared automatically.
But it comes at the cost of higher memory
usage in Spark.

false false false

spark.ui.port No Description Provided. 4050 false false
spark.streaming.timeoutNo Description Provided. -1 false false
spark.streaming.kafka.maxRetriesMaximum rate (number of records per sec-

ond) at which data will be read from each
Kafka partition

3 false false

spark.streaming.ui.retainedBatchesHow many batches the Spark Streaming UI
and status APIs remember before garbage
collecting.

200 false false

spark.streaming.receiver.writeAheadLog.enableEnable write ahead logs for receivers. All
the input data received through receivers
will be saved to write ahead logs that will
allow it to be recovered after driver failures.

false false false

spark.yarn.maxAppAttemptsBecause Spark driver and Application Mas-
ter share a single JVM, any error in Spark
driver stops our long-running job. For-
tunately it is possible to configure max-
imum number of attempts that will be
made to re-run the application. It is rea-
sonable to set higher value than default
2 (derived from YARN cluster property
yarn.resourcemanager.am.max-attempts). 4
works quite well, higher value may cause
unnecessary restarts even if the reason of the
failure is permanent.

4 false false

spark.yarn.am.attemptFailuresValidityIntervalIf the application runs for days or weeks
without restart or redeployment on highly
utilized cluster, 4 attempts could be ex-
hausted in few hours. To avoid this situa-
tion, the attempt counter should be reset on
every hour of so.

1h false false

Continued on next page

22 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 8 – continued from previous page
Name Description Allowable Values Default

Value
SensitiveEL

spark.yarn.max.executor.failuresa maximum number of executor failures be-
fore the application fails. By default it is
max(2 * num executors, 3), well suited for
batch jobs but not for long-running jobs.
The property comes with corresponding va-
lidity interval which also should be set.8 *
num_executors

20 false false

spark.yarn.executor.failuresValidityIntervalIf the application runs for days or weeks
without restart or redeployment on highly
utilized cluster, x attempts could be ex-
hausted in few hours. To avoid this situa-
tion, the attempt counter should be reset on
every hour of so.

1h false false

spark.task.maxFailuresFor long-running jobs you could also con-
sider to boost maximum number of task fail-
ures before giving up the job. By default
tasks will be retried 4 times and then job
fails.

8 false false

spark.memory.fractionexpresses the size of M as a fraction of the
(JVM heap space - 300MB) (default 0.75).
The rest of the space (25%) is reserved for
user data structures, internal metadata in
Spark, and safeguarding against OOM er-
rors in the case of sparse and unusually large
records.

0.6 false false

spark.memory.storageFractionexpresses the size of R as a fraction of M
(default 0.5). R is the storage space within
M where cached blocks immune to being
evicted by execution.

0.5 false false

spark.scheduler.modeThe scheduling mode between jobs submit-
ted to the same SparkContext. Can be set to
FAIR to use fair sharing instead of queueing
jobs one after another. Useful for multi-user
services.

FAIR (fair sharing),
FIFO (queueing
jobs one after
another)

FAIR false false

spark.properties.file.pathfor using –properties-file option while sub-
mitting spark job

null false false

KafkaStructuredStreamProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.structured.provider.KafkaStructuredStreamProviderService

1.4. User Documentation 23

logisland Documentation, Release 1.1.1

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

24 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 9: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

kafka.error.topicsSets the error topics Kafka topic name _errors false false
kafka.input.topicsSets the input Kafka topic name _raw false false
kafka.output.topicsSets the output Kafka topic name _records false false
avro.input.schemathe avro schema definition null false false
avro.output.schemathe avro schema definition for the output se-

rialization
null false false

kafka.input.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.output.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

kafka.error.topics.serializerNo Description Provided. com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

kafka.topic.autoCreatedefine wether a topic should be created au-
tomatically if not already exists

true false false

kafka.topic.default.partitionsif autoCreate is set to true, this will set the
number of partition at topic creation time

20 false false

kafka.topic.default.replicationFactorif autoCreate is set to true, this will set the
number of replica for each partition at topic
creation time

3 false false

kafka.metadata.broker.lista comma separated list of host:port brokers sandbox:9092 false false
kafka.zookeeper.quorumNo Description Provided. sandbox:2181 false false
kafka.manual.offset.resetWhat to do when there is no initial offset in

Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

kafka.batch.sizemeasures batch size in total bytes instead of
the number of messages. It controls how
many bytes of data to collect before send-
ing messages to the Kafka broker. Set this
as high as possible, without exceeding avail-
able memory. The default value is 16384.
If you increase the size of your buffer, it
might never get full.The Producer sends the
information eventually, based on other trig-
gers, such as linger time in milliseconds.
Although you can impair memory usage by
setting the buffer batch size too high, this
does not impact latency.
If your producer is sending all the time,
you are probably getting the best throughput
possible. If the producer is often idle, you
might not be writing enough data to warrant
the current allocation of resources.

16384 false false

kafka.linger.mslinger.ms sets the maximum time to buffer
data in asynchronous mode. For example, a
setting of 100 batches 100ms of messages to
send at once. This improves throughput, but
the buffering adds message delivery latency.
By default, the producer does not wait. It
sends the buffer any time data is available.
Instead of sending immediately, you can set
linger.ms to 5 and send more messages in
one batch. This would reduce the number
of requests sent, but would add up to 5 mil-
liseconds of latency to records sent, even if
the load on the system does not warrant the
delay.
The farther away the broker is from the pro-
ducer, the more overhead required to send
messages. Increase linger.ms for higher la-
tency and higher throughput in your pro-
ducer.

5 false false

kafka.acks The number of acknowledgments the pro-
ducer requires the leader to have received
before considering a request complete. This
controls the durability of records that are
sent. The following settings are common:
 <code>acks=0</code> If set to
zero then the producer will not wait for
any acknowledgment from the server at
all. The record will be immediately added
to the socket buffer and considered sent.
No guarantee can be made that the server
has received the record in this case, and
the <code>retries</code> configuration will
not take effect (as the client won’t gener-
ally know of any failures). The offset given
back for each record will always be set to -1.
<code>acks=1</code> This will mean
the leader will write the record to its local
log but will respond without awaiting full
acknowledgement from all followers. In this
case should the leader fail immediately after
acknowledging the record but before the fol-
lowers have replicated it then the record will
be lost. <code>acks=all</code> This
means the leader will wait for the full set of
in-sync replicas to acknowledge the record.
This guarantees that the record will not be
lost as long as at least one in-sync replica re-
mains alive. This is the strongest available
guarantee.

all false false

window.durationall the elements in seen in a sliding window
of time over. windowDuration = width of
the window; must be a multiple of batching
interval

null false false

slide.duration sliding interval of the window (i.e., the inter-
val after which the new DStream will gener-
ate RDDs); must be a multiple of batching
interval

null false false

1.4. User Documentation 25

logisland Documentation, Release 1.1.1

MQTTStructuredStreamProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.structured.provider.MQTTStructuredStreamProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

26 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 10: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

mqtt.broker.url brokerUrl A url MqttClient connects to. Set
this or path as the url of the Mqtt Server. e.g.
tcp://localhost:1883

tcp:
//localhost:
1883

false false

mqtt.clean.sessioncleanSession Setting it true starts a clean
session, removes all checkpointed messages
by a previous run of this source. This is set
to false by default.

true false false

mqtt.client.id clientID this client is associated. Provide the
same value to recover a stopped client.

null false false

mqtt.connection.timeoutconnectionTimeout Sets the connection
timeout, a value of 0 is interpreted as wait
until client connects. See MqttConnectOp-
tions.setConnectionTimeout for more infor-
mation

5000 false false

mqtt.keep.alive keepAlive Same as MqttConnectOp-
tions.setKeepAliveInterval.

5000 false false

mqtt.password password Sets the password to use for the
connection

null false false

mqtt.persistencepersistence By default it is used for storing
incoming messages on disk. If memory is
provided as value for this option, then re-
covery on restart is not supported.

memory false false

mqtt.version mqttVersion Same as MqttConnectOp-
tions.setMqttVersion

5000 false false

mqtt.username
username Sets the user name to
use for the connection to Mqtt
Server. Do not set it, if server
does not need this. Setting it
empty will lead to errors.

null false false

mqtt.qos
QoS The maximum quality
of service to subscribe each
topic at.Messages published at
a lower quality of service will
be received at the published
QoS.Messages published at a
higher quality of service will be
received using the QoS speci-
fied on the subscribe

0 false false

mqtt.topic Topic MqttClient subscribes to. null false false

RemoteApiStreamProcessingEngine

No description provided.

1.4. User Documentation 27

tcp://localhost:1883
tcp://localhost:1883
tcp://localhost:1883
tcp://localhost:1883

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.engine.spark.RemoteApiStreamProcessingEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 11: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

spark.app.nameTha application name logisland false false
spark.master The url to Spark Master local[2] false false
spark.monitoring.driver.portThe port for exposing monitoring metrics null false false
spark.yarn.deploy-
mode

The yarn deploy mode null false false

spark.yarn.queueThe name of the YARN queue default false false
spark.driver.memoryThe memory size for Spark driver 512m false false
spark.executor.memoryThe memory size for Spark executors 1g false false
spark.driver.coresThe number of cores for Spark driver 4 false false
spark.executor.coresThe number of cores for Spark driver 1 false false
spark.executor.instancesThe number of instances for Spark app null false false
spark.serializer Class to use for serializing objects that will

be sent over the network or need to be
cached in serialized form

org.apache.spark.serializer.KryoSerializerfalse false

spark.streaming.blockIntervalInterval at which data received by Spark
Streaming receivers is chunked into blocks
of data before storing them in Spark. Mini-
mum recommended - 50 ms

350 false false

spark.streaming.kafka.maxRatePerPartitionMaximum rate (number of records per sec-
ond) at which data will be read from each
Kafka partition

5000 false false

spark.streaming.batchDurationNo Description Provided. 2000 false false
spark.streaming.backpressure.enabledThis enables the Spark Streaming to control

the receiving rate based on the current batch
scheduling delays and processing times so
that the system receives only as fast as the
system can process.

false false false

Continued on next page

28 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 11 – continued from previous page
Name Description Allowable Values Default

Value
SensitiveEL

spark.streaming.unpersistForce RDDs generated and persisted by
Spark Streaming to be automatically unper-
sisted from Spark’s memory. The raw input
data received by Spark Streaming is also au-
tomatically cleared. Setting this to false will
allow the raw data and persisted RDDs to be
accessible outside the streaming application
as they will not be cleared automatically.
But it comes at the cost of higher memory
usage in Spark.

false false false

spark.ui.port No Description Provided. 4050 false false
spark.streaming.timeoutNo Description Provided. -1 false false
spark.streaming.kafka.maxRetriesMaximum rate (number of records per sec-

ond) at which data will be read from each
Kafka partition

3 false false

spark.streaming.ui.retainedBatchesHow many batches the Spark Streaming UI
and status APIs remember before garbage
collecting.

200 false false

spark.streaming.receiver.writeAheadLog.enableEnable write ahead logs for receivers. All
the input data received through receivers
will be saved to write ahead logs that will
allow it to be recovered after driver failures.

false false false

spark.yarn.maxAppAttemptsBecause Spark driver and Application Mas-
ter share a single JVM, any error in Spark
driver stops our long-running job. For-
tunately it is possible to configure max-
imum number of attempts that will be
made to re-run the application. It is rea-
sonable to set higher value than default
2 (derived from YARN cluster property
yarn.resourcemanager.am.max-attempts). 4
works quite well, higher value may cause
unnecessary restarts even if the reason of the
failure is permanent.

4 false false

spark.yarn.am.attemptFailuresValidityIntervalIf the application runs for days or weeks
without restart or redeployment on highly
utilized cluster, 4 attempts could be ex-
hausted in few hours. To avoid this situa-
tion, the attempt counter should be reset on
every hour of so.

1h false false

spark.yarn.max.executor.failuresa maximum number of executor failures be-
fore the application fails. By default it is
max(2 * num executors, 3), well suited for
batch jobs but not for long-running jobs.
The property comes with corresponding va-
lidity interval which also should be set.8 *
num_executors

20 false false

Continued on next page

1.4. User Documentation 29

logisland Documentation, Release 1.1.1

Table 11 – continued from previous page
Name Description Allowable Values Default

Value
SensitiveEL

spark.yarn.executor.failuresValidityIntervalIf the application runs for days or weeks
without restart or redeployment on highly
utilized cluster, x attempts could be ex-
hausted in few hours. To avoid this situa-
tion, the attempt counter should be reset on
every hour of so.

1h false false

spark.task.maxFailuresFor long-running jobs you could also con-
sider to boost maximum number of task fail-
ures before giving up the job. By default
tasks will be retried 4 times and then job
fails.

8 false false

spark.memory.fractionexpresses the size of M as a fraction of the
(JVM heap space - 300MB) (default 0.75).
The rest of the space (25%) is reserved for
user data structures, internal metadata in
Spark, and safeguarding against OOM er-
rors in the case of sparse and unusually large
records.

0.6 false false

spark.memory.storageFractionexpresses the size of R as a fraction of M
(default 0.5). R is the storage space within
M where cached blocks immune to being
evicted by execution.

0.5 false false

spark.scheduler.modeThe scheduling mode between jobs submit-
ted to the same SparkContext. Can be set to
FAIR to use fair sharing instead of queueing
jobs one after another. Useful for multi-user
services.

FAIR (fair sharing),
FIFO (queueing
jobs one after
another)

FAIR false false

spark.properties.file.pathfor using –properties-file option while sub-
mitting spark job

null false false

remote.api.baseUrlThe base URL of the remote server provid-
ing logisland configuration

null false false

remote.api.polling.rateRemote api polling rate in milliseconds null false false
remote.api.push.rateRemote api configuration push rate in mil-

liseconds
null false false

remote.api.timeouts.connectRemote api connection timeout in millisec-
onds

10000 false false

remote.api.auth.userThe basic authentication user for the remote
api endpoint.

null false false

remote.api.auth.passwordThe basic authentication password for the
remote api endpoint.

null false false

remote.api.timeouts.socketRemote api default read/write socket time-
out in milliseconds

10000 false false

StructuredStream

No description provided.

30 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.stream.spark.structured.StructuredStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 31

logisland Documentation, Release 1.1.1

Table 12: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

read.topics the input path for any topic to be read from null false false
read.topics.client.servicethe controller service that gives connection

information
null false false

read.topics.serializerthe serializer to use com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

read.topics.key.serializerThe key serializer to use com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events
as Kura pro-
tocol buffer),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes)

none false false

write.topics the input path for any topic to be written to null false false
write.topics.client.servicethe controller service that gives connection

information
null false false

write.topics.serializerthe serializer to use com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

write.topics.key.serializerThe key serializer to use com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

32 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Engine-vanilla

Find below the list.

AmqpClientPipelineStream

No description provided.

Class

com.hurence.logisland.engine.vanilla.stream.amqp.AmqpClientPipelineStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 33

logisland Documentation, Release 1.1.1

Table 13: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

connection.hostConnection host name null false false
connection.portConnection port 5672 false false
link.credits Flow control. How many credits for this

links. Higher means higher prefetch (pre-
buffered number of messages

1024 false false

connection.auth.userConnection authenticated user name null false false
connection.auth.passwordConnection authenticated password null false false
connection.auth.tls.certConnection TLS public certificate (PEM file

path)
null false false

connection.auth.tls.keyConnection TLS private key (PEM file path) null false false
connection.auth.ca.certConnection TLS CA cert (PEM file path) null false false
read.topic The input path for any topic to be read from false false
read.topic.serializerThe serializer to use com.hurence.logisland.serializer.BsonSerializer

(serialize events
as bson),
com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

avro.input.schemaThe avro schema definition null false false
write.topic The input path for any topic to be written to false false
write.topic.serializerThe serializer to use com.hurence.logisland.serializer.BsonSerializer

(serialize events
as bson),
com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

avro.output.schemaThe avro schema definition for the output
serialization

null false false

container.id AMQP container ID null false false
write.topic.content.typeThe content type to set in the output mes-

sage
null false false

connection.reconnect.backoffReconnection delay linear backoff 2.0 false false
connection.reconnect.initial.delayInitial reconnection delay in milliseconds 1000 false false
connection.reconnect.max.delayMaximum reconnection delay in millisec-

onds
30000 false false

34 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

KafkaStreamsPipelineStream

No description provided.

Class

com.hurence.logisland.engine.vanilla.stream.kafka.KafkaStreamsPipelineStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 35

logisland Documentation, Release 1.1.1

Table 14: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

bootstrap.serversList of kafka nodes to connect to null false false
read.topics The input path for any topic to be read from false false
avro.input.schemaThe avro schema definition null false false
avro.output.schemaThe avro schema definition for the output

serialization
null false false

kafka.manual.offset.resetWhat to do when there is no initial offset in
Kafka or if the current offset does not exist
any more on the server (e.g. because that
data has been deleted):
earliest: automatically reset the offset to the
earliest offset
latest: automatically reset the offset to the
latest offset
none: throw exception to the consumer if no
previous offset is found for the consumer’s
group
anything else: throw exception to the con-
sumer.

latest (the offset to
the latest offset),
earliest (the offset to
the earliest offset),
none (the latest
saved offset)

earliest false false

read.topics.serializerThe serializer to use com.hurence.logisland.serializer.KryoSerializer
(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

write.topics The input path for any topic to be written to false false
write.topics.serializerThe serializer to use com.hurence.logisland.serializer.KryoSerializer

(serialize events
as binary blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.ExtendedJsonSerializer
(serialize events as
json blocs sup-
porting nested
objects/arrays),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.StringSerializer
(serialize events as
string), none (send
events as bytes),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer)

none false false

36 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

PlainJavaEngine

No description provided.

Class

com.hurence.logisland.engine.vanilla.PlainJavaEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 15: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

jvm.heap.min Minimum memory the JVM should allocate
for its heap

null false false

jvm.heap.max Maximum memory the JVM should allocate
for its heap

null false false

Extra informations

No additional information is provided

Common-processors

Find below the list.

AddFields

Add one or more field to records

1.4. User Documentation 37

logisland Documentation, Release 1.1.1

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.AddFields

Tags

record, fields, Add

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 16: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

38 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 17: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

Name of the
field to add

Value of the
field to add

Add a field to the record
with the specified value. Ex-
pression language can be
used.You can not add a field
that end with ‘.type’ as this
suffix is used to specify the
type of fields to add

null true

Name of
the field to
add with
the suffix
‘.field.type’

Type of the
field to add

Add a field to the record
with the specified type.
These properties are only
used if a correspondant
property without the suf-
fix ‘.field.type’ is already
defined. If this property is
not defined, default type for
adding fields is String.You
can only use Logisland
predefined type fields.

NULL, STRING, INT,
LONG, ARRAY, FLOAT,
DOUBLE, BYTES,
RECORD, MAP, ENUM,
BOOLEAN, UNION,
DATETIME

STRING false

Name of
the field to
add with
the suffix
‘.field.name’

Name of
the field to
add using
expression
language

Add a field to the record
with the specified name
(which is evaluated us-
ing expression language).
These properties are only
used if a correspondant
property without the suffix
‘.field.name’ is already
defined. If this property is
not defined, the name of the
field to add is the key of
the first dynamic property
(which is the main and only
required dynamic property).

null true

Extra informations

Add one or more field with constant value or dynamic value using the expression-language.Some examples of settings:

newStringField: bonjour
newIntField: 14
newIntField.field.type: INT

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour'}
Field{name='newIntField', type='INT', value=14}

Here a second example using expression language, once for the value, once for the key. Note that you can use for
both.We suppose that our record got already those fields :

1.4. User Documentation 39

./expression-language.html

logisland Documentation, Release 1.1.1

Field{name='field1', type='STRING', value='bonjour'}
Field{name='field2', type='INT', value=14}

This settings : .. code:

newStringField: ${field1 + "-" + field2}
fieldToCalulateKey: 555
fieldToCalulateKey.field.name: ${"_" + field1 + "-"}

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour-14'}
Field{name='_bonjour-', type='STRING', value='555'}

As you probably notice, you can not add fields with name ending by either ‘.field.name’ either ‘.field.type’ because
they are suffix are used to sort dynamic properties. But if you really want to do this a workaround is to specify the
name of the field oui expression language, for example this settings would work:

fieldWithReservedSuffix: bonjour
fieldWithReservedSuffix.field.type: INT
fieldWithReservedSuffix.field.type: myfield.endind.with.reserved.suffix.field.type

ApplyRegexp

This processor is used to create a new set of fields from one field (using regexp).

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.ApplyRegexp

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

40 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 18: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 19: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

alternative
regex &
mapping

another
regex that
could match

This processor is used to
create a new set of fields
from one field (using reg-
exp).

null true

Extra informations

This processor is used to create a new set of fields from one field (using regexp).

See Also:

com.hurence.logisland.processor.ApplyRegexp

BulkPut

Indexes the content of a Record in a Datastore using bulk processor

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.datastore.BulkPut

Tags

datastore, record, put, bulk

1.4. User Documentation 41

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

Table 20: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

default.collectionThe name of the collection/index/table to in-
sert into

null false true

timebased.collectiondo we add a date suffix no (no date added
to default index),
today (today’s date
added to default
index), yesterday
(yesterday’s date
added to default
index)

no false false

date.format simple date format for date suffix. default :
yyyy.MM.dd

yyyy.MM.dd false false

collection.field the name of the event field containing es in-
dex name => will override index value if set

null false true

Extra informations

Indexes the content of a Record in a Datastore using bulk processor.

CheckAlerts

Add one or more records representing alerts. Using a datastore.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.alerting.CheckAlerts

Tags

record, alerting, thresholds, opc, tag

42 Chapter 1. Contents:

expression-language.html

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 21: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

max.cpu.time maximum CPU time in milliseconds al-
lowed for script execution.

100 false false

max.memory maximum memory in Bytes which JS ex-
ecutor thread can allocate

51200 false false

allow.no.brace Force, to check if all blocks are enclosed
with curly braces “”{}”“.

false false false

max.prepared.statementsThe size of prepared statements LRU cache.
If 0, this is disabled.

30 false false

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

datastore.cache.collectionThe collection where to find cached objects test false false
js.cache.serviceThe cache service to be used to store al-

ready sanitized JS expressions. If not spec-
ified a in-memory unlimited hash map will
be used.

null false false

output.record.typethe type of the output record event false false
profile.activation.conditionA javascript expression that activates this

alerting profile when true
0==0 false false

alert.criticity from 0 to . . . 0 false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 22: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

field to add a default
value

Add a field to the record
with the default value

null false

Extra informations

Add one or more records representing alerts. Using a datastore.

CheckThresholds

Compute threshold cross from given formulas.

1.4. User Documentation 43

logisland Documentation, Release 1.1.1

• each dynamic property will return a new record according to the formula definition

• the record name will be set to the property name

• the record time will be set to the current timestamp

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.alerting.CheckThresholds

Tags

record, threshold, tag, alerting

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 23: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

max.cpu.time maximum CPU time in milliseconds al-
lowed for script execution.

100 false false

max.memory maximum memory in Bytes which JS ex-
ecutor thread can allocate

51200 false false

allow.no.brace Force, to check if all blocks are enclosed
with curly braces “”{}”“.

false false false

max.prepared.statementsThe size of prepared statements LRU cache.
If 0, this is disabled.

30 false false

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

datastore.cache.collectionThe collection where to find cached objects test false false
js.cache.serviceThe cache service to be used to store al-

ready sanitized JS expressions. If not spec-
ified a in-memory unlimited hash map will
be used.

null false false

output.record.typethe type of the output record event false false
record.ttl How long (in ms) do the record will remain

in cache
30000 false false

min.update.time.msThe minimum amount of time (in ms) that
we expect between two consecutive update
of the same threshold record

200 false false

44 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 24: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

field to add a default
value

Add a field to the record
with the default value

null false

Extra informations

Compute threshold cross from given formulas.

• each dynamic property will return a new record according to the formula definition

• the record name will be set to the property name

• the record time will be set to the current timestamp

ComputeTags

Compute tag cross from given formulas.

• each dynamic property will return a new record according to the formula definition

• the record name will be set to the property name

• the record time will be set to the current timestamp

a threshold_cross has the following properties : count, sum, avg, time, duration, value

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.alerting.ComputeTags

Tags

record, fields, Add

1.4. User Documentation 45

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 25: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

max.cpu.time maximum CPU time in milliseconds al-
lowed for script execution.

100 false false

max.memory maximum memory in Bytes which JS ex-
ecutor thread can allocate

51200 false false

allow.no.brace Force, to check if all blocks are enclosed
with curly braces “”{}”“.

false false false

max.prepared.statementsThe size of prepared statements LRU cache.
If 0, this is disabled.

30 false false

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

datastore.cache.collectionThe collection where to find cached objects test false false
js.cache.serviceThe cache service to be used to store al-

ready sanitized JS expressions. If not spec-
ified a in-memory unlimited hash map will
be used.

null false false

output.record.typethe type of the output record event false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 26: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

field to add a default
value

Add a field to the record
with the default value

null false

Extra informations

Compute tag cross from given formulas.

• each dynamic property will return a new record according to the formula definition

• the record name will be set to the property name

• the record time will be set to the current timestamp

a threshold_cross has the following properties : count, sum, avg, time, duration, value

46 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

ConvertFieldsType

Converts a field value into the given type. does nothing if conversion is not possible

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.ConvertFieldsType

Tags

type, fields, update, convert

Properties

This component has no required or optional properties.

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 27: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

field the new type convert field value into new
type

null true

Extra informations

Converts a field value into the given type. does nothing if conversion is not possible.

ConvertSimpleDateFormatFields

Convert one or more field representing a date into a Unix Epoch Time (time in milliseconds since &st January 1970,
00:00:00 GMT). . .

Module

com.hurence.logisland:logisland-processor-common:1.1.1

1.4. User Documentation 47

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.processor.ConvertSimpleDateFormatFields

Tags

record, fields, Add

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 28: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

input.date.formatSimple date format representation of the in-
put field to convert

null false false

timezone Specify the timezone (default is CET) CET false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 29: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

field name
to add

value to
convert
into Epoch
times-
tamp using
given in-
put.date.format

Add a field to the record
with the name, converting
value using java Simple-
DateFormat

null true

Extra informations

Convert one or more field representing a date into a Unix Epoch Time (time in milliseconds since &st January 1970,
00:00:00 GMT). . .

48 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

DebugStream

This is a processor that logs incoming records

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.DebugStream

Tags

record, debug

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 30: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

event.serializerthe way to serialize event json (serialize
events as json
blocs), string (se-
rialize events as
toString() blocs)

json false false

Extra informations

This is a processor that logs incoming records.

EnrichRecords

Enrich input records with content indexed in datastore using multiget queries. Each incoming record must be possibly
enriched with information stored in datastore. The plugin properties are :

• es.index (String) : Name of the datastore index on which the multiget query will be performed. This field is
mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• record.key (String) : Name of the field in the input record containing the id to lookup document in elastic search.
This field is mandatory.

• es.key (String) : Name of the datastore key on which the multiget query will be performed. This field is
mandatory.

1.4. User Documentation 49

logisland Documentation, Release 1.1.1

• includes (ArrayList<String>) : List of patterns to filter in (include) fields to retrieve. Supports wildcards. This
field is not mandatory.

• excludes (ArrayList<String>) : List of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This
field is not mandatory.

Each outcoming record holds at least the input record plus potentially one or more fields coming from of one datastore
document.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.datastore.EnrichRecords

Tags

datastore, enricher

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

Table 31: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

record.key The name of field in the input record con-
taining the document id to use in ES multi-
get query

null false true

includes.field The name of the ES fields to include in the
record.

• false true

excludes.field The name of the ES fields to exclude. N/A false false
type.name The typle of record to look for null false true
collection.nameThe name of the collection to look for null false true

Extra informations

Enrich input records with content indexed in datastore using multiget queries. Each incoming record must be possibly
enriched with information stored in datastore. The plugin properties are :

• es.index (String) : Name of the datastore index on which the multiget query will be performed. This field is
mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• record.key (String) : Name of the field in the input record containing the id to lookup document in elastic search.
This field is mandatory.

50 Chapter 1. Contents:

expression-language.html

logisland Documentation, Release 1.1.1

• es.key (String) : Name of the datastore key on which the multiget query will be performed. This field is
mandatory.

• includes (ArrayList<String>) : List of patterns to filter in (include) fields to retrieve. Supports wildcards. This
field is not mandatory.

• excludes (ArrayList<String>) : List of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This
field is not mandatory.

Each outcoming record holds at least the input record plus potentially one or more fields coming from of one datastore
document.

EvaluateJsonPath

Evaluates one or more JsonPath expressions against the content of a FlowFile. The results of those expressions are
assigned to Records Fields depending on configuration of the Processor. JsonPaths are entered by adding user-defined
properties; the name of the property maps to the Field Name into which the result will be placed. The value of the
property must be a valid JsonPath expression. A Return Type of ‘auto-detect’ will make a determination based off the
configured destination. If the JsonPath evaluates to a JSON array or JSON object and the Return Type is set to ‘scalar’
the Record will be routed to error. A Return Type of JSON can return scalar values if the provided JsonPath evaluates
to the specified value. If the expression matches nothing, Fields will be created with empty strings as the value

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.EvaluateJsonPath

Tags

JSON, evaluate, JsonPath

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 51

logisland Documentation, Release 1.1.1

Table 32: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

return.type Indicates the desired return type of the
JSON Path expressions. Selecting ‘auto-
detect’ will set the return type to ‘json’ or
‘scalar’

json, scalar scalar false false

path.not.found.behaviorIndicates how to handle missing JSON path
expressions. Selecting ‘warn’ will generate
a warning when a JSON path expression is
not found.

warn, ignore ignore false false

Null Value
Represen-
tation

Indicates the desired representation of
JSON Path expressions resulting in a null
value.

empty string, the
string ‘null’

empty string false false

json.input.field.namethe name of the field containing the json
string

record_value false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 33: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

A Record
field

A JsonPath
expression

will be set to any JSON ob-
jects that match the Json-
Path.

null false

Extra informations

Evaluates one or more JsonPath expressions against the content of a FlowFile. The results of those expressions are
assigned to Records Fields depending on configuration of the Processor. JsonPaths are entered by adding user-defined
properties; the name of the property maps to the Field Name into which the result will be placed. The value of the
property must be a valid JsonPath expression. A Return Type of ‘auto-detect’ will make a determination based off the
configured destination. If the JsonPath evaluates to a JSON array or JSON object and the Return Type is set to ‘scalar’
the Record will be routed to error. A Return Type of JSON can return scalar values if the provided JsonPath evaluates
to the specified value. If the expression matches nothing, Fields will be created with empty strings as the value.

ExpandMapFields

Expands the content of a MAP field to the root.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

52 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.processor.ExpandMapFields

Tags

record, fields, Expand, Map

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 34: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

fields.to.expandComma separated list of fields of type map
that will be expanded to the root

null false false

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

Extra informations

Expands the content of a MAP field to the root.

FilterRecords

Keep only records based on a given field value

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.FilterRecords

Tags

record, fields, remove, delete

1.4. User Documentation 53

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 35: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

field.name the field name record_id false false
field.value the field value to keep null false false

Extra informations

Keep only records based on a given field value.

FlatMap

Converts each field records into a single flatten record. . .

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.FlatMap

Tags

record, fields, flatmap, flatten

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

54 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 36: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

keep.root.recorddo we add the original record in true false false
copy.root.record.fieldsdo we copy the original record fields into the

flattened records
true false false

leaf.record.typethe new type for the flattened records if
present

false false

concat.fields comma separated list of fields to apply con-
catenation ex : $rootField/$leaffield

null false false

concat.separatorreturns $rootField/$leaf/field / false false
include.positiondo we add the original record position in true false false

Extra informations

Converts each field records into a single flatten record. . .

GenerateRandomRecord

This is a processor that make random records given an Avro schema

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.GenerateRandomRecord

Tags

record, avro, generator

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 55

logisland Documentation, Release 1.1.1

Table 37: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

avro.output.schemathe avro schema definition for the output se-
rialization

null false false

min.events.countthe minimum number of generated events
each run

10 false false

max.events.countthe maximum number of generated events
each run

200 false false

Extra informations

This is a processor that make random records given an Avro schema.

ModifyId

modify id of records or generate it following defined rules

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.ModifyId

Tags

record, id, idempotent, generate, modify

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

56 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 38: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

id.generation.strategythe strategy to generate new Id randomUuid (gen-
erate a randomUid
using java library),
hashFields (gen-
erate a hash from
fields), fromFields
(generate a string
from java pattern
and fields), type-
timehash (generate
a concatenation of
type, time and a
hash from fields (as
for generate_hash
strategy))

randomUuid false false

fields.to.hash the comma separated list of field names (e.g.
: ‘policyid,date_raw’

record_value false false

hash.charset the charset to use to hash id string (e.g.
‘UTF-8’)

UTF-8 false false

hash.algorithmthe algorithme to use to hash id string (e.g.
‘SHA-256’

SHA-384, SHA-
224, SHA-256,
MD2, SHA, SHA-
512, MD5

SHA-256 false false

java.formatter.stringthe format to use to build id string (e.g.
‘%4$2s %3$2s %2$2s %1$2s’ (see java
Formatter)

null false false

language.tag the language to use to format numbers in
string

aa, ab, ae, af, ak,
am, an, ar, as, av, ay,
az, ba, be, bg, bh, bi,
bm, bn, bo, br, bs,
ca, ce, ch, co, cr, cs,
cu, cv, cy, da, de, dv,
dz, ee, el, en, eo, es,
et, eu, fa, ff, fi, fj, fo,
fr, fy, ga, gd, gl, gn,
gu, gv, ha, he, hi, ho,
hr, ht, hu, hy, hz, ia,
id, ie, ig, ii, ik, in, io,
is, it, iu, iw, ja, ji, jv,
ka, kg, ki, kj, kk, kl,
km, kn, ko, kr, ks,
ku, kv, kw, ky, la, lb,
lg, li, ln, lo, lt, lu,
lv, mg, mh, mi, mk,
ml, mn, mo, mr, ms,
mt, my, na, nb, nd,
ne, ng, nl, nn, no, nr,
nv, ny, oc, oj, om, or,
os, pa, pi, pl, ps, pt,
qu, rm, rn, ro, ru, rw,
sa, sc, sd, se, sg, si,
sk, sl, sm, sn, so, sq,
sr, ss, st, su, sv, sw,
ta, te, tg, th, ti, tk, tl,
tn, to, tr, ts, tt, tw, ty,
ug, uk, ur, uz, ve, vi,
vo, wa, wo, xh, yi,
yo, za, zh, zu

en false false

1.4. User Documentation 57

logisland Documentation, Release 1.1.1

Extra informations

modify id of records or generate it following defined rules.

MultiGet

Retrieves a content from datastore using datastore multiget queries. Each incoming record contains information re-
garding the datastore multiget query that will be performed. This information is stored in record fields whose names
are configured in the plugin properties (see below) :

• collection (String) : name of the datastore collection on which the multiget query will be performed. This field
is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• type (String) : name of the datastore type on which the multiget query will be performed. This field is not
mandatory.

• ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty,
otherwise an error output record is sent for this specific incoming record.

• includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards.
This field is not mandatory.

• excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards.
This field is not mandatory.

Each outcoming record holds data of one datastore retrieved document. This data is stored in these fields :

• collection (same field name as the incoming record) : name of the datastore collection.

• type (same field name as the incoming record) : name of the datastore type.

• id (same field name as the incoming record) : retrieved document id.

• a list of String fields containing :

• field name : the retrieved field name

• field value : the retrieved field value

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.datastore.MultiGet

Tags

datastore, get, multiget

58 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 39: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

datastore.client.serviceThe instance of the Controller Service to use
for accessing datastore.

null false false

collection.field the name of the incoming records field con-
taining es collection name to use in multiget
query.

null false false

type.field the name of the incoming records field con-
taining es type name to use in multiget query

null false false

ids.field the name of the incoming records field con-
taining es document Ids to use in multiget
query

null false false

includes.field the name of the incoming records field con-
taining es includes to use in multiget query

null false false

excludes.field the name of the incoming records field con-
taining es excludes to use in multiget query

null false false

Extra informations

Retrieves a content from datastore using datastore multiget queries. Each incoming record contains information re-
garding the datastore multiget query that will be performed. This information is stored in record fields whose names
are configured in the plugin properties (see below) :

• collection (String) : name of the datastore collection on which the multiget query will be performed. This field
is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• type (String) : name of the datastore type on which the multiget query will be performed. This field is not
mandatory.

• ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty,
otherwise an error output record is sent for this specific incoming record.

• includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards.
This field is not mandatory.

• excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards.
This field is not mandatory.

Each outcoming record holds data of one datastore retrieved document. This data is stored in these fields :

• collection (same field name as the incoming record) : name of the datastore collection.

• type (same field name as the incoming record) : name of the datastore type.

• id (same field name as the incoming record) : retrieved document id.

• a list of String fields containing :

• field name : the retrieved field name

• field value : the retrieved field value

1.4. User Documentation 59

logisland Documentation, Release 1.1.1

NormalizeFields

Changes the name of a field according to a provided name mapping. . .

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.NormalizeFields

Tags

record, fields, normalizer

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 40: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

conflict.resolution.policywhat to do when a field with the same name
already exists ?

do_nothing
(leave record as
it was), over-
write_existing (if
field already exist),
keep_only_old_field
(keep only
old field and
delete the other),
keep_both_fields
(creates an alias for
the new field)

do_nothing false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

60 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 41: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

alternative
mapping

a comma
separated
list of pos-
sible field
name

when a field has a name con-
tained in the list it will be
renamed with this property
field name

null true

Extra informations

Changes the name of a field according to a provided name mapping. . .

