
Logbook Documentation
Release 0.4

Armin Ronacher, Georg Brandl

September 14, 2015

Contents

1 Documentation 3
1.1 What does it do? . 3
1.2 Quickstart . 5
1.3 Common Logbook Setups . 8
1.4 Stacks in Logbook . 11
1.5 Performance Tuning . 13
1.6 Logbook in Libraries . 14
1.7 Unittesting Support . 15
1.8 Logging to Tickets . 17
1.9 Logging Compatibility . 18
1.10 API Documentation . 19
1.11 The Design Explained . 46
1.12 Design Principles . 48
1.13 Logbook Changelog . 51

2 Project Information 55

Python Module Index 57

i

ii

Logbook Documentation, Release 0.4

Logbook is a logging sytem for Python that replaces the standard library’s logging module. It was designed with both
complex and simple applications and mind and the idea to make logging fun:

>>> from logbook import Logger
>>> log = Logger('Logbook')
>>> log.info('Hello, World!')
[2010-07-23 16:34] INFO: Logbook: Hello, World!

What makes it fun? What about getting log messages on your phone or desktop notification system? Logbook can do
that.

This library is still under heavy development and the API is not fully finalized yet. Feedback is appreciated. The docs
here only show a tiny, tiny feature set and are terribly incomplete. We will have better docs soon, but until then we
hope this gives a sneak peak about how cool Logbook is. If you want more, have a look at the comprehensive testsuite.

Contents 1

https://github.com/mitsuhiko/logbook/tree/master/logbook/testsuite

Logbook Documentation, Release 0.4

2 Contents

CHAPTER 1

Documentation

1.1 What does it do?

Although the Python standard library provides a logging system, you should consider having a look at Logbook for
your applications. Currently logbook is an alpha version and should be considered a developer preview.

But give it a try, we think it will work out for you and be fun to use :)

Furthermore because it was prototyped in a couple of days, it leverages some features of Python that are not available
in older Python releases. Logbook currently requires Python 2.4 or higher including Python 3 (3.1 or higher, 3.0 is not
supported).

1.1.1 Core Features

• Logbook is based on the concept of loggers that are extensible by the application.

• Each logger and handler, as well as other parts of the system, may inject additional information into the logging
record that improves the usefulness of log entries.

• Handlers can be set on an application-wide stack as well as a thread-wide stack. Setting a handler does not
replace existing handlers, but gives it higher priority. Each handler has the ability to prevent records from
propagating to lower-priority handlers.

• Logbook comes with a useful default configuration that spits all the information to stderr in a useful manner.

• All of the built-in handlers have a useful default configuration applied with formatters that provide all the
available information in a format that makes the most sense for the given handler. For example, a default stream
handler will try to put all the required information into one line, whereas an email handler will split it up into
nicely formatted ASCII tables that span multiple lines.

• Logbook has built-in handlers for streams, arbitrary files, files with time and size based rotation, a handler that
delivers mails, a handler for the syslog daemon as well as the NT log file.

• There is also a special “fingers crossed” handler that, in combination with the handler stack, has the ability to
accumulate all logging messages and will deliver those in case a severity level was exceeded. For example, it
can withhold all logging messages for a specific request to a web application until an error record appears, in
which case it will also send all withheld records to the handler it wraps. This way, you can always log lots of
debugging records, but only get see them when they can actually tell you something of interest.

• It is possible to inject a handler for testing that records messages for assertions.

• Logbook was designed to be fast and with modern Python features in mind. For example, it uses context
managers to handle the stack of handlers as well as new-style string formatting for all of the core log calls.

3

Logbook Documentation, Release 0.4

• Builtin support for ZeroMQ and other means to distribute log messages between heavily distributed systems and
multiple processes.

• The Logbook system does not depend on log levels. In fact, custom log levels are not supported, instead we
strongly recommend using logging subclasses or log processors that inject tagged information into the log record
for this purpose.

• PEP 8 naming and code style.

1.1.2 Advantages over Logging

If properly configured, Logbook’s logging calls will be very cheap and provide a great performance improvement
over an equivalent configuration of the standard library’s logging module. While for some parts we are not quite at
performance we desire, there will be some further performance improvements in the upcoming versions.

It also supports the ability to inject additional information for all logging calls happening in a specific thread or for
the whole application. For example, this makes it possible for a web application to add request-specific information to
each log record such as remote address, request URL, HTTP method and more.

The logging system is (besides the stack) stateless and makes unit testing it very simple. If context managers are used,
it is impossible to corrupt the stack, so each test can easily hook in custom log handlers.

1.1.3 Cooperation

Logbook is an addon library to Python and working in an area where there are already a couple of contestants. First
of all there is the standard library’s logging module, secondly there is also the warnings module which is used
internally in Python to warn about invalid uses of APIs and more. We know that there are many situations where you
want to use either of them. Be it that they are integrated into a legacy system, part of a library outside of your control
or just because they are a better choice.

Because of that, Logbook is two-way compatible with logging and one-way compatible with warnings. If you
want, you can let all logging calls redirect to the logbook handlers or the other way round, depending on what your
desired setup looks like. That way you can enjoy the best of both worlds.

1.1.4 It should be Fun

Logging should be fun. A good log setup makes debugging easier when things go rough. For good results you really
have to start using logging before things actually break. Logbook comes with a couple of unusual log handlers to
bring the fun back to logging. You can log to your personal twitter feed, you can log to mobile devices, your desktop
notification system and more.

1.1.5 Logbook in a Nutshell

This is how easy it is to get started with Logbook:

from logbook import warn
warn('This is a warning')

That will use the default logging channel. But you can create as many as you like:

from logbook import Logger
log = Logger('My Logger')
log.warn('This is a warning')

4 Chapter 1. Documentation

https://www.python.org/dev/peps/pep-0008
http://docs.python.org/library/logging.html#module-logging
http://docs.python.org/library/warnings.html#module-warnings
http://docs.python.org/library/logging.html#module-logging
http://docs.python.org/library/warnings.html#module-warnings

Logbook Documentation, Release 0.4

1.1.6 Roadmap

Here a list of things you can expect in upcoming versions:

• c implementation of the internal stack management and record dispatching for higher performance.

• a ticketing log handler that creates tickets in trac and redmine.

• a web frontend for the ticketing database handler.

1.2 Quickstart

Logbook makes it very easy to get started with logging. Just import the logger class, create yourself a logger and you
are set:

>>> from logbook import Logger
>>> log = Logger('My Awesome Logger')
>>> log.warn('This is too cool for stdlib')
[2010-07-23 16:34] WARNING: My Awesome Logger: This is too cool for stdlib

A logger is a so-called RecordDispatcher, which is commonly referred to as a “logging channel”. The name you
give such a channel is up to you and need not be unique although it’s a good idea to keep it unique so that you can
filter by it if you want.

The basic interface is similar to what you may already know from the standard library’s logging module.

There are several logging levels, available as methods on the logger. The levels – and their suggested meaning – are:

• critical – for errors that lead to termination

• error – for errors that occur, but are handled

• warning – for exceptional circumstances that might not be errors

• notice – for non-error messages you usually want to see

• info – for messages you usually don’t want to see

• debug – for debug messages

Each of these levels is available as method on the Logger. Additionally the warning level is aliased as warn().

Alternatively, there is the log() method that takes the logging level (string or integer) as an argument.

1.2.1 Handlers

Each call to a logging method creates a log record which is then passed to handlers, which decide how to store or
present the logging info. There are a multitude of available handlers, and of course you can also create your own:

• StreamHandler for logging to arbitrary streams

• StderrHandler for logging to stderr

• FileHandler, MonitoringFileHandler, RotatingFileHandler and
TimedRotatingFileHandler for logging to files

• MailHandler for logging via e-mail

• SyslogHandler for logging to the syslog daemon

• NTEventLogHandler for logging to the Windows NT event log

1.2. Quickstart 5

http://docs.python.org/library/logging.html#module-logging

Logbook Documentation, Release 0.4

On top of those there are a couple of handlers for special use cases:

• logbook.FingersCrossedHandler for logging into memory and delegating information to another han-
dler when a certain level was exceeded, otherwise discarding all buffered records.

• logbook.more.TaggingHandler for dispatching log records that are tagged (used in combination with
a logbook.more.TaggingLogger)

• logbook.queues.ZeroMQHandler for logging to ZeroMQ

• logbook.queues.MultiProcessingHandler for logging from a child process to a handler from the
outer process.

• logbook.queues.ThreadedWrapperHandler for moving the actual handling of a handler into a back-
ground thread and using a queue to deliver records to that thread.

• logbook.notifiers.GrowlHandler and logbook.notifiers.LibNotifyHandler for log-
ging to the OS X Growl or the linux notification daemon.

• logbook.notifiers.BoxcarHandler for logging to boxcar.

• logbook.more.TwitterHandler for logging to twitter.

• logbook.more.ExternalApplicationHandler for logging to an external application such as the OS
X say command.

• logbook.ticketing.TicketingHandler for creating tickets from log records in a database or other
data store.

1.2.2 Registering Handlers

So how are handlers registered? If you are used to the standard Python logging system, it works a little bit differently
here. Handlers can be registered for a thread or for a whole process or individually for a logger. However, it is strongly
recommended not to add handlers to loggers unless there is a very good use case for that.

If you want errors to go to syslog, you can set up logging like this:

from logbook import SyslogHandler

error_handler = SyslogHandler('logbook example', level='ERROR')
with error_handler.applicationbound():

whatever is executed here and an error is logged to the
error handler
...

This will send all errors to the syslog but warnings and lower record levels still to stderr. This is because the handler
is not bubbling by default which means that if a record is handled by the handler, it will not bubble up to a higher
handler. If you want to display all records on stderr, even if they went to the syslog you can enable bubbling by setting
bubble to True:

from logbook import SyslogHandler

error_handler = SyslogHandler('logbook example', level='ERROR', bubble=True)
with error_handler.applicationbound():

whatever is executed here and an error is logged to the
error handler but it will also bubble up to the default
stderr handler.
...

So what if you want to only log errors to the syslog and nothing to stderr? Then you can combine this with a
NullHandler:

6 Chapter 1. Documentation

http://boxcar.io/

Logbook Documentation, Release 0.4

from logbook import SyslogHandler, NullHandler

error_handler = SyslogHandler('logbook example', level='ERROR')
null_handler = NullHandler()

with null_handler.applicationbound():
with error_handler.applicationbound():

errors now go to the error_handler and everything else
is swallowed by the null handler so nothing ends up
on the default stderr handler
...

1.2.3 Record Processors

What makes logbook interesting is the ability to automatically process log records. This is handy if you want additional
information to be logged for everything you do. A good example use case is recording the IP of the current request in
a web application. Or, in a daemon process you might want to log the user and working directory of the process.

A context processor can be injected at two places: you can either bind a processor to a stack like you do with handlers
or you can override the override the RecordDispatcher.process_record() method.

Here an example that injects the current working directory into the extra dictionary of a log record:

import os
from logbook import Processor

def inject_cwd(record):
record.extra['cwd'] = os.getcwd()

with my_handler.applicationbound():
with Processor(inject_cwd).applicationbound():

everything logged here will have the current working
directory in the log record.
...

The alternative is to inject information just for one logger in which case you might want to subclass it:

import os

class MyLogger(logbook.Logger):

def process_record(self, record):
logbook.Logger.process_record(self, record)
record.extra['cwd'] = os.getcwd()

1.2.4 Configuring the Logging Format

All handlers have a useful default log format you don’t have to change to use logbook. However if you start injecting
custom information into log records, it makes sense to configure the log formatting so that you can see that information.

There are two ways to configure formatting: you can either just change the format string or hook in a custom format
function.

All the handlers that come with logbook and that log into a string use the StringFormatter by default. Their con-
structors accept a format string which sets the logbook.Handler.format_string attribute. You can override
this attribute in which case a new string formatter is set:

1.2. Quickstart 7

Logbook Documentation, Release 0.4

>>> from logbook import StderrHandler
>>> handler = StderrHandler()
>>> handler.format_string = '{record.channel}: {record.message}'
>>> handler.formatter
<logbook.handlers.StringFormatter object at 0x100641b90>

Alternatively you can also set a custom format function which is invoked with the record and handler as arguments:

>>> def my_formatter(record, handler):
... return record.message
...
>>> handler.formatter = my_formatter

The format string used for the default string formatter has one variable called record available which is the log record
itself. All attributes can be looked up using the dotted syntax, and items in the extra dict looked up using brackets.
Note that if you are accessing an item in the extra dict that does not exist, an empty string is returned.

Here is an example configuration that shows the current working directory from the example in the previous section:

handler = StderrHandler(format_string=
'{record.channel}: {record.message) [{record.extra[cwd]}]')

In the more module there is a formatter that uses the Jinja2 template engine to format log records, especially useful
for multi-line log formatting such as mails (JinjaFormatter).

1.3 Common Logbook Setups

This part of the documentation shows how you can configure Logbook for different kinds of setups.

1.3.1 Desktop Application Setup

If you develop a desktop application (command line or GUI), you probably have a line like this in your code:

if __name__ == '__main__':
main()

This is what you should wrap with a with statement that sets up your log handler:

from logbook import FileHandler
log_handler = FileHandler('application.log')

if __name__ == '__main__':
with log_handler.applicationbound():

main()

Alternatively you can also just push a handler in there:

from logbook import FileHandler
log_handler = FileHandler('application.log')
log_handler.push_application()

if __name__ == '__main__':
main()

Please keep in mind that you will have to pop the handlers in reverse order if you want to remove them from the stack,
so it is recommended to use the context manager API if you plan on reverting the handlers.

8 Chapter 1. Documentation

Logbook Documentation, Release 0.4

1.3.2 Web Application Setup

Typical modern web applications written in Python have two separate contexts where code might be executed: when
the code is imported, as well as when a request is handled. The first case is easy to handle, just push a global file
handler that writes everything into a file.

But Logbook also gives you the ability to improve upon the logging. For example, you can easily create yourself a log
handler that is used for request-bound logging that also injects additional information.

For this you can either subclass the logger or you can bind to the handler with a function that is invoked before logging.
The latter has the advantage that it will also be triggered for other logger instances which might be used by a different
library.

Here is a simple WSGI example application that showcases sending error mails for errors happened during a WSGI
application:

from logbook import MailHandler

mail_handler = MailHandler('errors@example.com',
['admin@example.com'],
format_string=u'''\

Subject: Application Error at {record.extra[url]}

Message type: {record.level_name}
Location: {record.filename}:{record.lineno}
Module: {record.module}
Function: {record.func_name}
Time: {record.time:%Y-%m-%d %H:%M:%S}
Remote IP: {record.extra[ip]}
Request: {record.extra[url]} [{record.extra[method]}]

Message:

{record.message}
''', bubble=True)

def application(environ, start_response):
request = Request(environ)

def inject_info(record, handler):
record.extra.update(

ip=request.remote_addr,
method=request.method,
url=request.url

)

with mail_handler.threadbound(processor=inject_info):
standard WSGI processing happens here. If an error
is logged, a mail will be sent to the admin on
example.com
...

1.3.3 Deeply Nested Setups

If you want deeply nested logger setups, you can use the NestedSetup class which simplifies that. This is best
explained using an example:

1.3. Common Logbook Setups 9

Logbook Documentation, Release 0.4

import os
from logbook import NestedSetup, NullHandler, FileHandler, \

MailHandler, Processor

def inject_information(record):
record.extra['cwd'] = os.getcwd()

a nested handler setup can be used to configure more complex setups
setup = NestedSetup([

make sure we never bubble up to the stderr handler
if we run out of setup handling
NullHandler(),
then write messages that are at least warnings to to a logfile
FileHandler('application.log', level='WARNING'),
errors should then be delivered by mail and also be kept
in the application log, so we let them bubble up.
MailHandler('servererrors@example.com',

['admin@example.com'],
level='ERROR', bubble=True),

while we're at it we can push a processor on its own stack to
record additional information. Because processors and handlers
go to different stacks it does not matter if the processor is
added here at the bottom or at the very beginning. Same would
be true for flags.
Processor(inject_information)

])

Once such a complex setup is defined, the nested handler setup can be used as if it was a single handler:

with setup.threadbound():
everything here is handled as specified by the rules above.
...

1.3.4 Distributed Logging

For applications that are spread over multiple processes or even machines logging into a central system can be a pain.
Logbook supports ZeroMQ to deal with that. You can set up a ZeroMQHandler that acts as ZeroMQ publisher and
will send log records encoded as JSON over the wire:

from logbook.queues import ZeroMQHandler
handler = ZeroMQHandler('tcp://127.0.0.1:5000')

Then you just need a separate process that can receive the log records and hand it over to another log handler using
the ZeroMQSubscriber. The usual setup is this:

from logbook.queues import ZeroMQSubscriber
subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
with my_handler:

subscriber.dispatch_forever()

You can also run that loop in a background thread with dispatch_in_background():

from logbook.queues import ZeroMQSubscriber
subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
subscriber.dispatch_in_background(my_handler)

If you just want to use this in a multiprocessing environment you can use the MultiProcessingHandler

10 Chapter 1. Documentation

http://docs.python.org/library/multiprocessing.html#module-multiprocessing

Logbook Documentation, Release 0.4

and MultiProcessingSubscriber instead. They work the same way as the ZeroMQ equivalents but are con-
nected through a multiprocessing.Queue:

from multiprocessing import Queue
from logbook.queues import MultiProcessingHandler, \

MultiProcessingSubscriber
queue = Queue(-1)
handler = MultiProcessingHandler(queue)
subscriber = MultiProcessingSubscriber(queue)

1.3.5 Redirecting Single Loggers

If you want to have a single logger go to another logfile you have two options. First of all you can attach a handler to
a specific record dispatcher. So just import the logger and attach something:

from yourapplication.yourmodule import logger
logger.handlers.append(MyHandler(...))

Handlers attached directly to a record dispatcher will always take precedence over the stack based handlers. The
bubble flag works as expected, so if you have a non-bubbling handler on your logger and it always handles, it will
never be passed to other handlers.

Secondly you can write a handler that looks at the logging channel and only accepts loggers of a specific kind. You
can also do that with a filter function:

handler = MyHandler(filter=lambda r: r.channel == 'app.database')

Keep in mind that the channel is intended to be a human readable string and is not necessarily unique. If you really
need to keep loggers apart on a central point you might want to introduce some more meta information into the extra
dictionary.

You can also compare the dispatcher on the log record:

from yourapplication.yourmodule import logger
handler = MyHandler(filter=lambda r: r.dispatcher is logger)

This however has the disadvantage that the dispatcher entry on the log record is a weak reference and might go away
unexpectedly and will not be there if log records are sent to a different process.

Last but not least you can check if you can modify the stack around the execution of the code that triggers that logger
For instance if the logger you are interested in is used by a specific subsystem, you can modify the stacks before calling
into the system.

1.4 Stacks in Logbook

Logbook keeps three stacks internally currently:

• one for the Handlers: each handler is handled from stack top to bottom. When a record was handled it depends
on the bubble flag of the handler if it should still be processed by the next handler on the stack.

• one for the Processors: each processor in the stack is applied on a record before the log record is handled by
the handler.

• one for the Flags: this stack manages simple flags such as how errors during logging should be processed or
if stackframe introspection should be used etc.

1.4. Stacks in Logbook 11

http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue

Logbook Documentation, Release 0.4

1.4.1 General Stack Management

Generally all objects that are management by stacks have a common interface (StackedObject) and can be used
in combination with the NestedSetup class.

Commonly stacked objects are used with a context manager (with statement):

with context_object.threadbound():
this is managed for this thread only
...

with context_object.applicationbound():
this is managed for all applications
...

Alternatively you can also use try/finally:

context_object.push_thread()
try:

this is managed for this thread only
...

finally:
context_object.pop_thread()

context_object.push_application()
try:

this is managed for all applications
...

finally:
context_object.pop_application()

It’s very important that you will always pop from the stack again unless you really want the change to last until the
application closes down, which probably is not the case.

If you want to push and pop multiple stacked objects at the same time, you can use the NestedSetup:

setup = NestedSetup([stacked_object1, stacked_object2])
with setup.threadbound():

both objects are now bound to the thread's stack
...

Sometimes a stacked object can be passed to one of the functions or methods in Logbook. If any stacked object can
be passed, this is usually called the setup. This is for example the case when you specify a handler or processor for
things like the ZeroMQSubscriber.

1.4.2 Handlers

Handlers use the features of the stack the most because not only do they stack, but they also specify how stack handling
is supposed to work. Each handler can decide if it wants to process the record, and then it has a flag (the bubble
flag) which specifies if the next handler in the chain is supposed to get this record passed to.

If a handler is bubbeling it will give the record to the next handler, even if it was properly handled. If it’s not, it will stop
promoting handlers further down the chain. Additionally there are so-called “blackhole” handlers (NullHandler)
which stop processing at any case when they are reached. If you push a blackhole handler on top of an existing
infrastructure you can build up a separate one without performance impact.

12 Chapter 1. Documentation

Logbook Documentation, Release 0.4

1.4.3 Processor

A processor can inject additional information into a log record when the record is handled. Processors are called once
at least one log handler is interested in handling the record. Before that happens, no processing takes place.

Here an example processor that injects the current working directory into the extra attribute of the record:

import os

def inject_cwd(record):
record.extra['cwd'] = os.getcwd()

with Processor(inject_cwd):
all logging calls inside this block in this thread will now
have the current working directory information attached.
...

1.4.4 Flags

The last pillar of logbook is the flags stack. This stack can be used to override settings of the logging system. Currently
this can be used to change the behavior of logbook in case an exception during log handling happens (for instance if a
log record is supposed to be delivered to the filesystem but it ran out of available space). Additionally there is a flag
that disables frame introspection which can result in a speedup on JIT compiled Python interpreters.

Here an example of a silenced error reporting:

with Flags(errors='silent'):
errors are now silent for this block
...

1.5 Performance Tuning

The more logging calls you add to your application and libraries, the more overhead will you introduce. There are a
couple things you can do to remedy this behavior.

1.5.1 Debug-Only Logging

There are debug log calls, and there are debug log calls. Some debug log calls would sometimes be interesting in a
production environment, others really only if you are on your local machine fiddling around with the code. Logbook
internally makes sure to process as little of your logging call as necessary, but it will still have to walk the current
stack to figure out if there are any active handlers or not. Depending on the number of handlers on the stack, the kind
of handler etc, there will be more or less processed.

Generally speaking a not-handled logging call is cheap enough that you don’t have to care about it. However there
is not only your logging call, there might also be some data you have to process for the record. This will always be
processed, even if the log record ends up being discarded.

This is where the Python __debug__ feature comes in handy. This variable is a special flag that is evaluated at the
time where Python processes your script. It can elliminate code completely from your script so that it does not even
exist in the compiled bytecode (requires Python to be run with the -O switch):

if __debug__:
info = get_wallcalculate_debug_info()
logger.debug("Call to response() failed. Reason: {0}", info)

1.5. Performance Tuning 13

Logbook Documentation, Release 0.4

1.5.2 Keep the Fingers Crossed

Do you really need the debug info? In case you find yourself only looking at the logfiles when errors occurred it would
be an option to put in the FingersCrossedHandler. Logging into memory is always cheaper than logging on a
filesystem.

1.5.3 Keep the Stack Static

Whenever you do a push or pop from one of the stacks you will invalidate an internal cache that is used by logbook.
This is an implementation detail, but this is how it works for the moment. That means that the first logging call after a
push or pop will have a higher impact on the performance than following calls. That means you should not attempt to
push or pop from a stack for each logging call. Make sure to do the pushing and popping only as needed. (start/end of
application/request)

1.5.4 Disable Introspection

By default Logbook will try to pull in the interpreter frame of the caller that invoked a logging function. While this
is a fast operation that usually does not slow down the execution of your script it also means that for certain Python
implementations it invalidates assumptions a JIT compiler might have made of the function body. Currently this for
example is the case for applications running on pypy. If you would be using a stock logbook setup on pypy, the JIT
wouldn’t be able to work properly.

In case you don’t need the frame based information (name of module, calling function, filename, line number) you
can disable the introspection feature:

from logbook import Flags

with Flags(introspection=False):
all logging calls here will not use introspection
...