ParseProperties

Parse a field made of key=value fields separated by spaces a string like “a=1 b=2 c=3” will add a,b & c fields, respec-
tively with values 1,2 & 3 to the current Record

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.ParseProperties

Tags

record, properties, parser

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 42: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

properties.fieldthe field containing the properties to split
and treat

null false false

1.4. User Documentation 61

logisland Documentation, Release 1.1.1

Extra informations

Parse a field made of key=value fields separated by spaces a string like “a=1 b=2 c=3” will add a,b & c fields, respec-
tively with values 1,2 & 3 to the current Record

RemoveFields

Removes a list of fields defined by a comma separated list of field names or keeps only fields defined by a comma
separated list of field names.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.RemoveFields

Tags

record, fields, remove, delete, keep

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 43: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

fields.to.removeA comma separated list of field names to re-
move (e.g. ‘policyid,date_raw’). Usage of
this property is mutually exclusive with the
fields.to.keep property. In any case the tech-
nical logisland fields record_id, record_time
and record_type are not removed even if
specified in the list to remove.

null false false

fields.to.keep A comma separated list of field names to
keep (e.g. ‘policyid,date_raw’. All other
fields will be removed. Usage of this prop-
erty is mutually exclusive with the Proper-
tyDescriptor[fields.to.remove] property. In
any case the technical logisland fields
record_id, record_time and record_type are
not removed even if not specified in the list
to keep.

null false false

62 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

Removes a list of fields defined by a comma separated list of field names or keeps only fields defined by a comma
separated list of field names.

SelectDistinctRecords

Keep only distinct records based on a given field

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SelectDistinctRecords

Tags

record, fields, remove, delete

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 44: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

field.name the field to distinct records record_id false false

Extra informations

Keep only distinct records based on a given field.

SendMail

The SendMail processor is aimed at sending an email (like for instance an alert email) from an incoming record. There
are three ways an incoming record can generate an email according to the special fields it must embed. Here is a list
of the record fields that generate a mail and how they work:

1.4. User Documentation 63

logisland Documentation, Release 1.1.1

• mail_text: this is the simplest way for generating a mail. If present, this field means to use its content (value)
as the payload of the mail to send. The mail is sent in text format if there is only this special field in the record.
Otherwise, used with either mail_html or mail_use_template, the content of mail_text is the aletrnative text to
the HTML mail that is generated.

• mail_html: this field specifies that the mail should be sent as HTML and the value of the field is mail payload.
If mail_text is also present, its value is used as the alternative text for the mail. mail_html cannot be used with
mail_use_template: only one of those two fields should be present in the record.

• mail_use_template: If present, this field specifies that the mail should be sent as HTML and the HTML content
is to be generated from the template in the processor configuration key html.template. The template can contain
parameters which must also be present in the record as fields. See documentation of html.template for further
explanations. mail_use_template cannot be used with mail_html: only one of those two fields should be present
in the record.

If allow_overwrite configuration key is true, any mail.* (dot format) configuration key may be over-
written with a matching field in the record of the form mail_* (underscore format). For instance if al-
low_overwrite is true and mail.to is set to config_address@domain.com, a record generating a mail with
a mail_to field set to record_address@domain.com will send a mail to record_address@domain.com.

Apart from error records (when he is unable to process the incoming record or to send the mail), this
processor is not expected to produce any output records.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SendMail

Tags

smtp, email, e-mail, mail, mailer, sendmail, message, alert, html

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

64 Chapter 1. Contents:

mailto:config_address@domain.com
mailto:record_address@domain.com
mailto:record_address@domain.com

logisland Documentation, Release 1.1.1

Table 45: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, debug informa-
tion are written to stdout.

false false false

smtp.server FQDN, hostname or IP address of the SMTP
server to use.

null false false

smtp.port TCP port number of the SMTP server to use. 25 false false
smtp.security.usernameSMTP username. null false false
smtp.security.passwordSMTP password. null false false
smtp.security.sslUse SSL under SMTP or not (SMTPS). De-

fault is false.
false false false

mail.from.addressValid mail sender email address. null false false
mail.from.nameMail sender name. null false false
mail.bounce.addressValid bounce email address (where error

mail is sent if the mail is refused by the re-
cipient server).

null false false

mail.replyto.addressReply to email address. null false false
mail.subject Mail subject. [LOGISLAND]

Automatic
email

false false

mail.to Comma separated list of email recipients.
If not set, the record must have a mail_to
field and allow_overwrite configuration key
should be true.

null false false

allow_overwriteIf true, allows to overwrite proces-
sor configuration with special record
fields (mail_to, mail_from_address,
mail_from_name, mail_bounce_address,
mail_replyto_address, mail_subject). If
false, special record fields are ignored and
only processor configuration keys are used.

true false false

html.template HTML template to use. It is used
when the incoming record contains a
mail_use_template field. The template may
contain some parameters. The parameter
format in the template is of the form ${xxx}.
For instance ${param_user} in the tem-
plate means that a field named param_user
must be present in the record and its value
will replace the ${param_user} string in the
HTML template when the mail will be sent.
If some parameters are declared in the tem-
plate, everyone of them must be present in
the record as fields, otherwise the record
will generate an error record. If an incoming
record contains a mail_use_template field,
a template must be present in the configu-
ration and the HTML mail format will be
used. If the record also contains a mail_text
field, its content will be used as an alter-
native text message to be used in the mail
reader program of the recipient if it does not
supports HTML.

null false false

1.4. User Documentation 65

logisland Documentation, Release 1.1.1

Extra informations

The SendMail processor is aimed at sending an email (like for instance an alert email) from an incoming record. There
are three ways an incoming record can generate an email according to the special fields it must embed. Here is a list
of the record fields that generate a mail and how they work:

• mail_text: this is the simplest way for generating a mail. If present, this field means to use its content (value)
as the payload of the mail to send. The mail is sent in text format if there is only this special field in the record.
Otherwise, used with either mail_html or mail_use_template, the content of mail_text is the aletrnative text to
the HTML mail that is generated.

• mail_html: this field specifies that the mail should be sent as HTML and the value of the field is mail payload.
If mail_text is also present, its value is used as the alternative text for the mail. mail_html cannot be used with
mail_use_template: only one of those two fields should be present in the record.

• mail_use_template: If present, this field specifies that the mail should be sent as HTML and the HTML content
is to be generated from the template in the processor configuration key html.template. The template can contain
parameters which must also be present in the record as fields. See documentation of html.template for further
explanations. mail_use_template cannot be used with mail_html: only one of those two fields should be present
in the record.

If allow_overwrite configuration key is true, any mail.* (dot format) configuration key may be over-
written with a matching field in the record of the form mail_* (underscore format). For instance if al-
low_overwrite is true and mail.to is set to config_address@domain.com, a record generating a mail with
a mail_to field set to record_address@domain.com will send a mail to record_address@domain.com.

Apart from error records (when he is unable to process the incoming record or to send the mail), this
processor is not expected to produce any output records.

SetJsonAsFields

The SetJsonAsFields processor reads the content of a string field containing a json string and sets each json attribute as
a field of the current record. Note that this could be achieved with the EvaluateJsonPath processor, but this implies to
declare each json first level attribute in the configuration and also to know by advance every one of them. Whereas for
this simple case, the SetJsonAsFields processor does not require such a configuration and will work with any incoming
json, regardless of the list of first level attributes.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SetJsonAsFields

Tags

json

66 Chapter 1. Contents:

mailto:config_address@domain.com
mailto:record_address@domain.com
mailto:record_address@domain.com

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 46: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, debug informa-
tion are written to stdout.

false false false

json.field Field name of the string field that contains
the json document to parse.

record_value false false

keep.json.field Keep the original json field or not. Default
is false so default is to remove the json field.

false false false

overwrite.existing.fieldOverwrite an existing record field or not.
Default is true so default is to remove the
conflicting field.

true false false

omit.null.attributesOmit json attributes with null values. De-
fault is false so to set them as null record
fields

false false false

omit.empty.string.attributesOmit json attributes with empty string val-
ues. Default is false so to set them as empty
string record fields

false false false

Extra informations

The SetJsonAsFields processor reads the content of a string field containing a json string and sets each json attribute as
a field of the current record. Note that this could be achieved with the EvaluateJsonPath processor, but this implies to
declare each json first level attribute in the configuration and also to know by advance every one of them. Whereas for
this simple case, the SetJsonAsFields processor does not require such a configuration and will work with any incoming
json, regardless of the list of first level attributes.

SplitField

This processor is used to create a new set of fields from one field (using split).

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SplitField

Tags

parser, split, log, record

1.4. User Documentation 67

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 47: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

split.limit Specify the maximum number of split to al-
low

10 false false

split.counter.enableEnable the counter of items returned by the
split

false false false

split.counter.suffixEnable the counter of items returned by the
split

Counter false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 48: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

alternative
split field

another split
that could
match

This processor is used to
create a new set of fields
from one field (using split).

null true

Extra informations

This processor is used to create a new set of fields from one field (using split).

See Also:

com.hurence.logisland.processor.SplitField

SplitText

This is a processor that is used to split a String into fields according to a given Record mapping

Module

com.hurence.logisland:logisland-processor-common:1.1.1

68 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.processor.SplitText

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 49: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

value.regex the regex to match for the message value null false false
value.fields a comma separated list of fields correspond-

ing to matching groups for the message
value

null false false

key.regex the regex to match for the message key .* false false
key.fields a comma separated list of fields correspond-

ing to matching groups for the message key
record_key false false

record.type default type of record record false false
keep.raw.contentdo we add the initial raw content ? true false false
timezone.record.timewhat is the time zone of the string formatted

date for ‘record_time’ field.
UTC false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 50: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

alternative
regex &
mapping

another
regex that
could match

this regex will be tried
if the main one has not
matched. It must be in the
form alt.value.regex.1 and
alt.value.fields.1

null true

Extra informations

This is a processor that is used to split a String into fields according to a given Record mapping.

1.4. User Documentation 69

logisland Documentation, Release 1.1.1

See Also:

com.hurence.logisland.processor.SplitTextMultiline

SplitTextMultiline

No description provided.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SplitTextMultiline

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 51: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

regex the regex to match null false false
fields a comma separated list of fields correspond-

ing to matching groups
null false false

event.type the type of event null false false

Extra informations

No description provided.

SplitTextWithProperties

This is a processor that is used to split a String into fields according to a given Record mapping

70 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.SplitTextWithProperties

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 52: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

value.regex the regex to match for the message value null false false
value.fields a comma separated list of fields correspond-

ing to matching groups for the message
value

null false false

key.regex the regex to match for the message key .* false false
key.fields a comma separated list of fields correspond-

ing to matching groups for the message key
record_key false false

record.type default type of record record false false
keep.raw.contentdo we add the initial raw content ? true false false
properties.fieldthe field containing the properties to split

and treat
properties false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 53: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

alternative
regex &
mapping

another
regex that
could match

this regex will be tried
if the main one has not
matched. It must be in the
form alt.value.regex.1 and
alt.value.fields.1

null true

1.4. User Documentation 71

logisland Documentation, Release 1.1.1

Extra informations

This is a processor that is used to split a String into fields according to a given Record mapping.

See Also:

com.hurence.logisland.processor.SplitTextMultiline

Other-processors

Find below the list.

ParseUserAgent

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of
interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle
them. This processor rely on the YAUAA library to do the heavy work.

Module

com.hurence.logisland:logisland-processor-useragent:1.1.1

Class

com.hurence.logisland.processor.useragent.ParseUserAgent

Tags

User-Agent, clickstream, DMP

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

72 Chapter 1. Contents:

https://github.com/nielsbasjes/yauaa

logisland Documentation, Release 1.1.1

Table 54: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. false false false
cache.enabled Enable caching. Caching to avoid to redo

the same computation for many identical
User-Agent strings.

true false false

cache.size Set the size of the cache. 1000 false false
useragent.fieldMust contain the name of the field that con-

tains the User-Agent value in the incoming
record.

null false false

useragent.keep Defines if the field that contained the User-
Agent must be kept or not in the resulting
records.

true false false

confidence.enabledEnable confidence reporting. Each field will
report a confidence attribute with a value
comprised between 0 and 10000.

false false false

ambiguity.enabledEnable ambiguity reporting. Reports a
count of ambiguities.

false false false

fields Defines the fields to be returned. DeviceClass,
Device-
Name,
Device-
Brand,
DeviceCpu,
Device-
Firmware-
Version,
DeviceV-
ersion,
Operat-
ingSys-
temClass,
Operat-
ingSys-
temName,
Operat-
ingSys-
temVersion,
Operat-
ingSystem-
NameV-
ersion,
Operat-
ingSys-
temVersion-
Build, Lay-
outEngineClass,
Lay-
outEngine-
Name, Lay-
outEngin-
eVer-
sion, Lay-
outEngin-
eVersion-
Major, Lay-
outEngine-
NameVer-
sion, Lay-
outEngi-
neNameV-
ersionMa-
jor, Lay-
outEngineB-
uild, Agent-
Class,
Agent-
Name,
AgentVer-
sion,
AgentVer-
sionMajor,
Agent-
NameV-
ersion,
Agent-
NameVer-
sionMajor,
AgentBuild,
Agent-
Language,
Agent-
Language-
Code,
AgentIn-
forma-
tionEmail,
AgentInfor-
mationUrl,
AgentSe-
curity,
AgentUuid,
Facebook-
Carrier,
Face-
bookDe-
viceClass,
Face-
bookDevi-
ceName,
Face-
bookDe-
viceVersion,
FacebookF-
BOP, Face-
bookFBSS,
Facebook-
Operat-
ingSys-
temName,
Facebook-
Operat-
ingSys-
temVersion,
Anonymized,
HackerAt-
tackVector,
Hacker-
Toolkit,
KoboAf-
filiate,
KoboPlat-
formId,
IECom-
patibili-
tyVersion,
IECompat-
ibilityVer-
sionMajor,
IECom-
patibility-
NameV-
ersion,
IECom-
patibility-
NameVer-
sionMajor,
__Syntax-
Error__,
Carrier,
GSAInstal-
lationID,
Web-
viewApp-
Name, We-
bviewApp-
NameVer-
sionMajor,
Web-
viewAp-
pVersion,
Web-
viewAp-
pVersion-
Major

false false

1.4. User Documentation 73

logisland Documentation, Release 1.1.1

Extra informations

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of
interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle
them. This processor rely on the YAUAA library to do the heavy work.

BulkAddElasticsearch

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

Table 55: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

elasticsearch.client.serviceThe instance of the Controller Service to use
for accessing Elasticsearch.

null false false

default.index The name of the index to insert into null false true
default.type The type of this document (used by Elastic-

search for indexing and searching)
null false true

timebased.indexdo we add a date suffix no (no date added
to default index),
today (today’s date
added to default
index), yesterday
(yesterday’s date
added to default
index)

no false false

es.index.field the name of the event field containing es in-
dex name => will override index value if set

null false false

es.type.field the name of the event field containing es doc
type => will override type value if set

null false false

74 Chapter 1. Contents:

https://github.com/nielsbasjes/yauaa
expression-language.html

logisland Documentation, Release 1.1.1

Extra informations

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor.

ConsolidateSession

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As
an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”:
“record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “de-
fault”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”,
“string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “even-
tAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”:
null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”],
“default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”,
“string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”:
“viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”,
“int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “par-
tyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null
},{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”,
“boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”:
“pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”:
null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”,
“string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “Group-
Code”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null
},{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups
the records by sessions and compute the duration between now and the last received event. If the distance from the
last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSes-
sion is building an aggregated session object for each active session.This aggregated object includes: - The actual
session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to
ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId,
B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties
to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId).
- timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout:
Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field:
Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return
in the aggregated object. (default: N/A)

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.ConsolidateSession

1.4. User Documentation 75

logisland Documentation, Release 1.1.1

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 56: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, the original JSON
string is embedded in the record_value field
of the record.

null false false

session.timeoutsession timeout in sec 1800 false false
sessionid.field the name of the field containing the session

id => will override default value if set
sessionId false false

timestamp.fieldthe name of the field containing the times-
tamp => will override default value if set

h2kTimestamp false false

visitedpage.fieldthe name of the field containing the visited
page => will override default value if set

location false false

userid.field the name of the field containing the userId
=> will override default value if set

userId false false

fields.to.return the list of fields to return null false false
firstVisitedPage.out.fieldthe name of the field containing the first vis-

ited page => will override default value if
set

firstVisitedPagefalse false

lastVisitedPage.out.fieldthe name of the field containing the last vis-
ited page => will override default value if
set

lastVisitedPagefalse false

isSessionActive.out.fieldthe name of the field stating whether the ses-
sion is active or not => will override default
value if set

is_sessionActivefalse false

sessionDuration.out.fieldthe name of the field containing the session
duration => will override default value if set

sessionDurationfalse false

eventsCounter.out.fieldthe name of the field containing the session
duration => will override default value if set

eventsCounter false false

firstEventDateTime.out.fieldthe name of the field containing the date of
the first event => will override default value
if set

firstEventDateTimefalse false

lastEventDateTime.out.fieldthe name of the field containing the date of
the last event => will override default value
if set

lastEventDateTimefalse false

sessionInactivityDuration.out.fieldthe name of the field containing the session
inactivity duration => will override default
value if set

sessionInactivityDurationfalse false

76 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As
an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”:
“record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “de-
fault”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”,
“string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “even-
tAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”:
null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”],
“default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”,
“string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”:
“viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”,
“int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “par-
tyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null
},{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”,
“boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”:
“pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”:
null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”,
“string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “Group-
Code”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null
},{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups
the records by sessions and compute the duration between now and the last received event. If the distance from the
last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSes-
sion is building an aggregated session object for each active session.This aggregated object includes: - The actual
session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to
ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId,
B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties
to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId).
- timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout:
Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field:
Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return
in the aggregated object. (default: N/A)

DetectOutliers

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

• Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distri-
butional sketching (e.g. Q-trees)

• Gather a biased sample (biased by recency)

• Extremely deterministic in space and cheap in computation

For every outlier candidate

• Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased
sample

1.4. User Documentation 77

logisland Documentation, Release 1.1.1

• Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational frame-
work (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

Module

com.hurence.logisland:logisland-processor-outlier-detection:1.1.1

Class

com.hurence.logisland.processor.DetectOutliers

Tags

analytic, outlier, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

78 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 57: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

value.field the numeric field to get the value record_value false false
time.field the numeric field to get the value record_time false false
output.record.typethe output type of the record alert_match false false
rotation.policy.type. . . by_amount,

by_time, never
by_amount false false

rotation.policy.amount. . . 100 false false
rotation.policy.unit. . . milliseconds, sec-

onds, hours, days,
months, years,
points

points false false

chunking.policy.type. . . by_amount,
by_time, never

by_amount false false

chunking.policy.amount. . . 100 false false
chunking.policy.unit. . . milliseconds, sec-

onds, hours, days,
months, years,
points

points false false

sketchy.outlier.algorithm. . . SKETCHY_MOVING_MADSKETCHY_MOVING_MADfalse false
batch.outlier.algorithm. . . RAD RAD false false
global.statistics.minminimum value null false false
global.statistics.maxmaximum value null false false
global.statistics.meanmean value null false false
global.statistics.stddevstandard deviation value null false false
zscore.cutoffs.normalzscoreCutoffs level for normal outlier 0.000000000000001false false
zscore.cutoffs.moderatezscoreCutoffs level for moderate outlier 1.5 false false
zscore.cutoffs.severezscoreCutoffs level for severe outlier 10.0 false false
zscore.cutoffs.notEnoughDatazscoreCutoffs level for notEnoughData out-

lier
100 false false

smooth do smoothing ? false false false
decay the decay 0.1 false false
min.amount.to.predictminAmountToPredict 100 false false
min_zscore_percentileminZscorePercentile 50.0 false false
reservoir_size the size of points reservoir 100 false false
rpca.force.diff No Description Provided. null false false
rpca.lpenalty No Description Provided. null false false
rpca.min.recordsNo Description Provided. null false false
rpca.spenalty No Description Provided. null false false
rpca.threshold No Description Provided. null false false

Extra informations

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

• Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distri-
butional sketching (e.g. Q-trees)

1.4. User Documentation 79

logisland Documentation, Release 1.1.1

• Gather a biased sample (biased by recency)

• Extremely deterministic in space and cheap in computation

For every outlier candidate

• Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased
sample

• Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational frame-
work (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

EnrichRecordsElasticsearch

Enrich input records with content indexed in elasticsearch using multiget queries. Each incoming record must be
possibly enriched with information stored in elasticsearch. Each outcoming record holds at least the input record plus
potentially one or more fields coming from of one elasticsearch document.

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.EnrichRecordsElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

80 Chapter 1. Contents:

expression-language.html

logisland Documentation, Release 1.1.1

Table 58: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

elasticsearch.client.serviceThe instance of the Controller Service to use
for accessing Elasticsearch.

null false false

record.key The name of field in the input record con-
taining the document id to use in ES multi-
get query

null false true

es.index The name of the ES index to use in multiget
query.

null false true

es.type The name of the ES type to use in multiget
query.

default false true

es.includes.fieldThe name of the ES fields to include in the
record.

• false true

es.excludes.fieldThe name of the ES fields to exclude. N/A false false

Extra informations

Enrich input records with content indexed in elasticsearch using multiget queries. Each incoming record must be
possibly enriched with information stored in elasticsearch. Each outcoming record holds at least the input record plus
potentially one or more fields coming from of one elasticsearch document.

EvaluateXPath

Evaluates one or more XPaths against the content of a record. The results of those XPaths are assigned to new attributes
in the records, depending on configuration of the Processor. XPaths are entered by adding user-defined properties; the
name of the property maps to the Attribute Name into which the result will be placed. The value of the property must
be a valid XPath expression. If the expression matches nothing, no attributes is added.

Module

com.hurence.logisland:logisland-processor-xml:1.1.1

Class

com.hurence.logisland.processor.xml.EvaluateXPath

Tags

XML, evaluate, XPath

1.4. User Documentation 81

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 59: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

source Indicates the attribute containing the xml
data to evaluate xpath against.

null false false

validate_dtd Specifies whether or not the XML content
should be validated against the DTD.

true, false true false false

conflict.resolution.policyWhat to do when a field with the same name
already exists ?

overwrite_existing
(if field al-
ready exist),
keep_only_old_field
(keep only old field)

keep_only_old_fieldfalse false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 60: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

An attribute An XPath
expression the attribute is

set to the result
of the XPath
Expression.

null false

Extra informations

Evaluates one or more XPaths against the content of a record. The results of those XPaths are assigned to new attributes
in the records, depending on configuration of the Processor. XPaths are entered by adding user-defined properties; the
name of the property maps to the Attribute Name into which the result will be placed. The value of the property must
be a valid XPath expression. If the expression matches nothing, no attributes is added.

ExcelExtract

Consumes a Microsoft Excel document and converts each worksheet’s line to a structured record. The processor is
assuming to receive raw excel file as input record.

Module

com.hurence.logisland:logisland-processor-excel:1.1.1

82 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.processor.excel.ExcelExtract

Tags

excel, processor, poi

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 61: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

sheets Comma separated list of Excel document
sheet names that should be extracted from
the excel document. If this property is left
blank then all of the sheets will be extracted
from the Excel document. You can specify
regular expressions. Any sheets not speci-
fied in this value will be ignored.

false false

skip.columns Comma delimited list of column numbers
to skip. Use the columns number and not
the letter designation. Use this to skip
over columns anywhere in your worksheet
that you don’t want extracted as part of the
record.

false false

field.names The comma separated list representing the
names of columns of extracted cells. Order
matters! You should use either field.names
either field.row.header but not both together.

null false false

skip.rows The row number of the first row to start pro-
cessing.Use this to skip over rows of data at
the top of your worksheet that are not part of
the dataset.Empty rows of data anywhere in
the spreadsheet will always be skipped, no
matter what this value is set to.

0 false false

record.type Default type of record excel_record false false
field.row.headerIf set, field names mapping will be ex-

tracted from the specified row number.
You should use either field.names either
field.row.header but not both together.

null false false

Extra informations

Consumes a Microsoft Excel document and converts each worksheet’s line to a structured record. The processor is
assuming to receive raw excel file as input record.

1.4. User Documentation 83

logisland Documentation, Release 1.1.1

FetchHBaseRow

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes,
or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by
specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing
the table and row id from incoming flow files.

Module

com.hurence.logisland:logisland-processor-hbase:1.1.1

Class

com.hurence.logisland.processor.hbase.FetchHBaseRow

Tags

hbase, scan, fetch, get, enrich

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

84 Chapter 1. Contents:

expression-language.html

logisland Documentation, Release 1.1.1

Table 62: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

hbase.client.serviceThe instance of the Controller Service to use
for accessing HBase.

null false false

table.name.fieldThe field containing the name of the HBase
Table to fetch from.

null false true

row.identifier.fieldThe field containing the identifier of the row
to fetch.

null false true

columns.field The field containing an optional
comma-separated list of “”<colFam-
ily>:<colQualifier>”” pairs to fetch. To
return all columns for a given family,
leave off the qualifier such as “”<colFam-
ily1>,<colFamily2>”“.

null false true

record.serializerthe serializer needed to i/o the record in the
HBase row

com.hurence.logisland.serializer.KryoSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.AvroSerializer
(serialize events as
avro blocs), none
(send events as
bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

record.schema the avro schema definition for the Avro seri-
alization

null false false

table.name.defaultThe table to use if table name field is not set null false false

Extra informations

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes,
or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by
specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing
the table and row id from incoming flow files.

IncrementalWebSession

This processor creates and updates web-sessions based on incoming web-events. Note that both web-sessions and web-events are stored in elasticsearch.
Firstly, web-events are grouped by their session identifier and processed in chronological order. Then each
web-session associated to each group is retrieved from elasticsearch. In case none exists yet then a new web
session is created based on the first web event. The following fields of the newly created web session are set
based on the associated web event: session identifier, first timestamp, first visited page. Secondly, once created,
or retrieved, the web session is updated by the remaining web-events. Updates have impacts on fields of the
web session such as event counter, last visited page, session duration, . . . Before updates are actually applied,
checks are performed to detect rules that would trigger the creation of a new session:

the duration between the web session and the web event must not exceed the specified time-out, the
web session and the web event must have timestamps within the same day (at midnight a new web

1.4. User Documentation 85

logisland Documentation, Release 1.1.1

session is created), source of traffic (campaign, . . .) must be the same on the web session and the
web event.

When a breaking rule is detected, a new web session is created with a new session identifier where as remaining
web-events still have the original session identifier. The new session identifier is the original session suffixed
with the character ‘#’ followed with an incremented counter. This new session identifier is also set on the
remaining web-events. Finally when all web events were applied, all web events -potentially modified with a
new session identifier- are save in elasticsearch. And web sessions are passed to the next processor.

WebSession information are: - first and last visited page - first and last timestamp of processed event - total number
of processed events - the userId - a boolean denoting if the web-session is still active or not - an integer denoting the
duration of the web-sessions - optional fields that may be retrieved from the processed events

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.IncrementalWebSession

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

86 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 63: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, debug informa-
tion are logged.

false false false

es.session.index.fieldName of the field in the record defining the
ES index containing the web session docu-
ments.

null false false

es.session.type.nameName of the ES type of web session docu-
ments.

null false false

es.event.index.prefixPrefix of the index containing the web event
documents.

null false false

es.event.type.nameName of the ES type of web event docu-
ments.

null false false

es.mapping.event.to.session.index.nameName of the ES index containing the map-
ping of web session documents.

null false false

sessionid.field the name of the field containing the session
id => will override default value if set

sessionId false false

timestamp.fieldthe name of the field containing the times-
tamp => will override default value if set

h2kTimestamp false false

visitedpage.fieldthe name of the field containing the visited
page => will override default value if set

location false false

userid.field the name of the field containing the userId
=> will override default value if set

userId false false

fields.to.return the list of fields to return null false false
firstVisitedPage.out.fieldthe name of the field containing the first vis-

ited page => will override default value if
set

firstVisitedPagefalse false

lastVisitedPage.out.fieldthe name of the field containing the last vis-
ited page => will override default value if
set

lastVisitedPagefalse false

isSessionActive.out.fieldthe name of the field stating whether the ses-
sion is active or not => will override default
value if set

is_sessionActivefalse false

sessionDuration.out.fieldthe name of the field containing the session
duration => will override default value if set

sessionDurationfalse false

sessionInactivityDuration.out.fieldthe name of the field containing the session
inactivity duration => will override default
value if set

sessionInactivityDurationfalse false

session.timeoutsession timeout in sec 1800 false false
eventsCounter.out.fieldthe name of the field containing the session

duration => will override default value if set
eventsCounter false false

firstEventDateTime.out.fieldthe name of the field containing the date of
the first event => will override default value
if set

firstEventDateTimefalse false

lastEventDateTime.out.fieldthe name of the field containing the date of
the last event => will override default value
if set

lastEventDateTimefalse false

newSessionReason.out.fieldthe name of the field containing the reason
why a new session was created => will over-
ride default value if set

reasonForNewSessionfalse false

transactionIds.out.fieldthe name of the field containing all transac-
tionIds => will override default value if set

transactionIds false false

source_of_traffic.suffixPrefix for the source of the traffic related
fields

source_of_trafficfalse false

elasticsearch.client.serviceThe instance of the Controller Service to use
for accessing Elasticsearch.

null false false
1.4. User Documentation 87

logisland Documentation, Release 1.1.1

Extra informations

This processor creates and updates web-sessions based on incoming web-events. Note that both web-sessions and web-events are stored in elasticsearch.
Firstly, web-events are grouped by their session identifier and processed in chronological order. Then each
web-session associated to each group is retrieved from elasticsearch. In case none exists yet then a new web
session is created based on the first web event. The following fields of the newly created web session are set
based on the associated web event: session identifier, first timestamp, first visited page. Secondly, once created,
or retrieved, the web session is updated by the remaining web-events. Updates have impacts on fields of the
web session such as event counter, last visited page, session duration, . . . Before updates are actually applied,
checks are performed to detect rules that would trigger the creation of a new session:

the duration between the web session and the web event must not exceed the specified time-out, the
web session and the web event must have timestamps within the same day (at midnight a new web
session is created), source of traffic (campaign, . . .) must be the same on the web session and the
web event.

When a breaking rule is detected, a new web session is created with a new session identifier where as remaining
web-events still have the original session identifier. The new session identifier is the original session suffixed
with the character ‘#’ followed with an incremented counter. This new session identifier is also set on the
remaining web-events. Finally when all web events were applied, all web events -potentially modified with a
new session identifier- are save in elasticsearch. And web sessions are passed to the next processor.

WebSession information are: - first and last visited page - first and last timestamp of processed event - total number
of processed events - the userId - a boolean denoting if the web-session is still active or not - an integer denoting the
duration of the web-sessions - optional fields that may be retrieved from the processed events

IpToFqdn

Translates an IP address into a FQDN (Fully Qualified Domain Name). An input field from the record has the IP as
value. An new field is created and its value is the FQDN matching the IP address. The resolution mechanism is based
on the underlying operating system. The resolution request may take some time, specially if the IP address cannot be
translated into a FQDN. For these reasons this processor relies on the logisland cache service so that once a resolution
occurs or not, the result is put into the cache. That way, the real request for the same IP is not re-triggered during a
certain period of time, until the cache entry expires. This timeout is configurable but by default a request for the same
IP is not triggered before 24 hours to let the time to the underlying DNS system to be potentially updated.

Module

com.hurence.logisland:logisland-processor-enrichment:1.1.1

Class

com.hurence.logisland.processor.enrichment.IpToFqdn

Tags

dns, ip, fqdn, domain, address, fqhn, reverse, resolution, enrich

88 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 89

logisland Documentation, Release 1.1.1

Table 64: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

ip.address.fieldThe name of the field containing the ip ad-
dress to use.

null false false

fqdn.field The field that will contain the full qualified
domain name corresponding to the ip ad-
dress.

null false false

overwrite.fqdn.fieldIf the field should be overwritten when it al-
ready exists.

false false false

cache.service The name of the cache service to use. null false false
cache.max.timeThe amount of time, in seconds, for which

a cached FQDN value is valid in the cache
service. After this delay, the next new re-
quest to translate the same IP into FQDN
will trigger a new reverse DNS request and
the result will overwrite the entry in the
cache. This allows two things: if the IP was
not resolved into a FQDN, this will get a
chance to obtain a FQDN if the DNS sys-
tem has been updated, if the IP is resolved
into a FQDN, this will allow to be more ac-
curate if the DNS system has been updated.
A value of 0 seconds disables this expira-
tion mechanism. The default value is 84600
seconds, which corresponds to new requests
triggered every day if a record with the same
IP passes every day in the processor.

84600 false false

resolution.timeoutThe amount of time, in milliseconds, to wait
at most for the resolution to occur. This
avoids to block the stream for too much
time. Default value is 1000ms. If the delay
expires and no resolution could occur be-
fore, the FQDN field is not created. A spe-
cial value of 0 disables the logisland timeout
and the resolution request may last for many
seconds if the IP cannot be translated into
a FQDN by the underlying operating sys-
tem. In any case, whether the timeout oc-
curs in logisland of in the operating system,
the fact that a timeout occurs is kept in the
cache system so that a resolution request for
the same IP will not occur before the cache
entry expires.

1000 false false

debug If true, some additional debug fields are
added. If the FQDN field is named X, a de-
bug field named X_os_resolution_time_ms
contains the resolution time in ms (us-
ing the operating system, not the cache).
This field is added whether the resolu-
tion occurs or time is out. A debug field
named X_os_resolution_timeout contains a
boolean value to indicate if the timeout
occurred. Finally, a debug field named
X_from_cache contains a boolean value to
indicate the origin of the FQDN field. The
default value for this property is false (de-
bug is disabled.

false false false

90 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

Translates an IP address into a FQDN (Fully Qualified Domain Name). An input field from the record has the IP as
value. An new field is created and its value is the FQDN matching the IP address. The resolution mechanism is based
on the underlying operating system. The resolution request may take some time, specially if the IP address cannot be
translated into a FQDN. For these reasons this processor relies on the logisland cache service so that once a resolution
occurs or not, the result is put into the cache. That way, the real request for the same IP is not re-triggered during a
certain period of time, until the cache entry expires. This timeout is configurable but by default a request for the same
IP is not triggered before 24 hours to let the time to the underlying DNS system to be potentially updated.

IpToGeo

Looks up geolocation information for an IP address. The attribute that contains the IP address to lookup must be
provided in the ip.address.field property. By default, the geo information are put in a hierarchical structure. That is,
if the name of the IP field is ‘X’, then the the geo attributes added by enrichment are added under a father field named
X_geo. “_geo” is the default hierarchical suffix that may be changed with the geo.hierarchical.suffix property. If one
wants to put the geo fields at the same level as the IP field, then the geo.hierarchical property should be set to false
and then the geo attributes are created at the same level as him with the naming pattern X_geo_<geo_field>. “_geo_”
is the default flat suffix but this may be changed with the geo.flat.suffix property. The IpToGeo processor requires
a reference to an Ip to Geo service. This must be defined in the iptogeo.service property. The added geo fields are
dependant on the underlying Ip to Geo service. The geo.fields property must contain the list of geo fields that should
be created if data is available for the IP to resolve. This property defaults to “*” which means to add every available
fields. If one only wants a subset of the fields, one must define a comma separated list of fields as a value for the
geo.fields property. The list of the available geo fields is in the description of the geo.fields property.

Module

com.hurence.logisland:logisland-processor-enrichment:1.1.1

Class

com.hurence.logisland.processor.enrichment.IpToGeo

Tags

geo, enrich, ip

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 91

logisland Documentation, Release 1.1.1

Table 65: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

ip.address.fieldThe name of the field containing the ip ad-
dress to use.

null false false

iptogeo.serviceThe reference to the IP to Geo service to use. null false false
geo.fields Comma separated list of geo information

fields to add to the record. Defaults to ‘*’,
which means to include all available fields.
If a list of fields is specified and the data
is not available, the geo field is not cre-
ated. The geo fields are dependant on the
underlying defined Ip to Geo service. The
currently only supported type of Ip to Geo
service is the Maxmind Ip to Geo service.
This means that the currently supported list
of geo fields is the following:continent: the
identified continent for this IP address. con-
tinent_code: the identified continent code
for this IP address. city: the identified city
for this IP address. latitude: the iden-
tified latitude for this IP address. longi-
tude: the identified longitude for this IP ad-
dress. location: the identified location for
this IP address, defined as Geo-point ex-
pressed as a string with the format: ‘lati-
tude,longitude’. accuracy_radius: the ap-
proximate accuracy radius, in kilometers,
around the latitude and longitude for the
location. time_zone: the identified time
zone for this IP address. subdivision_N:
the identified subdivision for this IP ad-
dress. N is a one-up number at the end of
the attribute name, starting with 0. sub-
division_isocode_N: the iso code matching
the identified subdivision_N. country: the
identified country for this IP address. coun-
try_isocode: the iso code for the identified
country for this IP address. postalcode: the
identified postal code for this IP address.
lookup_micros: the number of microsec-
onds that the geo lookup took. The Ip to
Geo service must have the lookup_micros
property enabled in order to have this field
available.

• false false

geo.hierarchicalShould the additional geo information fields
be added under a hierarchical father field or
not.

true false false

geo.hierarchical.suffixSuffix to use for the field holding geo infor-
mation. If geo.hierarchical is true, then use
this suffix appended to the IP field name to
define the father field name. This may be
used for instance to distinguish between geo
fields with various locales using many Ip to
Geo service instances.