1.6 Logbook in Libraries

Logging becomes more useful the higher the number of components in a system that are using it. Logbook itself is not
a widely supported library so far, but a handful of libraries are using the logging already which can be redirected to
Logbook if necessary.

Logbook itself is easier to support for libraries than logging because it does away with the central logger registry and
can easily be mocked in case the library is not available.

1.6.1 Mocking Logbook

If you want to support Logbook in your library but not depend on it you can copy/paste the following piece of code. It
will attempt to import logbook and create a Logger and if it fails provide a class that just swallows all calls:

try:
from logbook import Logger

except ImportError:
class Logger(object):

def __init__(self, name, level=0):
self.name = name
self.level = level

14 Chapter 1. Documentation

http://docs.python.org/library/logging.html#module-logging

Logbook Documentation, Release 0.4

debug = info = warn = warning = notice = error = exception = \
critical = log = lambda *a, **kw: None

log = Logger('My library')

1.6.2 Best Practices

• A library that wants to log to the Logbook system should generally be designed to provide an interface to the
record dispatchers it is using. That does not have to be a reference to the record dispatcher itself, it is perfectly
fine if there is a toggle to switch it on or off.

• The channel name should be readable and descriptive.

• For example, if you are a database library that wants to use the logging system to log all SQL statements issued
in debug mode, you can enable and disable your record dispatcher based on that debug flag.

• Libraries should never set up log setups except temporarily on a per-thread basis if it never changes the stack
for a longer duration than a function call in a library. For example, hooking in a null handler for a call to a noisy
function is fine, changing the global stack in a function and not reverting it at the end of the function is bad.

1.6.3 Debug Loggers

Sometimes you want to have loggers in place that are only really good for debugging. For example you might have
a library that does a lot of server/client communication and for debugging purposes it would be nice if you can
enable/disable that log output as necessary.

In that case it makes sense to create a logger and disable that by default and give people a way to get hold of the logger
to flip the flag. Additionally you can override the disabled flag to automatically set it based on another value:

class MyLogger(Logger):
@property
def disabled(self):

return not database_connection.debug
database_connection.logger = MyLogger('mylibrary.dbconnection')

1.7 Unittesting Support

Logbook has builtin support for testing logging calls. There is a handler that can be hooked in and will catch all log
records for inspection. Not only that, it also provides methods to test if certain things were logged.

1.7.1 Basic Setup

The interface to satisfaction is logbook.TestHandler. Create it, and bind it, and you’re done. If you are using
classic unittest test cases, you might want to set it up in the before and after callback methods:

import logbook
import unittest

class LoggingTestCase(unittest.TestCase):

def setUp(self):
self.log_handler = logbook.TestHandler()

1.7. Unittesting Support 15

http://docs.python.org/library/unittest.html#module-unittest

Logbook Documentation, Release 0.4

self.log_handler.push_thread()

def tearDown(self):
self.log_handler.pop_thread()

Alternatively you can also use it in a with statement in an individual test. This is also how this can work in nose and
other testing systems:

def my_test():
with logbook.TestHandler() as log_handler:

...

1.7.2 Test Handler Interface

The test handler has a few attributes and methods to gain access to the logged messages. The most important ones
are records and formatted_records. The first is a list of the captured LogRecords, the second a list of the
formatted records as unicode strings:

>>> from logbook import TestHandler, Logger
>>> logger = Logger('Testing')
>>> handler = TestHandler()
>>> handler.push_thread()
>>> logger.warn('Hello World')
>>> handler.records
[<logbook.base.LogRecord object at 0x100640cd0>]
>>> handler.formatted_records
[u'[WARNING] Testing: Hello World']

1.7.3 Probe Log Records

The handler also provide some convenience methods to do assertions:

>>> handler.has_warnings
True
>>> handler.has_errors
False
>>> handler.has_warning('Hello World')
True

Methods like has_warning() accept two arguments:

message If provided and not None it will check if there is at least one log record where the message matches.

channel If provided and not None it will check if there is at least one log record where the logger name of the record
matches.

Example usage:

>>> handler.has_warning('A different message')
False
>>> handler.has_warning('Hello World', channel='Testing')
True
>>> handler.has_warning(channel='Testing')
True

16 Chapter 1. Documentation

Logbook Documentation, Release 0.4

1.8 Logging to Tickets

Logbook supports the concept of creating unique tickets for log records and keeping track of the number of times these
log records were created. The default implementation logs into a relational database, but there is a baseclass that can
be subclassed to log into existing ticketing systems such as trac or other data stores.

The ticketing handlers and store backends are all implemented in the module logbook.ticketing.

1.8.1 How does it work?

When a ticketing handler is used each call to a logbook logger is assigned a unique hash that is based on the name of
the logger, the location of the call as well as the level of the message. The message itself is not taken into account as
it might be changing depending on the arguments passed to it.

Once that unique hash is created the database is checked if there is already a ticket for that hash. If there is, a new
occurrence is logged with all details available. Otherwise a new ticket is created.

This makes it possible to analyze how often certain log messages are triggered and over what period of time.

1.8.2 Why should I use it?

The ticketing handlers have the big advantage over a regular log handler that they will capture the full data of the log
record in machine processable format. Whatever information was attached to the log record will be send straight to
the data store in JSON.

This makes it easier to track down issues that might happen in production systems. Due to the higher overhead
of ticketing logging over a standard logfile or something comparable it should only be used for higher log levels
(WARNING or higher).

1.8.3 Common Setups

The builtin ticketing handler is called TicketingHandler. In the default configuration it will connect to a rela-
tional database with the help of SQLAlchemy and log into two tables there: tickets go into ${prefix}tickets
and occurrences go into ${prefix}occurrences. The default table prefix is ’logbook_’ but can be overriden.
If the tables do not exist already, the handler will create them.

Here an example setup that logs into a postgres database:

from logbook import ERROR
from logbook.ticketing import TicketingHandler
handler = TicketingHandler('postgres://localhost/database',

level=ERROR)
with handler:

everything in this block and thread will be handled by
the ticketing database handler
...

Alternative backends can be swapped in by providing the backend parameter. There is a second implementation of a
backend that is using MongoDB: MongoDBBackend.

1.8. Logging to Tickets 17

http://sqlalchemy.org/

Logbook Documentation, Release 0.4

1.9 Logging Compatibility

Logbook provides backwards compatibility with the logging library. When activated, the logging library will trans-
parently redirect all the logging calls to your Logbook logging setup.

1.9.1 Basic Setup

If you import the compat system and call the redirect_logging() function, all logging calls that happen after
this call will transparently be redirected to Logbook:

from logbook.compat import redirect_logging
redirect_logging()

This also means you don’t have to call logging.basicConfig():

>>> from logbook.compat import redirect_logging
>>> redirect_logging()
>>> from logging import getLogger
>>> log = getLogger('My Logger')
>>> log.warn('This is a warning')
[2010-07-25 00:24] WARNING: My Logger: This is a warning

1.9.2 Advanced Setup

The way this is implemented is with a RedirectLoggingHandler. This class is a handler for the old logging
system that sends records via an internal logbook logger to the active logbook handlers. This handler can then be
added to specific logging loggers if you want:

>>> from logging import getLogger
>>> mylog = getLogger('My Log')
>>> from logbook.compat import RedirectLoggingHandler
>>> mylog.addHandler(RedirectLoggingHandler())
>>> otherlog = getLogger('Other Log')
>>> otherlog.warn('logging is deprecated')
No handlers could be found for logger "Other Log"
>>> mylog.warn('but logbook is awesome')
[2010-07-25 00:29] WARNING: My Log: but logbook is awesome

1.9.3 Reverse Redirects

You can also redirect logbook records to logging, so the other way round. For this you just have to activate the
LoggingHandler for the thread or application:

from logbook import Logger
from logbook.compat import LoggingHandler

log = Logger('My app')
with LoggingHandler():

log.warn('Going to logging')

18 Chapter 1. Documentation

http://docs.python.org/library/logging.html#logging.basicConfig

Logbook Documentation, Release 0.4

1.10 API Documentation

This part of the documentation documents all the classes and functions provided by Logbook.

1.10.1 Core Interface

This implements the core interface.

class logbook.base.Logger(name=None, level=0)
Instances of the Logger class represent a single logging channel. A “logging channel” indicates an area of an
application. Exactly how an “area” is defined is up to the application developer.

Names used by logbook should be descriptive and are intended for user display, not for filtering. Filtering should
happen based on the context information instead.

A logger internally is a subclass of a RecordDispatcher that implements the actual logic. If you want to
implement a custom logger class, have a look at the interface of that class as well.

call_handlers(record)
Pass a record to all relevant handlers in the following order:

•per-dispatcher handlers are handled first

•afterwards all the current context handlers in the order they were pushed

Before the first handler is invoked, the record is processed (process_record()).

catch_exceptions(*args, **kwargs)
A context manager that catches exceptions and calls exception() for exceptions caught that way.
Example:

with logger.catch_exceptions():
execute_code_that_might_fail()

critical(*args, **kwargs)
Logs a LogRecord with the level set to CRITICAL.

debug(*args, **kwargs)
Logs a LogRecord with the level set to DEBUG.

error(*args, **kwargs)
Logs a LogRecord with the level set to ERROR.

exception(*args, **kwargs)
Works exactly like error() just that the message is optional and exception information is recorded.

handle(record)
Call the handlers for the specified record. This is invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled and if the record level is greater than the
level of the record dispatcher. In that case it will call the handlers (call_handlers()).

info(*args, **kwargs)
Logs a LogRecord with the level set to INFO.

level_name
The level as unicode string

log(level, *args, **kwargs)
Logs a LogRecord with the level set to the level parameter. Because custom levels are not supported by
logbook, this method is mainly used to avoid the use of reflection (e.g.: getattr()) for programmatic
logging.

1.10. API Documentation 19

http://docs.python.org/library/functions.html#getattr

Logbook Documentation, Release 0.4

make_record_and_handle(level, msg, args, kwargs, exc_info, extra)
Creates a record from some given arguments and heads it over to the handling system.

notice(*args, **kwargs)
Logs a LogRecord with the level set to NOTICE.

process_record(record)
Processes the record with all context specific processors. This can be overriden to also inject additional
information as necessary that can be provided by this record dispatcher.

warn(*args, **kwargs)
Logs a LogRecord with the level set to WARNING. This function has an alias named warning().

warning(*args, **kwargs)
Alias for warn().

class logbook.base.LoggerGroup(loggers=None, level=0, processor=None)
A LoggerGroup represents a group of loggers. It cannot emit log messages on its own but it can be used to set
the disabled flag and log level of all loggers in the group.

Furthermore the process_record() method of the group is called by any logger in the group which by
default calls into the processor callback function.

add_logger(logger)
Adds a logger to this group.

disabled = None
the disabled flag for all loggers in the group, unless the loggers overrode the setting.

level = None
the level of the group. This is reflected to the loggers in the group unless they overrode the setting.

loggers = None
a list of all loggers on the logger group. Use the add_logger() and remove_logger() methods to
add or remove loggers from this list.

process_record(record)
Like Logger.process_record() but for all loggers in the group. By default this calls into the
processor function is it’s not None.

processor = None
an optional callback function that is executed to process the log records of all loggers in the group.

remove_logger(logger)
Removes a logger from the group.

class logbook.base.LogRecord(channel, level, msg, args=None, kwargs=None, exc_info=None, ex-
tra=None, frame=None, dispatcher=None)

A LogRecord instance represents an event being logged.

LogRecord instances are created every time something is logged. They contain all the information pertinent to
the event being logged. The main information passed in is in msg and args

args = None
the positional arguments for the format string.

calling_frame
The frame in which the record has been created. This only exists for as long the log record is not closed.

channel = None
the name of the logger that created it or any other textual channel description. This is a descriptive name
and can be used for filtering.