_geo false false

geo.flat.suffix Suffix to use for geo information fields when
they are flat. If geo.hierarchical is false, then
use this suffix appended to the IP field name
but before the geo field name. This may be
used for instance to distinguish between geo
fields with various locales using many Ip to
Geo service instances.

geo false false

cache.service The name of the cache service to use. null false false
debug If true, an additional debug field is added. If

the geo info fields prefix is X, a debug field
named X_from_cache contains a boolean
value to indicate the origin of the geo fields.
The default value for this property is false
(debug is disabled).

false false false

92 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

Looks up geolocation information for an IP address. The attribute that contains the IP address to lookup must be
provided in the ip.address.field property. By default, the geo information are put in a hierarchical structure. That is,
if the name of the IP field is ‘X’, then the the geo attributes added by enrichment are added under a father field named
X_geo. “_geo” is the default hierarchical suffix that may be changed with the geo.hierarchical.suffix property. If one
wants to put the geo fields at the same level as the IP field, then the geo.hierarchical property should be set to false
and then the geo attributes are created at the same level as him with the naming pattern X_geo_<geo_field>. “_geo_”
is the default flat suffix but this may be changed with the geo.flat.suffix property. The IpToGeo processor requires
a reference to an Ip to Geo service. This must be defined in the iptogeo.service property. The added geo fields are
dependant on the underlying Ip to Geo service. The geo.fields property must contain the list of geo fields that should
be created if data is available for the IP to resolve. This property defaults to “*” which means to add every available
fields. If one only wants a subset of the fields, one must define a comma separated list of fields as a value for the
geo.fields property. The list of the available geo fields is in the description of the geo.fields property.

MatchIP

IP address Query matching (using ‘Luwak <http://www.confluent.io/blog/real-time-full-text-search-with-luwak-
and-samza/>)‘_

You can use this processor to handle custom events matching IP address (CIDR) The record sent from a matching an
IP address record is tagged appropriately.

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-querymatcher:1.1.1

Class

com.hurence.logisland.processor.MatchIP

Tags

analytic, percolator, record, record, query, lucene

1.4. User Documentation 93

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 66: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

numeric.fields a comma separated string of numeric field to
be matched

null false false

output.record.typethe output type of the record alert_match false false
record.type.updatePolicyRecord type update policy overwrite false false
policy.onmatch the policy applied to match events: ‘first’

(default value) match events are tagged with
the name and value of the first query that
matched;’all’ match events are tagged with
all names and values of the queries that
matched.

first false false

policy.onmiss the policy applied to miss events: ‘dis-
card’ (default value) drop events that did
not match any query;’forward’ include also
events that did not match any query.

discard false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 67: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

query some
Lucene
query

generate a new record when
this query is matched

null true

Extra informations

IP address Query matching (using ‘Luwak <http://www.confluent.io/blog/real-time-full-text-search-with-luwak-
and-samza/>)‘_

You can use this processor to handle custom events matching IP address (CIDR) The record sent from a matching an
IP address record is tagged appropriately.

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

94 Chapter 1. Contents:

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

MatchQuery

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-querymatcher:1.1.1

Class

com.hurence.logisland.processor.MatchQuery

Tags

analytic, percolator, record, record, query, lucene

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 95

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/
https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

Table 68: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

numeric.fields a comma separated string of numeric field to
be matched

null false false

output.record.typethe output type of the record alert_match false false
record.type.updatePolicyRecord type update policy overwrite false false
policy.onmatch the policy applied to match events: ‘first’

(default value) match events are tagged with
the name and value of the first query that
matched;’all’ match events are tagged with
all names and values of the queries that
matched.

first false false

policy.onmiss the policy applied to miss events: ‘dis-
card’ (default value) drop events that did
not match any query;’forward’ include also
events that did not match any query.

discard false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 69: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

query some
Lucene
query

generate a new record when
this query is matched

null true

Extra informations

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries.

96 Chapter 1. Contents:

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/
https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

MultiGetElasticsearch

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries. Each incoming record contains
information regarding the elasticsearch multiget query that will be performed. This information is stored in record
fields whose names are configured in the plugin properties (see below) :

• index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is
mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not
mandatory.

• ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty,
otherwise an error output record is sent for this specific incoming record.

• includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards.
This field is not mandatory.

• excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards.
This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :

• index (same field name as the incoming record) : name of the elasticsearch index.

• type (same field name as the incoming record) : name of the elasticsearch type.

• id (same field name as the incoming record) : retrieved document id.

• a list of String fields containing :

– field name : the retrieved field name

– field value : the retrieved field value

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.MultiGetElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 97

logisland Documentation, Release 1.1.1

Table 70: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

elasticsearch.client.serviceThe instance of the Controller Service to use
for accessing Elasticsearch.

null false false

es.index.field the name of the incoming records field con-
taining es index name to use in multiget
query.

null false false

es.type.field the name of the incoming records field con-
taining es type name to use in multiget query

null false false

es.ids.field the name of the incoming records field con-
taining es document Ids to use in multiget
query

null false false

es.includes.fieldthe name of the incoming records field con-
taining es includes to use in multiget query

null false false

es.excludes.fieldthe name of the incoming records field con-
taining es excludes to use in multiget query

null false false

Extra informations

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries. Each incoming record contains
information regarding the elasticsearch multiget query that will be performed. This information is stored in record
fields whose names are configured in the plugin properties (see below) :

• index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is
mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

• type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not
mandatory.

• ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty,
otherwise an error output record is sent for this specific incoming record.

• includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards.
This field is not mandatory.

• excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards.
This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :

• index (same field name as the incoming record) : name of the elasticsearch index.

• type (same field name as the incoming record) : name of the elasticsearch type.

• id (same field name as the incoming record) : retrieved document id.

• a list of String fields containing :

– field name : the retrieved field name

– field value : the retrieved field value

98 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

ParseBroEvent

The ParseBroEvent processor is the Logisland entry point to get and process Bro events. The Bro-Kafka plugin should
be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial for an example of
usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from
the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type
of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type
field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is
transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the
stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

1.4. User Documentation 99

https://www.bro.org
https://github.com/bro/bro-plugins/tree/master/kafka
http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html

logisland Documentation, Release 1.1.1

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.bro.ParseBroEvent

Tags

bro, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 71: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, the original JSON
string is embedded in the record_value field
of the record.

false false false

100 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

The ParseBroEvent processor is the Logisland entry point to get and process Bro events. The Bro-Kafka plugin should
be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial for an example of
usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from
the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type
of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type
field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is
transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the
stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

1.4. User Documentation 101

https://www.bro.org
https://github.com/bro/bro-plugins/tree/master/kafka
http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html

logisland Documentation, Release 1.1.1

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

ParseGitlabLog

The Gitlab logs processor is the Logisland entry point to get and process Gitlab logs. This allows for instance to
monitor activities in your Gitlab server. The expected input of this processor are records from the production_json.log
log file of Gitlab which contains JSON records. You can for instance use the kafkacat command to inject those logs
into kafka and thus Logisland.

Module

com.hurence.logisland:logisland-processor-common-logs:1.1.1

Class

com.hurence.logisland.processor.commonlogs.gitlab.ParseGitlabLog

Tags

logs, gitlab

102 Chapter 1. Contents:

https://www.gitlab.com
https://github.com/edenhill/kafkacat

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 72: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, the original JSON
string is embedded in the record_value field
of the record.

false false false

Extra informations

The Gitlab logs processor is the Logisland entry point to get and process Gitlab logs. This allows for instance to
monitor activities in your Gitlab server. The expected input of this processor are records from the production_json.log
log file of Gitlab which contains JSON records. You can for instance use the kafkacat command to inject those logs
into kafka and thus Logisland.

ParseNetflowEvent

The Netflow V5 processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced
on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

• Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow
collectors

• Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis. . .) Netflow are sent to
kafka in order to be processed by logisland. In the tutorial we will simulate Netflow traffic using nfgen. this traffic
will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to
a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The
following processors in the stream can then process the Netflow records generated by this processor.

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.netflow.ParseNetflowEvent

Tags

netflow, security

1.4. User Documentation 103

https://www.gitlab.com
https://github.com/edenhill/kafkacat
http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html
https://github.com/pazdera/NetFlow-Exporter-Simulator

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 73: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. If enabled, the original JSON
string is embedded in the record_value field
of the record.

false false false

output.record.typethe output type of the record netflowevent false false
enrich.record Enrich data. If enabledthe netflow record is

enriched with inferred data
false false false

Extra informations

The Netflow V5 processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced
on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

• Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow
collectors

• Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis. . .) Netflow are sent to
kafka in order to be processed by logisland. In the tutorial we will simulate Netflow traffic using nfgen. this traffic
will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to
a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The
following processors in the stream can then process the Netflow records generated by this processor.

ParseNetworkPacket

The ParseNetworkPacket processor is the LogIsland entry point to parse network packets captured either off-the-wire
(stream mode) or in pcap format (batch mode). In batch mode, the processor decodes the bytes of the incoming pcap
record, where a Global header followed by a sequence of [packet header, packet data] pairs are stored. Then, each
incoming pcap event is parsed into n packet records. The fields of packet headers are then extracted and made available
in dedicated record fields. See the Capturing Network packets tutorial for an example of usage of this processor.

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.networkpacket.ParseNetworkPacket

104 Chapter 1. Contents:

http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html
https://github.com/pazdera/NetFlow-Exporter-Simulator
http://logisland.readthedocs.io/en/latest/tutorials/indexing-network-packets.html

logisland Documentation, Release 1.1.1

Tags

PCap, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 74: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

debug Enable debug. false false false
flow.mode Flow Mode. Indicate whether packets are

provided in batch mode (via pcap files) or
in stream mode (without headers). Allowed
values are batch and stream.

batch, stream null false false

Extra informations

No additional information is provided

PutHBaseCell

Adds the Contents of a Record to HBase as the value of a single cell

Module

com.hurence.logisland:logisland-processor-hbase:1.1.1

Class

com.hurence.logisland.processor.hbase.PutHBaseCell

Tags

hadoop, hbase

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

1.4. User Documentation 105

expression-language.html

logisland Documentation, Release 1.1.1

Table 75: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

hbase.client.serviceThe instance of the Controller Service to use
for accessing HBase.

null false false

table.name.fieldThe field containing the name of the HBase
Table to put data into

null false true

row.identifier.fieldSpecifies field containing the Row ID to use
when inserting data into HBase

null false true

row.identifier.encoding.strategySpecifies the data type of Row ID used when
inserting data into HBase. The default be-
havior is to convert the row id to a UTF-8
byte array. Choosing Binary will convert a
binary formatted string to the correct byte[]
representation. The Binary option should be
used if you are using Binary row keys in
HBase

String (Stores the
value of row id as
a UTF-8 String.),
Binary (Stores the
value of the rows id
as a binary byte ar-
ray. It expects that
the row id is a binary
formatted string.)

String false false

column.family.fieldThe field containing the Column Family to
use when inserting data into HBase

null false true

column.qualifier.fieldThe field containing the Column Qualifier to
use when inserting data into HBase

null false true

batch.size The maximum number of Records to pro-
cess in a single execution. The Records will
be grouped by table, and a single Put per ta-
ble will be performed.

25 false false

record.schema the avro schema definition for the Avro seri-
alization

null false false

record.serializerthe serializer needed to i/o the record in the
HBase row

com.hurence.logisland.serializer.KryoSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.AvroSerializer
(serialize events as
avro blocs), none
(send events as
bytes)

com.hurence.logisland.serializer.KryoSerializerfalse false

table.name.defaultThe table table to use if table name field is
not set

null false false

column.family.defaultThe column family to use if column family
field is not set

null false false

column.qualifier.defaultThe column qualifier to use if column qual-
ifier field is not set

null false false

Extra informations

Adds the Contents of a Record to HBase as the value of a single cell.

106 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

RunPython

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and
is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial
yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the
index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of
the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either
directly defining the process method code in the script.code.process configuration property or poiting to an external
python module script file in the script.path configuration property. Directly defining methods is called the inline
mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline
of file mode, your python code may depend on some python dependencies. If the set of python dependencies already
delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property
to give their location. Currently only the nltk python library is delivered with Logisland.

Module

com.hurence.logisland:logisland-processor-scripting:1.1.1

Class

com.hurence.logisland.processor.scripting.python.RunPython

Tags

scripting, python

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

1.4. User Documentation 107

logisland Documentation, Release 1.1.1

Table 76: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

script.code.importsFor inline mode only. This is the python
code that should hold the import statements
if required.

null false false

script.code.init The python code to be called when the pro-
cessor is initialized. This is the python
equivalent of the init method code for a java
processor. This is not mandatory but can
only be used if script.code.process is de-
fined (inline mode).

null false false

script.code.processThe python code to be called to process
the records. This is the pyhton equiva-
lent of the process method code for a java
processor. For inline mode, this is the
only minimum required configuration prop-
erty. Using this property, you may also
optionally define the script.code.init and
script.code.imports properties.

null false false

script.path The path to the user’s python processor
script. Use this property for file mode. Your
python code must be in a python file with
the following constraints: let’s say your py-
hton script is named MyProcessor.py. Then
MyProcessor.py is a module file that must
contain a class named MyProcessor which
must inherits from the Logisland delivered
class named AbstractProcessor. You can
then define your code in the process method
and in the other traditional methods (init. . .)
as you would do in java in a class inheriting
from the AbstractProcessor java class.

null false false

dependencies.pathThe path to the additional dependencies for
the user’s python code, whether using in-
line or file mode. This is optional as your
code may not have additional dependencies.
If you defined script.path (so using file
mode) and if dependencies.path is not de-
fined, Logisland will scan a potential direc-
tory named dependencies in the same direc-
tory where the script file resides and if it ex-
ists, any python code located there will be
loaded as dependency as needed.

null false false

logisland.dependencies.pathThe path to the directory containing the
python dependencies shipped with logis-
land. You should not have to tune this pa-
rameter.

null false false

Extra informations

!!!! WARNING !!!!

108 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and
is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial
yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the
index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of
the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either
directly defining the process method code in the script.code.process configuration property or poiting to an external
python module script file in the script.path configuration property. Directly defining methods is called the inline
mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline
of file mode, your python code may depend on some python dependencies. If the set of python dependencies already
delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property
to give their location. Currently only the nltk python library is delivered with Logisland.

SampleRecords

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-sampling:1.1.1

Class

com.hurence.logisland.processor.SampleRecords

Tags

analytic, sampler, record, iot, timeseries

1.4. User Documentation 109

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/
https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 77: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

record.value.fieldthe name of the numeric field to sample record_value false false
record.time.fieldthe name of the time field to sample record_time false false
sampling.algorithmthe implementation of the algorithm none, lttb, aver-

age, first_item,
min_max,
mode_median

null false false

sampling.parameterthe parmater of the algorithm null false false

Extra informations

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

URLDecoder

Decode one or more field containing an URL with possibly special chars encoded . . .

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.URLDecoder

110 Chapter 1. Contents:

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/
https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 1.1.1

Tags

record, fields, Decode

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 78: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

decode.fields List of fields (URL) to decode null false false
charset Charset to use to decode the URL UTF-8 false false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 79: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

fields to de-
code

a default
value

Decode one or more fields
from the record

null false

Extra informations

Decode one or more field containing an URL with possibly special chars encoded.

setSourceOfTraffic

Compute the source of traffic of a web session. Users arrive at a website or application through a variety of sources,
including advertising/paying campaigns, search engines, social networks, referring sites or direct access. When
analysing user experience on a webshop, it is crucial to collect, process, and report the campaign and traffic-source
data. To compute the source of traffic of a web session, the user has to provide the utm_* related properties if available
i-e: utm_source.field, utm_medium.field, utm_campaign.field, utm_content.field, utm_term.field) , the referer
(referer.field property) and the first visited page of the session (first.visited.page.field property). By default the
source of traffic information are placed in a flat structure (specified by the source_of_traffic.suffix property with a
default value of source_of_traffic). To work properly the setSourceOfTraffic processor needs to have access to an
Elasticsearch index containing a list of the most popular search engines and social networks. The ES index (specified
by the es.index property) should be structured such that the _id of an ES document MUST be the name of the domain.
If the domain is a search engine, the related ES doc MUST have a boolean field (default being search_engine) specified
by the property es.search_engine.field with a value set to true. If the domain is a social network , the related ES doc
MUST have a boolean field (default being social_network) specified by the property es.social_network.field with a
value set to true.

1.4. User Documentation 111

logisland Documentation, Release 1.1.1

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.setSourceOfTraffic

Tags

session, traffic, source, web, analytics

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

112 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 80: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

referer.field Name of the field containing the referer
value in the session

referer false false

first.visited.page.fieldName of the field containing the first visited
page in the session

firstVisitedPagefalse false

utm_source.fieldName of the field containing the utm_source
value in the session

utm_source false false

utm_medium.fieldName of the field containing the
utm_medium value in the session

utm_medium false false

utm_campaign.fieldName of the field containing the
utm_campaign value in the session

utm_campaign false false

utm_content.fieldName of the field containing the
utm_content value in the session

utm_content false false

utm_term.field Name of the field containing the utm_term
value in the session

utm_term false false

source_of_traffic.suffixSuffix for the source of the traffic related
fields

source_of_trafficfalse false

source_of_traffic.hierarchicalShould the additional source of trafic infor-
mation fields be added under a hierarchical
father field or not.

false false false

elasticsearch.client.serviceThe instance of the Controller Service to use
for accessing Elasticsearch.

null false false

cache.service Name of the cache service to use. null false false
cache.validity.timeoutTimeout validity (in seconds) of an entry in

the cache.
0 false false

debug If true, an additional debug field is added.
If the source info fields prefix is X, a de-
bug field named X_from_cache contains a
boolean value to indicate the origin of the
source fields. The default value for this
property is false (debug is disabled).

false false false

es.index Name of the ES index containing the list of
search engines and social network.

null false false

es.type Name of the ES type to use. default false false
es.search_engine.fieldName of the ES field used to specify that the

domain is a search engine.
search_engine false false

es.social_network.fieldName of the ES field used to specify that the
domain is a social network.

social_network false false

Extra informations

Compute the source of traffic of a web session. Users arrive at a website or application through a variety of sources,
including advertising/paying campaigns, search engines, social networks, referring sites or direct access. When
analysing user experience on a webshop, it is crucial to collect, process, and report the campaign and traffic-source
data. To compute the source of traffic of a web session, the user has to provide the utm_* related properties if available
i-e: utm_source.field, utm_medium.field, utm_campaign.field, utm_content.field, utm_term.field) , the referer
(referer.field property) and the first visited page of the session (first.visited.page.field property). By default the
source of traffic information are placed in a flat structure (specified by the source_of_traffic.suffix property with a
default value of source_of_traffic). To work properly the setSourceOfTraffic processor needs to have access to an

1.4. User Documentation 113

logisland Documentation, Release 1.1.1

Elasticsearch index containing a list of the most popular search engines and social networks. The ES index (specified
by the es.index property) should be structured such that the _id of an ES document MUST be the name of the domain.
If the domain is a search engine, the related ES doc MUST have a boolean field (default being search_engine) specified
by the property es.search_engine.field with a value set to true. If the domain is a social network , the related ES doc
MUST have a boolean field (default being social_network) specified by the property es.social_network.field with a
value set to true.

Services

Find below the list.

CSVKeyValueCacheService

A cache that store csv lines as records loaded from a file

Module

com.hurence.logisland:logisland-service-inmemory-cache:1.1.1

Class

com.hurence.logisland.service.cache.CSVKeyValueCacheService

Tags

csv, service, cache

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

114 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 81: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

csv.format a configuration for loading csv default (Standard
comma separated
format, as for
RFC4180 but
allowing empty
lines. Settings are:
withDelimiter(‘,’)
withQuote(‘”’)
withRecord-
Separator(“rn”)
withIgnoreEmpty-
Lines(true)), excel
(Excel file format
(using a comma as
the value delimiter).
Note that the actual
value delimiter
used by Excel is
locale dependent, it
might be necessary
to customize this
format to accom-
modate to your
regional settings.
withDelimiter(‘,’)
withQuote(‘”’)
withRecord-
Separator(“rn”)
withIgnoreEmpty-
Lines(false)
withAllowMiss-
ingColumn-
Names(true)),
excel_fr (Excel
file format (using
a comma as the
value delimiter).
Note that the actual
value delimiter
used by Excel is
locale dependent, it
might be necessary
to customize this
format to accom-
modate to your
regional settings.
withDelimiter(‘;’)
withQuote(‘”’)
withRecord-
Separator(“rn”)
withIgnoreEmpty-
Lines(false)
withAllowMiss-
ingColumn-
Names(true)),
mysql (Default
MySQL format
used by the SE-
LECT INTO OUT-
FILE and LOAD
DATA INFILE
operations.This
is a tab-delimited
format with a LF
character as the line
separator. Values
are not quoted and
special characters
are escaped with
‘’. The default
NULL string is
“N”. Settings are:
withDelimiter(‘t’)
withQuote(null)
withRecord-
Separator(‘n’)
withIgnoreEmpty-
Lines(false) with-
Escape(‘’) with-
NullString(“N”)
withQuote-
Mode(QuoteMode.ALL_NON_NULL)),
rfc4180 (Comma
separated format
as defined by RFC
4180. Settings are:
withDelimiter(‘,’)
withQuote(‘”’)
withRecord-
Separator(“rn”)
withIgnoreEmpty-
Lines(false)), tdf
(Tab-delimited for-
mat. Settings are:
withDelimiter(‘t’)
withQuote(‘”’)
withRecordSepa-
rator(“rn”) with-
IgnoreSurround-
ingSpaces(true))

default false false

csv.header comma separated header values null false false
csv.file.uri Path to the CSV File. null false false
csv.file.path Local Path to the CSV File. null false false
row.key th primary key of this db null false false
cache.size The maximum number of element in the

cache.
16384 false false

first.line.headercsv headers grabbed from first line null false false
encoding.charsetcharset UTF-8 false false

1.4. User Documentation 115

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

CassandraControllerService

Provides a controller service that for the moment only allows to bulkput records into cassandra.

Module

com.hurence.logisland:logisland-service-cassandra-client:1.1.1

Class

com.hurence.logisland.service.cassandra.CassandraControllerService

Tags

cassandra, service

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 82: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

cassandra.hostsCassandra cluster hosts as a comma sepa-
rated value list

null false false

cassandra.portCassandra cluster port null false false
cassandra.with-
ssl

If this property is true, use SSL. Default is
no SSL (false).

false false false

cassandra.with-
credentials

If this property is true, use credentials. De-
fault is no credentials (false).

false false false

cassandra.credentials.userThe user name to use for authentication.
cassandra.with-credentials must be true for
that property to be used.

null false false

cassandra.credentials.passwordThe user password to use for authentication.
cassandra.with-credentials must be true for
that property to be used.

null false false

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

bulk.size bulk size in MB 5 false false
flush.interval flush interval in ms 500 false false

116 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

Elasticsearch_2_4_0_ClientService

Implementation of ElasticsearchClientService for Elasticsearch 2.4.0.

Module

com.hurence.logisland:logisland-service-elasticsearch_2_4_0-client:1.1.1

Class

com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService

Tags

elasticsearch, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property is considered “sensitive”..

1.4. User Documentation 117

logisland Documentation, Release 1.1.1

Table 83: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

backoff.policy strategy for retrying to execute requests in
bulkRequest

noBackoff (when
a request fail there
won’t be any retry.),
constantBackoff
(wait a fixed amount
of time between re-
tries, using user put
retry number and
throttling delay),
exponentialBack-
off (time waited
between retries
grow exponentially,
using user put
retry number and
throttling delay),
defaultExponen-
tialBackoff (time
waited between
retries grow expo-
nentially, using es
default parameters)

defaultExponentialBackofffalse false

throttling.delaynumber of time we should wait between
each retry (in milliseconds)

500 false false

num.retry number of time we should try to inject a bulk
into es

3 false false

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

bulk.size bulk size in MB 5 false false
flush.interval flush interval in sec 5 false false
concurrent.requestssetConcurrentRequests 2 false false
cluster.name Name of the ES cluster (for example, elas-

ticsearch_brew). Defaults to ‘elasticsearch’
elasticsearch false false

ping.timeout The ping timeout used to determine when
a node is unreachable. For example, 5s (5
seconds). If non-local recommended is 30s

5s false false

sampler.intervalHow often to sample / ping the nodes listed
and connected. For example, 5s (5 seconds).
If non-local recommended is 30s.

5s false false

username Username to access the Elasticsearch cluster null false false
password Password to access the Elasticsearch cluster null true false
shield.location Specifies the path to the JAR for the Elas-

ticsearch Shield plugin. If the Elasticsearch
cluster has been secured with the Shield plu-
gin, then the Shield plugin JAR must also be
available to this processor. Note: Do NOT
place the Shield JAR into NiFi’s lib/ direc-
tory, doing so will prevent the Shield plugin
from being loaded.

null false false

hosts ElasticSearch Hosts, which should be
comma separated and colon for host-
name/port host1:port,host2:port,. . . . For ex-
ample testcluster:9300.

null false false

ssl.context.serviceThe SSL Context Service used to provide
client certificate information for TLS/SSL
connections. This service only applies if the
Shield plugin is available.

null false false

charset Specifies the character set of the document
data.

UTF-8 false false

118 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

Elasticsearch_5_4_0_ClientService

Implementation of ElasticsearchClientService for Elasticsearch 5.4.0.

Module

com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

Class

com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService

Tags

elasticsearch, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property is considered “sensitive”..

1.4. User Documentation 119

logisland Documentation, Release 1.1.1

Table 84: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

backoff.policy strategy for retrying to execute requests in
bulkRequest

noBackoff (when
a request fail there
won’t be any retry.),
constantBackoff
(wait a fixed amount
of time between re-
tries, using user put
retry number and
throttling delay),
exponentialBack-
off (time waited
between retries
grow exponentially,
using user put
retry number and
throttling delay),
defaultExponen-
tialBackoff (time
waited between
retries grow expo-
nentially, using es
default parameters)

defaultExponentialBackofffalse false

throttling.delaynumber of time we should wait between
each retry (in milliseconds)

500 false false

num.retry number of time we should try to inject a bulk
into es

3 false false

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

bulk.size bulk size in MB 5 false false
flush.interval flush interval in sec 5 false false
concurrent.requestssetConcurrentRequests 2 false false
cluster.name Name of the ES cluster (for example, elas-

ticsearch_brew). Defaults to ‘elasticsearch’
elasticsearch false false

ping.timeout The ping timeout used to determine when
a node is unreachable. For example, 5s (5
seconds). If non-local recommended is 30s

5s false false

sampler.intervalHow often to sample / ping the nodes listed
and connected. For example, 5s (5 seconds).
If non-local recommended is 30s.

5s false false

username Username to access the Elasticsearch cluster null false false
password Password to access the Elasticsearch cluster null true false
shield.location Specifies the path to the JAR for the Elas-

ticsearch Shield plugin. If the Elasticsearch
cluster has been secured with the Shield plu-
gin, then the Shield plugin JAR must also be
available to this processor. Note: Do NOT
place the Shield JAR into NiFi’s lib/ direc-
tory, doing so will prevent the Shield plugin
from being loaded.

null false false

hosts ElasticSearch Hosts, which should be
comma separated and colon for host-
name/port host1:port,host2:port,. . . . For ex-
ample testcluster:9300.

null false false

ssl.context.serviceThe SSL Context Service used to provide
client certificate information for TLS/SSL
connections. This service only applies if the
Shield plugin is available.

null false false

charset Specifies the character set of the document
data.

UTF-8 false false

120 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

HBase_1_1_2_ClientService

Implementation of HBaseClientService for HBase 1.1.2. This service can be configured by providing a comma-
separated list of configuration files, or by specifying values for the other properties. If configuration files are provided,
they will be loaded first, and the values of the additional properties will override the values from the configuration
files. In addition, any user defined properties on the processor will also be passed to the HBase configuration.

Module

com.hurence.logisland:logisland-service-hbase_1_1_2-client:1.1.1

Class

com.hurence.logisland.service.hbase.HBase_1_1_2_ClientService

Tags

hbase, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

1.4. User Documentation 121

expression-language.html

logisland Documentation, Release 1.1.1

Table 85: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

hadoop.configuration.filesComma-separated list of Hadoop Configu-
ration files, such as hbase-site.xml and core-
site.xml for kerberos, including full paths to
the files.

null false false

zookeeper.quorumComma-separated list of ZooKeeper hosts
for HBase. Required if Hadoop Configura-
tion Files are not provided.

null false false

zookeeper.client.portThe port on which ZooKeeper is accept-
ing client connections. Required if Hadoop
Configuration Files are not provided.

null false false

zookeeper.znode.parentThe ZooKeeper ZNode Parent value for
HBase (example: /hbase). Required if
Hadoop Configuration Files are not pro-
vided.

null false false

hbase.client.retriesThe number of times the HBase client will
retry connecting. Required if Hadoop Con-
figuration Files are not provided.

3 false false

phoenix.client.jar.locationThe full path to the Phoenix client JAR.
Required if Phoenix is installed on top of
HBase.

null false true

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 86: dynamic-properties
Name Value Description Allowable Values Default

Value
EL

The name
of an HBase
config-
uration
property.

The value
of the given
HBase con-
figuration
property.

These properties will be set
on the HBase configuration
after loading any provided
configuration files.

null false

Extra informations

No additional information is provided

LRUKeyValueCacheService

A controller service for caching data by key value pair with LRU (last recently used) strategy. using LinkedHashMap

122 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Module

com.hurence.logisland:logisland-service-inmemory-cache:1.1.1

Class

com.hurence.logisland.service.cache.LRUKeyValueCacheService

Tags

cache, service, key, value, pair, LRU

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 87: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

cache.size The maximum number of element in the
cache.

16384 false false

Extra informations

No additional information is provided

MaxmindIpToGeoService

Implementation of the IP 2 GEO Service using maxmind lite db file

Module

com.hurence.logisland:logisland-service-ip-to-geo-maxmind:1.1.1

Class

com.hurence.logisland.service.iptogeo.maxmind.MaxmindIpToGeoService

Tags

ip, service, geo, maxmind

1.4. User Documentation 123

logisland Documentation, Release 1.1.1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 88: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

maxmind.database.uriPath to the Maxmind Geo Enrichment
Database File.

null false false

maxmind.database.pathLocal Path to the Maxmind Geo Enrichment
Database File.

null false false

locale Locale to use for geo information. Defaults
to ‘en’.

en false false

lookup.time Should the additional lookup_micros field
be returned or not.

false false false

Extra informations

No additional information is provided

MongoDBControllerService

Provides a controller service that wraps most of the functionality of the MongoDB driver.

Module

com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Class

com.hurence.logisland.service.mongodb.MongoDBControllerService

Tags

mongo, mongodb, service

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property supports the Expression Language .

124 Chapter 1. Contents:

expression-language.html

logisland Documentation, Release 1.1.1

Table 89: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

mongo.uri MongoURI, typically of the form: mon-
godb://host1[:port1][,host2[:port2],. . .]

null false true

mongo.db.nameThe name of the database to use null false true
mongo.collection.nameThe name of the collection to use null false true
batch.size The preferred number of Records to setField

to the database in a single transaction
1000 false false

bulk.size bulk size in MB 5 false false
mongo.bulk.modeBulk mode (insert or upsert) insert (Insert

records whose key
must be unique), up-
sert (Insert records
if not already ex-
isting or update the
record if already
existing)

insert false false

flush.interval flush interval in ms 500 false false
mongo.write.concernThe write concern to use ACKNOWLEDGED,

UNACKNOWL-
EDGED,
FSYNCED,
JOURNALED,
REPLICA_ACKNOWLEDGED,
MAJORITY

ACKNOWLEDGEDfalse false

mongo.bulk.upsert.conditionA custom condition for the bulk upsert (Fil-
ter for the bulkwrite). If not specified
the standard condition is to match same id
(‘_id’: data._id)

${‘{ “_id”
:”’ +
record_id +
‘”}’}

false true

Extra informations

No additional information is provided

RedisKeyValueCacheService

A controller service for caching records by key value pair with LRU (last recently used) strategy. using Linked-
HashMap

Module

com.hurence.logisland:logisland-service-redis:1.1.1

Class

com.hurence.logisland.redis.service.RedisKeyValueCacheService

1.4. User Documentation 125

logisland Documentation, Release 1.1.1

Tags

cache, service, key, value, pair, redis

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values, and whether a property is considered “sensitive”..

126 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Table 90: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

redis.mode The type of Redis being communicated with
- standalone, sentinel, or clustered.

standalone (A single
standalone Redis
instance.), sentinel
(Redis Sentinel
which provides
high-availability.
Described further
at https://redis.io/
topics/sentinel),
cluster (Clustered
Redis which pro-
vides sharding
and replication.
Described further
at https://redis.io/
topics/cluster-spec)

standalone false false

connection.stringThe connection string for Redis. In
a standalone instance this value will be
of the form hostname:port. In a sen-
tinel instance this value will be the
comma-separated list of sentinels, such as
host1:port1,host2:port2,host3:port3. In a
clustered instance this value will be the
comma-separated list of cluster masters,
such as host1:port,host2:port,host3:port.

null false false

database.indexThe database index to be used by connec-
tions created from this connection pool. See
the databases property in redis.conf, by de-
fault databases 0-15 will be available.

0 false false

communication.timeoutThe timeout to use when attempting to com-
municate with Redis.

10 seconds false false

cluster.max.redirectsThe maximum number of redirects that can
be performed when clustered.

5 false false

sentinel.master The name of the sentinel master, require
when Mode is set to Sentinel

null false false

password The password used to authenticate to the
Redis server. See the requirepass property
in redis.conf.

null true false

pool.max.total The maximum number of connections that
can be allocated by the pool (checked out to
clients, or idle awaiting checkout). A nega-
tive value indicates that there is no limit.

8 false false

pool.max.idle The maximum number of idle connections
that can be held in the pool, or a negative
value if there is no limit.

8 false false

pool.min.idle The target for the minimum number of idle
connections to maintain in the pool. If the
configured value of Min Idle is greater than
the configured value for Max Idle, then the
value of Max Idle will be used instead.

0 false false

pool.block.when.exhaustedWhether or not clients should block and
wait when trying to obtain a connection
from the pool when the pool has no available
connections. Setting this to false means an
error will occur immediately when a client
requests a connection and none are avail-
able.

true, false true false false

pool.max.wait.timeThe amount of time to wait for an available
connection when Block When Exhausted is
set to true.

10 seconds false false

pool.min.evictable.idle.timeThe minimum amount of time an object may
sit idle in the pool before it is eligible for
eviction.

60 seconds false false

pool.time.between.eviction.runsThe amount of time between attempting to
evict idle connections from the pool.

30 seconds false false

pool.num.tests.per.eviction.runThe number of connections to tests per evic-
tion attempt. A negative value indicates to
test all connections.

-1 false false

pool.test.on.createWhether or not connections should be tested
upon creation.

true, false false false false

pool.test.on.borrowWhether or not connections should be tested
upon borrowing from the pool.

true, false false false false

pool.test.on.returnWhether or not connections should be tested
upon returning to the pool.

true, false false false false

pool.test.while.idleWhether or not connections should be tested
while idle.

true, false true false false

record.recordSerializerthe way to serialize/deserialize the record com.hurence.logisland.serializer.KryoSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.JsonSerializer
(serialize events
as json blocs),
com.hurence.logisland.serializer.AvroSerializer
(serialize events
as avro blocs),
com.hurence.logisland.serializer.BytesArraySerializer
(serialize events
as byte arrays),
com.hurence.logisland.serializer.KuraProtobufSerializer
(serialize events as
Kura protocol
buffer), none (send
events as bytes)

com.hurence.logisland.serializer.JsonSerializerfalse false

1.4. User Documentation 127

https://redis.io/topics/sentinel
https://redis.io/topics/sentinel
https://redis.io/topics/cluster-spec
https://redis.io/topics/cluster-spec

logisland Documentation, Release 1.1.1

Extra informations

No additional information is provided

Solr_5_5_5_ClientService

Implementation of ElasticsearchClientService for Solr 5.5.5.

Module

com.hurence.logisland:logisland-service-solr_5_5_5-client:1.1.1

Class

com.hurence.logisland.service.solr.Solr_5_5_5_ClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 91: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

bulk.size bulk size in MB 5 false false
solr.cloud is slor cloud enabled false false false
solr.collection name of the collection to use null false false
solr.connection.stringzookeeper quorum host1:2181,host2:2181

for solr cloud or http address of a solr core
localhost:8983/solrfalse false

solr.concurrent.requestssetConcurrentRequests 2 false false
flush.interval flush interval in ms 500 false false
schema.update_timeoutSchema update timeout interval in s 15 false false

Extra informations

No additional information is provided

128 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Solr_6_4_2_ChronixClientService

Implementation of ChronixClientService for Solr 6 4 2

Module

com.hurence.logisland:logisland-service-solr_chronix_6.4.2-client:1.1.1

Class

com.hurence.logisland.service.solr.Solr_6_4_2_ChronixClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 92: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

solr.cloud is slor cloud enabled false false false
solr.collection name of the collection to use null false false
solr.connection.stringzookeeper quorum host1:2181,host2:2181

for solr cloud or http address of a solr core
localhost:8983/solrfalse false

flush.interval flush interval in ms 500 false false
group.by The field the chunk should be grouped by false false

Extra informations

No additional information is provided

Solr_6_6_2_ClientService

Implementation of ElasticsearchClientService for Solr 5.5.5.

Module

com.hurence.logisland:logisland-service-solr_6_6_2-client:1.1.1

1.4. User Documentation 129

logisland Documentation, Release 1.1.1

Class

com.hurence.logisland.service.solr.Solr_6_6_2_ClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values.

Table 93: allowable-values
Name Description Allowable Values Default

Value
SensitiveEL

batch.size The preferred number of Records to setField
to the database in a single transaction

1000 false false

bulk.size bulk size in MB 5 false false
solr.cloud is slor cloud enabled false false false
solr.collection name of the collection to use null false false
solr.connection.stringzookeeper quorum host1:2181,host2:2181

for solr cloud or http address of a solr core
localhost:8983/solrfalse false

solr.concurrent.requestssetConcurrentRequests 2 false false
flush.interval flush interval in ms 500 false false
schema.update_timeoutSchema update timeout interval in s 15 false false

Extra informations

No additional information is provided

1.4.2 Dynamic properties

Overview

You use components to run jobs in logisland that manipulate records. Those components use properties
that you specify in the job configuration file. Some of them are defined in advance by the component’s
developer. They got a name and you have to use it to define these properties. We call those properties
static properties.