20 Chapter 1. Documentation

Logbook Documentation, Release 0.4

close()
Closes the log record. This will set the frame and calling frame to None and frame-related information will
no longer be available unless it was pulled in first (pull_information()). This makes a log record
safe for pickling and will clean up memory that might be still referenced by the frames.

dispatcher
The dispatcher that created the log record. Might not exist because a log record does not have to be created
from a logger or other dispatcher to be handled by logbook. If this is set, it will point to an object that
implements the RecordDispatcher interface.

exc_info = None
optional exception information. If set, this is a tuple in the form (exc_type, exc_value, tb) as
returned by sys.exc_info().

exception_message
The message of the exception.

exception_name
The name of the exception.

exception_shortname
An abbreviated exception name (no import path)

extra = None
optional extra information as dictionary. This is the place where custom log processors can attach custom
context sensitive data.

filename
The filename of the module in which the record has been created. Requires a frame or that
pull_information() was called before.

formatted_exception
The formatted exception which caused this record to be created in case there was any.

frame = None
If available, optionally the interpreter frame that pulled the heavy init. This usually points to somewhere
in the dispatcher. Might not be available for all calls and is removed when the log record is closed.

classmethod from_dict(d)
Creates a log record from an exported dictionary. This also supports JSON exported dictionaries.

func_name
The name of the function that triggered the log call if available. Requires a frame or that
pull_information() was called before.

heavy_init()
Does the heavy initialization that could be expensive. This must not be called from a higher stack level than
when the log record was created and the later the initialization happens, the more off the date information
will be for example.

This is internally used by the record dispatching system and usually something not to worry about.

heavy_initialized = False
a flag that is True if the log record is heavy initialized which is not the case by default.

information_pulled = False
a flag that is True when all the information was pulled from the information that becomes unavailable on
close.

keep_open = False
can be overriden by a handler to not close the record. This could lead to memory leaks so it should be used
carefully.

1.10. API Documentation 21

http://docs.python.org/library/sys.html#sys.exc_info

Logbook Documentation, Release 0.4

kwargs = None
the keyword arguments for the format string.

late = False
a flag that is True when heavy initialization is no longer possible

level = None
the level of the log record as integer.

level_name
The level as unicode string

lineno
The line number of the file in which the record has been created. Requires a frame or that
pull_information() was called before.

message
The formatted message.

module
The name of the module that triggered the log call if available. Requires a frame or that
pull_information() was called before.

msg = None
The message of the log record as new-style format string.

process = None
the PID of the current process

process_name
The name of the process in which the record has been created.

pull_information()
A helper function that pulls all frame-related information into the object so that this information is available
after the log record was closed.

thread
The ident of the thread. This is evaluated late and means that if the log record is passed to another thread,
pull_information() was called in the old thread.

thread_name
The name of the thread. This is evaluated late and means that if the log record is passed to another thread,
pull_information() was called in the old thread.

time = None
the time of the log record creation as datetime.datetime object. This information is unavailable
until the record was heavy initialized.

to_dict(json_safe=False)
Exports the log record into a dictionary without the information that cannot be safely serialized like inter-
preter frames and tracebacks.

update_from_dict(d)
Like the from_dict() classmethod, but will update the instance in place. Helpful for constructors.

class logbook.base.Flags(**flags)
Allows flags to be pushed on a flag stack. Currently two flags are available:

errors Can be set to override the current error behaviour. This value is used when logging calls fail. The default
behaviour is spitting out the stacktrace to stderr but this can be overridden:

22 Chapter 1. Documentation

http://docs.python.org/library/datetime.html#datetime.datetime

Logbook Documentation, Release 0.4

’silent’ fail silently
’raise’ raise a catchable exception
’print’ print the stacktrace to stderr (default)

introspection Can be used to disable frame introspection. This can give a speedup on production systems if you
are using a JIT compiled Python interpreter such as pypy. The default is True.

Note that the default setup of some of the handler (mail for instance) includes frame dependent information
which will not be available when introspection is disabled.

Example usage:

with Flags(errors='silent'):
...

applicationbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the
application.

static get_flag(flag, default=None)
Looks up the current value of a specific flag.

pop_application()
Pops the context object from the stack.

pop_thread()
Pops the context object from the stack.

push_application()
Pushes the context object to the application stack.

push_thread()
Pushes the context object to the thread stack.

threadbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the thread.

class logbook.base.Processor(callback=None)
Can be pushed to a stack to inject additional information into a log record as necessary:

def inject_ip(record):
record.extra['ip'] = '127.0.0.1'

with Processor(inject_ip):
...

applicationbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the
application.

callback = None
the callback that was passed to the constructor

pop_application()
Pops the context object from the stack.

pop_thread()
Pops the context object from the stack.

process(record)
Called with the log record that should be overridden. The default implementation calls callback if it is
not None.

1.10. API Documentation 23

Logbook Documentation, Release 0.4

push_application()
Pushes the context object to the application stack.

push_thread()
Pushes the context object to the thread stack.

threadbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the thread.

logbook.base.get_level_name(level)
Return the textual representation of logging level ‘level’.

logbook.base.lookup_level(level)
Return the integer representation of a logging level.

logbook.base.CRITICAL
logbook.base.ERROR
logbook.base.WARNING
logbook.base.INFO
logbook.base.DEBUG
logbook.base.NOTSET

The log level constants

1.10.2 Handlers

This documents the base handler interface as well as the provided core handlers. There are additional handlers for
special purposes in the logbook.more, logbook.ticketing and logbook.queues modules.

Base Interface

class logbook.handlers.Handler(level=0, filter=None, bubble=False)
Handler instances dispatch logging events to specific destinations.

The base handler class. Acts as a placeholder which defines the Handler interface. Handlers can optionally use
Formatter instances to format records as desired. By default, no formatter is specified; in this case, the ‘raw’
message as determined by record.message is logged.

To bind a handler you can use the push_application() and push_thread() methods. This will push
the handler on a stack of handlers. To undo this, use the pop_application() and pop_thread() meth-
ods:

handler = MyHandler()
handler.push_application()
all here goes to that handler
handler.pop_application()

By default messages send to that handler will not go to a handler on an outer level on the stack, if handled. This
can be changed by setting bubbling to True. This setup for example would not have any effect:

handler = NullHandler(bubble=False)
handler.push_application()

Whereas this setup disables all logging for the application:

handler = NullHandler()
handler.push_application()

There are also context managers to setup the handler for the duration of a with-block:

24 Chapter 1. Documentation

Logbook Documentation, Release 0.4

with handler.applicationbound():
...

with handler.threadbound():
...

Because threadbound is a common operation, it is aliased to a with on the handler itself:

with handler:
...

applicationbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the
application.

blackhole = False
a flag for this handler that can be set to True for handlers that are consuming log records but are not actually
displaying it. This flag is set for the NullHandler for instance.

bubble = None
the bubble flag of this handler

close()
Tidy up any resources used by the handler. This is automatically called by the destructor of the class as
well, but explicit calls are encouraged. Make sure that multiple calls to close are possible.

emit(record)
Emit the specified logging record. This should take the record and deliver it to whereever the handler sends
formatted log records.

emit_batch(records, reason)
Some handlers may internally queue up records and want to forward them at once to another handler. For
example the FingersCrossedHandler internally buffers records until a level threshold is reached in
which case the buffer is sent to this method and not emit() for each record.

The default behaviour is to call emit() for each record in the buffer, but handlers can use this to optimize
log handling. For instance the mail handler will try to batch up items into one mail and not to emit mails
for each record in the buffer.

Note that unlike emit() there is no wrapper method like handle() that does error handling. The reason
is that this is intended to be used by other handlers which are already protected against internal breakage.

reason is a string that specifies the rason why emit_batch() was called, and not emit(). The follow-
ing are valid values:

’buffer’ Records were buffered for performance reasons or because the records were sent to another
process and buffering was the only possible way. For most handlers this should be equivalent to
calling emit() for each record.

’escalation’ Escalation means that records were buffered in case the threshold was exceeded. In this
case, the last record in the iterable is the record that triggered the call.

’group’ All the records in the iterable belong to the same logical component and happened in the same
process. For example there was a long running computation and the handler is invoked with a bunch
of records that happened there. This is similar to the escalation reason, just that the first one is the
significant one, not the last.

If a subclass overrides this and does not want to handle a specific reason it must call into the superclass
because more reasons might appear in future releases.

Example implementation:

1.10. API Documentation 25

Logbook Documentation, Release 0.4

def emit_batch(self, records, reason):
if reason not in ('escalation', 'group'):

Handler.emit_batch(self, records, reason)
...

filter = None
the filter to be used with this handler

format(record)
Formats a record with the given formatter. If no formatter is set, the record message is returned. Generally
speaking the return value is most likely a unicode string, but nothing in the handler interface requires a
formatter to return a unicode string.

The combination of a handler and formatter might have the formatter return an XML element tree for
example.

formatter = None
the formatter to be used on records. This is a function that is passed a log record as first argument and the
handler as second and returns something formatted (usually a unicode string)

handle(record)
Emits the record and falls back. It tries to emit() the record and if that fails, it will call into
handle_error() with the record and traceback. This function itself will always emit when called,
even if the logger level is higher than the record’s level.

If this method returns False it signals to the calling function that no recording took place in which case it
will automatically bubble. This should not be used to signal error situations. The default implementation
always returns True.

handle_error(record, exc_info)
Handle errors which occur during an emit() call. The behaviour of this function depends on the current
errors setting.

Check Flags for more information.

level = None
the level for the handler. Defaults to NOTSET which consumes all entries.

level_name
The level as unicode string

pop_application()
Pops the context object from the stack.

pop_thread()
Pops the context object from the stack.

push_application()
Pushes the context object to the application stack.

push_thread()
Pushes the context object to the thread stack.

should_handle(record)
Returns True if this handler wants to handle the record. The default implementation checks the level.

threadbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the thread.

class logbook.base.NestedSetup(objects=None)
A nested setup can be used to configure multiple handlers and processors at once.

26 Chapter 1. Documentation

Logbook Documentation, Release 0.4

class logbook.handlers.StringFormatter(format_string)
Many handlers format the log entries to text format. This is done by a callable that is passed a log record and
returns an unicode string. The default formatter for this is implemented as a class so that it becomes possible to
hook into every aspect of the formatting process.

Core Handlers

class logbook.handlers.StreamHandler(stream, level=0, format_string=None, encoding=None, fil-
ter=None, bubble=False)

a handler class which writes logging records, appropriately formatted, to a stream. note that this class does not
close the stream, as sys.stdout or sys.stderr may be used.

If a stream handler is used in a with statement directly it will close() on exit to support this pattern:

with StreamHandler(my_stream):
pass

Notes on the encoding
On Python 3, the encoding parameter is only used if a stream was passed that was opened in binary mode.

close()
The default stream handler implementation is not to close the wrapped stream but to flush it.

flush()
Flushes the inner stream.

format_and_encode(record)
Formats the record and encodes it to the stream encoding.

write(item)
Writes a bytestring to the stream.

class logbook.handlers.FileHandler(filename, mode=’a’, encoding=None, level=0, for-
mat_string=None, delay=False, filter=None, bubble=False)

A handler that does the task of opening and closing files for you. By default the file is opened right away, but
you can also delay the open to the point where the first message is written.

This is useful when the handler is used with a FingersCrossedHandler or something similar.

class logbook.handlers.MonitoringFileHandler(filename, mode=’a’, encoding=’utf-8’,
level=0, format_string=None, delay=False,
filter=None, bubble=False)

A file handler that will check if the file was moved while it was open. This might happen on POSIX systems if
an application like logrotate moves the logfile over.

Because of different IO concepts on Windows, this handler will not work on a windows system.

class logbook.handlers.StderrHandler(level=0, format_string=None, filter=None, bubble=False)
A handler that writes to what is currently at stderr. At the first glace this appears to just be a StreamHandler
with the stream set to sys.stderr but there is a difference: if the handler is created globally and
sys.stderr changes later, this handler will point to the current stderr, whereas a stream handler would
still point to the old one.

class logbook.handlers.RotatingFileHandler(filename, mode=’a’, encoding=’utf-8’,
level=0, format_string=None, delay=False,
max_size=1048576, backup_count=5, fil-
ter=None, bubble=False)

This handler rotates based on file size. Once the maximum size is reached it will reopen the file and start with an

1.10. API Documentation 27

http://docs.python.org/library/sys.html#sys.stderr
http://docs.python.org/library/sys.html#sys.stderr

Logbook Documentation, Release 0.4

empty file again. The old file is moved into a backup copy (named like the file, but with a .backupnumber
appended to the file. So if you are logging to mail the first backup copy is called mail.1.)