Some components support dynamic properties. When this is the case, any properties specified in job conf
for this component that is not a static property will be used as a dynamic property instead of throwing an
error for a bad configuration.

In this section we will talk about those properties and how you can use them.

130 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Structure of a dynamic properties

Dynamic properties are really just like static properties but build on the fly. It allow to use both the name
and the value of the property by the developer. For example instead of specifying :

record.name: myName
record.value: myValue

You could specify :

myName: myValue

The advantage is that you can have any number of dynamic property whereas you have to specify in
advance all static properties. . .

Usage of a dynamic properties

You can check the documentation of AddFields processor that we will use in those example.

Adding a field which is concatenation of two others using ‘_’ as joining string

set those dynamic properties in AddFields processor :

• concat2fields : value1

• my_countries : 3

• my_countries.type : INT

Then records processed by this processor would have 2 more fields out of this processors:

• field ‘concat2fields’ of type String with value ‘value1’

• field ‘my_countries’ of type Int with value ‘3’

By default if no type is specified by a dynamic property it use a type of String or the same type as old
value if field already existed and you choose an overwrite policy.

See AddFields processor doc fore more information.

Conclusion

As you can see dynamic properties are very flexible but it’s usage is very dependent of the implementation
of the component’s developer.

1.4.3 Expression Language

Overview

All data in Logisland is represented by an abstraction called a Record. Those records contains fields of
different types.

You use components to run jobs in logisland that manipulate those records. Those components use prop-
erties that you specify in the job configuration file. Some of them support the expression language (EL).
In this section we will talk about those properties and how you can use them.

1.4. User Documentation 131

logisland Documentation, Release 1.1.1

Structure of a Logisland Expression

The Logisland expression Language always begins with the start delimiter ${ and ends with the end
delimiter }. Between the start and end delimiters is the text of the expression itself. In its most basic form,
the expression can consist of just a record field name. For example, ${name} will return the value of the
field name of the record used.

The use of the property depends on the implementation of the components ! Indeed it is the component
that decide to evaluate your Logisland expression with which Record.

For example the AddField processor use Logisland expression in its dynamic properties.

• The key representing the name of the field to add.

• The value can be a Logisland expression that will be used to calculate the value of the new field. In
this expression you can use fields value of the current Record because it is passed as context of the
Logisland expression by this processor.

So be sure to carefully read description of the properties to understand how it will be evaluated and for
what purpose.

We are currently using the mvel language which you can check documentation here.

Note: If you want to be able to use another ScriptEngine than mvel (javascript for example). You can
open an issue to ask this feature. Feel free to make a Pull request as well to implement this new feature.

We have implemented some example as unit test as well if you want to check in the code source, the class
is com.hurence.logisland.component.TestInterpretedPropertyValueWithMvelEngine in the module
com.hurence.logisland:logisland-api.

Otherwise we will show you some simple examples using the AddField processor in next Section.

Usage of a Logisland Expression

You can check the documentation of AddFields processor that we will use in those example.

Adding a field which is concatenation of two others using ‘_’ as joining string

set those dynamic properties in AddFields processor :

• concat2fields : ${field1 + “_” + field2}

• my_countries : ${[“france”, “allemagne”]}

• my_countries.type : array

• my_employees_by_countries : ${[“france” : 100, “allemagne” : 50]}

• my_employees_by_countries.type : map

Then if in input of this processor there is records with fields : field1=value1 and field2=value2, it would
have 3 more fields once out of this processor:

• field ‘concat2fields’ of type String with value ‘value1_value2’

• field ‘my_countries’ of type Array containing values ‘france’ and ‘allemagne’

• field ‘my_employees_by_countries’ of type Map with key value pairs “france” : 100 and “alle-
magne” : 50

132 Chapter 1. Contents:

http://mvel.documentnode.com/

logisland Documentation, Release 1.1.1

By default if no type is specified by a dynamic property it use a type of String or the same type as old
value if field already existed and you choose an overwrite policy.

See AddFields processor doc for more information.

Conclusion

As you can see the language expression is very flexible but it’s usage is very dependent of the implemen-
tation of the component’s developer.

1.5 Developer Documentation

Contents:

1.5.1 Developer Guide

This document summarizes information relevant to logisland committers and contributors. It includes information
about the development processes and policies as well as the tools we use to facilitate those.

Workflows

This section explains how to perform common activities such as reporting a bug or merging a pull request.

Internal dev (aka logisland team)

We’re using GitFlow for github so read carefully the docs : https://datasift.github.io/gitflow/GitFlowForGitHub.html

Coding Guidelines

Basic

1. Avoid cryptic abbreviations. Single letter variable names are fine in very short methods with few variables,
otherwise make them informative.

2. Clear code is preferable to comments. When possible make your naming so good you don’t need comments.
When that isn’t possible comments should be thought of as mandatory, write them to be read.

3. Logging, configuration, and public APIs are our “UI”. Make them pretty, consistent, and usable.

4. Maximum line length is 130.

5. Don’t leave TODOs in the code or FIXMEs if you can help it. Don’t leave println statements in the code.
TODOs should be filed as github issues.

6. User documentation should be considered a part of any user-facing the feature, just like unit tests. Example
REST apis should’ve accompanying documentation.

7. Tests should never rely on timing in order to pass.

8. Every unit test should leave no side effects, i.e., any test dependencies should be set during setup and clean
during tear down.

1.5. Developer Documentation 133

https://datasift.github.io/gitflow/GitFlowForGitHub.html

logisland Documentation, Release 1.1.1

Java

1. Apache license headers. Make sure you have Apache License headers in your files.

2. Tabs vs. spaces. We are using 4 spaces for indentation, not tabs.

3. Blocks. All statements after if, for, while, do, . . . must always be encapsulated in a block with curly braces
(even if the block contains one statement):

for (...) {
...

}

4. No wildcard imports.

5. No unused imports. Remove all unused imports.

6. No raw types. Do not use raw generic types, unless strictly necessary (sometime necessary for signature matches,
arrays).

7. Suppress warnings. Add annotations to suppress warnings, if they cannot be avoided (such as “unchecked”, or
“serial”).

8. Comments. Add JavaDocs to public methods or inherit them by not adding any comments to the methods.

9. logger instance should be upper case LOG.

10. When in doubt refer to existing code or Java Coding Style except line breaking, which is described above.

Logging

1. Please take the time to assess the logs when making a change to ensure that the important things are getting
logged and there is no junk there.

2. There are six levels of logging TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, they should be used as
follows.

2.1. INFO is the level you should assume the software will be run in. INFO messages are things
which are not bad but which the user will definitely want to know about every time they occur.

2.2 TRACE and DEBUG are both things you turn on when something is wrong and you want to
figure out what is going on. DEBUG should not be so fine grained that it will seriously effect
the performance of the server. TRACE can be anything. Both DEBUG and TRACE statements
should be wrapped in an if(logger.isDebugEnabled) if an expensive computation in the argument
list of log method call.

2.3. WARN and ERROR indicate something that is bad. Use WARN if you aren’t totally sure it
is bad, and ERROR if you are.

2.4. Use FATAL only right before calling System.exit().

3. Logging statements should be complete sentences with proper capitalization that are written to be read by a
person not necessarily familiar with the source code.

4. String appending using StringBuilders should not be used for building log messages. Formatting should
be used. For ex: LOG.debug(“Loaded class [{}] from jar [{}]”, className, jarFile);

5. In Logisland class implementing ConfigurableComponent use getLogger method to log. Most of components
in Logisland are ConfigurableComponent.

134 Chapter 1. Contents:

http://google.github.io/styleguide/javaguide.html

logisland Documentation, Release 1.1.1

TimeZone in Tests

Your environment jdk can be different than travis ones. Be aware that there is changes on TimeZone objects between
different version of jdk. . . Even between 8.x.x versions. For example TimeZone “America/Cancun” may not give the
same date in your environment than in travis one. . .

Contribute code

Create a pull request

Pull requests should be done against the read-only git repository at https://github.com/hurence/logisland.

Take a look at Creating a pull request. In a nutshell you need to:

1. Fork the Logisland GitHub repository at https://github.com/hurence/logisland to your personal GitHub account.
See Fork a repo for detailed instructions.

2. Commit any changes to your fork.

3. Send a pull request to the Logisland GitHub repository that you forked in step 1. If your pull request is related
to an existing IoTaS github issue ticket – for instance, because you reported a bug report via github issue earlier
– then prefix the title of your pull request with the corresponding github issue ticket number (e.g. IOT-123: . . .).

You may want to read Syncing a fork for instructions on how to keep your fork up to date with the latest changes of
the upstream Streams repository.

We are using gitflow to have standard way of starting features, hotfixes and releases. You can check documentation
about gitflow here.

Git Commit Messages Format

The Git commit messages must be standardized as follows:

LOGISLAND-XXX: Title matching exactly the github issue Summary (title)

• An optional, bulleted (+, -, ., *), summary of the contents of

• the patch. The goal is not to describe the contents of every file,

• but rather give a quick overview of the main functional areas

• addressed by the patch.

The text immediately following the github issue number (LOGISLAND-XXX:) must be an exact transcription of the
github issue summary (title), not the a summary of the contents of the patch.

If the github issue summary does not accurately describe what the patch is addressing, the github issue summary must
be modified, and then copied to the Git commit message.

A summary with the contents of the patch is optional but strongly encouraged if the patch is large and/or the github
issue title is not expressive enough to describe what the patch is doing. This text must be bulleted using one of the
following bullet points (+, -, .,). There must be at last a 1 space indent before the bullet char, and exactly one space
between bullet char and the first letter of the text. Bullets are not optional, but required*.

Develop components

You can find help on these topics here :

1.5. Developer Documentation 135

https://github.com/hurence/logisland
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/fork-a-repo
https://github.com/hurence/logisland
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/syncing-a-fork
https://datasift.github.io/gitflow/GitFlowForGitHub.html

logisland Documentation, Release 1.1.1

• Processors

• Services

• Connectors

• Streams

• Engines

Build the code and run the tests

Prerequisites

First of all you need to make sure you are using maven 3.2.5 or higher and JDK 1.8 or higher.

Building

The following commands must be run from the top-level directory.

mvn install

Would build a light version of logisland with only common processors installed.

mvn install -Pfull

Would build a heavy version of logisland with all logisland plugins installed.

If you wish to skip the unit tests you can do this by adding -DskipTests to the command line.

If you wish to add all the plugins to the build you can do this by adding -Pfull to the command line.

Release to maven repositories

to release artifacts (if you’re allowed to), follow this guide release to OSS Sonatype with maven

./update-version.sh -o 1.1.1 -n 14.4
mvn license:format
mvn test
mvn -DperformRelease=true clean deploy -Pfull
mvn versions:commit

follow the staging procedure in oss.sonatype.org or read Sonatype book

go to oss.sonatype.org to release manually the artifact

Publish release assets to github

please refer to https://developer.github.com/v3/repos/releases

curl -XPOST https://uploads.github.com/repos/Hurence/logisland/releases/v1.1.1/assets?name=logisland-1.1.1-bin.
tar.gz -v –data-binary @logisland-assembly/target/logisland-1.1.1-bin.tar.gz –user oalam -H ‘Content-Type: appli-
cation/gzip’

136 Chapter 1. Contents:

http://central.sonatype.org/pages/apache-maven.html
https://oss.sonatype.org/#stagingRepositories
http://books.sonatype.com/nexus-book/reference/staging-deployment.html#staging-maven
https://oss.sonatype.org/#stagingRepositories
https://developer.github.com/v3/repos/releases
https://uploads.github.com/repos/Hurence/logisland/releases/v1.1.1/assets?name=logisland-1.1.1-bin.tar.gz
https://uploads.github.com/repos/Hurence/logisland/releases/v1.1.1/assets?name=logisland-1.1.1-bin.tar.gz

logisland Documentation, Release 1.1.1

Publish Docker image

Building the image

build logisland
mvn install -DskipTests -Pdocker -Pfull

verify image build
docker images

then login and push the latest image

docker login
docker push hurence/logisland

Publish artifact to github

Tag the release + upload latest tgz

1.5.2 Components

Contents:

Processors

This document summarizes information relevant to develop a logisland Processor.

Interfaces

A Logisland processor must implements the com.hurence.logisland.processor.Processor Interface.

Base of processors

For making easier the processor implementation we advise you to extends
com.hurence.logisland.processor.AbstractProcessor. This way most of the work is already done for you and
you will benefit from future improvements.

Note: If you do not extend com.hurence.logisland.processor.AbstractProcessor, there is several point to be carefull
with. Read following section

Not using AbstractProcessor

The documentation for this part is not available yet. If you want to borrow this path, feel free to open an issue and/or
talk with us on gitter about it so we can advise you on the important point to be carefull with.

1.5. Developer Documentation 137

logisland Documentation, Release 1.1.1

Important Object Notions

Here we will present you the objects that you will probably have to use.

PropertyDescriptor

To implement a Processor you will have to add PropertyDescriptors to your processor. The standard way to do this is
to add them as static variables of your Processor Classes. Then they will be used in the processor’s methods.

private static final AllowableValue OVERWRITE_EXISTING =
new AllowableValue("overwrite_existing", "overwrite existing field", "if

→˓field already exist");

private static final AllowableValue KEEP_OLD_FIELD =
new AllowableValue("keep_only_old_field", "keep only old field value", "keep

→˓only old field");

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new
→˓PropertyDescriptor.Builder()

.name("conflict.resolution.policy")

.description("What to do when a field with the same name already exists ?")

.required(false)

.defaultValue(KEEP_OLD_FIELD.getValue())

.allowableValues(OVERWRITE_EXISTING, KEEP_OLD_FIELD)

.build();

ProcessContext

See ProcessContext for more information.

Record

See Record for more information.

Important methods

Here we will present you the methods that you will probably have to implement or override.

getSupportedPropertyDescriptors

This method is required by AbstractProcessor, it is used to verify that user configuration for your processor is correct.
This method should return the list of PropertyDescriptor that your processor supports. Be sure to add any Descriptor
provided by parents if any using super.getSupportedPropertyDescriptors() methods.

Here an example with only one supported property

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {

return Collections.singletonList(CONFLICT_RESOLUTION_POLICY);
}

138 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

getSupportedDynamicPropertyDescriptor

This method is required by AbstractProcessor and is not required if you do not support dynamic properties. Otherwise
create here yours dynamic properties descriptions.

This property descriptor will be used to validate any user key configuration that is not in the list of supported properties.
If you return null, it is considered that the property name is not a valid dynamic property.

You can have several type of supported dynamic properties if you want as in the example below. Go there to learn
more about Dynamic properties.

@Override
protected PropertyDescriptor getSupportedDynamicPropertyDescriptor(final String
→˓propertyDescriptorName) {

if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_TYPE_SUFFIX)) {
return new PropertyDescriptor.Builder()

.name(propertyDescriptorName)

.expressionLanguageSupported(false)

.addValidator(new StandardValidators.EnumValidator(FieldType.class))

.allowableValues(FieldType.values())

.defaultValue(FieldType.STRING.getName().toUpperCase())

.required(false)

.dynamic(true)

.build();
}
if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_NAME_SUFFIX)) {

return new PropertyDescriptor.Builder()
.name(propertyDescriptorName)
.expressionLanguageSupported(true)
.addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
.required(false)
.dynamic(true)
.build();

}
return new PropertyDescriptor.Builder()

.name(propertyDescriptorName)

.expressionLanguageSupported(true)

.addValidator(StandardValidators.NON_EMPTY_VALIDATOR)

.required(false)

.dynamic(true)

.build();
}

init

This method should contain all initialization variables of your processor. It is called at least once before processing
records. So you can do quite heavy initialization here. But you can also use controller services as property for sharing
heavy components between different processors. You should always use a controller service for interacting with extern
sources. LINK TODO services as property

Note: It is required to use at the start of the method the super.init method ! (It does some core initializing).

Example :

1.5. Developer Documentation 139

logisland Documentation, Release 1.1.1

@Override
public void init(ProcessContext context) {

super.init(context);
initDynamicProperties(context);
this.conflictPolicy = context.getPropertyValue(CONFLICT_RESOLUTION_POLICY).

→˓asString();
}

process

This method is the core of the processor. This is this method that interact with Logisland Record. It either modify
them, use them, filter them or whatever you want. Below an example that is just adding a new field to each record (this
is obviously not a real processor).

@Override
public Collection<Record> process(ProcessContext context, Collection<Record> records)
→˓{

for (Record record : records) {
record.setStringField("my_first_processor_impl", "Hello world !");

}
return records;

}

Add documentation about the processor

The logisland-documentation module contains logisland documentation. See Documentation Guide for more infor-
mation. Some part of the documentation is automatically generated at build time. It uses annotation in logisland
code.

In our case of a processors you have to add those Annotation of ConfigurableComponent.

Also you need to add your module dependency in documentation module like explained here Add a ConfigurableCom-
ponent in the auto generate documentation.

Add your processor as a logisland plugin

Unless the new processor you implemented is already in an existing logisland module you will have to do those two
steps below.

Make your module a logisland plugin container

You will have to build your module as a plugin in two steps : * Using spring-boot-maven-plugin that will build a fat
jar of your module. * Using our custom plugin logisland-maven-plugin that will modify the manifest of the jar so
that logisland get some meta information.

You just have to add this code in the pom.xml of your module.

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>

(continues on next page)

140 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

<artifactId>spring-boot-maven-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>

</execution>
</executions>

</plugin>
<plugin>

<groupId>com.hurence.logisland</groupId>
<artifactId>logisland-maven-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>

</execution>
</executions>

</plugin>
</plugins>

</build>

Add your module in tar gz assembly

You will have to add your module as a dependency in the logisland-assembly module. Add it in full maven profile so
that it is automatically Added to logisland jar when building with -Pfull option.

<profile>
<id>full</id>
<activation>

<activeByDefault>false</activeByDefault>
</activation>
<dependencies>

...
<dependency>

<groupId>com.hurence.logisland</groupId>
<artifactId>YOUR_MODULE_NAME</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

</profile>

Services

This document summarizes information relevant to develop a logisland controller service.

Interfaces

A Logisland controller service must implements the com.hurence.logisland.controller.ControllerService Interface.

Base of controller services

For making easier the controller service implementation we advise you to extends
com.hurence.logisland.controller.AbstractControllerService. This way most of the work is already done for

1.5. Developer Documentation 141

logisland Documentation, Release 1.1.1

you and you will benefit from future improvements.

Note: If you do not extend com.hurence.logisland.controller.AbstractControllerService, there is several point to be
carefull with. Read following section

Not using AbstractControllerService

The documentation for this part is not available yet. If you want to borrow this path, feel free to open an issue and/or
talk with us on gitter about it so we can advise you on the important point to be carefull with.

Important Object Notions

Here we will present you the objects that you will probably have to use.

PropertyDescriptor

To implement a Processor you will have to add PropertyDescriptors to your processor. The standard way to do this is
to add them as static variables of your Processor Classes. Then they will be used in the processor’s methods.

private static final AllowableValue OVERWRITE_EXISTING =
new AllowableValue("overwrite_existing", "overwrite existing field", "if

→˓field already exist");

private static final AllowableValue KEEP_OLD_FIELD =
new AllowableValue("keep_only_old_field", "keep only old field value", "keep

→˓only old field");

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new
→˓PropertyDescriptor.Builder()

.name("conflict.resolution.policy")

.description("What to do when a field with the same name already exists ?")

.required(false)

.defaultValue(KEEP_OLD_FIELD.getValue())

.allowableValues(OVERWRITE_EXISTING, KEEP_OLD_FIELD)

.build();

ControllerServiceInitializationContext

See ControllerServiceInitializationContext for more information.

Record

See Record for more information.

Important methods

Here we will present you the methods that you will probably have to implement or override.

142 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

getSupportedPropertyDescriptors

This method is required by AbstractProcessor, it is used to verify that user configuration for your processor is correct.
This method should return the list of PropertyDescriptor that your processor supports. Be sure to add any Descriptor
provided by parents if any using super.getSupportedPropertyDescriptors() methods.

Here an example with only one supported property

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {

return Collections.singletonList(CONFLICT_RESOLUTION_POLICY);
}

getSupportedDynamicPropertyDescriptor

This method is required by AbstractProcessor and is not required if you do not support dynamic properties. Otherwise
create here yours dynamic properties descriptions.

This property descriptor will be used to validate any user key configuration that is not in the list of supported properties.
If you return null, it is considered that the property name is not a valid dynamic property.

You can have several type of supported dynamic properties if you want as in the example below.

@Override
protected PropertyDescriptor getSupportedDynamicPropertyDescriptor(final String
→˓propertyDescriptorName) {

if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_TYPE_SUFFIX)) {
return new PropertyDescriptor.Builder()

.name(propertyDescriptorName)

.expressionLanguageSupported(false)

.addValidator(new StandardValidators.EnumValidator(FieldType.class))

.allowableValues(FieldType.values())

.defaultValue(FieldType.STRING.getName().toUpperCase())

.required(false)

.dynamic(true)

.build();
}
if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_NAME_SUFFIX)) {

return new PropertyDescriptor.Builder()
.name(propertyDescriptorName)
.expressionLanguageSupported(true)
.addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
.required(false)
.dynamic(true)
.build();

}
return new PropertyDescriptor.Builder()

.name(propertyDescriptorName)

.expressionLanguageSupported(true)

.addValidator(StandardValidators.NON_EMPTY_VALIDATOR)

.required(false)

.dynamic(true)

.build();
}

1.5. Developer Documentation 143

logisland Documentation, Release 1.1.1

init

This method should contain all initialization variables of your controller service. It is called at least once before you
can use it. So you can do quite heavy initialization here. You should instantiate connection with your service you want
to controll so that user of this controller can request the service without having to etablish the contact first. Note that
you should handle case where service session time out or is closed for any reason. In this case, your service should be
able to establish a connection again automatically when needed, the framework will not handle this for you.

Note: It is required to use at the start of the method the super.init method ! (It does some core initializing).

Example :

@Override
public void init(ProcessContext context) {

super.init(context);
this.serviceClient = buildServiceClient();

}

Other methods defined in an API

Services should implement an interface defining an API. For exemple com.hurence.logisland.service.datastore.DatastoreClientService
represents a generic api for any datastore. The advantage of using this is that a processor can work with all services
implementing this interface if it is declared as a DatastoreClientService instance.

For example the BulkPut processor use a DatastoreClientService as input so it can inject in using any service imple-
menting DatastoreClientService. So it can inject potentially in any database.

You can create a special module to create a desired interface that you want your service to implement. This way other
services would be able to use it as well.

Here a method for example defined in DatastoreClientService.

/**
* Drop the specified collection/index/table/bucket.

* Specify namespace as dotted notation like in `global.users`

*/
void dropCollection(String name)throws DatastoreClientServiceException;

Add documentation about the service

The logisland-documentation module contains logisland documentation. See Documentation Guide for more infor-
mation. Some part of the documentation is automatically generated at build time. It uses annotation in logisland
code.

In our case of a service you have to add those Annotation of ConfigurableComponent.

Also you need to add your module dependency in documentation module like explained here Add a ConfigurableCom-
ponent in the auto generate documentation.

Add your service as a logisland plugin

Unless the new service you implemented is already in an existing logisland module you will have to do those two steps
below.

144 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Make your module a logisland plugin container

You will have to build your module as a plugin in two steps : * Using spring-boot-maven-plugin that will build a fat
jar of your module. * Using our custom plugin logisland-maven-plugin that will modify the manifest of the jar so
that logisland get some meta information.

You just have to add this code in the pom.xml of your module.

<build>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>

</execution>
</executions>

</plugin>
<plugin>

<groupId>com.hurence.logisland</groupId>
<artifactId>logisland-maven-plugin</artifactId>
<executions>

<execution>
<phase>package</phase>

</execution>
</executions>

</plugin>
</plugins>

</build>

Add your module in tar gz assembly

You will have to add your module as a dependency in the logisland-assembly module. Add it in full maven profile so
that it is automatically Added to logisland jar when building with -Pfull option.

<profile>
<id>full</id>
<activation>

<activeByDefault>false</activeByDefault>
</activation>
<dependencies>

...
<dependency>

<groupId>com.hurence.logisland</groupId>
<artifactId>YOUR_MODULE_NAME</artifactId>
<version>${project.version}</version>

</dependency>
</dependencies>

</profile>

Connectors

This documentation is not available yet but you can check on existing examples in logisland-connectors module. All
connectors should be implemented in this module.

1.5. Developer Documentation 145

logisland Documentation, Release 1.1.1

Streams

This documentation is not available yet.

Engines

This documentation is not available yet but you can check on existing examples in logisland-engines module. All
engines should be implemented in this module.

Add your engine in the assembly

You’ll have to add your engine in the assembly in module logisland-assembly. Add it in profile full of pom.

Add your engine in the documentation

To add docs about your engine you can check Add a ConfigurableComponent in the auto generate documentation.

1.5.3 Object Model

Contents:

Record

This documentation is not available yet.

PropertyDescriptors

This document summarizes information relevant for using com.hurence.logisland.component.PropertyDescriptor
which is part of Logisland api and is used throughout Logisland.

Purpose

This object is used to describe a property that users can used in job configuration when using a component. In a
component, you will describe those properties using com.hurence.logisland.component.PropertyDescriptor.

Builder

You create a PropertyDescriptor using the builder this way :

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new
→˓PropertyDescriptor.Builder()

.name("conflict.resolution.policy")

.description("What to do when a field with the same name already exists ?")

.required(false)

.defaultValue(KEEP_OLD_FIELD.getValue())

.allowableValues("value1", "value2")

.expressionLanguageSupported(false)

(continues on next page)

146 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

.addValidator(StandardValidators.NON_EMPTY_VALIDATOR)

.sensitive(true)

.build();

You can use

.identifiesControllerService(ElasticsearchClientService.class)

When you want a property to be used to reference a Services

properties

Here we will describe each element you can set to a PropertyDescriptor.

name

This is the string that will be used by the client in the yaml conf file.

description

This is used in the auto generated documentation of components to describe properties.

required

If this property is mandatory or not

defaultValue

Default value if any

allowableValues

To specify a specific set of authorized values (Add a constraint on the expected value of the property).

expressionLanguageSupported

Specify if Expression Language is supported for this property or not.

addValidator

Add given validator to the property (Add a constraint on the expected value of the property).

sensitive

Specifies if the property contain sensitive information or not.

1.5. Developer Documentation 147

logisland Documentation, Release 1.1.1

ProcessContext

This documentation is not available yet.

ControllerServiceInitializationContext

You can use it as a ProcessContext. See ProcessContext for more information.

1.5.4 Documentation

Contents:

Documentation Guide

Here we will describe you how the doc in logisland is build and how to modify it.

Introduction

The documentation in logisland is handled by logisland-documentation module which build the automated part of
the doc. That is why you should correctly annotate your components when developing.

All .rst files in this module are used to build the doc. We use Sphinx and https://readthedocs.org/ for that.

So in order to change the documentation you must change these files. But do not modify files that are automatically
generated ! The auto generated files are in the components directory. (Except for the index files)

Modify the hard coded documentation

We use ReStructuredText format for writing the doc. Then we generate html pages with Sphinx. So you should be
familiarized with this if you wants to do some advanced docs. Otherwise you can just modify files for minor changes.

Modify auto generated documentation

To generate generated documentation, just install the module

cd logisland-documentation
mvn install -DskipTests

By default, it will build all components doc. At the moment you must commit any modification to those files in order
for it to appear on online documentation.

Annotation of ConfigurableComponent

The auto generated documentation use annotation in code. So be sure to add below anotations in every Component
you develop.

148 Chapter 1. Contents:

http://www.sphinx-doc.org

logisland Documentation, Release 1.1.1

Tags

It should be a list of words. So a user can rapidly filter out components. This is not currently a feature implemented
but you should still mention those tags for future use.

CapabilityDescription

This tag is used to describe the components. It should be in .rst format.

DynamicProperty

This is used when your components support Dynamic properties. You specify each property to explain how it will be
used.

For example :

@DynamicProperty(name = "field to add",
supportsExpressionLanguage = false,
value = "default value",
description = "Add a field to the record with the default value")

Means :

• that the name of the property will be the name of a new field created in record.

• that the value specified can support or not expression language.

• that the value will be the used as value for the new property.

• you can add a general description as well.

DynamicProperties

This is used when your components support Dynamic properties. You use thi annotation instead of DynamicProperty
if your components support different type of Dynamic properties.

You specify a list of annotation @DynamicProperty, one by type you support.

For example :

@DynamicProperties(value = {
@DynamicProperty(name = "Name of the field to add",

supportsExpressionLanguage = true,
value = "Value of the field to add",
description = "Add a field to the record with the specified value.

→˓Expression language can be used." +
"You can not add a field that end with '.type' as this suffix is

→˓used to specify the type of fields to add",
nameForDoc = "fakeField"),

@DynamicProperty(name = "Name of the field to add with the suffix '"+ AddFields.
→˓DYNAMIC_PROPS_TYPE_SUFFIX +"'",

supportsExpressionLanguage = false,
value = "Type of the field to add",
description = "Add a field to the record with the specified type. These

→˓properties are only used if a correspondant property without" +

(continues on next page)

1.5. Developer Documentation 149

logisland Documentation, Release 1.1.1

(continued from previous page)

" the suffix '"+ AddFields.DYNAMIC_PROPS_TYPE_SUFFIX +"' is
→˓already defined. If this property is not defined, default type for adding fields is
→˓String." +

"You can only use Logisland predefined type fields.",
nameForDoc = "fakeField" + AddFields.DYNAMIC_PROPS_TYPE_SUFFIX),

@DynamicProperty(name = "Name of the field to add with the suffix '" + AddFields.
→˓DYNAMIC_PROPS_NAME_SUFFIX + "'",

supportsExpressionLanguage = true,
value = "Name of the field to add using expression language",
description = "Add a field to the record with the specified name (which

→˓is evaluated using expression language). " +
"These properties are only used if a correspondant property

→˓without" +
" the suffix '" + AddFields.DYNAMIC_PROPS_NAME_SUFFIX + "' is

→˓already defined. If this property is not defined, " +
"the name of the field to add is the key of the first dynamic

→˓property (which is the main and only required dynamic property).",
nameForDoc = "fakeField" + AddFields.DYNAMIC_PROPS_NAME_SUFFIX)

})

ConfigurableComponent Method used

Each components is instantiated as a ConfigurableComponent, then we use the method :

List<PropertyDescriptor> getPropertyDescriptors();

To add information about evey supported property by the component.

Add a ConfigurableComponent in the auto generate documentation

We have a java job DocGenerator which generate documentation about ConfigurableComponent in the classpath of
the JVM. Here the usage of the job :

usage: com.hurence.logisland.documentation.DocGenerator [-a] [-d <arg>] [-f <arg>] [-
→˓h]
-a,--append Whether to append or replace file
-d,--doc-dir <arg> dir to generate documentation
-f,--file-name <arg> file name to generate documentation about components in
→˓classpath
-h,--help Print this help.

In the pom of the module we use this job several time with different parameters using the exec-maven-plugin. We
launch it several time with different classpath to avoid conflict issue with different version of libraries. If you want
your components documentation to be generated you have to add it in one of those executions. If you are dealing with
dependencies problem you can create a completely new execution.

For processors and services this should not be too hard as they are packaged as plugin.

For example :

<execution>
<id>generate doc services</id>
<phase>install</phase>
<configuration>

(continues on next page)

150 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

<executable>java</executable>
<arguments>

<argument>-classpath</argument>
<classpath>

<dependency>commons-cli:commons-cli</dependency>
<dependency>commons-io:commons-io</dependency>
<dependency>org.apache.commons:commons-lang3</dependency>
<dependency>org.slf4j:slf4j-simple</dependency>
<dependency>org.slf4j:slf4j-api</dependency>
<dependency>com.hurence.logisland:logisland-api</dependency>
<!--<dependency>com.fasterxml.jackson.core:jackson-core</dependency>--

→˓>
<!--<dependency>com.fasterxml.jackson.core:jackson-databind</

→˓dependency>-->
<dependency>com.hurence.logisland:logisland-utils</dependency>
<dependency>com.hurence.logisland:logisland-api</dependency>
<dependency>com.hurence.logisland:logisland-plugin-support</

→˓dependency>
<!--Needed dependencies by logisland-plugin-support-->
<dependency>cglib:cglib-nodep</dependency>
<dependency>org.springframework.boot:spring-boot-loader</dependency>
<!--SERVICE-->
<dependency>com.hurence.logisland:logisland-service-hbase_1_1_2-client

→˓</dependency>
<dependency>com.hurence.logisland:logisland-service-elasticsearch_2_4_

→˓0-client</dependency>
<dependency>com.hurence.logisland:logisland-service-elasticsearch_5_4_

→˓0-client</dependency>
<dependency>com.hurence.logisland:logisland-service-redis</dependency>
<dependency>com.hurence.logisland:logisland-service-mongodb-client</

→˓dependency>
<dependency>com.hurence.logisland:logisland-service-cassandra-client</

→˓dependency>
<dependency>com.hurence.logisland:logisland-service-solr_5_5_5-client

→˓</dependency>
<dependency>com.hurence.logisland:logisland-service-solr_6_6_2-client

→˓</dependency>
<dependency>com.hurence.logisland:logisland-service-solr_chronix_6.4.

→˓2-client</dependency>
</classpath>
<argument>com.hurence.logisland.documentation.DocGenerator</argument>
<argument>-d</argument>
<argument>${generate-components-dir}</argument>
<argument>-f</argument>
<argument>services</argument>

</arguments>
</configuration>
<goals>

<goal>exec</goal>
</goals>

</execution>

Will generate documentation for all service specified. You can just add your module in there. Then generate docs with

mvn install -DskipTests

1.5. Developer Documentation 151

logisland Documentation, Release 1.1.1

1.6 Plugins

In this chapter we will present you how the logisland plugins architecture and how to manage them

Table of Contents

• Plugins

– What’s a plugin?

– How a plugin is packaged

– How about naming?

– Getting started

* List all components

* Install a component

* Remove a component

– Which module contains my component?

– How about the distribution?

1.6.1 What’s a plugin?

A logisland plugin is anything can bring a functionality to logisland.

It can be:

• A processor

• A controller service

• A connector

1.6.2 How a plugin is packaged

A plugin is a jar in the logisland lib folder containing a special manifest giving some information about:

• Exported components

• Versions

• Classloading rules

As well a plugin jar contains every additional dependency is required to make it work with logisland, that ensures the
portability with a single file.

1.6.3 How about naming?

When talking about a plugin we talk about an artifact.

Logisland uses the same maven naming convention (groupId, artifactId, version) to locate a plugin. This ensure a
component to be unique and versioned.

152 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

1.6.4 Getting started

Everything about plugins is managed through the components.sh client utility (in the bin folder along with logisland.sh
command).

Let’s see the main actions you can do with

List all components

Simply use the -l option.

bin/components.sh -l

Listing details for 1 installed modules.
Artifact: com.hurence.logisland:logisland-processor-common:1.0.0
Name: Common processors bundle
Version: 1.0.0
Components provided:

com.hurence.logisland.processor.AddFields
com.hurence.logisland.processor.ApplyRegexp
com.hurence.logisland.processor.ConvertFieldsType
com.hurence.logisland.processor.DebugStream
com.hurence.logisland.processor.EvaluateJsonPath
com.hurence.logisland.processor.FilterRecords
com.hurence.logisland.processor.FlatMap
com.hurence.logisland.processor.GenerateRandomRecord
com.hurence.logisland.processor.ModifyId
com.hurence.logisland.processor.NormalizeFields
com.hurence.logisland.processor.ParseProperties
com.hurence.logisland.processor.RemoveFields
com.hurence.logisland.processor.SelectDistinctRecords
com.hurence.logisland.processor.SendMail
com.hurence.logisland.processor.SplitField
com.hurence.logisland.processor.SplitText
com.hurence.logisland.processor.SplitTextMultiline
com.hurence.logisland.processor.SplitTextWithProperties
com.hurence.logisland.processor.alerting.CheckAlerts
com.hurence.logisland.processor.alerting.CheckThresholds
com.hurence.logisland.processor.alerting.ComputeTags
com.hurence.logisland.processor.datastore.BulkPut
com.hurence.logisland.processor.datastore.EnrichRecords
com.hurence.logisland.processor.datastore.MultiGet

This above is the logisland common processor modules bundled by default in the distribution.

As we can see the command line tell us some nice information:

• The file name

• The version

• The components it provides

Install a component

You can install two things of components:

• A logisland plugin

1.6. Plugins 153

logisland Documentation, Release 1.1.1

• A kafka connect source or sink (more information on connectors section)

The generic syntax for both is:

bin/components.sh -i <plugin_artifact>

For instance, if we want to install elasticsearch 5.4 controller service we are going to install the related module called
com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:<logisland_version>

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.0.0

Downloading dependencies. Please hold on...

Found logisland plugin Elasticsearch 5.4.0 Service Plugin version 1.1.1

It will provide:
com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService

Install done!

Remove a component

Just delete the jar on the lib folder or use the components.sh with the -r option.

Example

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.0.0

1.6.5 Which module contains my component?

You can easily know with module you require to install in case you need a specific component.

The component documentation contains a Module section for each component. It will tell you the artifact you should
install.

1.6.6 How about the distribution?

Logisland uses apache ivy to download the plugins. This allows you to choose the right repository (e.g. a common
nexus or an enterprise artifactory) in order to manage and control the dependencies.

You can fine tune this by editing (at your own risks) the ivy.xml file on the conf directory.

1.7 Connectors

In this chapter we will present you how to integrate kafka connect connectors into logisland.

Table of Contents

• Connectors

154 Chapter 1. Contents:

connectors.html
components.html
http://ant.apache.org/ivy/

logisland Documentation, Release 1.1.1

– Introduction

– Prerequisites

– Getting started

– Configuring

– Choosing the right converter

– Putting all together

– Going further

1.7.1 Introduction

Logisland features the integration between kafka connect world and the spark structured streaming engine.

In order to seamlessy integrate both world, we just wrapped out the kafka connectors interfaces (unplugging them
from kafka) and let the run in a logisland spark managed container. Hence the name “Logisland Connect” :-)

This allows you to leverage the existing kafka connectors library to import data into a logisland pipeline without having
the need to make use of any another middleware or ETL system.

1.7.2 Prerequisites

You can use this functionality only with a spark engine >= 2.1.x

1.7.3 Getting started

In order to use a kafka connect source or sink you have to package and install the required libraries to the logisland lib
folder.

Hopefully it can be easily done by using the components.sh tool.

bin/components.sh -i <plugin_artifact>

The plugin artifact should be provided according this format: groupId:artifactId:version where groupId, artifactId and
version refer to the maven artifact you’re going to install.

Some examples, with the suggested artifacts to use, in the following table:

Connector URL Artifact
Simulator https://github.com/jcustenborder/

kafka-connect-simulator
com.github.jcustenborder.kafka.connect:kafka-
connect-simulator:0.1.118

OPC-DA /
OPC-UA
(IIoT)

https://github.com/Hurence/logisland com.hurence.logisland:logisland-
connector-opc:<logisland_version>

FTP https://github.com/Eneco/kafka-connect-ftp com.eneco:kafka-connect-ftp:0.1.4
Blockchain https://github.com/Landoop/stream-reactor/tree/

master/kafka-connect-blockchain
com.datamountaineer:kafka-connect-
blockchain:1.1.1

JMS https://github.com/Landoop/stream-reactor/tree/
master/kafka-connect-jms

com.datamountaineer:kafka-connect-
jms:1.1.1

JDBC https://docs.confluent.io/current/connect/
connect-jdbc/docs/index.html

io.confluent:kafka-connect-jdbc:5.0.0

1.7. Connectors 155

https://www.confluent.io/product/connectors/
https://github.com/jcustenborder/kafka-connect-simulator
https://github.com/jcustenborder/kafka-connect-simulator
https://github.com/Hurence/logisland
https://github.com/Eneco/kafka-connect-ftp
https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-blockchain
https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-blockchain
https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-jms
https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-jms
https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html
https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html

logisland Documentation, Release 1.1.1

1.7.4 Configuring

Once you have bundled the connectors you need, you are now ready to use them.

Let’s do it step by step.

First of all we need to declare a KafkaConnectStructuredSourceProviderService or a KafkaConnectStruc-
turedSinkProviderService that will manage our connector in Logisland. Along with this we need to put some configu-
ration (In general you can always refer to kafka connect documentation to better understand the underlying architecture
and how to configure a connector):

Property Description
kc.connector.class The class of the connector (Fully qualified name)
kc.data.key.converter The class of the converter to be used for the key. Please

refer to Choosing the right converter section
kc.data.key.converter.properties The properties to be provided to the key converter
kc.data.value.converter The class of the converter to be used for the value.

Please refer to Choosing the right converter section
kc.data.value.converter.properties The properties to be provided to the value converter
kc.connector.properties The properties to be provided to the connector and spe-

cific to the connector itself.
kc.worker.tasks.max How many concurrent threads to spawn for a connector
kc.connector.offset.backing.store The offset backing store to use. Choose among:

• memory : standalone in memory
• file : standalone file based.
• kafka : distributed kafka topic based

kc.connector.offset.backing.store.properties
Specific properties to configure the chosen backing

store.

Note: Please refer to Kafka connect guide for further information about offset backing store and how to configure
them.

1.7.5 Choosing the right converter

Choosing the right converter is perhaps one of the most important part. In fact we’re going to adapt what is coming
from kafka connect to what is flowing into our logisland pipeline. This means that we have to know how the source is
managing its data.

In order to simplify your choice, we recommend you to follow this simple approach (the same applies for both keys
and values):

Source data Kafka Converter Logisland Encoder
String StringConverter StringEncoder
Raw Bytes ByteArrayConverter BytesArraySerialiser
Structured LogIslandRecordConverter The serializer used by the record converter (*)

Note: (*)In case you deal with structured data, the LogIslandRecordConverter will embed the structured object in a
logisland record. In order to do this you have to specify the serializer to be used to convert your data (the serializer

156 Chapter 1. Contents:

https://docs.confluent.io/current/connect/userguide.html#running-workers

logisland Documentation, Release 1.1.1

property record.serializer). Generally the KryoSerialiser is a good choice to start with.

1.7.6 Putting all together

In the previous two sections we explained how to configure a connector and how to choose the right serializer for it.

The recap we can examine the following configuration example:

Our source service
- controllerService: kc_source_service

component: com.hurence.logisland.stream.spark.provider.
→˓KafkaConnectStructuredSourceProviderService
documentation: A kafka source connector provider reading from its own source and

→˓providing structured streaming to the underlying layer
configuration:
We will use the logisland record converter for both key and value
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
Use kryo to serialize the inner data
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter: com.hurence.logisland.connect.converter.
→˓LogIslandRecordConverter

Use kryo to serialize the inner data
kc.data.key.converter.properties: |

record.serializer=com.hurence.logisland.serializer.KryoSerializer
Only one task to handle source input (unique)
kc.worker.tasks.max: 1
The kafka source connector to wrap (here we're using a simulator source)
kc.connector.class: com.github.jcustenborder.kafka.connect.simulator.

→˓SimulatorSourceConnector
The properties for the connector (as per connector documentation)
kc.connector.properties: |

key.schema.fields=email
topic=simulator
value.schema.fields=email,firstName,middleName,lastName,telephoneNumber,

→˓dateOfBirth
We are using a standalone source for testing. We can store processed offsets in

→˓memory
kc.connector.offset.backing.store: memory

In the example both key and value provided by the connector are structured objects.

For this reason we use for that the converter LogIslandRecordConverter. We provide the serializer to be used for both
key and value converter specifying

record.serializer=com.hurence.logisland.serializer.KryoSerializer

among the related converter properties.

1.7.7 Going further

Please do not hesitate to take a look to our kafka connect tutorials for more details and practical use cases.

1.7. Connectors 157

logisland Documentation, Release 1.1.1

1.8 Tutorials

Chat with us on Gitter

Download the latest release build and unzip on an edge node.

Contents:

1.8.1 Prerequisites

There are two main ways to launch a logisland job :

• within Docker containers

• within an Hadoop distribution (Cloudera, Hortonworks, . . .)

1. Trough a Docker container (testing way)

Logisland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

To facilitate integration testing and to easily run tutorials, you can use docker-compose with the following docker-
compose.yml.

Once you have this file you can run a docker-compose command to launch all the needed services (zookeeper, kafka,
es, kibana and logisland)

Elasticsearch on docker needs a special tweak as described here

set vm.max_map_count kernel setting for elasticsearch
sudo sysctl -w vm.max_map_count=262144

#
cd /tmp
wget https://raw.githubusercontent.com/Hurence/logisland/master/logisland-framework/
→˓logisland-resources/src/main/resources/conf/docker-compose.yml
docker-compose up

Note: you should add an entry for sandbox and kafka (with the container ip) in your /etc/hosts as it will be
easier to access to all web services in logisland running container.

Any logisland script can now be launched by running a logisland.sh script within the logisland docker container like
in the example below where we launch index-apache-logs.yml job :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs.yml

2. Through an Hadoop cluster (production way)

Now you have played with the tool, you’re ready to deploy your jobs into a real distributed cluster. From an edge node
of your cluster :

• download and extract the latest release of logisland

• export SPARK_HOME and HADOOP_CONF_DIR environment variables

• run logisland.sh launcher script with your job conf file.

158 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases
https://raw.githubusercontent.com/Hurence/logisland/master/logisland-framework/logisland-resources/src/main/resources/conf/docker-compose.yml
https://raw.githubusercontent.com/Hurence/logisland/master/logisland-framework/logisland-resources/src/main/resources/conf/docker-compose.yml
https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode
https://github.com/Hurence/logisland/releases

logisland Documentation, Release 1.1.1

cd /opt
sudo wget https://github.com/Hurence/logisland/releases/download/v1.1.1/logisland-1.1.
→˓1-bin.tar.gz

export SPARK_HOME=/opt/spark-2.1.0-bin-hadoop2.7/
export HADOOP_CONF_DIR=$SPARK_HOME/conf

sudo /opt/logisland-1.1.1/bin/logisland.sh --conf /home/hurence/tom/logisland-conf/v0.
→˓10.0/future-factory.yml

1.8.2 Apache logs indexing

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform.

Note: It is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch ,Solr and
MongoDb.

• Apache logs indexing into elasticsearch

• Apache logs indexing into solr

• Apache logs indexing into mongodb

1.8.3 Apache logs indexing with elasticsearch

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform. The final data will be stored in elasticsearch

This tutorial is very similar to :

• Apache logs indexing into solr

• Apache logs indexing into mongodb

Note: Please note that you should not launch silmutaneously several docker-compose because we are exposing local
port in them. So running several at the same time would be conflicting. So be sure to have killed all your currently
running containers.

1.Install required components

• You either use docker-compose with available docker-compose-index-apache-logs-es.yml file in the tar.gz as-
sembly in the conf folder.

In this case you can skip this section

• Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it
works in your environment.

In this case please make sure to already have installed elasticsearch modules (depending on which
base you will use).

If not you can just do it through the components.sh command line:

1.8. Tutorials 159

./index-apache-logs-es.html
./index-apache-logs-solr.html
./index-apache-logs-mongo.html
./index-apache-logs-solr.html
./index-apache-logs-mongo.html

logisland Documentation, Release 1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

Note: In the following sections we will use docker-compose to run the job. (please install it before pursuing if you
are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-es.yml The logisland docker-compose file that we will
use is ./conf/docker-compose-index-apache-logs-es.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-es.yml configuration
file defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStream-
ProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some apache logs with logisland
configuration:
spark.app.name: IndexApacheLogsDemo
spark.master: local[2]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService
(continues on next page)

160 Chapter 1. Contents:

../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

type: service
documentation: elasticsearch service
configuration:
hosts: ${ES_HOSTS}
cluster.name: ${ES_CLUSTER_NAME}
batch.size: 5000

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: ${KAFKA_BROKERS}
kafka.zookeeper.quorum: ${ZK_QUORUM}
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs into logisland records
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
record.type: apache_log
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)

(continues on next page)

1.8. Tutorials 161

logisland Documentation, Release 1.1.1

(continued from previous page)

value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,
→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into elasticsearch

all the parsed records are added to elasticsearch by bulk
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that indexes processed events in elasticsearch
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

3. Launch the job

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch. Launch your
docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

‘‘‘ CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 0d9e02b22c38
docker.elastic.co/kibana/kibana:5.4.0 “/bin/sh -c /usr/loc. . . ” 13 seconds ago Up 8 seconds 0.0.0.0:5601->5601/tcp
conf_kibana_1 ab15f4b5198c docker.elastic.co/elasticsearch/elasticsearch:5.4.0 “/bin/bash bin/es-do. . . ” 13 sec-
onds ago Up 7 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp conf_elasticsearch_1 a697e45d2d1a
hurence/logisland:1.1.1 “tail -f bin/logisla. . . ” 13 seconds ago Up 9 seconds 0.0.0.0:4050->4050/tcp, 0.0.0.0:8082-
>8082/tcp, 0.0.0.0:9999->9999/tcp conf_logisland_1 db80cdf23b45 hurence/zookeeper “/bin/sh -c ‘/usr/sb. . . ”
13 seconds ago Up 10 seconds 2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp conf_zookeeper_1
7aa7a87dd16b hurence/kafka:0.10.2.2-scala-2.11 “start-kafka.sh” 13 seconds ago Up 5 seconds 0.0.0.0:9092-
>9092/tcp conf_kafka_1

‘‘‘

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

you can now run the job inside the logisland container

162 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-
→˓logs-es.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1 2019-03-19 16:08:47 WARN
SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts (available in
our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --
→˓broker-list kafka:9092 --topic logisland_raw

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process your data

1.8. Tutorials 163

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://localhost:4050/streaming/

logisland Documentation, Release 1.1.1

6. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana. We included one in our docker-compose file.

Open up your browser and go to http://localhost:5601/ and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

164 Chapter 1. Contents:

http://localhost:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 1.1.1

Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which
give you insights about the processing bandwidth of your streams.

1.8. Tutorials 165

logisland Documentation, Release 1.1.1

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to
see the events.

166 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

3. Stop the job

You can Ctr+c the console where you launched logisland job. Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml down

Make sure all container have disappeared.

sudo docker ps

1.8.4 Apache logs indexing with mongo

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform. The final data will be stored in mongo

This tutorial is very similar to :

1.8. Tutorials 167

logisland Documentation, Release 1.1.1

• Apache logs indexing into solr

• Apache logs indexing into elasticsearch

Note: Please note that you should not launch silmutaneously several docker-compose because we are exposing local
port in them. So running several at the same time would be conflicting. So be sure to have killed all your currently
running containers.

1.Install required components

• You either use docker-compose with available docker-compose-index-apache-logs-mongo.yml file in the tar.gz
assembly in the conf folder.

In this case you can skip this section

• Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it
works in your environment.

In this case please make sure to already have installed mongo modules (depending on which base
you will use).

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Note: In the following sections we will use docker-compose to run the job. (please install it before pursuing if you
are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-mongo.yml The logisland docker-compose file that we
will use is ./conf/docker-compose-index-apache-logs-mongo.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-mongo.yml configu-
ration file defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaS-
treamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some apache logs with logisland
configuration:
spark.app.name: IndexApacheLogsDemo
spark.master: local[2]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4

(continues on next page)

168 Chapter 1. Contents:

./index-apache-logs-solr.html
./index-apache-logs-es.html
../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here an mongo service that will be used later in the TODO processor.

- controllerService: datastore_service
component: com.hurence.logisland.service.mongodb.MongoDBControllerService
type: service
documentation: "Mongo 3.8.0 service"
configuration:
mongo.uri: ${MONGO_URI}
mongo.db.name: logisland
mongo.collection.name: apache
possible values ACKNOWLEDGED, UNACKNOWLEDGED, FSYNCED, JOURNALED, REPLICA_

→˓ACKNOWLEDGED, MAJORITY
mongo.write.concern: ACKNOWLEDGED
flush.interval: 2000
batch.size: 100

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors

(continues on next page)

1.8. Tutorials 169

logisland Documentation, Release 1.1.1

(continued from previous page)

kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: ${KAFKA_BROKERS}
kafka.zookeeper.quorum: ${ZK_QUORUM}
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs into logisland records
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
record.type: apache_log
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into solr

all the parsed records are added to mongo by bulk - processor: mongo_publisher

component: com.hurence.logisland.processor.datastore.BulkPut type: processor documenta-
tion: “indexes processed events in Mongo” configuration:

datastore.client.service: datastore_service

3. Launch the job

1. Run docker-compose

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch. Launch your
docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

170 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

‘‘‘ CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 0d9e02b22c38
docker.elastic.co/kibana/kibana:5.4.0 “/bin/sh -c /usr/loc. . . ” 13 seconds ago Up 8 seconds 0.0.0.0:5601->5601/tcp
conf_kibana_1 ab15f4b5198c docker.elastic.co/elasticsearch/elasticsearch:5.4.0 “/bin/bash bin/es-do. . . ” 13 sec-
onds ago Up 7 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp conf_elasticsearch_1 a697e45d2d1a
hurence/logisland:1.1.1 “tail -f bin/logisla. . . ” 13 seconds ago Up 9 seconds 0.0.0.0:4050->4050/tcp, 0.0.0.0:8082-
>8082/tcp, 0.0.0.0:9999->9999/tcp conf_logisland_1 db80cdf23b45 hurence/zookeeper “/bin/sh -c ‘/usr/sb. . . ”
13 seconds ago Up 10 seconds 2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp conf_zookeeper_1
7aa7a87dd16b hurence/kafka:0.10.2.2-scala-2.11 “start-kafka.sh” 13 seconds ago Up 5 seconds 0.0.0.0:9092-
>9092/tcp conf_kafka_1

‘‘‘

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

2. Initializing mongo db

Note: You have to create the db logisland with the collection apache.

open the mongo shell inside mongo container
sudo docker exec -ti conf_mongo_1 mongo

> use logisland
switched to db logisland

> db.apache.insert({src_ip:"19.123.12.67", identd:"-", user:"-", bytes_out:12344,
→˓http_method:"POST", http_version:"2.0", http_query:"/logisland/is/so?great=true",
→˓http_status:"404" })
WriteResult({ "nInserted" : 1 })

> db.apache.find()

{ “_id” : ObjectId(“5b4f3c4a5561b53b7e862b57”), “src_ip” : “19.123.12.67”, “identd” : “-“, “user” : “-“,
“bytes_out” : 12344, “http_method” : “POST”, “http_version” : “2.0”, “http_query” : “/logisland/is/so?great=true”,
“http_status” : “404” }

3. Run logisland job

you can now run the job inside the logisland container

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-
→˓logs-mongo.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1 2019-03-19 16:08:47 WARN
SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

1.8. Tutorials 171

logisland Documentation, Release 1.1.1

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts (available in
our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --
→˓broker-list kafka:9092 --topic logisland_raw

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process your data

172 Chapter 1. Contents:

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://localhost:4050/streaming/

logisland Documentation, Release 1.1.1

6. Inspect the logs

With mongo you can directly use the shell:

> db.apache.find()

{ “_id” : “507adf3e-3162-4ff0-843a-253e01a6df69”, “src_ip” : “129.94.144.152”, “record_id” : “507adf3e-3162-
4ff0-843a-253e01a6df69”, “http_method” : “GET”, “record_value” : “129.94.144.152 - - [01/Jul/1995:00:00:17
-0400] “GET /images/ksclogo-medium.gif HTTP/1.0” 304 0”, “http_query” : “/images/ksclogo-medium.gif”,
“bytes_out” : “0”, “identd” : “-“, “http_version” : “HTTP/1.0”, “http_status” : “304”, “record_time” : Num-
berLong(“804571.1.100”), “user” : “-“, “record_type” : “apache_log” } { “_id” : “c44a9d09-52b9-4ada-8126-
39c70c90fdd3”, “src_ip” : “ppp-mia-30.shadow.net”, “record_id” : “c44a9d09-52b9-4ada-8126-39c70c90fdd3”,
“http_method” : “GET”, “record_value” : “ppp-mia-30.shadow.net - - [01/Jul/1995:00:00:27 -0400] “GET /
HTTP/1.0” 200 7074”, “http_query” : “/”, “bytes_out” : “7074”, “identd” : “-“, “http_version” : “HTTP/1.0”,
“http_status” : “200”, “record_time” : NumberLong(“804571227000”), “user” : “-“, “record_type” : “apache_log” }
. . .

3. Stop the job

You can Ctr+c the console where you launched logisland job. Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml down

Make sure all container have disappeared.

sudo docker ps

1.8.5 Apache logs indexing with solr

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform. The final data will be stored in solr

This tutorial is very similar to :

• Apache logs indexing into mongodb

• Apache logs indexing into elasticsearch

Note: Please note that you should not launch silmutaneously several docker-compose because we are exposing local
port in them. So running several at the same time would be conflicting. So be sure to have killed all your currently
running containers.

1.Install required components

• You either use docker-compose with available docker-compose-index-apache-logs-es.yml file in the tar.gz as-
sembly in the conf folder.

In this case you can skip this section

• Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it
works in your environment.

In this case please make sure to already have installed solr modules (depending on which base you
will use).

1.8. Tutorials 173

./index-apache-logs-mongo.html
./index-apache-logs-es.html

logisland Documentation, Release 1.1.1

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Note: In the following sections we will use docker-compose to run the job. (please install it before pursuing if you
are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-solr.yml The logisland docker-compose file that we
will use is ./conf/docker-compose-index-apache-logs-solr.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-solr.yml configura-
tion file defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaS-
treamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some apache logs with logisland
configuration:
spark.app.name: IndexApacheLogsDemo
spark.master: local[2]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here an Solr service that will be used later in the TODO processor.

Datastore service using Solr 6.6.2 - 5.5.5 also available
- controllerService: datastore_service

component: com.hurence.logisland.service.solr.Solr_6_6_2_ClientService
type: service

(continues on next page)

174 Chapter 1. Contents:

../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

documentation: "SolR 6.6.2 service"
configuration:
solr.cloud: false
solr.connection.string: ${SOLR_CONNECTION}
solr.collection: solr-apache-logs
solr.concurrent.requests: 4
flush.interval: 2000
batch.size: 1000

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: ${KAFKA_BROKERS}
kafka.zookeeper.quorum: ${ZK_QUORUM}
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Note: As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of
this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs into logisland records
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
record.type: apache_log

(continues on next page)

1.8. Tutorials 175

logisland Documentation, Release 1.1.1

(continued from previous page)

value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+
→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)

value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,
→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into solr

all the parsed records are added to solr by bulk
- processor: solr_publisher

component: com.hurence.logisland.processor.datastore.BulkPut
type: processor
documentation: "indexes processed events in SolR"
configuration:
datastore.client.service: datastore_service

3. Launch the job

1. Run docker-compose

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch. Launch your
docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-solr.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

‘‘‘ CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 0d9e02b22c38
docker.elastic.co/kibana/kibana:5.4.0 “/bin/sh -c /usr/loc. . . ” 13 seconds ago Up 8 seconds 0.0.0.0:5601->5601/tcp
conf_kibana_1 ab15f4b5198c docker.elastic.co/elasticsearch/elasticsearch:5.4.0 “/bin/bash bin/es-do. . . ” 13 sec-
onds ago Up 7 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp conf_elasticsearch_1 a697e45d2d1a
hurence/logisland:1.1.1 “tail -f bin/logisla. . . ” 13 seconds ago Up 9 seconds 0.0.0.0:4050->4050/tcp, 0.0.0.0:8082-
>8082/tcp, 0.0.0.0:9999->9999/tcp conf_logisland_1 db80cdf23b45 hurence/zookeeper “/bin/sh -c ‘/usr/sb. . . ”
13 seconds ago Up 10 seconds 2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp conf_zookeeper_1
7aa7a87dd16b hurence/kafka:0.10.2.2-scala-2.11 “start-kafka.sh” 13 seconds ago Up 5 seconds 0.0.0.0:9092-
>9092/tcp conf_kafka_1

‘‘‘

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

176 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

2. Initializing solr db

We will now set up our solr database. First create the ‘solr-apache-logs’ collection

sudo docker exec -it --user=solr conf_solr_1 bin/solr create_core -c solr-apache-logs

The core/collection should have thos fields (corresponding to apache logs parsed fields) [src_ip, identd,
user, bytes_out,] http_method, http_version, http_query, http_status

Otherwise for simplicity you can add a dynamic field called ‘*’ and of type string for this collection with the web ui :
http://localhost:8983/solr

Select the solr-apache-logs collection, go to schema and add your fields.

3. Run logisland job

you can now run the job inside the logisland container

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-
→˓logs-solr.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1 2019-03-19 16:08:47 WARN
SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts (available in
our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --
→˓broker-list kafka:9092 --topic logisland_raw

The logisland job should output logs, verify that there is no error, otherwise there is chances that your solr collection
is not well configured.

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process your data

1.8. Tutorials 177

http://localhost:8983/solr
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://localhost:4050/streaming/

logisland Documentation, Release 1.1.1

6. Inspect the logs

With Solr, you can directly use the solr web ui.

Open up your browser and go to http://localhost:8983/solr and you should be able to view your apache logs.

In non cloud mode, use the core selector, to select the core `solr-apache-logs` :

178 Chapter 1. Contents:

http://localhost:8983/solr

logisland Documentation, Release 1.1.1

Then, go to query and by clicking to Execute Query, you will see some data from your Apache logs :

1.8. Tutorials 179

logisland Documentation, Release 1.1.1

180 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

3. Stop the job

You can Ctr+c the console where you launched logisland job. Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-solr.yml down

Make sure all container have disappeared.

sudo docker ps

1.8.6 Store Apache logs to Redis K/V store

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of Redis, if you need more
in-depth explanations you can read the previous tutorial on indexing apache logs to elasticsearch or solr : ‘index-
apache-logs.html‘_ .

1. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/store-to-redis.yml

We will start by explaining each part of the config file.

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here a Redis KV cache service that will be used later in the BulkPut processor.

- controllerService: datastore_service
component: com.hurence.logisland.redis.service.RedisKeyValueCacheService
type: service
documentation: redis datastore service
configuration:
connection.string: localhost:6379
redis.mode: standalone
database.index: 0
communication.timeout: 10 seconds
pool.max.total: 8
pool.max.idle: 8
pool.min.idle: 0
pool.block.when.exhausted: true
pool.max.wait.time: 10 seconds
pool.min.evictable.idle.time: 60 seconds
pool.time.between.eviction.runs: 30 seconds
pool.num.tests.per.eviction.run: -1
pool.test.on.create: false
pool.test.on.borrow: false
pool.test.on.return: false
pool.test.while.idle: true
record.recordSerializer: com.hurence.logisland.serializer.JsonSerializer

1.8. Tutorials 181

./prerequisites.html

logisland Documentation, Release 1.1.1

Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into datastore previously
defined (Redis)

all the parsed records are added to datastore by bulk
- processor: datastore_publisher

component: com.hurence.logisland.processor.datastore.BulkPut
type: processor
documentation: "indexes processed events in datastore"
configuration:
datastore.client.service: datastore_service

182 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

2. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Redis Connect a shell to
your logisland container to launch the following streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/store-to-redis.yml

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Inspect the logs

For this part of the tutorial we will use redis-py a Python client for Redis. You can install it by following instructions
given on redis-py.

To install redis-py, simply:

$ sudo pip install redis

Getting Started, check if you can connect with Redis

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)
>>> r.set('foo', 'bar')
>>> r.get('foo')

Then we want to grab some logs that have been collected to Redis. We first find some keys with a pattern and get the
json content of one

>>> r.keys('1234*')

[‘123493eb-93df-4e57-a1c1-4a8e844fa92c’, ‘123457d5-8ccc-4f0f-b4ba-d70967aa48eb’, ‘12345e06-6d72-4ce8-
8254-a7cc4bab5e31’]

1.8. Tutorials 183

https://github.com/edenhill/kafkacat
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
https://redis-py.readthedocs.io/en/latest/
github\protect \relax $\sp {\protect \unhbox \voidb@x \hbox {2}}\protect \relax \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup https://github.com/andymccurdy/redis-py

logisland Documentation, Release 1.1.1

>>> r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c')

‘{n “id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “type” : “apache_log”,n “creationDate” : 804574829000,n
“fields” : {n “src_ip” : “204.191.209.4”,n “record_id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “http_method”
: “GET”,n “http_query” : “/images/WORLD-logosmall.gif”,n “bytes_out” : “669”,n “identd” : “-“,n “http_version”
: “HTTP/1.0”,n “record_raw_value” : “204.191.209.4 - - [01/Jul/1995:01:00:29 -0400] "GET /images/WORLD-
logosmall.gif HTTP/1.0" 200 669”,n “http_status” : “200”,n “record_time” : 804574829000,n “user” : “-“,n
“record_type” : “apache_log”n }n}’

>>> import json
>>> record = json.loads(r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c'))
>>> record['fields']['bytes_out']

1.8.7 Threshold based alerting on Apache logs with Redis K/V store

In a previous tutorial we saw how to use Redis K/V store as a cache storage. In this one we will practice the use of
ComputeTag, CheckThresholds and CheckAlerts processor in conjunction with this Redis Cache.

The following job is made of 2 streaming parts :

1. A main stream which parses Apache logs and store them to a Redis cache .

2. A timer based stream which compute some new tags values based on cached records, check some thresholds
cross and send alerts if needed.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

The full logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t conf_logisland_1 vim conf/threshold-alerting.yml

We will start by explaining each part of the config file.

1. Controller service part

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here a Redis KV cache service that will be used later in the BulkPut processor.

- controllerService: datastore_service
component: com.hurence.logisland.redis.service.RedisKeyValueCacheService
type: service
documentation: redis datastore service
configuration:
connection.string: localhost:6379
redis.mode: standalone
database.index: 0
communication.timeout: 10 seconds
pool.max.total: 8
pool.max.idle: 8
pool.min.idle: 0
pool.block.when.exhausted: true
pool.max.wait.time: 10 seconds
pool.min.evictable.idle.time: 60 seconds

(continues on next page)

184 Chapter 1. Contents:

./prerequisites.html

logisland Documentation, Release 1.1.1

(continued from previous page)

pool.time.between.eviction.runs: 30 seconds
pool.num.tests.per.eviction.run: -1
pool.test.on.create: false
pool.test.on.borrow: false
pool.test.on.return: false
pool.test.while.idle: true
record.recordSerializer: com.hurence.logisland.serializer.JsonSerializer

2. First stream : parse logs and compute tags

Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic as Json serialized records.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

- processor: apache_parser
component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

the next processing step is to assign bytes_out field as record_value

- processor: normalize_fields
component: com.hurence.logisland.processor.NormalizeFields
type: parser
documentation: change field name 'bytes_out' to `record_value`
configuration:
conflict.resolution.policy: overwrite_existing
record_value: bytes_out

1.8. Tutorials 185

logisland Documentation, Release 1.1.1

the we modify record_id to set its value as src_ip field.

- processor: modify_id
component: com.hurence.logisland.processor.ModifyId
type: parser
documentation: change current id to src_ip
configuration:
id.generation.strategy: fromFields
fields.to.hash: src_ip
java.formatter.string: "%1$s"

now we’ll remove all the unwanted fields

- processor: remove_fields
component: com.hurence.logisland.processor.RemoveFields
type: parser
documentation: remove useless fields
configuration:
fields.to.remove: src_ip,identd,user,http_method,http_query,http_version,http_

→˓status,bytes_out

and then cast record_value as a double

- processor: cast
component: com.hurence.logisland.processor.ConvertFieldsType
type: parser
documentation: cast values
configuration:
record_value: double

The next processing step wil compute a dynamic Tag value from a Javascript expression. Here a new record with an
record_id set to computed1 and as a record_value the resulting expression of cache(“logisland.hurence.com”).value
* 10.2

- processor: compute_tag
component: com.hurence.logisland.processor.alerting.ComputeTags
type: processor
documentation: |
compute tags from given formulas.
each dynamic property will return a new record according to the formula definition
the record name will be set to the property name
the record time will be set to the current timestamp

configuration:
datastore.client.service: datastore_service
output.record.type: computed_tag
max.cpu.time: 500
max.memory: 64800000
max.prepared.statements: 5
allow.no.brace: false
computed1: return cache("logisland.hurence.com").value * 10.2;

The last processor will handle all the Records of this stream to index them into datastore previously defined (Redis)

all the parsed records are added to datastore by bulk
- processor: datastore_publisher

component: com.hurence.logisland.processor.datastore.BulkPut
type: processor
documentation: "indexes processed events in datastore"

(continues on next page)

186 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

configuration:
datastore.client.service: datastore_service

3. Second stream : check threshold cross and alerting

The second stream will read all the logs sent in logisland_events topic and push the processed outputs (thresh-
old_cross & alerts records) into logisland_alerts topic as Json serialized records.

We won’t comment the stream definition as it is really straightforward.

The first processor of this stream pipeline makes use of CheckThresholds component which will add a new record of
type threshold_cross with a record_id set to threshold1 if the JS expression cache(“computed1”).value > 2000.0 is
evaluated to true.

- processor: compute_thresholds
component: com.hurence.logisland.processor.alerting.CheckThresholds
type: processor
documentation: |
compute threshold cross from given formulas.
each dynamic property will return a new record according to the formula definition
the record name will be set to the property name
the record time will be set to the current timestamp

a threshold_cross has the following properties : count, time, duration, value
configuration:
datastore.client.service: datastore_service
output.record.type: threshold_cross
max.cpu.time: 100
max.memory: 12800000
max.prepared.statements: 5
record.ttl: 300000
threshold1: cache("computed1").value > 2000.0

- processor: compute_alerts1
component: com.hurence.logisland.processor.alerting.CheckAlerts
type: processor
documentation: |
compute threshold cross from given formulas.
each dynamic property will return a new record according to the formula definition
the record name will be set to the property name
the record time will be set to the current timestamp

configuration:
datastore.client.service: datastore_service
output.record.type: medium_alert
alert.criticity: 1
max.cpu.time: 100
max.memory: 12800000
max.prepared.statements: 5
profile.activation.condition: cache("threshold1").value > 3000.0
alert1: cache("threshold1").duration > 50.0

The last processor will handle all the Records of this stream to index them into datastore previously defined (Redis)

- processor: datastore_publisher
component: com.hurence.logisland.processor.datastore.BulkPut

(continues on next page)

1.8. Tutorials 187

logisland Documentation, Release 1.1.1

(continued from previous page)

type: processor
documentation: "indexes processed events in datastore"
configuration:
datastore.client.service: datastore_service

4. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t conf_logisland_1 bin/logisland.sh --conf conf/threshold-alerting.yml

5. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

6. Inspect the logs and alerts

For this part of the tutorial we will use redis-py a Python client for Redis. You can install it by following instructions
given on redis-py.

To install redis-py, simply:

$ sudo pip install redis

Getting Started, check if you can connect with Redis

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)
>>> r.set('foo', 'bar')
>>> r.get('foo')

Then we want to grab some logs that have been collected to Redis. We first find some keys with a pattern and get the
json content of one

188 Chapter 1. Contents:

https://github.com/edenhill/kafkacat
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
https://redis-py.readthedocs.io/en/latest/
github\protect \relax $\sp {\protect \unhbox \voidb@x \hbox {2}}\protect \relax \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup https://github.com/andymccurdy/redis-py

logisland Documentation, Release 1.1.1

>>> r.keys('1234*')

[‘123493eb-93df-4e57-a1c1-4a8e844fa92c’, ‘123457d5-8ccc-4f0f-b4ba-d70967aa48eb’, ‘12345e06-6d72-4ce8-
8254-a7cc4bab5e31’]

>>> r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c')

‘{n “id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “type” : “apache_log”,n “creationDate” : 804574829000,n
“fields” : {n “src_ip” : “204.191.209.4”,n “record_id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “http_method”
: “GET”,n “http_query” : “/images/WORLD-logosmall.gif”,n “bytes_out” : “669”,n “identd” : “-“,n “http_version”
: “HTTP/1.0”,n “record_raw_value” : “204.191.209.4 - - [01/Jul/1995:01:00:29 -0400] "GET /images/WORLD-
logosmall.gif HTTP/1.0" 200 669”,n “http_status” : “200”,n “record_time” : 804574829000,n “user” : “-“,n
“record_type” : “apache_log”n }n}’

>>> import json
>>> record = json.loads(r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c'))
>>> record['fields']['bytes_out']

1.8.8 Alerting & Query Matching

In the following tutorial we’ll learn how to raise custom alerts on some http traffic (apache log records) based on
lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland. If it’s not the case please refer
to the previous Apache logs indexing tutorial. We will use mainly the MatchQuery Processor.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1.Install required components

For this tutorial please make sure to already have installed elasticsearch modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/match-queries.yml

We will start by explaining each part of the config file.

The stream contains two processors quite identical (the first one converts raw logs to records and the second one index
records to ES) to those encountered in the previous Apache logs indexing tutorial tutorial .

The third one makes use of the MatchQuery Processor. This processor provides user with dynamic query registration.
This queries are expressed in the Lucene syntax.

1.8. Tutorials 189

./index-apache-logs.html
/plugins.html#matchquery
./prerequisites.html
./index-apache-logs.html
plugins.html#matchquery

logisland Documentation, Release 1.1.1

Note: Please read the Lucene syntax guide for supported operations.

This processor will tag the record with blacklisted_host field if the query src_ip:(+alyssa +prodigy)
matches and tag montana_host if src_ip:montana

- processor: match_query
component: com.hurence.logisland.processor.MatchQuery
type: processor
documentation: a parser that matches lucene queries on records
configuration:
policy.onmiss: forward
policy.onmatch: all
blacklisted_host: src_ip:(+alyssa +prodigy)
montana_host: src_ip:montana

here is an example of matching record :

{
"@timestamp": "1995-07-01T09:02:18+02:00",
"alert_match_name": [
"montana_host"

],
"alert_match_query": [

"src_ip:montana"
],
"bytes_out": "8677",
"http_method": "GET",
"http_query": "/shuttle/missions/missions.html",
"http_status": "200",
"http_version": "HTTP/1.0",
"identd": "-",
"record_id": "8e861956-af54-49fd-9043-94c143fc5a19",
"record_raw_value": "ril.usda.montana.edu - - [01/Jul/1995:03:02:18 -0400] \"GET /

→˓shuttle/missions/missions.html HTTP/1.0\" 200 8677",
"record_time": 804582138000,
"record_type": "apache_log",
"src_ip": "ril.usda.montana.edu",
"user": "-"

}

3. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch Connect a
shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/match-queries.yml

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

190 Chapter 1. Contents:

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
https://github.com/edenhill/kafkacat

logisland Documentation, Release 1.1.1

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

Check that you’ve match some criterias :

curl -XGET http://localhost:9200/logisland.2017.10.17/_search?pretty&q=alert_match_
→˓name:montana_host
curl -XGET http://localhost:9200/logisland.2017.10.17/_search?pretty&q=alert_match_
→˓name:blacklisted_host

Open up your browser and go to http://sandbox:5601/ and you should be able to explore your apache logs.

by adding filter on alert_match_name:blacklisted_host you’ll only get request from alyssa.
prodigy.com which is a host we where monitoring.

1.8. Tutorials 191

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://sandbox:5601/app/kibana#/discover

logisland Documentation, Release 1.1.1

1.8.9 Event aggregation

In the following tutorial we’ll learn how to generate time window metrics on some http traffic (apache log records)
and how to raise custom alerts based on lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland. If it’s not the case please refer
to the previous Apache logs indexing tutorial. We will first add an SQLAggregator Stream to compute some metrics
and then add a MatchQuery Processor.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1.Install required components

For this tutorial please make sure to already have installed elasticsearch modules. If not you can just do it through the
componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/aggregate-events.yml

We will start by explaining each part of the config file.