The default number of backups is 5. Unlike a similar logger from the logging package, the backup count is
mandatory because just reopening the file is dangerous as it deletes the log without asking on rollover.

class logbook.handlers.TimedRotatingFileHandler(filename, mode=’a’, encoding=’utf-
8’, level=0, format_string=None,
date_format=’%Y-%m-%d’,
backup_count=0, filter=None, bub-
ble=False)

This handler rotates based on dates. It will name the file after the filename you specify and the date_format
pattern.

So for example if you configure your handler like this:

handler = TimedRotatingFileHandler('/var/log/foo.log',
date_formnat='%Y-%m-%d')

The filenames for the logfiles will look like this:

/var/log/foo-2010-01-10.log
/var/log/foo-2010-01-11.log
...

By default it will keep all these files around, if you want to limit them, you can specify a backup_count.

files_to_delete()
Returns a list with the files that have to be deleted when a rollover occours.

class logbook.handlers.TestHandler(level=0, format_string=None, filter=None, bubble=False)
Like a stream handler but keeps the values in memory. This logger provides some ways to test for the records in
memory.

Example usage:

def my_test():
with logbook.TestHandler() as handler:

logger.warn('A warning')
assert logger.has_warning('A warning')
...

close()
Close all records down when the handler is closed.

formatted_records
Captures the formatted log records as unicode strings.

has_critical(*args, **kwargs)
True if a specific CRITICAL log record exists.

See Probe Log Records for more information.

has_criticals
True if any CRITICAL records were found.

has_debug(*args, **kwargs)
True if a specific DEBUG log record exists.

See Probe Log Records for more information.

has_debugs
True if any DEBUG records were found.

28 Chapter 1. Documentation

Logbook Documentation, Release 0.4

has_error(*args, **kwargs)
True if a specific ERROR log record exists.

See Probe Log Records for more information.

has_errors
True if any ERROR records were found.

has_info(*args, **kwargs)
True if a specific INFO log record exists.

See Probe Log Records for more information.

has_infos
True if any INFO records were found.

has_notice(*args, **kwargs)
True if a specific NOTICE log record exists.

See Probe Log Records for more information.

has_notices
True if any NOTICE records were found.

has_warning(*args, **kwargs)
True if a specific WARNING log record exists.

See Probe Log Records for more information.

has_warnings
True if any WARNING records were found.

records = None
captures the LogRecords as instances

class logbook.handlers.MailHandler(from_addr, recipients, subject=None, server_addr=None,
credentials=None, secure=None, record_limit=None,
record_delta=None, level=0, format_string=None, re-
lated_format_string=None, filter=None, bubble=False)

A handler that sends error mails. The format string used by this handler are the contents of the mail plus the
headers. This is handy if you want to use a custom subject or X- header:

handler = MailHandler(format_string=''' Subject: {record.level_name} on My Application

{record.message}
{record.extra[a_custom_injected_record]}
''')

This handler will always emit text-only mails for maximum portability and best performance.

In the default setting it delivers all log records but it can be set up to not send more than n mails for the same
record each hour to not overload an inbox and the network in case a message is triggered multiple times a
minute. The following example limits it to 60 mails an hour:

from datetime import timedelta
handler = MailHandler(record_limit=1,

record_delta=timedelta(minutes=1))

The default timedelta is 60 seconds (one minute).

The mail handler is sending mails in a blocking manner. If you are not using some centralized system for
logging these messages (with the help of ZeroMQ or others) and the logging system slows you down you can

1.10. API Documentation 29

Logbook Documentation, Release 0.4

wrap the handler in a logbook.queues.ThreadedWrapperHandler that will then send the mails in a
background thread.

Changed in version 0.3: The handler supports the batching system now.

close_connection(con)
Closes the connection that was returned by get_connection().

collapse_mails(mail, related, reason)
When escaling or grouped mails are

deliver(msg, recipients)
Delivers the given message to a list of recpients.

format_related_record(record)
Used for format the records that led up to another record or records that are related into strings. Used by
the batch formatter.

generate_mail(record, suppressed=0)
Generates the final email (email.message.Message) with headers and date. suppressed is the num-
ber of mails that were not send if the record_limit feature is active.

get_connection()
Returns an SMTP connection. By default it reconnects for each sent mail.

get_recipients(record)
Returns the recipients for a record. By default the recipients attribute is returned for all records.

max_record_cache = 512
the maximum number of record hashes in the cache for the limiting feature. Afterwards,
record_cache_prune percent of the oldest entries are removed

message_from_record(record, suppressed)
Creates a new message for a record as email message object (email.message.Message). suppressed
is the number of mails not sent if the record_limit feature is active.

record_cache_prune = 0.333
the number of items to prune on a cache overflow in percent.

class logbook.handlers.SyslogHandler(application_name=None, address=None, facility=’user’,
socktype=2, level=0, format_string=None, filter=None,
bubble=False)

A handler class which sends formatted logging records to a syslog server. By default it will send to it via unix
socket.

class logbook.handlers.NTEventLogHandler(application_name, log_type=’Application’, level=0,
format_string=None, filter=None, bubble=False)

A handler that sends to the NT event log system.

unregister_logger()
Removes the application binding from the registry. If you call this, the log viewer will no longer be able
to provide any information about the message.

class logbook.handlers.NullHandler(level=0, filter=None, bubble=False)
A handler that does nothing, meant to be inserted in a handler chain with bubble=False to stop further
processing.

class logbook.handlers.WrapperHandler(handler)
A class that can wrap another handler and redirect all calls to the wrapped handler:

handler = WrapperHandler(other_handler)

Subclasses should override the _direct_attrs attribute as necessary.

30 Chapter 1. Documentation

http://docs.python.org/library/email.message.html#email.message.Message
http://docs.python.org/library/email.message.html#email.message.Message

Logbook Documentation, Release 0.4

logbook.handlers.create_syshandler(application_name, level=0)
Creates the handler the operating system provides. On Unix systems this creates a SyslogHandler, on
Windows sytems it will create a NTEventLogHandler.

Special Handlers

class logbook.handlers.FingersCrossedHandler(handler, action_level=5, buffer_size=0,
pull_information=True, reset=False, fil-
ter=None, bubble=False)

This handler wraps another handler and will log everything in memory until a certain level (action_level, defaults
to ERROR) is exceeded. When that happens the fingers crossed handler will activate forever and log all buffered
records as well as records yet to come into another handled which was passed to the constructor.

Alternatively it’s also possible to pass a factory function to the constructor instead of a handler. That factory is
then called with the triggering log entry and the finger crossed handler to create a handler which is then cached.

The idea of this handler is to enable debugging of live systems. For example it might happen that code works
perfectly fine 99% of the time, but then some exception happens. But the error that caused the exception alone
might not be the interesting bit, the interesting information were the warnings that lead to the error.

Here a setup that enables this for a web application:

from logbook import FileHandler
from logbook import FingersCrossedHandler

def issue_logging():
def factory(record, handler):

return FileHandler('/var/log/app/issue-%s.log' % record.time)
return FingersCrossedHandler(factory)

def application(environ, start_response):
with issue_logging():

return the_actual_wsgi_application(environ, start_response)

Whenever an error occours, a new file in /var/log/app is created with all the logging calls that lead up to
the error up to the point where the with block is exited.

Please keep in mind that the FingersCrossedHandler handler is a one-time handler. Once triggered, it
will not reset. Because of that you will have to re-create it whenever you bind it. In this case the handler is
created when it’s bound to the thread.

Due to how the handler is implemented, the filter, bubble and level flags of the wrapped handler are ignored.

Changed in version 0.3.

The default behaviour is to buffer up records and then invoke another handler when a severity theshold was
reached with the buffer emitting. This now enables this logger to be properly used with the MailHandler.
You will now only get one mail for each bfufered record. However once the threshold was reached you would
still get a mail for each record which is why the reset flag was added.

When set to True, the handler will instantly reset to the untriggered state and start buffering again:

handler = FingersCrossedHandler(MailHandler(...),
buffer_size=10,
reset=True)

New in version 0.3: The reset flag was added.

batch_emit_reason = ‘escalation’
the reason to be used for the batch emit. The default is ’escalation’.

1.10. API Documentation 31

Logbook Documentation, Release 0.4

New in version 0.3.

buffer_size = None
the maximum number of entries in the buffer. If this is exhausted the oldest entries will be discarded to
make place for new ones

buffered_records = None
the buffered records of the handler. Once the action is triggered (triggered) this list will be None. This
attribute can be helpful for the handler factory function to select a proper filename (for example time of
first log record)

triggered
This attribute is True when the action was triggered. From this point onwards the finger crossed handler
transparently forwards all log records to the inner handler. If the handler resets itself this will always be
False.

class logbook.handlers.GroupHandler(handler, pull_information=True)
A handler that buffers all messages until it is popped again and then forwards all messages to another handler.
This is useful if you for example have an application that does computations and only a result mail is required.
A group handler makes sure that only one mail is sent and not multiple. Some other handles might support this
as well, though currently none of the builtins do.

Example:

with GroupHandler(MailHandler(...)):
everything here ends up in the mail

The GroupHandler is implemented as a WrapperHandler thus forwarding all attributes of the wrapper
handler.

Notice that this handler really only emit the records when the handler is popped from the stack.

New in version 0.3.

Mixin Classes

class logbook.handlers.StringFormatterHandlerMixin(format_string)
A mixin for handlers that provides a default integration for the StringFormatter class. This is used for all
handlers by default that log text to a destination.

default_format_string = u’[{record.time:%Y-%m-%d %H:%M}] {record.level_name}: {record.channel}: {record.message}’
a class attribute for the default format string to use if the constructor was invoked with None.

format_string
the currently attached format string as new-style format string.

formatter_class
the class to be used for string formatting

alias of StringFormatter

class logbook.handlers.HashingHandlerMixin
Mixin class for handlers that are hashing records.

hash_record(record)
Returns a hash for a record to keep it apart from other records. This is used for the record_limit feature.
By default The level, channel, filename and location are hashed.

Calls into hash_record_raw().

32 Chapter 1. Documentation

Logbook Documentation, Release 0.4

hash_record_raw(record)
Returns a hashlib object with the hash of the record.

class logbook.handlers.LimitingHandlerMixin(record_limit, record_delta)
Mixin class for handlers that want to limit emitting records.

In the default setting it delivers all log records but it can be set up to not send more than n mails for the same
record each hour to not overload an inbox and the network in case a message is triggered multiple times a
minute. The following example limits it to 60 mails an hour:

from datetime import timedelta
handler = MailHandler(record_limit=1,

record_delta=timedelta(minutes=1))

check_delivery(record)
Helper function to check if data should be delivered by this handler. It returns a tuple in the form
(suppression_count, allow). The first one is the number of items that were not delivered so
far, the second is a boolean flag if a delivery should happen now.

1.10.3 Utilities

This documents general purpose utility functions available in Logbook.

logbook.debug(self, *args, **kwargs)
Logs a LogRecord with the level set to DEBUG.

logbook.info(self, *args, **kwargs)
Logs a LogRecord with the level set to INFO.

logbook.warn(self, *args, **kwargs)
Logs a LogRecord with the level set to WARNING. This function has an alias named warning().

logbook.warning(self, *args, **kwargs)
Alias for warn().

logbook.notice(self, *args, **kwargs)
Logs a LogRecord with the level set to NOTICE.

logbook.error(self, *args, **kwargs)
Logs a LogRecord with the level set to ERROR.

logbook.exception(self, *args, **kwargs)
Works exactly like error() just that the message is optional and exception information is recorded.

logbook.catch_exceptions(self, *args, **kwargs)
A context manager that catches exceptions and calls exception() for exceptions caught that way. Example:

with logger.catch_exceptions():
execute_code_that_might_fail()

logbook.critical(self, *args, **kwargs)
Logs a LogRecord with the level set to CRITICAL.

logbook.log(self, level, *args, **kwargs)
Logs a LogRecord with the level set to the level parameter. Because custom levels are not supported by
logbook, this method is mainly used to avoid the use of reflection (e.g.: getattr()) for programmatic logging.