Our application will be composed of 4 streams :

The first one converts apache logs to typed records (please note the use of ConvertFieldsType processor)

The second one is the sql stream is a special one one use a KafkaRecordStreamSQLAggregator. This stream defines
input/output topics names as well as Serializers, avro schema.

Note: The Avro schema is set for the input topic and must be same as the avro schema of the output topic for the
stream that produces the records (please refer to Index Apache logs tutorial

The most important part of the KafkaRecordStreamSQLAggregator is its sql.query property which defines a query to
apply on the incoming records for the given time window.

The following SQL query will be applied on sliding window of 10” of records.

SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip,
→˓first(record_time) as record_time
FROM logisland_events
GROUP BY src_ip
ORDER BY connections_count DESC
LIMIT 20

which will consider logisland_events topic as SQL table and create 20 output Record with the fields
avg_bytes_out, src_ip & record_time. the statement with record_time will ensure that the created Records will corre-
spond to the effective input event time (not the actual time).

192 Chapter 1. Contents:

index-apache-logs.html
/plugins.html#kafkarecordstreamsqlaggregator
/plugins.html#matchquery
./prerequisites.html
/plugins.html#kafkarecordstreamsqlaggregator
http://avro.apache.org/docs/1.7.7/spec.html
index-apache-logs.html

logisland Documentation, Release 1.1.1

- stream: metrics_by_host
component: com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: logisland_aggregations
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1
window.duration: 10
avro.input.schema: >

{ "version":1,
"type": "record",
"name": "com.hurence.logisland.record.apache_log",
"fields": [
{ "name": "record_errors", "type": [{"type": "array", "items": "string"}

→˓,"null"] },
{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "src_ip", "type": ["string","null"] },
{ "name": "http_method", "type": ["string","null"] },
{ "name": "bytes_out", "type": ["long","null"] },
{ "name": "http_query", "type": ["string","null"] },
{ "name": "http_version","type": ["string","null"] },
{ "name": "http_status", "type": ["string","null"] },
{ "name": "identd", "type": ["string","null"] },
{ "name": "user", "type": ["string","null"] }]}

sql.query: >
SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip
FROM logisland_events
GROUP BY src_ip
ORDER BY event_count DESC
LIMIT 20

max.results.count: 1000
output.record.type: top_client_metrics

Here we will compute every x seconds, the top twenty src_ip for connections count. The result of the query will
be pushed into to logisland_aggregations topic as new top_client_metrics Record containing connections_count and
avg_bytes_out fields.

the third match some criteria to send some alerts

- processor: match_query
component: com.hurence.logisland.processor.MatchQuery
type: processor
documentation: a parser that produce alerts from lucene queries
configuration:

(continues on next page)

1.8. Tutorials 193

logisland Documentation, Release 1.1.1

(continued from previous page)

numeric.fields: bytes_out,connections_count
too_much_bandwidth: avg_bytes_out:[25000 TO 5000000]
too_many_connections: connections_count:[150 TO 300]
output.record.type: threshold_alert

3. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch Connect a
shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/aggregate-events.yml

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to
see the events.

194 Chapter 1. Contents:

https://github.com/edenhill/kafkacat
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz

logisland Documentation, Release 1.1.1

you can filter your events with record_type:connection_alert to get 71733 connections alerts matching
your query

1.8. Tutorials 195

logisland Documentation, Release 1.1.1

if we filter now on threshold alerts whith record_type:threshold_alert you’ll get the 13 src_ip that have
been catched by the threshold query.

196 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

1.8.10 Index Apache logs Enrichment

In the following tutorial we’ll drive you through the process of enriching Apache logs with LogIsland platform.

One of the first steps when treating web access logs is to extract information from the User-Agent header string, in
order to be able to classify traffic. The User-Agent string is part of the access logs from the web server (this is the last
field in the example below).

Another step is to find the FQDN (full qualified domain name) from an ip address.

That string is packed with information from the visitor, when you know how to interpret it. However, the User-Agent
string is not based on any standard, and it is not trivial to extract meaningful information from it. LogIsland provides
a processor, based on the YAUAA library, that simplifies that treatement.

LogIsland provides a processor, based on InetAdress class from JDK 8, that use reverse Dns to determine FQDN from
an IP.

Note: This class find FQDN from ip using IN-ADDR.ARPA (or IP6.ARPA for ipv6). If it finds a domain name, it

1.8. Tutorials 197

http://github.com/nielsbasjes/yauaa
https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html

logisland Documentation, Release 1.1.1

verifies that it matches back the same address ip in order to prevent against IP spoofing attack. If you want to return
the ip anyway, you should implement a new plugin using another library as dnsjava for example or open an issue for
asking this feature.

We will reuse the Docker container hosting all the LogIsland services from the previous tutorial, and add the User-
Agent as well as the IpToFqdn processor to the stream

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

You can find the steps to start the Docker image and start the LogIsland server in the previous tutorial. However, you’ll
start the server with a different configuration file (that already includes the necessary modifications)

Install required components

For this tutorial please make sure to already have installed required modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_2_4_0-
→˓client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-enrichment:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-useragent:1.1.1

Stream 1 : modify the stream to analyze the User-Agent string

Note: You can either apply the modifications from this section to the file conf/index-apache-logs.yml ot directly use
the file conf/enrich-apache-logs.yml that already includes them.

The stream needs to be modified to

* modify the regex to add the referer and the User-Agent strings for the SplitText
→˓processor

* modify the Avro schema to include the new fields returned by the UserAgentProcessor

* include the processing of the User-Agent string after the parsing of the logs

* include the processor IpToFqdn after the ParserUserAgent

* include a cache service to use with IpToFqdn processor

The example below shows how to include all of the fields supported by the processor.

Note: It is possible to remove unwanted fields from both the processor configuration and the Avro schema

198 Chapter 1. Contents:

https://en.wikipedia.org/wiki/IP_address_spoofing
index-apache-logs.html
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/user-agent-logs.yml
index-apache-logs.html

logisland Documentation, Release 1.1.1

Once the configuration file is updated, LogIsland must be restarted with that new configuration file.

bin/logisland.sh --conf <new_configuration_file>

2. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed (and is already present in the docker image).

If you don’t have your own httpd logs available, you can use some freely available log files from Elastic web site

Let’s send the first 500000 lines of access log to LogIsland with kafkacat to logisland_raw Kafka topic

docker exec -ti logisland bash
cd /tmp
wget https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/
→˓apache_logs
head -500000 apache_logs | kafkacat -b sandbox:9092 -t logisland_raw

Note: The process should last around 280 seconds because reverse dns is a costly operation. After all data are
processed, you can inject the same logs again and it should be very fast to process thanks to the cache that saved all
matched ip.

3. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

1.8. Tutorials 199

https://github.com/edenhill/kafkacat
https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs
http://sandbox:4050/streaming/

logisland Documentation, Release 1.1.1

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

4. Use Kibana to inspect the logs

You’ve completed the enrichment of your logs using the User-Agent processor. The logs are now loaded into elastic-
Search, in the following form :

curl -XGET http://localhost:9200/logisland.*/_search?pretty

200 Chapter 1. Contents:

http://sandbox:9000

logisland Documentation, Release 1.1.1

{

"_index": "logisland.2017.03.21",
"_type": "apache_log",
"_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
"_score": 1.0,
"_source": {

"@timestamp": "2015-05-17T10:05:43Z",
"agentbuild": "Unknown",
"agentclass": "Browser",
"agentinformationemail": "Unknown",
"agentinformationurl": "Unknown",
"agentlanguage": "Unknown",
"agentlanguagecode": "Unknown",
"agentname": "Chrome",
"agentnameversion": "Chrome 32.0.1700.77",
"agentnameversionmajor": "Chrome 32",
"agentsecurity": "Unknown",
"agentuuid": "Unknown",
"agentversion": "32.0.1700.77",
"agentversionmajor": "32",
"anonymized": "Unknown",
"devicebrand": "Apple",
"deviceclass": "Desktop",
"devicecpu": "Intel",
"devicefirmwareversion": "Unknown",
"devicename": "Apple Macintosh",
"deviceversion": "Unknown",
"facebookcarrier": "Unknown",
"facebookdeviceclass": "Unknown",
"facebookdevicename": "Unknown",
"facebookdeviceversion": "Unknown",
"facebookfbop": "Unknown",
"facebookfbss": "Unknown",
"facebookoperatingsystemname": "Unknown",
"facebookoperatingsystemversion": "Unknown",
"gsainstallationid": "Unknown",
"hackerattackvector": "Unknown",
"hackertoolkit": "Unknown",
"iecompatibilitynameversion": "Unknown",
"iecompatibilitynameversionmajor": "Unknown",
"iecompatibilityversion": "Unknown",
"iecompatibilityversionmajor": "Unknown",
"koboaffiliate": "Unknown",
"koboplatformid": "Unknown",
"layoutenginebuild": "Unknown",
"layoutengineclass": "Browser",
"layoutenginename": "Blink",
"layoutenginenameversion": "Blink 32.0",
"layoutenginenameversionmajor": "Blink 32",
"layoutengineversion": "32.0",
"layoutengineversionmajor": "32",
"operatingsystemclass": "Desktop",
"operatingsystemname": "Mac OS X",
"operatingsystemnameversion": "Mac OS X 10.9.1",
"operatingsystemversion": "10.9.1",
"operatingsystemversionbuild": "Unknown",

(continues on next page)

1.8. Tutorials 201

logisland Documentation, Release 1.1.1

(continued from previous page)

"webviewappname": "Unknown",
"webviewappnameversionmajor": "Unknown",
"webviewappversion": "Unknown",
"webviewappversionmajor": "Unknown",
"bytes_out": 171717,
"http_method": "GET",
"http_query": "/presentations/logstash-monitorama-2013/images/kibana-

→˓dashboard3.png",
"http_referer": "http://semicomplete.com/presentations/logstash-monitorama-

→˓2013/",
"http_status": "200",
"http_user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1)

→˓AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36",
"http_version": "HTTP/1.1",
"identd": "-",
"record_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
"record_raw_value": "83.149.9.216 - - [17/May/2015:10:05:43 +0000] \"GET /

→˓presentations/logstash-monitorama-2013/images/kibana-dashboard3.png HTTP/1.1\" 200
→˓171717 \"http://semicomplete.com/presentations/logstash-monitorama-2013/\" \
→˓"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like
→˓Gecko) Chrome/32.0.1700.77 Safari/537.36\"",

"record_time": 1431857143000,
"record_type": "apache_log",
"src_ip": "83.149.9.216",
"user": "-"

}
}

You can now browse your data in Kibana and build great dashboards

1.8.11 Time series sampling & Outliers detection

In the following tutorial we’ll handle time series data from a sensor. We’ll see how sample the datapoints in a visually
non destructive way and

We assume that you are already familiar with logisland platform and that you have successfully done the previous
tutorials.

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory.

1. Setup the time series collection Stream

The first Stream use a KafkaRecordStreamParallelProcessing and chain of a SplitText

The first Processor simply parse the csv lines while the second index them into the search engine. Please note the
output schema.

parsing time series
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links

(continues on next page)

202 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/outlier-detection.yml
/plugins.html#kafkarecordstreamparallelprocessing
/plugins.html#splittext

logisland Documentation, Release 1.1.1

(continued from previous page)

configuration:
kafka.input.topics: logisland_ts_raw
kafka.output.topics: logisland_ts_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
avro.output.schema: >
{ "version":1,

"type": "record",
"name": "com.hurence.logisland.record.cpu_usage",
"fields": [
{ "name": "record_errors", "type": [{"type": "array", "items": "string"}

→˓,"null"] },
{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "record_value", "type": ["string","null"] }]}

kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: apache_parser
component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:

record.type: apache_log
value.regex: (\S+),(\S+)
value.fields: record_time,record_value

2. Setup the Outliers detection Stream

The first Stream use a KafkaRecordStreamParallelProcessing and a DetectOutliers Processor

Note: It’s important to see that we perform outliers detection in parallel. So if we would perform this detection for
a particular grouping of record we would have used a KafkaRecordStreamSQLAggregator with a GROUP BY clause
instead.

detect outliers
- stream: detect_outliers

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_sensor_events
kafka.output.topics: logisland_sensor_outliers_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer

(continues on next page)

1.8. Tutorials 203

/plugins.html#kafkarecordstreamparallelprocessing
/plugins.html#detectoutliers
/plugins.html#kafkarecordstreamsqlaggregator

logisland Documentation, Release 1.1.1

(continued from previous page)

kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: match_query
component: com.hurence.logisland.processor.DetectOutliers
type: processor
documentation: a processor that detection something exotic in a continuous time

→˓series values
configuration:

rotation.policy.type: by_amount
rotation.policy.amount: 100
rotation.policy.unit: points
chunking.policy.type: by_amount
chunking.policy.amount: 10
chunking.policy.unit: points
global.statistics.min: -100000
min.amount.to.predict: 100
zscore.cutoffs.normal: 3.5
zscore.cutoffs.moderate: 5
record.value.field: record_value
record.time.field: record_time
output.record.type: sensor_outlier

3. Setup the time series Sampling Stream

The first Stream use a KafkaRecordStreamParallelProcessing and a RecordSampler Processor

sample time series
- stream: detect_outliers

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_sensor_events
kafka.output.topics: logisland_sensor_sampled_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: sampler
component: com.hurence.logisland.processor.SampleRecords
type: processor
documentation: a processor that reduce the number of time series values
configuration:

(continues on next page)

204 Chapter 1. Contents:

/plugins.html#kafkarecordstreamparallelprocessing
/plugins.html#recordsampler

logisland Documentation, Release 1.1.1

(continued from previous page)

record.value.field: record_value
record.time.field: record_time
sampling.algorithm: average
sampling.parameter: 10

4. Setup the indexing Stream

The last Stream use a KafkaRecordStreamParallelProcessing and chain of a SplitText and a BulkAddElasticsearch for
indexing the whole records

index records
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_sensor_events,logisland_sensor_outliers_events,

→˓logisland_sensor_sampled_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: es_publisher
component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:

elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/outlier-detection.yml

send logs to kafka
cat cpu_utilization_asg_misconfiguration.csv | kafkacat -b sandbox:9092 -P -t
→˓logisland_sensor_raw (continues on next page)

1.8. Tutorials 205

/plugins.html#kafkarecordstreamparallelprocessing
/plugins.html#splittext
/plugins.html#bulkaddelasticsearch

logisland Documentation, Release 1.1.1

(continued from previous page)

5. Check your alerts with Kibana

1.8.12 Bro/Logisland integration - Indexing Bro events

Bro and Logisland

Bro is a Network IDS (Intrusion Detection System) that can be deployed to monitor your infrastructure. Bro listens to
the packets of your network and generates high level events from them. It can for instance generate an event each time
there is a connection, a file transfer, a DNS query. . . anything that can be deduced from packet analysis.

Through its out-of-the-box ParseBroEvent processor, Logisland integrates with Bro and is able to receive and handle
Bro events and notices coming from Bro. By analyzing those events with Logisland, you may do some correlations
and for instance generate some higher level alarms or do whatever you want, in a scalable manner, like monitoring a
huge infrastructure with hundreds of machines.

Bro comes with a scripting language that allows to also generate some higher level events from other events corre-
lations. Bro calls such events ‘notices’. For instance a notice can be generated when a user or bot tries to guess a
password with brute forcing. Logisland is also able to receive and handle those notices.

For the purpose of this tutorial, we will show you how to receive Bro events and notices in Logisland and how to
index them in ElasticSearch for network audit purpose. But you can imagine to plug any Logisland processors after
the ParseBroEvent processor to build your own monitoring system or any other application based on Bro events and
notices handling.

Tutorial environment

This tutorial will give you a better understanding of how Bro and Logisland integrate together.

We will start two Docker containers:

• 1 container hosting all the LogIsland services

• 1 container hosting Bro pre-loaded with Bro-Kafka plugin

We will launch two streaming processes and configure Bro to send events and notices to the Logisland system so that
they are indexed in ElasticSearch.

It is important to understand that in a production environment Bro would be installed on machines where he is relevant
for your infrastructure and will be configured to remotely point to the Logisland service (Kafka). But for easiness of
this tutorial, we provide you with an easy mean of generating Bro events through our Bro Docker image.

This tutorial will guide you through the process of configuring Logisland for treating Bro events, and configuring Bro
of the second container to send the events and notices to the Logisland service in the first container.

Note: You can download the latest release of Logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory in the Logsiland container.

1. Start the Docker container with LogIsland

LogIsland is packaged as a Docker image that you can build yourself or pull from Docker Hub. The docker image is
built from a CentOs image with the following components already installed (among some others not useful for this

206 Chapter 1. Contents:

https://www.bro.org
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml
https://github.com/Hurence/logisland/tree/master/logisland-docker#build-your-own

logisland Documentation, Release 1.1.1

tutorial):

• Kafka

• Spark

• Elasticsearch

• LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland | grep IPAddress

or if your are on mac os
docker-machine ip default

You should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in Logisland running container. Or you can use ‘localhost’ instead of ‘sandbox’ where applicable.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

2.Install required components

For this tutorial please make sure to already have installed elasticsearch and excel modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_2_4_0-
→˓client:1.1.1

1.8. Tutorials 207

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 1.1.1

3. Transform Bro events into Logisland records

For this tutorial we will receive Bro events and notices and send them to Elastiscearch. The configuration file for
this tutorial is already present in the container at $LOGISLAND_HOME/conf/index-bro-events.yml and its
content can be viewed here . Within the following steps, we will go through this configuration file and detail the
sections and what they do.

Connect a shell to your Logisland container to launch a Logisland instance with the following streaming jobs:

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-bro-events.yml

Note: Logisland is now started. If you want to go straight forward and do not care for the moment about the
configuration file details, you can now skip the following sections and directly go to the 4. Start the Docker container
with Bro section.

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. The conf/index-bro-events.yml configuration file
defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStreamPro-
cessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index Bro events with LogIsland
configuration:
spark.app.name: IndexBroEventsDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

(continues on next page)

208 Chapter 1. Contents:

https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml
../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 20000

streamConfigurations:

Stream 1: Parse incoming Bro events

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the Bro events and notices sent in the bro topic and push the processing output
into the logisland_events topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: A processor chain that transforms Bro events into Logisland records
configuration:
kafka.input.topics: bro
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream there is a single processor in the processor chain: the Bro processor. It takes an incoming Bro
event/notice JSON document and computes a Logisland Record as a sequence of fields that were contained in the
JSON document.

Transform Bro events into Logisland records
- processor: Bro adaptor

component: com.hurence.logisland.processor.bro.ParseBroEvent
type: parser
documentation: A processor that transforms Bro events into LogIsland events

This stream will process Bro events as soon as they will be queued into the bro Kafka topic. Each log will be parsed
as an event which will be pushed back to Kafka in the logisland_events topic.

1.8. Tutorials 209

logisland Documentation, Release 1.1.1

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into
ElasticSearch. So there is no need to define an output topic. The input topic is enough:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: A processor chain that pushes bro events to ES
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes Bro events into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: bro
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: bro configuration parameter tells the processor to index events into an index starting with
the bro string. The timebased.index: today configuration parameter tells the processor to use the current
date after the index prefix. Thus the index name is of the form /bro.2017.02.23.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

We will come back to these settings and what they do in the section where we see examples of events to illustrate the
workflow.

4. Start the Docker container with Bro

For this tutorial, we provide Bro as a Docker image that you can build yourself or pull from Docker Hub. The docker
image is built from an Ubuntu image with the following components already installed:

• Bro

210 Chapter 1. Contents:

https://github.com/Hurence/logisland/tree/master/logisland-docker/bro

logisland Documentation, Release 1.1.1

• Bro-Kafka plugin

Note: Due to the fact that Bro requires a Kafka plugin to be able to send events to Kafka and that building the Bro-
Kafka plugin requires some substantial steps (need Bro sources), for this tutorial, we are only focusing on configuring
Bro, and consider it already compiled and installed with its Bro-Kafka plugin (this is the case in our Bro docker image).
But looking at the Dockerfile we made to build the Bro Docker image and which is located here, you will have an idea
on how to install Bro and Bro-Kafka plugin binaries on your own systems.

Pull the Bro image from Docker Repository:

Warning: If the Bro image is not yet available in the Docker Hub: please build our Bro Docker image yourself
as described in the link above for the moment.

docker pull hurence/bro

Start a Bro container from the Bro image:

run container
docker run -it --name bro -h bro hurence/bro

get container ip
docker inspect bro | grep IPAddress

or if your are on mac os
docker-machine ip default

5. Configure Bro to send events to Kafka

In the following steps, if you want a new shell to your running bro container, do as necessary:

docker exec -ti bro bash

Make the sandbox hostname reachable

Kafka in the Logisland container broadcasts his hostname which we have set up being sandbox. For this hostname to
be reachable from the Bro container, we must declare the IP address of the Logisland container. In the Bro container,
edit the /etc/hosts file and add the following line at the end of the file, using the right IP address:

172.17.0.2 sandbox

Note: Be sure to use the IP address of your Logisland container.

Note: Any potential communication problem of the Bro-Kafka plugin will be displayed in the /usr/local/bro/
spool/bro/stderr.log log file. Also, you should not need this, but the advertised name used by Kafka is
declared in the /usr/local/kafka/config/server.properties file (in the Logisland container), in the
advertised.host.name property. Any modification to this property requires a Kafka server restart.

1.8. Tutorials 211

https://github.com/Hurence/logisland/tree/master/logisland-docker/bro/Dockerfile

logisland Documentation, Release 1.1.1

Edit the Bro config file

We will configure Bro so that it loads the Bro-Kafka plugin at startup. We will also point to Kafka of the Logisland
container and define the event types we want to push to Logisland.

Edit the config file of bro:

vi $BRO_HOME/share/bro/site/local.bro

At the beginning of the file, add the following section (take care to respect indentation):

@load Bro/Kafka/logs-to-kafka.bro
redef Kafka::kafka_conf = table(

["metadata.broker.list"] = "sandbox:9092",
["client.id"] = "bro"

);
redef Kafka::topic_name = "bro";
redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);
redef Kafka::tag_json = T;

Let’s detail a bit what we did:

This line tells Bro to load the Bro-Kafka plugin at startup (the next lines are configuration for the Bro-Kafka plugin):

@load Bro/Kafka/logs-to-kafka.bro

These lines make the Bro-Kafka plugin point to the Kafka instance in the Logisland container (host, port, client id to
use). These are communication settings:

redef Kafka::kafka_conf = table(
["metadata.broker.list"] = "sandbox:9092",
["client.id"] = "bro"
);

This line tells the Kafka topic name to use. It is important that it is the same as the input topic of the ParseBroEvent
processor in Logisland:

redef Kafka::topic_name = "bro";

This line tells the Bro-Kafka plugin what type of events should be intercepted and sent to Kafka. For this tutorial we
send Connections, DNS and SSH events. We are also interested in any notice (alert) that Bro can generate. For a
complete list of possibilities, see the Bro documentation for events and notices. If you want all possible events and
notices available by default to be sent into Kafka, just comment this line:

redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);

This line tells the Bro-Kafka plugin to add the event type in the Bro JSON document it sends. This is required and
expected by the Bro Processor as it uses this field to tag the record with his type. This also tells Logisland which
ElasticSearch index type to use for storing the event:

redef Kafka::tag_json = T;

Start Bro

To start bro, we use the broctl command that is already in the path of the container. It starts an interactive session
to control bro:

212 Chapter 1. Contents:

https://www.bro.org/sphinx/script-reference/log-files.html
https://www.bro.org/sphinx/bro-noticeindex.html

logisland Documentation, Release 1.1.1

broctl

Then start the bro service: use the deploy command in broctl session:

Welcome to BroControl 1.5-9

Type "help" for help.

[BroControl] > deploy
checking configurations ...
installing ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/site ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/auto ...
creating policy directories ...
installing site policies ...
generating standalone-layout.bro ...
generating local-networks.bro ...
generating broctl-config.bro ...
generating broctl-config.sh ...
stopping ...
bro not running
starting ...
starting bro ...

Note: The deploy command is a shortcut to the check, install and restart commands. Everytime you mod-
ify the $BRO_HOME/share/bro/site/local.bro configuration file, you must re-issue a deploy command
so that changes are taken into account.

6. Generate some Bro events and notices

Now that everything is in place you can generate some network activity in the Bro container to generate some events
and see them indexed in ElasticSearch.

Monitor Kafka topic

We will generate some events but first we want to see them in Kafka to be sure Bro has forwarded them to Kafka.
Connect to the Logisland container:

docker exec -ti logisland bash

Then use the kafkacat command to listen to messages incoming in the bro topic:

kafkacat -b localhost:9092 -t bro -o end

Let the command run. From now on, any incoming event from Bro and entering Kafka will be also displayed in this
shell.

Issue a DNS query

Open a shell to the Bro container:

1.8. Tutorials 213

logisland Documentation, Release 1.1.1

docker exec -ti bro bash

Then use the ping command to trigger an underlying DNS query:

ping www.wikipedia.org

You should see in the listening kafkacat shell an incoming JSON Bro event of type dns.

Here is a pretty print version of this event. It should look like this one:

{
"dns": {
"AA": false,
"TTLs": [599],
"id.resp_p": 53,
"rejected": false,
"query": "www.wikipedia.org",
"answers": ["91.198.174.192"],
"trans_id": 56307,
"rcode": 0,
"id.orig_p": 60606,
"rcode_name": "NOERROR",
"TC": false,
"RA": true,
"uid": "CJkHd3UABb4W7mx8b",
"RD": false,
"id.orig_h": "172.17.0.2",
"proto": "udp",
"id.resp_h": "8.8.8.8",
"Z": 0,
"ts": 1487785523.12837

}
}

The Bro Processor should have processed this event which should have been handled next by the BulkAddElasticsearch
processor and finally the event should have been stored in ElasticSearch in the Logisland container.

To see this stored event, we will query ElasticSearch with the curl command. Let’s browse the dns type in any
index starting with bro:

curl http://sandbox:9200/bro*/dns/_search?pretty

Note: Do not forget to change sandbox with the IP address of the Logisland container if needed.

You should be able to localize in the response from ElasticSearch a DNS event which looks like:

{
"_index" : "bro.2017.02.23",
"_type" : "dns",
"_id" : "6aecfa3a-6a9e-4911-a869-b4e4599a69c1",
"_score" : 1.0,
"_source" : {
"@timestamp": "2017-02-23T17:45:36Z",
"AA": false,
"RA": true,
"RD": false,

(continues on next page)

214 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

"TC": false,
"TTLs": [599],
"Z": 0,
"answers": ["91.198.174.192"],
"id_orig_h": "172.17.0.2",
"id_orig_p": 60606,
"id_resp_h": "8.8.8.8",
"id_resp_p": 53,
"proto": "udp",
"query": "www.wikipedia.org",
"rcode": 0,
"rcode_name": "NOERROR",
"record_id": "1947d1de-a65e-42aa-982f-33e9c66bfe26",
"record_time": 1487785536027,
"record_type": "dns",
"rejected": false,
"trans_id": 56307,
"ts": 1487785523.12837,
"uid": "CJkHd3UABb4W7mx8b"

}
}

You should see that this JSON document is stored in a indexed of the form /bro.XXXX.XX.XX/dns:

"_index" : "bro.2017.02.23",
"_type" : "dns",

Here, as the Bro event is of type dns, the event has been indexed using the dns ES type in the index. This allows to
easily search only among events of a particular type.

The ParseBroEvent processor has used the first level field dns of the incoming JSON event from Bro to add a
record_type field to the record he has created. This field has been used by the BulkAddElasticsearch proces-
sor to determine the index type to use for storing the record.

The @timestamp field is added by the BulkAddElasticsearch processor before pushing the record into ES. Its value
is derived from the record_time field which has been added with also the record_id field by Logisland when
the event entered Logisland. The ts field is the Bro timestamp which is the time when the event was generated in the
Bro system.

Other second level fields of the incoming JSON event from Bro have been set as first level fields in the record created
by the Bro Processor. Also any field that had a “.” chacracter has been transformed to use a “_” character. For instance
the id.orig_h field has been renamed into id_orig_h.

That is basically all the job the Bro Processor does. It’s a small adaptation layer for Bro events. Now if you look in the
Bro documentation and know the Bro event format, you can be able to know the format of a matching record going
out of the ParseBroEvent processor. You should then be able to write some Logsisland processors to handle any record
going out of the Bro Processor.

Issue a Bro Notice

As a Bro notice is the result of analysis of many events, generating a real notice event with Bro is a bit more complicated
if you want to generate it with real traffic. Fortunately, Bro has the ability to generate events also from pcap files.
These are “packect capture” files. They hold the recording of a real network traffic. Bro analyzes the packets in those
files and generate events as if he was listening to real traffic.

In the Bro container, we have preloaded some pcap files in the $PCAP_HOME directory. Go into this directory:

1.8. Tutorials 215

logisland Documentation, Release 1.1.1

cd $PCAP_HOME

The ssh.pcap file in this directory is a capture of a network traffic in which there is some SSH traffic with an attempt
to guess a user password. The analysis of such traffic generates a Bro SSH::Password_Guessing notice.

Let’s launch the following command to make Bro analyze the packets in the ssh.pcap file and generate this notice:

bro -r ssh.pcap local

In your previous kafkacat shell, you should see some ssh events that represent the SSH traffic. You should also
see a notice event like this one:

{
"notice": {
"ts":1320435875.879278,
"note":"SSH::Password_Guessing",
"msg":"172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).

→˓",
"sub":"Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.

→˓238.136, 172.16.238.136",
"src":"172.16.238.1",
"peer_descr":"bro",
"actions":["Notice::ACTION_LOG"],
"suppress_for":3600.0,
"dropped":false

}
}

Then, like for the DNS event, it should also have been indexed in the notice index type in ElastiSearch. Browse
documents in this type like this:

curl http://sandbox:9200/bro*/notice/_search?pretty

Note: Do not forget to change sandbox with the IP address of the Logisland container if needed.

In the response, you should see a notice event like this:

{
"_index" : "bro.2017.02.23",
"_type" : "notice",
"_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
"_score" : 1.0,
"_source" : {

"@timestamp" : "2017-02-23T10:45:08Z",
"actions" : ["Notice::ACTION_LOG"],
"dropped" : false,
"msg" : "172.16.238.1 appears to be guessing SSH passwords (seen in 30

→˓connections).",
"note" : "SSH::Password_Guessing",
"peer_descr" : "bro",
"record_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
"record_time" : 1487933108041,
"record_type" : "notice",
"src" : "172.16.238.1",
"sub" : "Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.

→˓16.238.136, 172.16.238.136",
(continues on next page)

216 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

"suppress_for" : 3600.0,
"ts" : 1.320435875879278E9

}
}

We are done with this first approach of Bro integration with LogIsland.

As we configured Bro to also send SSH and Connection events to Kafka, you can have a look at the matching generated
events in ES by browsing the ssh and conn index types:

Browse SSH events
curl http://sandbox:9200/bro*/ssh/_search?pretty
Browse Connection events
curl http://sandbox:9200/bro*/conn/_search?pretty

If you wish, you can also add some additional event types to be sent to Kafka in the Bro config file and browse the
matching indexed events in ES using the same kind of curl commands just by changing the type in the query (do not
forget to re-deploy Bro after configuration file modifications).

1.8.13 Netflow/Logisland integration - Handling Netflow traffic

Netflow and Logisland

Netflow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic. We can distin-
guish 2 components:

• Flow exporter: aggregates packets into flows and exports flow records (binary format) towards flow collectors

• Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are therefore available for analysis purpose (intrusion detection, traffic analysis. . .)

Network Flows: A network flow can be defined in many ways. Cisco standard NetFlow version 5 defines a flow as a
unidirectional sequence of packets that all share the following 7 values:

1. Ingress interface (SNMP ifIndex)

2. Source IP address

3. Destination IP address

4. IP protocol

5. Source port for UDP or TCP, 0 for other protocols

6. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols

7. IP Type of Service

NetFlow Record

A NetFlow record can contain a wide variety of information about the traffic in a given flow. NetFlow version 5 (one
of the most commonly used versions, followed by version 9) contains the following:

• Input interface index used by SNMP (ifIndex in IF-MIB).

• Output interface index or zero if the packet is dropped.

• Timestamps for the flow start and finish time, in milliseconds since the last boot.

• Number of bytes and packets observed in the flow

1.8. Tutorials 217

http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html

logisland Documentation, Release 1.1.1

• Layer 3 headers:

– Source & destination IP addresses

– ICMP Type and Code.

– IP protocol

– Type of Service (ToS) value

• Source and destination port numbers for TCP, UDP, SCTP

• For TCP flows, the union of all TCP flags observed over the life of the flow.

• Layer 3 Routing information:

– IP address of the immediate next-hop (not the BGP nexthop) along the route to the destination

– Source & destination IP masks (prefix lengths in the CIDR notation)

Through its out-of-the-box Netflow processor, Logisland integrates with Netflow (V5) and is able to receive and handle
Netflow events coming from a netflow collector. By analyzing those events with Logisland, you may do some analysis
for example for intrusion detection or traffic analysis.

In this tutorial, we will show you how to generate some Netflow traffic in LogIsland and how to index them in
ElasticSearch and vizualize them in Kinbana. More complexe treatment could bv done by plugging any Logisland
processors after the Netflow processor.

Tutorial environment

This tutorial aims to show how to handle Netflow traffic within LogIsland.

For the purpose of this tutorial, we will generate Netflow traffic using nfgen. This tool will simulate a netflow traffic
and send binary netflow records on port 2055 of sandbox. A nifi instance running on sandbox will listen on that port
for incoming traffic and push the binary events to a kafka broker.

We will launch two streaming processes, one for generating the corresponding Netflow LogIsland records and the
second one to index them in ElasticSearch.

Note: It is important to understand that in real environment Netflow traffic will be triggered by network devices
(router, switches,. . .), so you will have to get the netflow traffic from the defined collectors, and send the corresponding
record (formatted in JSON format as described before) to the Logisland service (Kafka).

Note: You can download the latest release of Logisland and the YAML configuration file for this tutorial which can
also be found under $LOGISLAND_HOME/conf directory in the LogIsland container.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub. The docker
container is built from a Centos 6.4 image with the following tools enabled (among others)

• Kafka

• Spark

• Elasticsearch

• Kibana

218 Chapter 1. Contents:

https://github.com/pazdera/NetFlow-Exporter-Simulator
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-netflow-events.yml

logisland Documentation, Release 1.1.1

• LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 2055:2055 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in logisland running container.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

2. Configuration steps

First we have to peform some configuration steps on sandbox (to configure and start elasticsearch and nifi). We will
create a dynamic template in ElasticSearch (to better handle the field mapping) using the following command:

docker exec -ti logisland bash

[root@sandbox /]# curl -XPUT localhost:9200/_template/netflow -d '{
"template" : "netflow.*",
"settings": {
"index.refresh_interval": "5s"

},
"mappings" : {
"netflowevent" : {

"numeric_detection": true,
"_all" : {"enabled" : false},
"properties" : {

"dOctets": {"index": "analyzed", "type": "long" },

(continues on next page)

1.8. Tutorials 219

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 1.1.1

(continued from previous page)

"dPkts": { "index": "analyzed", "type": "long" },
"dst_as": { "index": "analyzed", "type": "long" },
"dst_mask": { "index": "analyzed", "type": "long" },
"dst_ip4": { "index": "analyzed", "type": "ip" },
"dst_port": { "index": "analyzed", "type": "long" },
"first":{"index": "analyzed", "type": "long" },
"input":{"index": "analyzed", "type": "long" },
"last":{"index": "analyzed", "type": "long" },
"nexthop":{"index": "analyzed", "type": "ip" },
"output":{"index": "analyzed", "type": "long" },
"nprot":{"index": "analyzed", "type": "long" },
"record_time":{"index": "analyzed", "type": "date","format": "strict_date_

→˓optional_time||epoch_millis" },
"src_as":{"index": "analyzed", "type": "long" },
"src_mask":{"index": "analyzed", "type": "long" },
"src_ip4": { "index": "analyzed", "type": "ip" },
"src_port":{"index": "analyzed", "type": "long" },
"flags":{"index": "analyzed", "type": "long" },
"tos":{"index": "analyzed", "type": "long" },
"unix_nsecs":{"index": "analyzed", "type": "long" },
"unix_secs":{"index": "analyzed", "type": "date","format": "strict_date_

→˓optional_time||epoch_second" }
}

}
}

}'

In order to send netflow V5 event (binary format) to logisland_raw Kafka topic, we will use a nifi instance which
will simply listen for netflow traffic on a UDP port (we keep here the default netflow port 2055) and push these netflow
records to a kafka broker (sandbox:9092 with topic netflow).

1. Start nifi

docker exec -ti logisland bash
cd /usr/local/nifi-1.1.1
bin/nifi.sh start

browse http://sandbox:8080/nifi/

2. Import flow template

Download this nifi template and import it using “Upload Template” in “Operator” toolbox.

220 Chapter 1. Contents:

http://sandbox:8080/nifi/
https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/nifi_netflow.xml

logisland Documentation, Release 1.1.1

3. Use this template to create the nifi flow

Drag the nifi toolbar template icon in the nifi work area and choose “nifi_netflow” template, the press “ADD”
button

1.8. Tutorials 221

logisland Documentation, Release 1.1.1

You finally have the following nifi flow

4. start nifi processors

Select listenUDP processor of nifi flow, right click on it and press “Start”. Do the same for putKafka
processor.

Note: the PutFile processor is only for debugging purpose. It dumps netflow records to /tmp/netflow
directory (that should be previously created). So you normally don’t have to start it for that demo.