1.10. API Documentation 33

http://docs.python.org/library/functions.html#getattr

Logbook Documentation, Release 0.4

1.10.4 Queue Support

The queue support module makes it possible to add log records to a queue system. This is useful for distributed
setups where you want multiple processes to log to the same backend. Currently supported are ZeroMQ as well as the
multiprocessing Queue class.

ZeroMQ

class logbook.queues.ZeroMQHandler(uri=None, level=0, filter=None, bubble=False, con-
text=None)

A handler that acts as a ZeroMQ publisher, which publishes each record as json dump. Requires the pyzmq
library.

The queue will be filled with JSON exported log records. To receive such log records from a queue you can use
the ZeroMQSubscriber.

Example setup:

handler = ZeroMQHandler('tcp://127.0.0.1:5000')

context = None
the zero mq context

export_record(record)
Exports the record into a dictionary ready for JSON dumping.

socket = None
the zero mq socket.

class logbook.queues.ZeroMQSubscriber(uri=None, context=None)
A helper that acts as ZeroMQ subscriber and will dispatch received log records to the active handler setup. There
are multiple ways to use this class.

It can be used to receive log records from a queue:

subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
record = subscriber.recv()

But it can also be used to receive and dispatch these in one go:

with target_handler:
subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
subscriber.dispatch_forever()

This will take all the log records from that queue and dispatch them over to target_handler. If you want you can
also do that in the background:

subscriber = ZeroMQSubscriber('tcp://127.0.0.1:5000')
controller = subscriber.dispatch_in_background(target_handler)

The controller returned can be used to shut down the background thread:

controller.stop()

close()
Closes the zero mq socket.

context = None
the zero mq context

34 Chapter 1. Documentation

http://docs.python.org/library/multiprocessing.html#module-multiprocessing
http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue

Logbook Documentation, Release 0.4

dispatch_forever()
Starts a loop that dispatches log records forever.

dispatch_in_background(setup=None)
Starts a new daemonized thread that dispatches in the background. An optional handler setup can be
provided that pushed to the new thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down the background thread. The background thread
will already be running when this function returns.

dispatch_once(timeout=None)
Receives one record from the socket, loads it and dispatches it. Returns True if something was dispatched
or False if it timed out.

recv(timeout=None)
Receives a single record from the socket. Timeout of 0 means nonblocking, None means blocking and
otherwise it’s a timeout in seconds after which the function just returns with None.

socket = None
the zero mq socket.

MultiProcessing

class logbook.queues.MultiProcessingHandler(queue, level=0, filter=None, bubble=False)
Implements a handler that dispatches over a queue to a different process. It is connected to a subscriber with a
multiprocessing.Queue:

from multiprocessing import Queue
from logbook.queues import MultiProcessingHandler
queue = Queue(-1)
handler = MultiProcessingHandler(queue)

class logbook.queues.MultiProcessingSubscriber(queue=None)
Receives log records from the given multiprocessing queue and dispatches them to the active handler setup.
Make sure to use the same queue for both handler and subscriber. Idaelly the queue is set up with maximum
size (-1):

from multiprocessing import Queue
queue = Queue(-1)

It can be used to receive log records from a queue:

subscriber = MultiProcessingSubscriber(queue)
record = subscriber.recv()

But it can also be used to receive and dispatch these in one go:

with target_handler:
subscriber = MultiProcessingSubscriber(queue)
subscriber.dispatch_forever()

This will take all the log records from that queue and dispatch them over to target_handler. If you want you can
also do that in the background:

subscriber = MultiProcessingSubscriber(queue)
controller = subscriber.dispatch_in_background(target_handler)

The controller returned can be used to shut down the background thread:

1.10. API Documentation 35

http://docs.python.org/library/multiprocessing.html#multiprocessing.Queue

Logbook Documentation, Release 0.4

controller.stop()

If no queue is provided the subscriber will create one. This one can the be used by handlers:

subscriber = MultiProcessingSubscriber()
handler = MultiProcessingHandler(subscriber.queue)

dispatch_forever()
Starts a loop that dispatches log records forever.

dispatch_in_background(setup=None)
Starts a new daemonized thread that dispatches in the background. An optional handler setup can be
provided that pushed to the new thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down the background thread. The background thread
will already be running when this function returns.

dispatch_once(timeout=None)
Receives one record from the socket, loads it and dispatches it. Returns True if something was dispatched
or False if it timed out.

Other

class logbook.queues.ThreadedWrapperHandler(handler)
This handled uses a single background thread to dispatch log records to a specific other handler using an internal
queue. The idea is that if you are using a handler that requires some time to hand off the log records (such as
the mail handler) and would block your request, you can let Logbook do that in a background thread.

The threaded wrapper handler will automatically adopt the methods and properties of the wrapped handler. All
the values will be reflected:

>>> twh = ThreadedWrapperHandler(TestHandler())
>>> from logbook import WARNING
>>> twh.level_name = 'WARNING'
>>> twh.handler.level_name
'WARNING'

class logbook.queues.SubscriberGroup(subscribers=None, queue_limit=10)
This is a subscriber which represents a group of subscribers.

This is helpful if you are writing a server-like application which has “slaves”. This way a user is easily able
to view every log record which happened somewhere in the entire system without having to check every single
slave:

subscribers = SubscriberGroup([
MultiProcessingSubscriber(queue),
ZeroMQSubscriber('tcp://localhost:5000')

])
with target_handler:

subscribers.dispatch_forever()

add(subscriber)
Adds the given subscriber to the group.

stop()
Stops the group from internally recieving any more messages, once the internal queue is exhausted
recv() will always return None.

36 Chapter 1. Documentation

Logbook Documentation, Release 0.4

Base Interface

class logbook.queues.SubscriberBase
Baseclass for all subscribers.

dispatch_forever()
Starts a loop that dispatches log records forever.

dispatch_in_background(setup=None)
Starts a new daemonized thread that dispatches in the background. An optional handler setup can be
provided that pushed to the new thread (can be any logbook.base.StackedObject).

Returns a ThreadController object for shutting down the background thread. The background thread
will already be running when this function returns.

dispatch_once(timeout=None)
Receives one record from the socket, loads it and dispatches it. Returns True if something was dispatched
or False if it timed out.

recv(timeout=None)
Receives a single record from the socket. Timeout of 0 means nonblocking, None means blocking and
otherwise it’s a timeout in seconds after which the function just returns with None.

Subclasses have to override this.

class logbook.queues.ThreadController(subscriber, setup=None)
A helper class used by queue subscribers to control the background thread. This is usually created and started
in one go by dispatch_in_background() or a comparable function.

start()
Starts the task thread.

stop()
Stops the task thread.

class logbook.queues.TWHThreadController(wrapper_handler)
A very basic thread controller that pulls things in from a queue and sends it to a handler. Both queue and handler
are taken from the passed ThreadedWrapperHandler.

start()
Starts the task thread.

stop()
Stops the task thread.

1.10.5 Ticketing Support

This documents the support classes for ticketing. With ticketing handlers log records are categorized by location and
for every emitted log record a count is added. That way you know how often certain messages are triggered, at what
times and when the last occurrence was.

class logbook.ticketing.TicketingBaseHandler(hash_salt, level=0, filter=None, bub-
ble=False)

Baseclass for ticketing handlers. This can be used to interface ticketing systems that do not necessarily provide
an interface that would be compatible with the BackendBase interface.

hash_record_raw(record)
Returns the unique hash of a record.

1.10. API Documentation 37

Logbook Documentation, Release 0.4

class logbook.ticketing.TicketingHandler(uri, app_id=’generic’, level=0, filter=None,
bubble=False, hash_salt=None, backend=None,
**db_options)

A handler that writes log records into a remote database. This database can be connected to from different
dispatchers which makes this a nice setup for web applications:

from logbook.ticketing import TicketingHandler
handler = TicketingHandler('sqlite:////tmp/myapp-logs.db')

Parameters

• uri – a backend specific string or object to decide where to log to.

• app_id – a string with an optional ID for an application. Can be used to keep multiple
application setups apart when logging into the same database.

• hash_salt – an optional salt (binary string) for the hashes.

• backend – A backend class that implements the proper database handling. Backends
available are: SQLAlchemyBackend, MongoDBBackend.

default_backend
The default backend that is being used when no backend is specified. Unless overriden by a subclass this
will be the SQLAlchemyBackend.

alias of SQLAlchemyBackend

emit(record)
Emits a single record and writes it to the database.

process_record(record, hash)
Subclasses can override this to tamper with the data dict that is sent to the database as JSON.

record_ticket(record, data, hash)
Record either a new ticket or a new occurrence for a ticket based on the hash.

class logbook.ticketing.BackendBase(**options)
Provides an abstract interface to various databases.

count_tickets()
Returns the number of tickets.

delete_ticket(ticket_id)
Deletes a ticket from the database.

get_occurrences(ticket, order_by=’-time’, limit=50, offset=0)
Selects occurrences from the database for a ticket.

get_ticket(ticket_id)
Return a single ticket with all occurrences.

get_tickets(order_by=’-last_occurrence_time’, limit=50, offset=0)
Selects tickets from the database.

record_ticket(record, data, hash, app_id)
Records a log record as ticket.

setup_backend()
Setup the database backend.

solve_ticket(ticket_id)
Marks a ticket as solved.

38 Chapter 1. Documentation

Logbook Documentation, Release 0.4

class logbook.ticketing.SQLAlchemyBackend(**options)
Implements a backend that is writing into a database SQLAlchemy can interface.

This backend takes some additional options:

table_prefix an optional table prefix for all tables created by the logbook ticketing handler.

metadata an optional SQLAlchemy metadata object for the table creation.

autocreate_tables can be set to False to disable the automatic creation of the logbook tables.

class logbook.ticketing.MongoDBBackend(**options)
Implements a backend that writes into a MongoDB database.

1.10.6 The More Module

The more module implements special handlers and other things that are beyond the scope of Logbook itself or depend
on external libraries. Additionally there are some handlers in logbook.ticketing, logbook.queues and
logbook.notifiers.

Tagged Logging

class logbook.more.TaggingLogger(name=None, tags=None)
A logger that attaches a tag to each record. This is an alternative record dispatcher that does not use levels but
tags to keep log records apart. It is constructed with a descriptive name and at least one tag. The tags are up for
you to define:

logger = TaggingLogger('My Logger', ['info', 'warning'])

For each tag defined that way, a method appears on the logger with that name:

logger.info('This is a info message')

To dispatch to different handlers based on tags you can use the TaggingHandler.

The tags themselves are stored as list named ’tags’ in the extra dictionary.

call_handlers(record)
Pass a record to all relevant handlers in the following order:

•per-dispatcher handlers are handled first

•afterwards all the current context handlers in the order they were pushed

Before the first handler is invoked, the record is processed (process_record()).

handle(record)
Call the handlers for the specified record. This is invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled and if the record level is greater than the
level of the record dispatcher. In that case it will call the handlers (call_handlers()).

make_record_and_handle(level, msg, args, kwargs, exc_info, extra)
Creates a record from some given arguments and heads it over to the handling system.

process_record(record)
Processes the record with all context specific processors. This can be overriden to also inject additional
information as necessary that can be provided by this record dispatcher.

1.10. API Documentation 39

Logbook Documentation, Release 0.4

class logbook.more.TaggingHandler(handlers, filter=None, bubble=False)
A handler that logs for tags and dispatches based on those.

Example:

import logbook
from logbook.more import TaggingHandler

handler = TaggingHandler(dict(
info=OneHandler(),
warning=AnotherHandler()

))

Special Handlers

class logbook.more.TwitterHandler(consumer_key, consumer_secret, username, password, level=0,
format_string=None, filter=None, bubble=False)

A handler that logs to twitter. Requires that you sign up an application on twitter and request xauth support.
Furthermore the oauth2 library has to be installed.