3. Parse Netflow records

For this tutorial we will handle netflow binary events, generate corresponding logisland records and store them to
Elastiscearch

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-netflow-events.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-netflow-events.yml configuration
file defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStream-
ProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

222 Chapter 1. Contents:

../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index Netflow events with LogIsland
configuration:
spark.app.name: IndexNetFlowEventsDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 20000

streamConfigurations:

Stream 1 : parse incoming Netflow (Binary format) lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
(continues on next page)

1.8. Tutorials 223

logisland Documentation, Release 1.1.1

(continued from previous page)

type: stream
documentation: A processor chain that transforms Netflow events into Logisland

→˓records
configuration:
kafka.input.topics: netflow
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 2

processorConfigurations:

Within this stream there is a single processor in the processor chain: the Netflow processor. It takes an incoming
Netflow event/notice binary record, parses it and computes a Logisland Record as a sequence of fields that were
contained in the binary record.

Transform Netflow events into Logisland records
- processor: Netflow adaptor
component: com.hurence.logisland.processor.netflow.ParseNetflowEvent
type: parser
documentation: A processor that transforms Netflow events into LogIsland events
configuration:
debug: false
enrich.record: false

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into
ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: A processor chain that pushes netflow events to ES
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2

(continues on next page)

224 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

kafka.topic.default.replicationFactor: 1
processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes Netflow events into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: netflow
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: netflow configuration parameter tells the processor to index events into an index start-
ing with the netflow string. The timebased.index: today configuration parameter tells the processor to
use the current date after the index prefix. Thus the index name is of the form /netflow.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

4. Inject Netflow events into the system

Generate Netflow events to port 2055 of localhost

Now that we have our nifi flow listening on port 2055 from Netflow (V5) traffic and push them to kafka, we have to
generate netflow traffic. For the purpose of this tutorial, as already mentioned, we will install and use a netflow traffic
generator (but you can use whatever other way to generate Netflow V5 traffic to port 2055)

docker exec -ti logisland bash
cd /tmp
wget https://github.com/pazdera/NetFlow-Exporter-Simulator/archive/master.zip
unzip master.zip
cd NetFlow-Exporter-Simulator-master/
make
./nfgen #this command will generate netflow V5 traffic and send it to local port
→˓2055.

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

1.8. Tutorials 225

http://sandbox:4050/streaming/

logisland Documentation, Release 1.1.1

6. Use Kibana to inspect events

Inspect Netflow events under Discover tab

Open your browser and go to http://sandbox:5601/

Configure a new index pattern with netflow.* as the pattern name and @timestamp as the time value field.

226 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))

logisland Documentation, Release 1.1.1

Then browse “Discover” tab, you should be able to explore your Netflow events.

1.8. Tutorials 227

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))

logisland Documentation, Release 1.1.1

You have now to save your search by clicking the save icon. Save this search as “netflowsearch”

228 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Display network information in kibana dashboard

First, you need to import the predefined Kibana dashboard (download this file first) under Settings tab, Objetcs
subtab.

Select Import and load previously saved netflow_dashboard.json dashboard (it also contains required Kibana visu-
alizations)

Then visit Dashboard tab, and open dashboard_netflow dashboard by clicking on Load Saved
Dashboard. You should be able to visualize information about the generated traffic (choose the right time win-
dow, corresponding to the time of your traffic, in the right upper corner of kibana page)

1.8. Tutorials 229

https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/netflow_dashboard.json

logisland Documentation, Release 1.1.1

1.8.14 Capturing Network packets in Logisland

1. Network Packets

A network packet is a formatted unit of data carried by a network from one computer (or device) to another. For
example, a web page or an email are carried as a series of packets of a certain size in bytes. Each packet carries
the information that will help it get to its destination : the sender’s IP address, the intended receiver’s IP address,
something that tells the network how many packets the message has been broken into, . . .

Packet Headers

1. Protocol headers (IP, TCP, . . .)

This information is stored in different layers called “headers”, encapsulating the packet payload. For example, a
TCP/IP packet is wrapped in a TCP header, which is in turn encapsulated in an IP header.

The individual packets for a given file or message may travel different routes through the Internet. When they have all
arrived, they are reassembled by the TCP layer at the receiving end.

2. PCAP format specific headers

Packets can be either analysed in real-time (stream mode) or stored in files for upcoming analysis (batch mode). In the
latter case, the packets are stored in the pcap format, adding some specific headers :

• a global header is added in the beginning of the pcap file

• a packet header is added in front of each packet

In this tutorial we are going to capture packets in live stream mode

230 Chapter 1. Contents:

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
https://en.wikipedia.org/wiki/IPv4#Header
https://wiki.wireshark.org/Development/LibpcapFileFormat#Global_Header
https://wiki.wireshark.org/Development/LibpcapFileFormat#Record_.28Packet.29_Header

logisland Documentation, Release 1.1.1

Why capturing network packets ?

Packet sniffing, or packet analysis, is the process of capturing any data transmitted over the local network and searching
for any information that may be useful for :

• Troubleshooting network problems

• Detecting network intrusion attempts

• Detecting network misuse by internal and external users

• Monitoring network bandwidth utilization

• Monitoring network and endpoint security status

• Gathering and report network statistics

Packets information collected by Logisland

LogIsland parses all the fields of IP protocol headers, namely :

1. IP Header fields

• IP version : ip_version

• Internet Header Length : ip_internet_header_length

• Type of Service : ip_type_of_service

• Datagram Total Length : ip_datagram_total_length

• Identification : ip_identification

• Flags : ip_flags

• Fragment offset : ip_fragment_offset

• Time To Live : ip_time_to_live

• Protocol : protocol

• Header Checksum : ip_checksum

• Source IP address : src_ip

• Destination IP address : dst_ip

• Options : ip_options (variable size)

• Padding : ip_padding (variable size)

2. TCP Header fields

• Source port number : src_port

• Destination port number : dest_port

• Sequence Number : tcp_sequence_number

• Acknowledgment Number : tcp_acknowledgment_number

• Data offset : tcp_data_offset

• Flags : tcp_flags

• Window size : tcp_window_size

• Checksum : tcp_checksum

1.8. Tutorials 231

logisland Documentation, Release 1.1.1

• Urgent Pointer : tcp_urgent_pointer

• Options : tcp_options (variable size)

• Padding : tcp_padding (variable size)

3. UDP Header fields

• Source port number : src_port

• Destination port number : dest_port

• Segment total length : udp_segment_total_length

• Checksum : udp_checksum

2. Tutorial environment

This tutorial aims to show how to capture live Network Packets and process then in LogIsland. Through its out-
of-the-box ParseNetworkPacket processor, LogIsland is able to receive and handle network packets captured by a
packet sniffer tool. Using LogIsland, you will be able to inspect those packets for network security, optimization or
monitoring reasons.

In this tutorial, we will show you how to capture network packets, process those packets in LogIsland, index them in
ElasticSearch and then display them in Kibana.

We will launch two streaming processors, one for parsing Network Packets into LogIsland packet records, and one to
index those packet records in ElasticSearch.

Packet Capture Tool

For the purpose of this tutorial, we are going to capture network packets (off-the-wire) into a kafka topic using pycapa
Apache probe, a tool based on Pcapy, a Python extension module that interfaces with the libpcap packet capture library.

For information, it is also possible to use the fastcapa Apache probe, based on DPDK, intended for high-volume packet
capture.

Note: You can download the latest release of LogIsland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory in the LogIsland container.

3. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub. The docker
container is built from a Centos 6.4 image with the following tools enabled (among others)

• Kafka

• Spark

• Elasticsearch

• Kibana

• LogIsland

Pull the image from Docker Repository (it may take some time)

232 Chapter 1. Contents:

https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa
https://github.com/CoreSecurity/pcapy
http://www.tcpdump.org
https://github.com/apache/incubator-metron/tree/master/metron-sensors/fastcapa
http://dpdk.org/
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-network-packets.yml

logisland Documentation, Release 1.1.1

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in logisland running container.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

4. Parse Network Packets

In this tutorial we will capture network packets, process those packets in LogIsland and index them in ElasticSearch.

Connect a shell to your logisland container to launch LogIsland streaming jobs :

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-network-packets.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-network-packets.yml configuration
file defines a stream processing job setup. The first section configures the Spark engine, we will use a KafkaStream-
ProcessingEngine :

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Parse network packets with LogIsland

(continues on next page)

1.8. Tutorials 233

https://github.com/Hurence/logisland/releases
../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

configuration:
spark.app.name: ParseNetworkPacketDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 4000

streamConfigurations:

Stream 1 : parse incoming Network Packets

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_input_packets_topic topic and push the
processed packet records into logisland_parsed_packets_topic topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: A processor chain that parses network packets into Logisland records
configuration:

(continues on next page)

234 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

kafka.input.topics: logisland_input_packets_topic
kafka.output.topics: logisland_parsed_packets_topic
kafka.error.topics: logisland_error_packets_topic
kafka.input.topics.serializer: com.hurence.logisland.serializer.

→˓BytesArraySerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream there is a single processor in the processor chain: the ParseNetworkPacket processor. It takes an
incoming network packet, parses it and computes a LogIsland record as a sequence of fields corresponding to packet
headers fields.

Transform network packets into LogIsland packet records
- processor: ParseNetworkPacket processor

component: com.hurence.logisland.processor.networkpacket.ParseNetworkPacket
type: parser
documentation: A processor that parses network packets into LogIsland records
configuration:
debug: true
flow.mode: stream

This stream will process network packets as soon as they will be queued into
logisland_input_packets_topic Kafka topic, each packet will be parsed as a record which will be
pushed back to Kafka in the logisland_parsed_packets_topic topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_parsed_packets_topic topic to
index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: a processor that pushes events to ES
configuration:
kafka.input.topics: logisland_parsed_packets_topic
kafka.output.topics: none
kafka.error.topics: logisland_error_packets_topic
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

1.8. Tutorials 235

logisland Documentation, Release 1.1.1

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes network packet records into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: packets_index
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: packets_index configuration parameter tells the elasticsearch processor to index
records into an index starting with the packets_index string. The timebased.index: today configu-
ration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form
/packets_index.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

5. Stream network packets into the system

Let’s install and use the Apache pycapa probe to capture and send packets to kafka topics in real time.

Install pycapa probe

All required steps to install pycapa probe are explained in this site, but here are the main installation steps :

1. Install libpcap, pip (python-pip) and python-devel :

yum install libpcap
yum install python-pip
yum install python-devel

2. Build pycapa probe from Metron repo

cd /tmp
git clone https://github.com/apache/incubator-metron.git
cd incubator-metron/metron-sensors/pycapa
pip install -r requirements.txt
python setup.py install

Capture network packets

To start capturing network packets into the topic logisland_input_packets_topic using pycapa probe, use
the following command :

pycapa --producer --kafka sandbox:9092 --topic logisland_input_packets_topic -i eth0

236 Chapter 1. Contents:

https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa

logisland Documentation, Release 1.1.1

6. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

7. Use Kibana to inspect records

1.8. Tutorials 237

http://sandbox:4050/streaming/

logisland Documentation, Release 1.1.1

Inspect Network Packets under Discover tab

Open your browser and go to http://sandbox:5601/

Configure a new index pattern with packets.* as the pattern name and @timestamp as the time value field.

Then browse “Discover” tab, you should be able to explore your network packet records :

1.8.15 Generate Unique Ids

We will add a stage to the “index-apache-logs” tutorial. We will ensure every Record has a unique Id
before injecting into Es. This way we are sure to not have documentAlreadyException or to have two
records that overwrite themselves.

Note: If you are not familiar with logisland yet. You should really read “index-apache-logs” tutorial before this one.

We assume we are at the stage just before injecting apache logs into ES from “index-apache-logs”

238 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))
http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))

logisland Documentation, Release 1.1.1

Stream 1 : parse incoming apache log lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
avro.output.schema: >
{ "version":1,

"type": "record",
"name": "com.hurence.logisland.record.apache_log",
"fields": [
{ "name": "record_errors", "type": [{"type": "array", "items": "string"}

→˓,"null"] },
{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "src_ip", "type": ["string","null"] },
{ "name": "http_method", "type": ["string","null"] },
{ "name": "bytes_out", "type": ["long","null"] },
{ "name": "http_query", "type": ["string","null"] },
{ "name": "http_version","type": ["string","null"] },
{ "name": "http_status", "type": ["string","null"] },
{ "name": "identd", "type": ["string","null"] },
{ "name": "user", "type": ["string","null"] }]}

kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText

(continues on next page)

1.8. Tutorials 239

logisland Documentation, Release 1.1.1

(continued from previous page)

type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

Within this stream a ModifyId processor takes Record ouput from SplitText processor and computes a new Id for them
using the value of their field “record_raw_value” that should content the original line string of the apache log. It will
hash it using “SHA-256” java implementation algorithm, using the charset “UTF-8”.

parse apache logs - processor: apache_parser

component: com.hurence.logisland.processor.ModifyId type: parser documentation: a parser that modify
record Ids configuration:

id.generation.strategy: hashFields hash.charset: UTF-8 fields.to.hash: record_raw_value
hash.algorithm: SHA-256

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Then you can process to your indexation in Elasticsearch as in “index-apache-logs” example.

1.8.16 Index JMS messages

In the following getting started tutorial, we’ll explain you how to read messages from a JMS topic or queue and index
them into an elasticsearch store.

The JMS data will leverage the JMS connector available as part of logisland connect.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

For kafka connect related information please follow as well the connectors section.

1. Installing ActiveMQ

In this tutorial we’ll use Apache ActiveMQ.

Once you downloaded the broker package just extract it in a folder and turn on your first broker by running:

bin/activemq start

You can verify if your broker is alive by connecting to the ActiveMQ console (login with admin/admin)

We are also going to create a test queue that we’ll use for this tutorial.

To do that, in the just use the ActiveMQ console and in the queue section create a queue named test-queue. You should
have your queue created as shown below.

240 Chapter 1. Contents:

./prerequisites.html
../connectors.html
http://activemq.apache.org/
http://localhost:8161/admin/

logisland Documentation, Release 1.1.1

As well, since JMS is actually an API, we have to provide to logisland the JMS connection factory and the client
libraries. For this we can just copy the activemq-all-5.15.5.jar into the Logisland lib folder.

For instance, assuming you are running Logisland with the provided docker compose, you can just copy with a com-
mand like this:

..code-block:: bash

docker cp ./activemq-all-5.15.5.jar logisland:/usr/local/logisland/lib

You can verify that activemq jar has been successfully copied inside the docker container by running

..code-block:: bash

docker exec logisland ls lib/

2. Logisland job setup

For this tutorial please make sure to already have installed elasticsearch and JMS connector modules.

If not you can just do it through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

bin/components.sh -i com.datamountaineer:kafka-connect-jms:1.1.1

The interesting part in this tutorial is how to setup the JMS stream.

Let’s first focus on the stream configuration and then on its pipeline in order to extract the data in the right way.

The JMS stream

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use
the kafka connect source as input for the structured stream defined below.

Logisland ships by default a kafka connect JMS source implemented by the class
com.datamountaineer.streamreactor.connect.jms.source.JMSSourceConnector.

You can find more information about how to configure a JMS source in the official page of the JMS Connector

1.8. Tutorials 241

https://lenses.stream/1.1/connectors/source/jms.html

logisland Documentation, Release 1.1.1

Coming back to our example, we would like to read from a queue called test-queue hosted in our local ActiveMQ
broker. For this we will connect as usual to its Openwire channel and we’ll use client acknowledgement to be sure to
have an exactly once delivery.

The kafka connect controller service configuration will look like this:

- controllerService: kc_source_service
component: com.hurence.logisland.stream.spark.provider.

→˓KafkaConnectStructuredSourceProviderService
configuration:
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter.properties: |
schemas.enable=false

kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
kc.worker.tasks.max: 1
kc.connector.class: com.datamountaineer.streamreactor.connect.jms.source.

→˓JMSSourceConnector
kc.connector.offset.backing.store: memory
kc.connector.properties: |
connect.jms.url=tcp://sandbox:61616
connect.jms.initial.context.factory=org.apache.activemq.jndi.

→˓ActiveMQInitialContextFactory
connect.jms.connection.factory=ConnectionFactory
connect.jms.kcql=INSERT INTO topic SELECT * FROM test-queue WITHTYPE QUEUE
connect.progress.enabled=true

The pipeline

Within this stream, a we need to extract the data coming from the JMS.

First of all a FlatMap processor takes out the value and key (required when using StructuredStream as source of
records)

processorConfigurations:
- processor: flatten
component: com.hurence.logisland.processor.FlatMap
type: processor
documentation: "Takes out data from record_value"
configuration:

keep.root.record: false

Then, since our JMS messages will carry text data, we need to extract this data from the raw message bytes:

- processor: add_fields
component: com.hurence.logisland.processor.AddFields
type: processor
documentation: "Extract the message as a text"
configuration:
conflict.resolution.policy: overwrite_existing
message_text: ${new String(bytes_payload)}

Now we will as well set the record time as the time when the message has been created (and not received). This thanks
to a NormalizeFields processor:

242 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

- processor: rename_fields
component: com.hurence.logisland.processor.NormalizeFields
type: processor
documentation: "Change the record time according to message_timestamp field"
configuration:
conflict.resolution.policy: overwrite_existing
record_time: message_timestamp

Last but not least, a BulkAddElasticsearch takes care of indexing a Record sending it to elasticsearch.

- processor: es_publisher
component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that indexes processed events in elasticsearch
configuration:

elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

In details, this processor makes use of a Elasticsearch_5_4_0_ClientService controller service to interact
with our Elasticsearch 5.X backend running locally (and started as part of the docker compose configuration we
mentioned above).

Here below its configuration:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService
type: service
documentation: elasticsearch service
configuration:
hosts: sandbox:9300
cluster.name: es-logisland
batch.size: 5000

3. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

bin/logisland.sh --conf conf/index-jms-messages.yml

4. Do some insights and visualizations

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/app/kibana#/ and you should be able to explore the blockchain
transactions.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

1.8. Tutorials 243

http://sandbox:5601/app/kibana#/

logisland Documentation, Release 1.1.1

Now just send some message thanks to the ActiveMQ console.

Click on the Send link on the top of the console main page and specify the destination to test-queue and type the
message you like. You should have something like this:

244 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

Now that the message have been consumed (you can also verify this thanks to the ActiveMQ console) you can come
back to kibana and go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events
which give you insights about the processing bandwidth of your streams.

1.8. Tutorials 245

logisland Documentation, Release 1.1.1

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

246 Chapter 1. Contents:

http://sandbox:4050/streaming/

logisland Documentation, Release 1.1.1

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

1.8.17 Index blockchain transactions

In the following getting started tutorial, we’ll explain you how to leverage logisland connectors flexibility in order
process in real time every transaction emitted by the bitcoin blockchain platform and index each record into an elas-
ticsearch platform.

This will allow us to run some dashboarding and visual data analysis as well.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1.8. Tutorials 247

http://sandbox:9000
./prerequisites.html

logisland Documentation, Release 1.1.1

For kafka connect related information please follow as well the connectors section.

1. Logisland job setup

Install the blockchain connector if not already done.

bin/components.sh -i com.datamountaineer:kafka-connect-blockchain:1.1.1

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch
:

vim conf/index-blockchain-transactions.yml

We will start by explaining each part of the config file.

The engine

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some blockchain transactions with logisland
configuration:

spark.app.name: BlockchainTest
spark.master: local[*]
spark.driver.memory: 512M
spark.driver.cores: 1
spark.executor.memory: 512M
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 2000
spark.streaming.backpressure.enabled: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 10000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4040

The `controllerServiceConfigurations` part is here to define all services that be
→˓shared by processors within the whole job.

==================
The parsing stream

(continues on next page)

248 Chapter 1. Contents:

../connectors.html
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

==================

Here we are going to use a special processor
→˓(``KafkaConnectStructuredSourceProviderService``) to use the kafka connect source
→˓as input for the structured stream defined below.

For this example, we are going to use the source *com.datamountaineer.streamreactor.
→˓connect.blockchain.source.BlockchainSourceConnector*
that opens a secure websocket connections to the blockchain subscribing to any
→˓transaction update stream.

.. code-block:: yaml

ControllerServiceConfigurations:
- controllerService: kc_source_service

component: com.hurence.logisland.stream.spark.provider.
→˓KafkaConnectStructuredSourceProviderService

configuration:
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter.properties: |
schemas.enable=false

kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
kc.worker.tasks.max: 1
kc.connector.class: com.datamountaineer.streamreactor.connect.blockchain.

→˓source.BlockchainSourceConnector
kc.connector.offset.backing.store: memory
kc.connector.properties: |
connect.blockchain.source.url=wss://ws.blockchain.info/inv
connect.blockchain.source.kafka.topic=blockchain

Note: Our source is providing structured value hence we convert with LogInslandRecordConverter serializing with
Kryo

Kafka sink configuration
- controllerService: kafka_out_service

component: com.hurence.logisland.stream.spark.structured.provider.
→˓KafkaStructuredStreamProviderService
configuration:
kafka.output.topics: logisland_raw
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

So that, we can now define the parsing stream using those source and sink

1.8. Tutorials 249

logisland Documentation, Release 1.1.1

######### parsing stream ##############
- stream: parsing_stream_source

component: com.hurence.logisland.stream.spark.structured.StructuredStream
documentation: "Takes records from the kafka source and distributes related

→˓partitions over a kafka topic. Records are then handed off to the indexing stream"
configuration:
read.topics: /a/in
read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.client.service: kc_source_service
write.topics: logisland_raw
write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.client.service: kafka_out_service

Within this stream, a FlatMap processor takes out the value and key (required when using StructuredStream as source
of records)

processorConfigurations:
- processor: flatten
component: com.hurence.logisland.processor.FlatMap
type: processor
documentation: "Takes out data from record_value"
configuration:

keep.root.record: false
copy.root.record.fields: true

The indexing stream

Inside this engine, you will run a Kafka stream of processing, so we set up input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our output records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream_source
component: com.hurence.logisland.stream.spark.structured.StructuredStream
documentation: "Takes records from the kafka source and distributes related

→˓partitions over a kafka topic. Records are then handed off to the indexing stream"
configuration:
read.topics: /a/in
read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.client.service: kc_source_service
write.topics: logisland_raw
write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.client.service: kafka_out_service

Within this stream, a BulkAddElasticsearch takes care of indexing a Record sending it to elasticsearch.

250 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

- processor: es_publisher
component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that indexes processed events in elasticsearch
configuration:

elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

In details, this processor makes use of a Elasticsearch_5_4_0_ClientService controller service to interact
with our Elasticsearch 5.X backend running locally (and started as part of the docker compose configuration we
mentioned above).

Here below its configuration:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService
type: service
documentation: elasticsearch service
configuration:
hosts: sandbox:9300
cluster.name: es-logisland
batch.size: 5000

2. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

bin/logisland.sh --conf conf/index-blockchain-transactions.yml

3. Do some insights and visualizations

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/app/kibana#/ and you should be able to explore the blockchain
transactions.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

1.8. Tutorials 251

http://sandbox:5601/app/kibana#/

logisland Documentation, Release 1.1.1

Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which
give you insights about the processing bandwidth of your streams.

You can try as well to create some basic visualization in order to draw the total satoshi transacted amount (aggregating

252 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

sums of out.value field).

Below a nice example:

Ready to discover which addresses received most of the money? Give it a try ;-)

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

1.8. Tutorials 253

http://sandbox:4050/streaming/

logisland Documentation, Release 1.1.1

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

1.8.18 Extract Records from Excel File

In the following getting started tutorial we’ll drive you through the process of extracting data from any Excel file with
LogIsland platform.

Both XLSX and old XLS file format are supported.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

254 Chapter 1. Contents:

http://sandbox:9000
./prerequisites.html

logisland Documentation, Release 1.1.1

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch only.

1.Install required components

For this tutorial please make sure to already have installed elasticsearch and excel modules. If not you can just do it
through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-excel:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch
:

docker exec -i -t logisland vim conf/index-excel-spreadsheet.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/extract-excel-data.yml configuration file
defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStreamPro-
cessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index records of an excel file with LogIsland
configuration:

spark.app.name: IndexExcelDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200

(continues on next page)

1.8. Tutorials 255

../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService
type: service
documentation: elasticsearch service
configuration:
hosts: sandbox:9300
cluster.name: es-logisland
batch.size: 5000

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

We can define some serializers to marshall all records from and to a topic. We assume that the stream will be serializing
the input file as a byte array in a single record. Reason why we will use a ByteArraySerialiser in the configuration
below.

main processing stream
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw excel file content into structured log

→˓records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.

→˓BytesArraySerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Within this stream, an ExcelExtract processor takes a byte array excel file content and computes a list of Record.

parse excel cells into records
- processor: excel_parser
component: com.hurence.logisland.processor.excel.ExcelExtract
type: parser
documentation: a parser that produce events from an excel file
configuration:

record.type: excel_record
skip.rows: 1
field.names: segment,country,product,discount_band,units_sold,manufacturing,

→˓sale_price,gross_sales,discounts,sales,cogs,profit,record_time,month_number,month_
→˓name,year

256 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Note: Please note that we are mapping the excel column Date to be the timestamp of the produced record (record_time
field) in order to use this as time reference in elasticsearch/kibana (see below).

The second processor will handle Records produced by the ExcelExtract to index them into elasticsearch

add to elasticsearch
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

3. Launch the script

For this tutorial we will handle an excel file. We will process it with an ExcelExtract that will produce a bunch of
Records and we’ll send them to Elastiscearch Connect a shell to your logisland container to launch the following
streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-excel-spreadsheet.yml

4. Inject an excel file into the system

Now we’re going to send a file to logisland_raw Kafka topic.

For testing purposes, we will use kafkacat, a generic command line non-JVM Apache Kafka producer and consumer
which can be easily installed.

Note: Sending raw files through kafka is not recommended for production use since kafka is designed for high
throughput and not big message size.

The configuration above is suited to work with the example file Financial Sample.xlsx.

Let’s send this file in a single message to LogIsland with kafkacat to logisland_raw Kafka topic

kafkacat -P -t logisland_raw -v -b sandbox:9092 ./Financial\ Sample.xlsx

5. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana.

1.8. Tutorials 257

https://github.com/edenhill/kafkacat

logisland Documentation, Release 1.1.1

Open up your browser and go to http://sandbox:5601/ and you should be able to explore your excel records.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

Then if you go to Explore panel for the latest 5 years time window. You are now able to play with the indexed data.

258 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 1.1.1

Thanks logisland! :-)

1.8.19 IIoT with MQTT and Logisland Data-Historian

In the following getting tutorial we’ll drive you through the process of IIoT enablement with LogIsland platform.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

docker run -td –name kapua-sql -p 8181:8181 -p 3306:3306 kapua/kapua-sql:0.3.2 docker run -td –name kapua-
elasticsearch -p 9200:9200 -p 9300:9300 elasticsearch:5.4.0 -Ecluster.name=kapua-datastore -Ediscovery.type=single-
node -Etransport.host=_site_ -Etransport.ping_schedule=-1 -Etransport.tcp.connect_timeout=30s docker run -td
–name kapua-broker –link kapua-sql:db –link kapua-elasticsearch:es –env commons.db.schema.update=true -p
1883:1883 -p 61614:61614 kapua/kapua-broker:0.3.2 docker run -td –name kapua-console –link kapua-sql:db –link
kapua-broker:broker –link kapua-elasticsearch:es –env commons.db.schema.update=true -p 8080:8080 kapua/kapua-
console:0.3.2 docker run -td –name kapua-api –link kapua-sql:db –link kapua-broker:broker –link kapua-
elasticsearch:es –env commons.db.schema.update=true -p 8081:8080 kapua/kapua-api:0.3.2

docker run -td –name logisland-historian -p 8983:8983 hurence/chronix:latest

docker run -it –env MQTT_BROKER_URL=tcp://10.20.20.87:1883 –env SOLR_CONNECTION=http://10.20.20.87:8983/solr
–name kapua-logisland hurence/logisland:0.12.0 bin/logisland.sh –conf conf/mqtt-to-historian.yml

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch and Solr.

1.8. Tutorials 259

./prerequisites.html

logisland Documentation, Release 1.1.1

1. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch
:

docker exec -i -t logisland vim conf/index-apache-logs.yml

And here for Solr :

docker exec -i -t logisland vim conf/index-apache-logs-solr.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs.yml configuration file
defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStreamPro-
cessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some apache logs with logisland
configuration:
spark.app.name: IndexApacheLogsDemo
spark.master: local[2]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService
type: service
documentation: elasticsearch service
configuration:
hosts: sandbox:9300

(continues on next page)

260 Chapter 1. Contents:

../plugins.html#kafkastreamprocessingengine
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

cluster.name: es-logisland
batch.size: 5000

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that converts raw apache logs into structured log records
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into elasticsearch

add to elasticsearch
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:
elasticsearch.client.service: elasticsearch_service

(continues on next page)

1.8. Tutorials 261

logisland Documentation, Release 1.1.1

(continued from previous page)

default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

Solr

In the case of Solr, we have to declare another service :

Datastore service using Solr 6.6.2 - 5.5.5 also available
- controllerService: datastore_service

component: com.hurence.logisland.service.solr.Solr_6_6_2_ClientService
type: service
documentation: "SolR 6.6.2 service"
configuration:
solr.cloud: false
solr.connection.string: http://sandbox:8983/solr
solr.collection: solr-apache-logs
solr.concurrent.requests: 4
flush.interval: 2000
batch.size: 1000

With this configuration, Solr is used in standalone mode but you can also use the cloud mode by changing the corre-
sponding config.

Note: You have to create the core/collection manually with the following fields : src_ip, identd, user,
bytes_out, http_method, http_version, http_query, http_status

Then, the second processor have to send data to Solr :

all the parsed records are added to solr by bulk
- processor: solr_publisher

component: com.hurence.logisland.processor.datastore.BulkPut
type: processor
documentation: "indexes processed events in SolR"
configuration:
datastore.client.service: datastore_service

2. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch Connect a
shell to your logisland container to launch the following streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs.yml

For Solr :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs-solr.yml

262 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

1.8. Tutorials 263

https://github.com/edenhill/kafkacat
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://sandbox:4050/streaming/
http://sandbox:9000

logisland Documentation, Release 1.1.1

5. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/ and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which

264 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 1.1.1

give you insights about the processing bandwidth of your streams.

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to
see the events.

1.8. Tutorials 265

logisland Documentation, Release 1.1.1

Solr

With Solr, you can directly use the solr web ui.

Open up your browser and go to http://sandbox:8983/solr and you should be able to view your apache logs.

In non cloud mode, use the core selector, to select the core `solr-apache-logs` :

266 Chapter 1. Contents:

http://sandbox:8983/solr

logisland Documentation, Release 1.1.1

Then, go to query and by clicking to Execute Query, you will see some data from your Apache logs :

1.8. Tutorials 267

logisland Documentation, Release 1.1.1

268 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

1.8.20 IIoT with OPC and Logisland

In this tutorial we’ll show you how to ingest IIoT data from an OPC-UA server and process it with Logisland, storing
everything into an elasticsearch database.

In particular, we’ll use the Prosys OPC-UA simulation server you can download for free here

Note: You will need to have a logisland Docker environment. Please follow the prerequisites section for more
information.

Please also remember to always turn on the simulation server before running the logisland job.

1.Install required components

For this tutorial please make sure to already have installed elasticsearch and OPC modules. If not you can just do it
through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-connector-opc:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch
:

docker exec -i -t logisland vim conf/opc-iiot.yml

We will start by explaining each part of the config file.

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with
1 cpu cores and 512M of RAM.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index some OPC-UA tagw with Logisland
configuration:
spark.app.name: OpcUaLogisland
spark.master: local[2]
spark.driver.memory: 512M
spark.driver.cores: 1
spark.executor.memory: 512M
spark.executor.instances: 4
spark.executor.cores: 1
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8

(continues on next page)

1.8. Tutorials 269

https://www.prosysopc.com/products/opc-ua-simulation-server/
./prerequisites.html
../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

(continued from previous page)

spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 3000
spark.streaming.backpressure.enabled: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 10000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4040

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job.

Here we have the OPC-UA source with all the connection parameters.

- controllerService: kc_source_service
component: com.hurence.logisland.stream.spark.provider.

→˓KafkaConnectStructuredSourceProviderService
documentation: Kafka connect OPC-UA source service
type: service
configuration:

kc.connector.class: com.hurence.logisland.connect.opc.ua.OpcUaSourceConnector
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter.properties: |
schemas.enable=false

kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
kc.worker.tasks.max: 1
kc.connector.offset.backing.store: memory
kc.connector.properties: |
session.publicationRate=PT1S
connection.socketTimeoutMillis=10000
server.uri=opc.tcp://localhost:53530/OPCUA/SimulationServer
tags.id=ns=5;s=Sawtooth1
tags.sampling.rate=PT0.5S
tags.stream.mode=SUBSCRIBE

In particular, we have

• A tag to be read: “ns=5;s=Sawtooth1”

• The tag will be subscribed and sampled each 0.5s

• The data will be published by the opc server each second (session.publicationRate)

• Please use your own opc server uri, in our case opc.tcp://localhost:53530/OPCUA/SimulationServer

Full connector documentation is on javadoc of class com.hurence.logisland.connect.opc.ua.
OpcUaSourceConnector

Then we also define her Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_

→˓ClientService

(continues on next page)

270 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

type: service
documentation: elasticsearch service
configuration:
hosts: ${ES_HOSTS}
cluster.name: ${ES_CLUSTER_NAME}
batch.size: 5000

Inside this engine you will run a spark structured stream, taking records from the previously defined source and letting
data flow through the processing pipeline till the console output.

- stream: ingest_stream
component: com.hurence.logisland.stream.spark.structured.StructuredStream
configuration:

read.topics: /a/in
read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.key.serializer: com.hurence.logisland.serializer.StringSerializer
read.topics.client.service: kc_source_service
write.topics: /a/out
write.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
write.topics.key.serializer: com.hurence.logisland.serializer.StringSerializer
write.topics.client.service: console_service

And now it’s time to describe the parsing pipeline.

First, we need to extract the record thanks to a FlatMap processor

- processor: flatten
component: com.hurence.logisland.processor.FlatMap
type: processor
documentation: "extract from root record"
configuration:
keep.root.record: false
copy.root.record.fields: true

Now that the record is well-formed, we want to set the record time to be the same of the one given by the source (and
stored on the field tag_sampled_timestamp).

For this, we use a NormalizeFields processor.

- processor: rename_fields
component: com.hurence.logisland.processor.NormalizeFields
type: processor
documentation: "set record time to tag server generation time"
configuration:
conflict.resolution.policy: overwrite_existing
record_time: tag_sampled_timestamp

Then, the last processor will index our records into elasticsearch

add to elasticsearch
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: logisland

(continues on next page)

1.8. Tutorials 271

logisland Documentation, Release 1.1.1

(continued from previous page)

default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

3. Launch the script

Just ensure the Prosys OPC-UA server is up and running and that on the Simulation tab the simulation is ticked.

Then you can use the docker-compose file docker-compose-opc-iiot.yml available in the tar gz assembly in conf
directory.

Note: If your simulation server is hosted on local and the hostname is different from ‘localhost’. For example if your
server uri is ‘opc.tcp://${hostname}:53530/OPCUA/SimulationServer’. You can add it to logisland container add a
extra_hosts properties to logisland container in docker-compose file so that it is accessible from the container.

logisland:
network_mode: host
image: hurence/logisland:1.1.1
command: tail -f bin/logisland.sh
environment:
ZK_QUORUM: localhost:2181
ES_HOSTS: localhost:9300
ES_CLUSTER_NAME: es-logisland

extra_hosts:
- "${hostname}:127.0.0.1"

Then you can execute:

docker exec -i -t logisland bin/logisland.sh --conf conf/opc-iiot.yml

Note: Be sure to have added your server uri in conf/opc-iiot.yml file.

4. Inspect the records

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://localhost:5601/ and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

272 Chapter 1. Contents:

http://localhost:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 1.1.1

Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which
give you insights about the processing bandwidth of your streams.

1.8.21 Integrate Kafka Connect Sources & Sinks

In the following getting started tutorial, we’ll focus on how to seamlessly integrate Kafka connect sources and sinks
in logisland.

We can call this functionality Logisland connect.

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1. Logisland job setup

For this tutorial please make sure to already have installed elasticsearch and excel modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-
→˓client:1.1.1

(continues on next page)

1.8. Tutorials 273

./prerequisites.html

logisland Documentation, Release 1.1.1

(continued from previous page)

bin/components.sh -i com.github.jcustenborder.kafka.connect:kafka-connect-simulator:0.
→˓1.118

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch
:

docker exec -i -t logisland vim conf/logisland-kafka-connect.yml

We will start by explaining each part of the config file.

The engine

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Use Kafka connectors with logisland
configuration:
spark.app.name: LogislandConnect
spark.master: local[2]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 1000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole
job.

The parsing stream

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use
the kafka connect source as input for the structured stream defined below.

274 Chapter 1. Contents:

../plugins.html#kafkastreamprocessingengine

logisland Documentation, Release 1.1.1

For this example, we are going to use the source com.github.jcustenborder.kafka.connect.simulator.SimulatorSourceConnector
that generates records containing fake personal data at rate of 100 messages/s.

Our source service
- controllerService: kc_source_service

component: com.hurence.logisland.stream.spark.provider.
→˓KafkaConnectStructuredSourceProviderService
documentation: A kafka source connector provider reading from its own source and

→˓providing structured streaming to the underlying layer
configuration:
We will use the logisland record converter for both key and value
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
Use kryo to serialize the inner data
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter: com.hurence.logisland.connect.converter.
→˓LogIslandRecordConverter

Use kryo to serialize the inner data
kc.data.key.converter.properties: |

record.serializer=com.hurence.logisland.serializer.KryoSerializer
Only one task to handle source input (unique)
kc.worker.tasks.max: 1
The kafka source connector to wrap (here we're using a simulator source)
kc.connector.class: com.github.jcustenborder.kafka.connect.simulator.