If you don’t want to register your own application and request xauth credentials, there are a couple of leaked
consumer key and secret pairs from application explicitly whitelisted at Twitter (leaked secrets).

formatter_class
alias of TwitterFormatter

get_oauth_token()
Returns the oauth access token.

make_client()
Creates a new oauth client auth a new access token.

tweet(status)
Tweets a given status. Status must not exceed 140 chars.

class logbook.more.ExternalApplicationHandler(arguments, stdin_format=None,
encoding=’utf-8’, level=0, filter=None,
bubble=False)

This handler invokes an external application to send parts of the log record to. The constructor takes a list of
arguments that are passed to another application where each of the arguments is a format string, and optionally
a format string for data that is passed to stdin.

For example it can be used to invoke the say command on OS X:

from logbook.more import ExternalApplicationHandler
say_handler = ExternalApplicationHandler(['say', '{record.message}'])

Note that the above example is blocking until say finished, so it’s recommended to combine this handler with
the logbook.ThreadedWrapperHandler to move the execution into a background thread.

New in version 0.3.

class logbook.more.ExceptionHandler(exc_type, level=0, format_string=None, filter=None, bub-
ble=False)

An exception handler which raises exceptions of the given exc_type. This is especially useful if you set a specific
error level e.g. to treat warnings as exceptions:

from logbook.more import ExceptionHandler

class ApplicationWarning(Exception):
pass

40 Chapter 1. Documentation

http://bit.ly/leaked-secrets

Logbook Documentation, Release 0.4

exc_handler = ExceptionHandler(ApplicationWarning, level='WARNING')

New in version 0.3.

Colorized Handlers

New in version 0.3.

class logbook.more.ColorizedStderrHandler(level=0, format_string=None, filter=None, bub-
ble=False)

A colorizing stream handler that writes to stderr. It will only colorize if a terminal was detected. Note that this
handler does not colorize on Windows systems.

New in version 0.3.

class logbook.more.ColorizingStreamHandlerMixin
A mixin class that does colorizing.

New in version 0.3.

get_color(record)
Returns the color for this record.

should_colorize(record)
Returns True if colorizing should be applied to this record. The default implementation returns True if the
stream is a tty and we are not executing on windows.

Other

class logbook.more.JinjaFormatter(template)
A formatter object that makes it easy to format using a Jinja 2 template instead of a format string.

1.10.7 The Notifiers Module

The notifiers module implements special handlers for various platforms that depend on external libraries. The more
module implements special handlers and other things that are beyond the scope of Logbook itself or depend on external
libraries.

logbook.notifiers.create_notification_handler(application_name=None, level=0,
icon=None)

Creates a handler perfectly fit the current platform. On Linux systems this creates a LibNotifyHandler, on
OS X systems it will create a GrowlHandler.

OSX Specific Handlers

class logbook.notifiers.GrowlHandler(application_name=None, icon=None, host=None, pass-
word=None, record_limit=None, record_delta=None,
level=0, filter=None, bubble=False)

A handler that dispatches to Growl. Requires that either growl-py or py-Growl are installed.

get_priority(record)
Returns the priority flag for Growl. Errors and criticals are get highest priority (2), warnings get higher
priority (1) and the rest gets 0. Growl allows values between -2 and 2.

1.10. API Documentation 41

Logbook Documentation, Release 0.4

is_sticky(record)
Returns True if the sticky flag should be set for this record. The default implementation marks errors and
criticals sticky.

Linux Specific Handlers

class logbook.notifiers.LibNotifyHandler(application_name=None, icon=None,
no_init=False, record_limit=None,
record_delta=None, level=0, filter=None, bub-
ble=False)

A handler that dispatches to libnotify. Requires pynotify installed. If no_init is set to True the initialization of
libnotify is skipped.

get_expires(record)
Returns either EXPIRES_DEFAULT or EXPIRES_NEVER for this record. The default implementation
marks errors and criticals as EXPIRES_NEVER.

get_urgency(record)
Returns the urgency flag for pynotify. Errors and criticals are get highest urgency (CRITICAL), warnings
get higher priority (NORMAL) and the rest gets LOW.

set_notifier_icon(notifier, icon)
Used to attach an icon on a notifier object.

Other Services

class logbook.notifiers.BoxcarHandler(email, password, record_limit=None,
record_delta=None, level=0, filter=None, bub-
ble=False)

Sends notifications to boxcar.io. Can be forwarded to your iPhone or other compatible device.

get_screen_name(record)
Returns the value of the screen name field.

class logbook.notifiers.NotifoHandler(application_name=None, username=None, secret=None,
record_limit=None, record_delta=None, level=0, fil-
ter=None, bubble=False, hide_level=False)

Sends notifications to notifo.com. Can be forwarded to your Desktop, iPhone, or other compatible device.

Base Interface

class logbook.notifiers.NotificationBaseHandler(application_name=None,
record_limit=None, record_delta=None,
level=0, filter=None, bubble=False)

Baseclass for notification handlers.

make_text(record)
Called to get the text of the record.

make_title(record)
Called to get the title from the record.

1.10.8 Compatibility

This documents compatibility support with existing systems such as logging and warnings.

42 Chapter 1. Documentation

http://docs.python.org/library/logging.html#module-logging
http://docs.python.org/library/warnings.html#module-warnings

Logbook Documentation, Release 0.4

Logging Compatibility

logbook.compat.redirect_logging()
Permanently redirects logging to the stdlib. This also removes all otherwise registered handlers on root logger
of the logging system but leaves the other loggers untouched.

logbook.compat.redirected_logging()
Temporarily redirects logging for all threads and reverts it later to the old handlers. Mainly used by the internal
unittests:

from logbook.compat import redirected_logging
with redirected_logging():

...

class logbook.compat.RedirectLoggingHandler
A handler for the stdlib’s logging system that redirects transparently to logbook. This is used by the
redirect_logging() and redirected_logging() functions.

If you want to customize the redirecting you can subclass it.

convert_level(level)
Converts a logging level into a logbook level.

convert_record(old_record)
Converts an old logging record into a logbook log record.

convert_time(timestamp)
Converts the UNIX timestamp of the old record into a datetime object as used by logbook.

find_caller(old_record)
Tries to find the caller that issued the call.

find_extra(old_record)
Tries to find custom data from the old logging record. The return value is a dictionary that is merged with
the log record extra dictionaries.

class logbook.compat.LoggingHandler(logger=None, level=0, filter=None, bubble=False)
Does the opposite of the RedirectLoggingHandler, it sends messages from logbook to logging. Because
of that, it’s a very bad idea to configure both.

This handler is for logbook and will pass stuff over to a logger from the standard library.

Example usage:

from logbook.compat import LoggingHandler, warn
with LoggingHandler():

warn('This goes to logging')

convert_level(level)
Converts a logbook level into a logging level.

convert_record(old_record)
Converts a record from logbook to logging.

convert_time(dt)
Converts a datetime object into a timestamp.

get_logger(record)
Returns the logger to use for this record. This implementation always return logger.

1.10. API Documentation 43

Logbook Documentation, Release 0.4

Warnings Compatibility

logbook.compat.redirect_warnings()
Like redirected_warnings() but will redirect all warnings to the shutdown of the interpreter:

from logbook.compat import redirect_warnings
redirect_warnings()

logbook.compat.redirected_warnings()
A context manager that copies and restores the warnings filter upon exiting the context, and logs warnings using
the logbook system.

The channel attribute of the log record will be the import name of the warning.

Example usage:

from logbook.compat import redirected_warnings
from warnings import warn

with redirected_warnings():
warn(DeprecationWarning('logging should be deprecated'))

1.10.9 Internal API

This documents the internal API that might be useful for more advanced setups or custom handlers.

logbook.base.dispatch_record(record)
Passes a record on to the handlers on the stack. This is useful when log records are created programmatically
and already have all the information attached and should be dispatched independent of a logger.

class logbook.base.StackedObject
Baseclass for all objects that provide stack manipulation operations.

applicationbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the
application.

pop_application()
Pops the stacked object from the application stack.

pop_thread()
Pops the stacked object from the thread stack.

push_application()
Pushes the stacked object to the application stack.

push_thread()
Pushes the stacked object to the thread stack.

threadbound(_cls=<class ‘logbook._fallback._StackBound’>)
Can be used in combination with the with statement to execute code while the object is bound to the thread.

class logbook.base.RecordDispatcher(name=None, level=0)
A record dispatcher is the internal base class that implements the logic used by the Logger.

call_handlers(record)
Pass a record to all relevant handlers in the following order:

•per-dispatcher handlers are handled first

•afterwards all the current context handlers in the order they were pushed

44 Chapter 1. Documentation

Logbook Documentation, Release 0.4

Before the first handler is invoked, the record is processed (process_record()).

group = None
optionally the name of the group this logger belongs to

handle(record)
Call the handlers for the specified record. This is invoked automatically when a record should be handled.
The default implementation checks if the dispatcher is disabled and if the record level is greater than the
level of the record dispatcher. In that case it will call the handlers (call_handlers()).

handlers = None
list of handlers specific for this record dispatcher

level
the level of the record dispatcher as integer

make_record_and_handle(level, msg, args, kwargs, exc_info, extra)
Creates a record from some given arguments and heads it over to the handling system.

name = None
the name of the record dispatcher

process_record(record)
Processes the record with all context specific processors. This can be overriden to also inject additional
information as necessary that can be provided by this record dispatcher.

suppress_dispatcher = False
If this is set to True the dispatcher information will be suppressed for log records emitted from this logger.

class logbook.base.LoggerMixin
This mixin class defines and implements the “usual” logger interface (i.e. the descriptive logging functions).

Classes using this mixin have to implement a handle() method which takes a LogRecord and passes it
along.

catch_exceptions(*args, **kwargs)
A context manager that catches exceptions and calls exception() for exceptions caught that way.
Example:

with logger.catch_exceptions():
execute_code_that_might_fail()

critical(*args, **kwargs)
Logs a LogRecord with the level set to CRITICAL.

debug(*args, **kwargs)
Logs a LogRecord with the level set to DEBUG.

error(*args, **kwargs)
Logs a LogRecord with the level set to ERROR.

exception(*args, **kwargs)
Works exactly like error() just that the message is optional and exception information is recorded.

info(*args, **kwargs)
Logs a LogRecord with the level set to INFO.

level_name
The name of the minimium logging level required for records to be created.

log(level, *args, **kwargs)
Logs a LogRecord with the level set to the level parameter. Because custom levels are not supported by

1.10. API Documentation 45

Logbook Documentation, Release 0.4

logbook, this method is mainly used to avoid the use of reflection (e.g.: getattr()) for programmatic
logging.

notice(*args, **kwargs)
Logs a LogRecord with the level set to NOTICE.

warn(*args, **kwargs)
Logs a LogRecord with the level set to WARNING. This function has an alias named warning().

warning(*args, **kwargs)
Alias for warn().

class logbook.handlers.RotatingFileHandlerBase(*args, **kwargs)
Baseclass for rotating file handlers.

Changed in version 0.3: This class was deprecated because the interface is not flexible enough to implement
proper file rotations. The former builtin subclasses no longer use this baseclass.

perform_rollover()
Called if should_rollover() returns True and has to perform the actual rollover.

should_rollover(record, formatted_record)
Called with the log record and the return value of the format_and_encode() method. The method
has then to return True if a rollover should happen or False otherwise.

Changed in version 0.3: Previously this method was called with the number of bytes returned by
format_and_encode()

class logbook.handlers.StringFormatterHandlerMixin(format_string)
A mixin for handlers that provides a default integration for the StringFormatter class. This is used for all
handlers by default that log text to a destination.

default_format_string = u’[{record.time:%Y-%m-%d %H:%M}] {record.level_name}: {record.channel}: {record.message}’
a class attribute for the default format string to use if the constructor was invoked with None.

format_string
the currently attached format string as new-style format string.

formatter_class
the class to be used for string formatting

alias of StringFormatter

1.11 The Design Explained

This part of the documentation explains the design of Logbook in detail. This is not strictly necessary to make use
of Logbook but might be helpful when writing custom handlers for Logbook or when using it in a more complex
environment.

1.11.1 Dispatchers and Channels

Logbook does not use traditional loggers, instead a logger is internally named as RecordDispatcher. While a
logger also has methods to create new log records, the base class for all record dispatchers itself only has ways to
dispatch LogRecords to the handlers. A log record itself might have an attribute that points to the dispatcher that
was responsible for dispatching, but it does not have to be.