→˓SimulatorSourceConnector
The properties for the connector (as per connector documentation)
kc.connector.properties: |

key.schema.fields=email
topic=simulator
value.schema.fields=email,firstName,middleName,lastName,telephoneNumber,

→˓dateOfBirth
We are using a standalone source for testing. We can store processed offsets in

→˓memory
kc.connector.offset.backing.store: memory

Note: The parameter kc.connector.properties contains the connector properties as you would have defined if you
were using vanilla kafka connect.

As well, we are using a memory offset backing store. In a distributed scenario, you may have chosen a kafka topic
based one.

Since each stream can be read and written, we are going to define as well a Kafka topic sink
(KafkaStructuredStreamProviderService) that will be used as output for the structured stream defined
below.

Kafka sink configuration
- controllerService: kafka_out_service

component: com.hurence.logisland.stream.spark.structured.provider.
→˓KafkaStructuredStreamProviderService
configuration:
kafka.output.topics: logisland_raw
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer

(continues on next page)

1.8. Tutorials 275

logisland Documentation, Release 1.1.1

(continued from previous page)

kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

So that, we can now define the parsing stream using those source and sink

######### parsing stream ##############
- stream: parsing_stream_source

component: com.hurence.logisland.stream.spark.structured.StructuredStream
documentation: "Takes records from the kafka source and distributes related

→˓partitions over a kafka topic. Records are then handed off to the indexing stream"
configuration:
read.topics: /a/in
read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.client.service: kc_source_service
write.topics: logisland_raw
write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.client.service: kafka_out_service

Within this stream, a FlatMap processor takes out the value and key (required when using StructuredStream as source
of records)

processorConfigurations:
- processor: flatten
component: com.hurence.logisland.processor.FlatMap
type: processor
documentation: "Takes out data from record_value"
configuration:

keep.root.record: false
copy.root.record.fields: true

The indexing stream

Inside this engine, you will run a Kafka stream of processing, so we set up input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our output records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream_source
component: com.hurence.logisland.stream.spark.structured.StructuredStream
documentation: "Takes records from the kafka source and distributes related

→˓partitions over a kafka topic. Records are then handed off to the indexing stream"
configuration:
read.topics: /a/in

(continues on next page)

276 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
read.topics.client.service: kc_source_service
write.topics: logisland_raw
write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
write.topics.client.service: kafka_out_service

Within this stream, a DebugStream processor takes a log line as a String and computes a Record as a sequence of
fields.

processorConfigurations:
We just print the received records (but you may do something more interesting!)
- processor: stream_debugger
component: com.hurence.logisland.processor.DebugStream
type: processor
documentation: debug records
configuration:

event.serializer: json

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
printed in the console and pushed back to Kafka in the logisland_events topic.

2. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/logisland-kafka-connect.yml

3. Examine your console output

Since we put a DebugStream processor, messages produced by our source connectors are then output to the console in
json.

18/04/06 11:17:06 INFO DebugStream: {
"id" : "9b17a9ac-97c4-44ef-9168-d298e8c53d42",
"type" : "kafka_connect",
"creationDate" : 1523006216376,
"fields" : {
"record_id" : "9b17a9ac-97c4-44ef-9168-d298e8c53d42",
"firstName" : "London",
"lastName" : "Marks",
"telephoneNumber" : "005-694-4540",
"record_key" : {

"email" : "londonmarks@fake.com"
},
"middleName" : "Anna",
"dateOfBirth" : 836179200000,
"record_time" : 1523006216376,
"record_type" : "kafka_connect",
"email" : "londonmarks@fake.com"

}
}

1.8. Tutorials 277

logisland Documentation, Release 1.1.1

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

1.8.22 Index JDBC messages

In the following getting started tutorial, we’ll explain you how to read messages from a JDBC table.

The JDBC data will leverage the JDBC connector available as part of logisland connect.

278 Chapter 1. Contents:

http://sandbox:4050/streaming/
http://sandbox:9000

logisland Documentation, Release 1.1.1

Note: Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

For kafka connect related information please follow as well the connectors section.

1.Install required components

For this tutorial please make sure to already have installed the kafka connect jdbc connector.

If not you can just do it through the componentes.sh command line:

bin/components.sh -r com.hurence.logisland.repackaged:kafka-connect-jdbc:5.0.0

2. Installing H2 datatabase

In this tutorial we’ll use H2 Database.

H2 is a Java relational database

• Very fast database engine

• Open source

• Written in Java

• Supports standard SQL, JDBC API

• Embedded and Server mode, Clustering support

• Strong security features

• The PostgreSQL ODBC driver can be used

• Multi version concurrency

first wee need an sql engine. Let’s use an ‘H2 Java database<http://h2database.com/html/main.html>‘_. You can
get the jar from their website and copy it to logisland lib folder inside Docker container. Then run the server on 9999
port

docker cp ./h2-1.4.197.jar logisland:/opt/logisland-1.1.1/lib
docker exec logisland java -jar lib/h2-1.4.197.jar -webAllowOthers -tcpAllowOthers -
→˓tcpPort 9999

You can manage your database through the web ui at http://sandbox:8082

With the URL JDBC parameter set to jdbc:h2:tcp://sandbox:9999/~/test you should be able to connect and create the
following table

CREATE SCHEMA IF NOT EXISTS logisland;
USE logisland;

DROP TABLE IF EXISTS apache;

CREATE TABLE apache (record_id int auto_increment primary key, bytes_out integer,
→˓http_method varchar(20), http_query varchar(200), http_status varchar(10), http_
→˓version varchar(10), record_time timestamp, src_ip varchar(50), user varchar(20));

1.8. Tutorials 279

./prerequisites.html
../connectors.html
http://h2database.com/html/main.html
http://sandbox:8082

logisland Documentation, Release 1.1.1

3. Logisland job setup

The interesting part in this tutorial is how to setup the JDBC stream.

Let’s first focus on the stream configuration and then on its pipeline in order to extract the data in the right way.

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use
the kafka connect source as input for the structured stream defined below.

Logisland ships by default a kafka connect JDBC source implemented by the class
io.confluent.connect.jdbc.JdbcSourceConnector.

You can find more information about how to configure a JDBC source in the official page of the JDBC Connector

Coming back to our example, we would like to read from a table called logisland.apache hosted in our local H2
database. The kafka connect controller service configuration will look like this:

- controllerService: kc_jdbc_source
component: com.hurence.logisland.stream.spark.provider.

→˓KafkaConnectStructuredSourceProviderService
configuration:
kc.data.value.converter: com.hurence.logisland.connect.converter.

→˓LogIslandRecordConverter
kc.data.value.converter.properties: |
record.serializer=com.hurence.logisland.serializer.KryoSerializer

kc.data.key.converter.properties:
kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
kc.worker.tasks.max: 1
kc.partitions.max: 4
kc.connector.class: io.confluent.connect.jdbc.JdbcSourceConnector
kc.connector.offset.backing.store: memory
kc.connector.properties: |
connection.url=jdbc:h2:tcp://sandbox:9999/~/test
connection.user=sa
connection.password=
mode=incrementing
incrementing.column.name=RECORD_ID
query=SELECT * FROM LOGISLAND.APACHE
topic.prefix=test-jdbc-

Within this stream, a we need to extract the data coming from the JDBC.

First of all a FlatMap processor takes out the value and key (required when using StructuredStream as source of
records)

processorConfigurations:
- processor: flatten
component: com.hurence.logisland.processor.FlatMap
type: processor
documentation: "Takes out data from record_value"
configuration:

keep.root.record: false

4. Launch the script

Now run the logisland job that will poll updates of new records inserted into logisland.apache table

docker exec logisland bin/logisland.sh --conf conf/index-jdbc-messages.yml

280 Chapter 1. Contents:

https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html

logisland Documentation, Release 1.1.1

try to insert a few rows and have a look at the console output

INSERT into apache values (default, 46888, 'GET', '/shuttle/missions/sts-71/images/
→˓KSC-95EC-0918.jpg', '200', 'HTTP/1.0', '2010-01-01 10:00:00' , 'net-1-141.eden.com',
→˓ '-');
INSERT into apache values (default, 110,'GET','/cgi-bin/imagemap/countdown?99,176',
→˓'302' ,'HTTP/1.0 ', '1995-07-01 04:01:06' ,'205.189.154.54', '-');
INSERT into apache values (default,12040,'GET','/shuttle/missions/sts-71/mission-sts-
→˓71.html','200','HTTP/1.0', '1995-07-01 04:04:38','pme607.onramp.awinc.com', '-');
INSERT into apache values (default, 40310,'GET','/shuttle/countdown/count.gif','200' ,
→˓'HTTP/1.0 ', '1995-07-01 04:05:18' ,'199.166.39.14', '-');
INSERT into apache values (default, 1.1.18,'GET','/images/dual-pad.gif','200' ,'HTTP/
→˓1.0 ', '1995-07-01 04:04:10' ,'isdn6-34.dnai.com', '-');
INSERT into apache values (default, 9867,'GET','/software/winvn/winvn.html','200' ,
→˓'HTTP/1.0 ', '1995-07-01 04:02:39' ,'dynip42.efn.org', '-');
INSERT into apache values (default, 1204,'GET','/images/KSC-logosmall.gif','200' ,
→˓'HTTP/1.0 ', '1995-07-01 04:04:34' ,'netport-27.iu.net', '-');

it should be something like the following

...
18/09/04 12:47:33 INFO DebugStream: {

"id" : "f7690b71-f339-4a84-8bd9-a0beb9ba5f92",
"type" : "kafka_connect",
"creationDate" : 1536065253831,
"fields" : {
"record_id" : "f7690b71-f339-4a84-8bd9-a0beb9ba5f92",
"RECORD_TIME" : 0,
"HTTP_STATUS" : "200",
"SRC_IP" : "netport-27.iu.net",
"RECORD_ID" : 7,
"HTTP_QUERY" : "/images/KSC-logosmall.gif",
"HTTP_VERSION" : "HTTP/1.0 ",
"USER" : "-",
"record_time" : 1536065253831,
"record_type" : "kafka_connect",
"HTTP_METHOD" : "GET",
"BYTES_OUT" : 1204

}
}

1.9 API design

logisland is a framework that you can extend through its API, you can use it to build your own Processors or to
build data processing apps over it.

1.9.1 Java API

You can extend logisland with the Java low-level API as described below.

The primary material : Records

The basic unit of processing is the Record. A Record is a collection of Field, while a Field has a name, a type
and a value.

1.9. API design 281

logisland Documentation, Release 1.1.1

You can instanciate a Record like in the following code snipet:

String id = "firewall_record1";
String type = "cisco";
Record record = new Record(type).setId(id);

assertTrue(record.isEmpty());
assertEquals(record.size(), 0);

A record is defined by its type and a collection of fields. there are three special fields:

// shortcut for id
assertEquals(record.getId(), id);
assertEquals(record.getField(FieldDictionary.RECORD_ID).asString(), id);

// shortcut for time
assertEquals(record.getTime().getTime(), record.getField(FieldDictionary.RECORD_TIME).
→˓asLong().longValue());

// shortcut for type
assertEquals(record.getType(), type);
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).
→˓asString());
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).
→˓getRawValue());

And the other fields have generic setters, getters and removers

record.setStringField("url_host", "origin-www.20minutes.fr")
.setField("method", FieldType.STRING, "GET")
.setField("response_size", FieldType.INT, 452)
.setField("is_outside_office_hours", FieldType.BOOLEAN, false)
.setField("tags", FieldType.ARRAY, Arrays.asList("spam", "filter", "mail"));

assertFalse(record.hasField("unkown_field"));
assertTrue(record.hasField("method"));
assertEquals(record.getField("method").asString(), "GET");
assertTrue(record.getField("response_size").asInteger() - 452 == 0);
assertTrue(record.getField("is_outside_office_hours").asBoolean());
record.removeField("is_outside_office_hours");
assertFalse(record.hasField("is_outside_office_hours"));

Fields are strongly typed, you can validate them

Record record = new StandardRecord();
record.setField("request_size", FieldType.INT, 1399);
assertTrue(record.isValid());
record.setField("request_size", FieldType.INT, "zer");
assertFalse(record.isValid());
record.setField("request_size", FieldType.INT, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.LONG, 45L);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5d);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45L);

(continues on next page)

282 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5f);
assertTrue(record.isValid());
record.setField("request_size", FieldType.STRING, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5d);
assertFalse(record.isValid());

The tools to handle processing : Processor

logisland is designed as a component centric framework, so there’s a layer of abstraction to build configurable compo-
nents. Basically a component can be Configurable and Configured.

The most common component you’ll use is the Processor

Let’s explain the code of a basic MockProcessor, that doesn’t acheive a really useful work but which is really
self-explanatory we first need to extend AbstractProcessor class (or to implement Processor interface).

public class MockProcessor extends AbstractProcessor {

private static Logger logger = LoggerFactory.getLogger(MockProcessor.class);
private static String EVENT_TYPE_NAME = "mock";

Then we have to define a list of supported PropertyDescriptor. All theses properties and validation stuff are
handled by Configurable interface.

public static final PropertyDescriptor FAKE_MESSAGE
= new PropertyDescriptor.Builder()

.name("fake.message")

.description("a fake message")

.required(true)

.addValidator(StandardPropertyValidators.NON_EMPTY_VALIDATOR)

.defaultValue("yoyo")

.build();

@Override
public final List<PropertyDescriptor> getSupportedPropertyDescriptors() {

final List<PropertyDescriptor> descriptors = new ArrayList<>();
descriptors.add(FAKE_MESSAGE);

return Collections.unmodifiableList(descriptors);
}

then comes the initialization bloc of the component given a ComponentContext (more on this later)

@Override
public void init(final ProcessContext context) {

logger.info("init MockProcessor");
}

And now the real business part with the process method which handles all the work on the record’s collection.

@Override
public Collection<Record> process(final ProcessContext context, final Collection
→˓<Record> collection) {

(continues on next page)

1.9. API design 283

logisland Documentation, Release 1.1.1

(continued from previous page)

final String message = context.getPropertyValue(FAKE_MESSAGE).asString();
final List<Record> outputRecords = new ArrayList<>(collection);
outputRecords.forEach(record -> record.setStringField("message", message));

return outputRecords;
}

The Processor can then be configured through yaml config files

- processor: mock_processor
component: com.hurence.logisland.util.runner.MockProcessor
type: parser
documentation: a parser that produce events for nothing
configuration:

fake.message: the super message

Transverse service injection : ControllerService

we often need to share access to external Services across the Processors, for example bulk buffers or client connections
to external data sources.

For example a cache service that could cache K/V tuple across the worker node. We need to provide an interface API
for this service :

public interface CacheService<K,V> extends ControllerService {

PropertyDescriptor CACHE_SIZE = new PropertyDescriptor.Builder()
.name("cache.size")
.description("The maximum number of element in the cache.")
.required(false)
.defaultValue("16384")
.addValidator(StandardValidators.POSITIVE_INTEGER_VALIDATOR)
.build();

public V get(K k);

public void set(K k, V v);
}

And an implementation of the cache contract :

public class LRUKeyValueCacheService<K,V> extends AbstractControllerService
→˓implements CacheService<K,V> {

private volatile Cache<K,V> cache;

@Override
public V get(K k) {

return cache.get(k);
}

@Override
public void set(K k, V v) {

cache.set(k, v);
}

(continues on next page)

284 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

@Override
@OnEnabled
public void init(ControllerServiceInitializationContext context) throws

→˓InitializationException {
try {

this.cache = createCache(context);
}catch (Exception e){

throw new InitializationException(e);
}

}

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {

List<PropertyDescriptor> props = new ArrayList<>();
props.add(CACHE_SIZE);
return Collections.unmodifiableList(props);

}

protected Cache<K,V> createCache(final ControllerServiceInitializationContext
→˓context) throws IOException, InterruptedException {

final int capacity = context.getPropertyValue(CACHE_SIZE).asInteger();
return new LRUCache<K,V>(capacity);

}
}

You can then use this service in a custom processor :

public class TestProcessor extends AbstractProcessor {

static final PropertyDescriptor CACHE_SERVICE = new PropertyDescriptor.Builder()
.name("cache.service")
.description("CacheService")
.identifiesControllerService(CacheService.class)
.required(true)
.build();

@Override
public boolean hasControllerService() {

return true;
}

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {

List<PropertyDescriptor> propDescs = new ArrayList<>();
propDescs.add(CACHE_SERVICE);
return propDescs;

}

@Override
public Collection<Record> process(ProcessContext context, Collection<Record>

→˓records) {
return Collections.emptyList();

}
}

The injection is done through yaml config files by injecting the instance of lru_cache Service.

1.9. API design 285

logisland Documentation, Release 1.1.1

...

controllerServiceConfigurations:

- controllerService: lru_cache
component: com.hurence.logisland.service.elasticsearch.LRUKeyValueCacheService
type: service
documentation: cache service
configuration:

cache.size: 5000

streamConfigurations:
- stream: parsing_stream
component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing

...

processorConfigurations:

- processor: mock_processor
component: com.hurence.logisland.processor.TestProcessor
type: parser
documentation: a parser that produce events for nothing
configuration:

cache.service: lru_cache

Chaining processors in a stream : RecordStream

Warning: @todo

Running the processor’s flow : Engine

Warning: @todo

Testing your processors : TestRunner

When you have coded your processor, pretty sure you want to test it with unit test. The framework provides you with
the TestRunner tool for that. All you need is to instantiate a Testrunner with your Processor and its properties.

final String APACHE_LOG_SCHEMA = "/schemas/apache_log.avsc";
final String APACHE_LOG = "/data/localhost_access.log";
final String APACHE_LOG_FIELDS =

"src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,
→˓bytes_out";
final String APACHE_LOG_REGEX =

"(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+\\[([\\w:/]+\\s[+\\-]\\d{4})\\]\\s+\
→˓"(\\S+)\\s+(\\S+)\\s+(\\S+)\"\\s+(\\S+)\\s+(\\S+)";

final TestRunner testRunner = TestRunners.newTestRunner(new SplitText());
testRunner.setProperty(SplitText.VALUE_REGEX, APACHE_LOG_REGEX);
testRunner.setProperty(SplitText.VALUE_FIELDS, APACHE_LOG_FIELDS);

(continues on next page)

286 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

// check if config is valid
testRunner.assertValid();

Now enqueue some messages as if they were sent to input Kafka topics

testRunner.clearQueues();
testRunner.enqueue(SplitTextTest.class.getResourceAsStream(APACHE_LOG));

Now run the process method and check that every Record has been correctly processed.

testRunner.run();
testRunner.assertAllInputRecordsProcessed();
testRunner.assertOutputRecordsCount(200);
testRunner.assertOutputErrorCount(0);

You can validate that all output records are validated against an avro schema

final RecordValidator avroValidator = new AvroRecordValidator(SplitTextTest.class.
→˓getResourceAsStream
testRunner.assertAllRecords(avroValidator);

And check if your output records behave as expected.

MockRecord out = testRunner.getOutputRecords().get(0);
out.assertFieldExists("src_ip");
out.assertFieldNotExists("src_ip2");
out.assertFieldEquals("src_ip", "10.3.10.134");
out.assertRecordSizeEquals(9);
out.assertFieldEquals(FieldDictionary.RECORD_TYPE, "apache_log");
out.assertFieldEquals(FieldDictionary.RECORD_TIME, 1469342728000L);

1.10 Logisland REST API

The Logisland REST API for third party applications.

maxdepth 3

1.10.1 Introduction

Logisland makes available a standard RESTful API definition to interoperate with any third party application imple-
menting it.

The API should be implemented by a third party application and logisland will regularly poll this endpoint in order to:

• Ask for configuration changes to be triggered.

• Report the latest configuration applied (to ease up resynchronization and business continuity).

Both flows can hence be resumed by the following sequence diagram:

1.10. Logisland REST API 287

logisland Documentation, Release 1.1.1

1.10.2 Usage

In terms of API, two degrees of freedom are possible:

• Dataflow:

A dataflow is a set of services and streams allowing a data flowing from one or more sources, being
transformed and reach one or more destinations (sinks).

Act at dataflow level if you want to:

288 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

– Add/Remove any streaming endpoint

– Change any active stream configuration (e.g. kafka topic)

– Create/Remote/Modify any service

• Pipeline:

A pipeline is a processing chain acting on a data flowing point-to-point.

The api gives you the possibility to have a finer-grained control of what is going of any stream
pipeline without perturbing the stream itself. This means that the processor chain will be dynamically
reconfigured without the need of stopping the stream and reconfigure the whole dataflow.

Act at pipeline level if you want to:

– Add/Remove processors in the pipeline

– Change any processor configuration

Hint: As a general rule, the changes will be triggered if the lastUpdated field of the object you are going to modify
is fresher than the one known by logisland.

1.10.3 API Specification

This section resumes the Rest API specification. More details are available on the swagger spec.

Operations

GET /dataflows/{dataflowName}

Summary

Retrieves the configuration for a specified dataflow

Description

Logisland will call this endpoint to know which configuration should be run.

This endpoint also supports HTTP caching (Last-Updated, If-Modified-Since) as per RFC 7232, section
3.3

Parameters

delim

header “Name”, “Located in”, “Required”, “Type”, “Format”, “Properties”, “Descrip-
tion” :widths: 20, 15, 10, 10, 10, 20, 30

dataflowName | path | Yes | string | | | the dataflow name (aka the logisland job
name)

1.10. Logisland REST API 289

/_static/api.yaml

logisland Documentation, Release 1.1.1

Request

Headers

If-Modified-Since: Timestamp of last response

Responses

200

Return the dataflow configuration. On logisland side, the following will happen: - At dataflow level:

• Fully reconfigure a dataflow (stop and then start) if nothing is running (initial state) or if lastUpdated is fresher
than the one of the already running dataflow.

In this case be aware that old stream and services will be destroyed and new ones will be created.

• Do nothing otherwise (keep running the active dataflow)

• At pipeline level:

– The processor chain will be fully reconfigured if and only if the pipeline lastUpdated is fresher than the
lastUpdated known by the system.

In any case the stream is never stopped.

Type: Versioned extended inline

Example:

{
"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"services": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",

(continues on next page)

290 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

"value": "somestring"
},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
],
"streams": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring",
"pipeline": {

"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"processors": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

(continues on next page)

1.10. Logisland REST API 291

logisland Documentation, Release 1.1.1

(continued from previous page)

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
]

}
},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring",
"pipeline": {

"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"processors": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

(continues on next page)

292 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
]

}
}

]
}

304

Nothing has been modified since the last call.

In this case the body content will be completely ignored (hence the server can answer with an empty body to save
network and resources).

404

Not found (the server probably does not handle this dataflow)

default

Unexpected error

POST /dataflows/{dataflowName}

Summary

Push the configuration of running dataflows.

Description

The endpoint will be called: - On a regular basis (according to logisland configuration). - Each time the a dataflow or
a pipeline configuration change has been applied.

This service can be seen as well as a liveness ping.

Parameters

delim

1.10. Logisland REST API 293

logisland Documentation, Release 1.1.1

header “Name”, “Located in”, “Required”, “Type”, “Format”, “Properties”, “Descrip-
tion” :widths: 20, 15, 10, 10, 10, 20, 30

jobId | path | Yes | string | | | logisland job id (aka the engine name) dataflowName
| path | Yes | string | | | the dataflow name (aka the logisland job name)

Request

Body

A streaming pipeline.

Versioned extended inline

Inline schema:

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline
(used to trigger changes). modificationReason | No | string | | | Can be used to
document latest changeset. services | No | array of Component | | | The service
controllers.

streams | No | array of Component extended inline | | | The engine properties.

{
"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"services": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

(continues on next page)

294 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
],
"streams": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring",
"pipeline": {

"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"processors": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
(continues on next page)

1.10. Logisland REST API 295

logisland Documentation, Release 1.1.1

(continued from previous page)

{
"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
]

}
},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring",
"pipeline": {

"lastModified": "2015-01-01T15:00:00.000Z",
"modificationReason": "somestring",
"processors": [

{
"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
{

"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

},
{

"component": "somestring",
"config": [

{
"key": "somestring",
"type": "string",
"value": "somestring"

},
(continues on next page)

296 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

(continued from previous page)

{
"key": "somestring",
"type": "string",
"value": "somestring"

}
],
"documentation": "somestring",
"name": "somestring"

}
]

}
}

]
}

Responses

default

The server should return HTTP 200 OK. By the way, the response is ignored by Logisland since the operation has a
fire and forget nature.

Data Structures

Component Model Structure

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

component | Yes | string | | | config | No | array of Property | | |

documentation | No | string | | | name | Yes | string | | |

DataFlow Model Structure

A streaming pipeline.

Versioned extended inline

Inline schema:

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline
(used to trigger changes). modificationReason | No | string | | | Can be used to

1.10. Logisland REST API 297

logisland Documentation, Release 1.1.1

document latest changeset. services | No | array of Component | | | The service
controllers.

streams | No | array of Component extended inline | | | The engine properties.

Pipeline Model Structure

Tracks stream processing pipeline configuration

Versioned extended inline

Inline schema:

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline
(used to trigger changes). modificationReason | No | string | | | Can be used to
document latest changeset. processors | No | array of Component | | |

Processor Model Structure

A logisland ‘processor’.

Component

Property Model Structure

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

key | Yes | string | | | type | No | string | | {‘default’: ‘string’} | value | Yes | string |
| |

Service Model Structure

A logisland ‘controller service’.

Component

Stream Model Structure

Component extended inline

Inline schema:

delim

298 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

component | Yes | string | | | config | No | array of Property | | |

documentation | No | string | | | name | Yes | string | | | pipeline | No | Versioned extended
inline | | |

Versioned Model Structure

a versioned component

delim

header “Name”, “Required”, “Type”, “Format”, “Properties”, “Description” :widths: 20,
10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline
(used to trigger changes). modificationReason | No | string | | | Can be used to
document latest changeset.

1.11 What’s new in logisland ?

1.11.1 v1.1.1

• add a clock service

• improve monitoring

• improve Cassandra support

1.11.2 v1.0.0

• add support for JMS kafka connect source

• add support for JDBC kafka connect source

• add Cassandra datastore service

• support all Kafka connect sinks

• add KafkaStreams engine

• update documentation

• fix test framework (runner)

• added vanilla java engine

1.11. What’s new in logisland ? 299

logisland Documentation, Release 1.1.1

1.11.3 v0.14.0

• add support for SOLR

• add support for Chronix timeseries

• review Datastore API

• fix matchquery update field policy issue

• remove elasticsearch 2.3 support

1.11.4 v0.10.0

• add kibana pcap panel cyber-security feature gui #187

• add support for elasticsearch 2.4 feature processor

• add support for elasticsearch 5 feature processor #214

• fix pb in kafkaStreamProcessingEngine (2.1) #244

• allow to set a default profile during build #271

• add ElasticSearch Service feature framework #241

• add multiGet elastic search processor feature processor #255

• fix Pcap telemetry processor issue #180 #224

• Make build work if no profile specified (use the highest hdp one) build #210

• implement Logisland agent #201

• fix travis build randomly fails on travis CI (spark-engine module tests) bug framework #159

• support maven profiles to handle dépendencies (hdp 2.4 & hdp 2.5) #116

• add a RESTful API for components live update agent feature framework #42

• add a logisland agent agent enhancement feature framework #117

• add a Topic metadata view feature gui #101

• add scheduler view feature framework gui #103

• add job configuration view feature gui #94

• add a global logisland.properties agent feature #71

• add a Topic metadata registry feature framework

• integrate BRO files & notification through a BroProcessor feature processor security #93

• add Support for SMTP/Mailer Processor feature processor security #138

• add a Release/deployment documentation #108

• Ensure source files have a licence header

• add HBase service to get and scan records

• add Multiget elasticsearch enricher processor

• add sessionization processor

• improve topic management in web ui gui #222

300 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

• Docker images shall be builded automatically framework #200

• fix classpath issue bug framework #247

• add Netflow telemetry Processor cyber-security feature processor #181

• add an “How to contribute page” documentation #183

• fix PutElasticsearch throws UnsupportedOperationException when duplicate document is found bug processor
#221

• Feature/maven docker#200 enhancement framework #242

• Feature/partitioner enhancement framework #238

• add PCAP telemetry Processor cyber-security feature processor #180

• Move Mailer Processor into commons plugins build #196

• Origin/webanalytics framework processor web-analytics #236

• rename Plugins to Processors in online documentation documentation #173

1.11.5 v0.9.8

• add a retry parameter to PutElasticsearch bug enhancement processor #124

• add Timezone managmt to SplitText enhancement processor #126

• add IdempotentId processor enhancement feature processor #127

• migrate to Kafka 0.9 enhancement

1.11.6 v0.9.7

• add HDFS burner feature processor #89

• add ExtractJsonPath processor #90

• check compatibility with HDP 2.5 #112

• sometimes the drivers fails with status SUCCEEDED which prevents YARN to resubmit the job automatically
#105

• logisland crashes when starting with wrong offsets #111

• add type checking for SplitText component enhancement #46

• add optional regex to SplitText #106

• add record schema management with ConvertFieldsType processor #75

• add field auto extractor processor : SplitTextWithProperties #49

• add a new RemoveFields processor

• add a NormalizeFields processor #88

• Add notion of asserting the asserted fields in MockRecord

1.11. What’s new in logisland ? 301

logisland Documentation, Release 1.1.1

1.11.7 v0.9.6

• add a Documentation generator for plugins feature #69

• add SQL aggregator plugin feature #74

• #66 merge elasticsearch-shaded and elasticsearch-plugin enhancement

• #73 add metric aggregator processor feature

• #57 add sampling processor enhancement

• #72 integrate OutlierDetection plugin feature

• #34 integrate QueryMatcherProcessor bug

1.11.8 v0.9.5

• generify API from Event to Records

• add docker container for demo

• add topic auto-creation parameters

• add Record validators

• add processor chaining that works globally on an input/output topic and pipe in-memory contexts into sub-
processors

• better error handling for SplitText

• testRunner API

• migrate LogParser to LogProcessor Interface

• reporting metrics to know where are exactly the processors on the topics

• add an HDFSBurner Engine

• yarn stability improvements

• more spark parameters handling

• driver failover through Zookeper offset checkpointing

• add raw_content to event if regex matching failed in SplitText

• integration testing with embedded Kafka/Spark

• processor chaining

•

1.12 Frequently Asked Questions.

1.12.1 I already use ELK, why would I need to use LogIsland ?

Well, at first one could say that that both stacks are overlapping, but the real purpose of the LogIsland framework is
the abstraction of scalability of log aggregation.

In fact if you already have an ELK stack you’ll likely want to make it scale (without pain) in both volume and features
ways. LogIsland will be used for this purpose as an EOM (Event Oriented Middleware) based on Kafka & Spark,
where you can plug advanced features with ease.

302 Chapter 1. Contents:

logisland Documentation, Release 1.1.1

So you just have to route your logs from the Logstash (or Flume, or Collectd, . . .) agents to Kafka topics and launch
parsers and processors.

1.12.2 Do I need Hadoop to play with LogIsland ?

No, if your goal is simply to aggregate a massive amount of logs in an Elasticsearch cluster, and to define complex
event processing rules to generate new events you definitely don’t need an Hadoop cluster.

Kafka topics can be used as an high throughput log buffer for sliding-windows event processing. But if you need
advanced batch analytics, it’s really easy to dump your logs into an hadoop cluster to build machine learning models.

1.12.3 How do I make it scale ?

LogIsland is made for scalability, it relies on Spark and Kafka which are both scalable by essence, to scale LogIsland
just have to add more kafka brokers and more Spark slaves. This is the manual way, but we’ve planned in further
releases to provide auto-scaling either Docker Swarn support or Mesos Marathon.

1.12.4 What’s the difference between Apache NIFI and LogIsland ?

Apache NIFI is a powerful ETL very well suited to process incoming data such as logs file, process & enrich them and
send them out to any datastore. You can do that as well with LogIsland but LogIsland is an event oriented framework
designed to process huge amount of events in a Complex Event Processing manner not a Single Event Processing as
NIFI does. LogIsland is not an ETL or a DataFlow, the main goal is to extract information from realtime data.

Anyway you can use Apache NIFI to process your logs and send them to Kafka in order to be processed by LogIsland

1.12.5 Error : realpath not found

If you don’t have the realpath command on you system you may need to install it:

brew install coreutils
sudo apt-get install coreutils

1.12.6 How to deploy LogIsland as a Single node Docker container

The easy way : you start a small Docker container with all you need inside (Elasticsearch, Kibana, Kafka, Spark,
LogIsland + some usefull tools)

Docker is becoming an unavoidable tool to isolate a complex service component. It’s easy to manage, deploy and
maintain. That’s why you can start right away to play with LogIsland through the Docker image provided from
Docker HUB

Get the LogIsland image
docker pull hurence/logisland

Run the container
docker run \

-it \
-p 80:80 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \

(continues on next page)

1.12. Frequently Asked Questions. 303

https://www.docker.com
https://hub.docker.com/r/hurence/logisland/

logisland Documentation, Release 1.1.1

(continued from previous page)

-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland:latest bash

Connect a shell to your LogIsland container
docker exec -ti logisland bash

1.12.7 How to deploy LogIsland in an Hadoop cluster ?

When it comes to scale, you’ll need a cluster. logisland is just a framework that facilitates running sparks jobs over
Kafka topics so if you already have a cluster you just have to get the latest logisland binaries and unzip them to a edge
node of your hadoop cluster.

For now Log-Island is fully compatible with HDP 2.4 but it should work well on any cluster running Kafka and Spark.
Get the latest release and build the package.

You can download the latest release build

git clone git@github.com:Hurence/logisland.git
cd logisland-0.9.5
mvn clean install -DskipTests

This will produce a logisland-assembly/target/logisland-0.9.5-bin.tar.gz file that you can
untar into any folder of your choice in a edge node of your cluster.

Please read this excellent article on spark long running job setup : http://mkuthan.github.io/blog/2016/09/30/
spark-streaming-on-yarn/

1.12.8 How can I configure Kafka to avoid irrecoverable exceptions ?

If the message must be reliable published on Kafka cluster, Kafka producer and Kafka cluster needs to be configured
with care. It needs to be done independently of chosen streaming framework.

Kafka producer buffers messages in memory before sending. When our memory buffer is exhausted, Kafka producer
must either stop accepting new records (block) or throw errors. By default Kafka producer blocks and this behavior is
legitimate for stream processing. The processing should be delayed if Kafka producer memory buffer is full and could
not accept new messages. Ensure that block.on.buffer.full Kafka producer configuration property is set.

With default configuration, when Kafka broker (leader of the partition) receive the message, store the message in
memory and immediately send acknowledgment to Kafka producer. To avoid data loss the message should be repli-
cated to at least one replica (follower). Only when the follower acknowledges the leader, the leader acknowledges the
producer.

This guarantee you will get with ack=all property in Kafka producer configuration. This guarantees that the record
will not be lost as long as at least one in-sync replica remains alive.

But this is not enough. The minimum number of replicas in-sync must be defined. You should configure
min.insync.replicas property for every topic. I recommend to configure at least 2 in-sync replicas (leader and one
follower). If you have datacenter with two zones, I also recommend to keep leader in the first zone and 2 followers in
the second zone. This configuration guarantees that every message will be stored in both zones.

304 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases/download/v0.9.5/logisland-0.9.5-bin.tar.gz
http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/
http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/

logisland Documentation, Release 1.1.1

We are almost done with Kafka cluster configuration. When you set min.insync.replicas=2 property, the topic should
be replicated with factor 2 + N. Where N is the number of brokers which could fail, and Kafka producer will still be
able to publish messages to the cluster. I recommend to configure replication factor 3 for the topic (or more).

With replication factor 3, the number of brokers in the cluster should be at least 3 + M. When one or more brokers are
unavailable, you will get underreplicated partitions state of the topics. With more brokers in the cluster than replication
factor, you can reassign underreplicated partitions and achieve fully replicated cluster again. I recommend to build the
4 nodes cluster at least for topics with replication factor 3.

The last important Kafka cluster configuration property is unclean.leader.election.enable. It should be disabled (by
default it is enabled) to avoid unrecoverable exceptions from Kafka consumer. Consider the situation when the latest
committed offset is N, but after leader failure, the latest offset on the new leader is M < N. M < N because the new
leader was elected from the lagging follower (not in-sync replica). When the streaming engine ask for data from offset
N using Kafka consumer, it will get an exception because the offset N does not exist yet. Someone will have to fix
offsets manually.

So the minimal recommended Kafka setup for reliable message processing is:

4 nodes in the cluster
unclean.leader.election.enable=false in the brokers configuration
replication factor for the topics - 3
min.insync.replicas=2 property in topic configuration
ack=all property in the producer configuration
block.on.buffer.full=true property in the producer configuration

With the above setup your configuration should be resistant to single broker failure, and Kafka consumers will survive
new leader election.

You could also take look at replica.lag.max.messages and replica.lag.time.max.ms properties for tuning when the
follower is removed from ISR by the leader. But this is out of this blog post scope.

1.12.9 How to purge a Kafka queue ?

Temporarily update the retention time on the topic to one second:

kafka-topics.sh --zookeeper localhost:13003 --alter --topic MyTopic --config
→˓retention.ms=1000

then wait for the purge to take effect (about one minute). Once purged, restore the previous retention.ms value.

You can also try to delete the topic :

add one line to server.properties file under config folder:

delete.topic.enable=true

then, you can run this command:

bin/kafka-topics.sh --zookeeper localhost:2181 --delete --topic test

1.12. Frequently Asked Questions. 305

logisland Documentation, Release 1.1.1

306 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

307

	Contents:
	Introduction
	Core concepts
	Architecture
	User Documentation
	Developer Documentation
	Plugins
	Connectors
	Tutorials
	API design
	Logisland REST API
	What’s new in logisland ?
	Frequently Asked Questions.

	Indices and tables