If a log record was created from the builtin Logger it will have the channel set to the name of the logger. But that
itself is no requirement. The only requirement for the channel is that it’s a string with some human readable origin

46 Chapter 1. Documentation

http://docs.python.org/library/functions.html#getattr

Logbook Documentation, Release 0.4

information. It could be ’Database’ if the database issued the log record, it could be ’Process-4223’ if the
process with the pid 4223 issued it etc.

For example if you are logging from the logbook.log() function they will have a cannel set, but no dispatcher:

>>> from logbook import TestHandler, warn
>>> handler = TestHandler()
>>> handler.push_application()
>>> warn('This is a warning')
>>> handler.records[0].channel
'Generic'
>>> handler.records[0].dispatcher is None
True

If you are logging from a custom logger, the channel attribute points to the logger for as long this logger class is not
garbage collected:

>>> from logbook import Logger, TestHandler
>>> logger = Logger('Console')
>>> handler = TestHandler()
>>> handler.push_application()
>>> logger.warn('A warning')
>>> handler.records[0].dispatcher is logger
True

You don’t need a record dispatcher to dispatch a log record though. The default dispatching can be triggered from a
function dispatch_record():

>>> from logbook import dispatch_record, LogRecord, INFO
>>> record = LogRecord('My channel', INFO, 'Hello World!')
>>> dispatch_record(record)
[2010-09-04 15:56] INFO: My channel: Hello World!

It is pretty common for log records to be created without a dispatcher. Here some common use cases for log records
without a dispatcher:

• log records that were redirected from a different logging system such as the standard library’s loggingmodule
or the warnings module.

• log records that came from different processes and do not have a dispatcher equivalent in the current process.

• log records that came from over the network.

1.11.2 The Log Record Container

The LogRecord class is a simple container that holds all the information necessary for a log record. Usually they are
created from a Logger or one of the default log functions (logbook.warn() etc.) and immediately dispatched to
the handlers. The logger will apply some additional knowledge to figure out where the record was created from and if
a traceback information should be attached.

Normally if log records are dispatched they will be closed immediately after all handlers had their chance to write it
down. On closing, the interpreter frame and traceback object will be removed from the log record to break up circular
dependencies.

Sometimes however it might be necessary to keep log records around for a longer time. Logbook provides three
different ways to accomplish that:

1. Handlers can set the keep_open attribute of a log record to True so that the record dispatcher will not close
the object. This is for example used by the TestHandler so that unittests can still access interpreter frames
and traceback objects if necessary.

1.11. The Design Explained 47

http://docs.python.org/library/logging.html#module-logging
http://docs.python.org/library/warnings.html#module-warnings

Logbook Documentation, Release 0.4

2. Because some information on the log records depends on the interpreter frame (such as the location of the log
call) it is possible to pull that related information directly into the log record so that it can safely be closed
without losing that information (see pull_information()).

3. Last but not least, log records can be converted to dictionaries and recreated from these. It is also possible to
make these dictionaries safe for JSON export which is used by the TicketingHandler to store information
in a database or the MultiProcessingHandler to send information between processes.

1.12 Design Principles

Logbook is a logging library that breaks many expectations people have in logging libraries to support paradigms we
think are more suitable for modern applications than the traditional Java inspired logging system that can also be found
in the Python standard library and many more programming languages.

This section of the documentation should help you understand the design of Logbook and why it was implemented
like this.

1.12.1 No Logger Registry

Logbook is unique in that it has the concept of logging channels but that it does not keep a global registry of them.
In the standard library’s logging module a logger is attached to a tree of loggers that are stored in the logging module
itself as global state.

In logbook a logger is just an opaque object that might or might not have a name and attached information such as log
level or customizations, but the lifetime and availability of that object is controlled by the person creating that logger.

The registry is necessary for the logging library to give the user the ability to configure these loggers.

Logbook has a completely different concept of dispatching from loggers to the actual handlers which removes the
requirement and usefulness of such a registry. The advantage of the logbook system is that it’s a cheap operation to
create a logger and that a logger can easily be garbage collected to remove all traces of it.

Instead Logbook moves the burden of delivering a log record from the log channel’s attached log to an independent
entity that looks at the context of the execution to figure out where to deliver it.

1.12.2 Context Sensitive Handler Stack

Python has two builtin ways to express implicit context: processes and threads. What this means is that if you have a
function that is passed no arguments at all, you can figure out what thread called the function and what process you
are sitting in. Logbook supports this context information and lets you bind a handler (or more!) for such a context.

This is how this works: there are two stacks available at all times in Logbook. The first stack is the process
wide stack. It is manipulated with Handler.push_application and Handler.pop_application (and
of course the context manager Handler.applicationbound). Then there is a second stack which is per
thread. The manipulation of that stack happens with Handler.push_thread, Handler.pop_thread and
the Handler.threadbound contextmanager.

Let’s take a WSGI web application as first example. When a request comes in your WSGI server will most likely do
one of the following two things: either spawn a new Python process (or reuse a process in a pool), or create a thread
(or again, reuse something that already exists). Either way, we can now say that the context of process id and thread
id is our playground. For this context we can define a log handler that is active in this context only for a certain time.
In pseudocode this would look like this:

48 Chapter 1. Documentation

Logbook Documentation, Release 0.4

def my_application(environ, start_response):
my_handler = FileHandler(...)
my_handler.push_thread()
try:

whatever happens here in terms of logging is handled
by the `my_handler` handler.
...

finally:
my_handler.pop_thread()

Because this is a lot to type, you can also use the with statement to do the very same:

def my_application(environ, start_response):
with FileHandler(...).threadbound() as my_handler:

whatever happens here in terms of logging is handled
by the `my_handler` handler.
...

Additionally there is another place where you can put handlers: directly onto a logging channel (for example on a
Logger).

This stack system might seem like overkill for a traditional system, but it allows complete decoupling from the log
handling system and other systems that might log messages.

Let’s take a GUI application rather than a web application. You have an application that starts up, shuts down and at
any point in between might fail or log messages. The typical default behaviour here would be to log into a logfile. Fair
enough, that’s how these applications work.

But what’s the point in logging if not even a single warning happened? The traditional solution with the logging library
from Python is to set the level high (like ERROR or WARNING) and log into a file. When things break, you have a
look at the file and hope it contains enough information.

When you are in full control of the context of execution with a stack based system like Logbook has, there is a lot
more you can do.

For example you could immediately after your application boots up instanciate a FingersCrossedHandler. This
handler buffers all log records in memory and does not emit them at all. What’s the point? That handler activates when
a certain threshold is reached. For example, when the first warning occurs you can write the buffered messages as well
as the warning that just happened into a logfile and continue logging from that point. Because there is no point in
logging when you will never look at that file anyways.

But that alone is not the killer feature of a stack. In a GUI application there is the point where we are still initializing
the windowing system. So a file is the best place to log messages. But once we have the GUI initialized, it would be
very helpful to show error messages to a user in a console window or a dialog. So what we can do is to initialize at
that point a new handler that logs into a dialog.

When then a long running tasks in the GUI starts we can move that into a separate thread and intercept all the log calls
for that thread into a separate window until the task succeeded.

Here such a setup in pseudocode:

from logbook import FileHandler, WARNING
from logbook import FingersCrossedHandler

def main():
first we set up a handler that logs everything (including debug
messages, but only starts doing that when a warning happens
default_handler = FingersCrossedHandler(FileHandler(filename,

delay=True),
WARNING)

1.12. Design Principles 49

Logbook Documentation, Release 0.4

this handler is now activated as the default handler for the
whole process. We do not bubble up to the default handler
that logs to stderr.
with default_handler.applicationbound(bubble=False):

now we initialize the GUI of the application
initialize_gui()
at that point we can hook our own logger in that intercepts
errors and displays them in a log window
with gui.log_handler.applicationbound():

run the gui mainloop
gui.mainloop()

This stack can also be used to inject additional information automatically into log records. This is also used to replace
the need for custom log levels.

1.12.3 No Custom Log Levels

This change over logging was controversial, even under the two original core developers. There clearly are use cases
for custom log levels, but there is an inherent problem with then: they require a registry. If you want custom log levels,
you will have to register them somewhere or parts of the system will not know about them. Now we just spent a lot
of time ripping out the registry with a stack based approach to solve delivery problems, why introduce a global state
again just for log levels?

Instead we looked at the cases where custom log levels are useful and figured that in most situations custom log levels
are used to put additional information into a log entry. For example it’s not uncommon to have separate log levels to
filter user input out of a logfile.

We instead provide powerful tools to inject arbitrary additional data into log records with the concept of log processors.

So for example if you want to log user input and tag it appropriately you can override the
Logger.process_record() method:

class InputLogger(Logger):
def process_record(self, record):

record.extra['kind'] = 'input'

A handler can then use this information to filter out input:

def no_input(record, handler):
return record.extra.get('kind') != 'input'

with MyHandler().threadbound(filter=no_input):
...

1.12.4 Injecting Context-Sensitive Information

For many situations it’s not only necessary to inject information on a per-channel basis but also for all logging calls
from a given context. This is best explained for web applications again. If you have some libraries doing logging in
code that is triggered from a request you might want to record the URL of that request for each log record so that you
get an idea where a specific error happened.

This can easily be accomplished by registering a custom processor when binding a handler to a thread:

def my_application(environ, start_reponse):
def inject_request_info(record, handler):

record.extra['path'] = environ['PATH_INFO']
with Processor(inject_request_info).threadbound():

50 Chapter 1. Documentation

Logbook Documentation, Release 0.4

with my_handler.threadbound():
rest of the request code here
...

1.12.5 Logging Compatibility

The last pillar of logbook’s design is the compatibility with the standard libraries logging system. There are many
libraries that exist currently that log information with the standard libraries logging module. Having two separate
logging systems in the same process is countrproductive and will cause separate logfiles to appear in the best case or
complete chaos in the worst.

Because of that, logbook provides ways to transparently redirect all logging records into the logbook stack based
record delivery system. That way you can even continue to use the standard libraries logging system to emit log
messages and can take the full advantage of logbook’s powerful stack system.

If you are curious, have a look at Logging Compatibility.

1.13 Logbook Changelog

Here you can see the full list of changes between each Logbook release.

1.13.1 Version 0.4

Release date to be announced. Codename to be selected.

• Added logbook.notifiers.NotifoHandler

• channel is now documented to be used for filtering purposes if wanted. Previously this was an opaque string
that was not intended for filtering of any kind.

1.13.2 Version 0.3

Released on October 23rd. Codename “Informant”

• Added logbook.more.ColorizingStreamHandlerMixin and logbook.more.ColorizedStderrHandler

• Deprecated logbook.RotatingFileHandlerBase because the interface was not flexible enough.

• Provided basic Python 3 compatibility. This did cause a few smaller API changes that caused minimal changes
on Python 2 as well. The deprecation of the logbook.RotatingFileHandlerBase was a result of this.

• Added support for Python 2.4

• Added batch emitting support for handlers which now makes it possible to use the
logbook.more.FingersCrossedHandler with the logbook.MailHandler.

• Moved the FingersCrossedHandler handler into the base package. The old location stays importable for
a few releases.

• Added logbook.GroupHandler that buffers records until the handler is popped.

• Added logbook.more.ExternalApplicationHandler that executes an external application for each
log record emitted.

1.13. Logbook Changelog 51

Logbook Documentation, Release 0.4

1.13.3 Version 0.2.1

Bugfix release, Released on September 22nd.

• Fixes Python 2.5 compatibility.

1.13.4 Version 0.2

Released on September 21st. Codename “Walls of Text”

• Implemented default with statement for handlers which is an alias for threadbound.

• applicationbound and threadbound return the handler now.

• Implemented channel recording on the log records.

• The logbook.more.FingersCrossedHandler now is set to ERROR by default and has the ability to
create new loggers from a factory function.

• Implemented maximum buffer size for the logbook.more.FingersCrossedHandler as well as a lock
for thread safety.

• Added ability to filter for context.

• Moved bubbling flags and filters to the handler object.

• Moved context processors on their own stack.

• Removed the iter_context_handlers function.

• Renamed NestedHandlerSetup to NestedSetup because it can now also configure processors.

• Added the logbook.Processor class.

• There is no difference between logger attached handlers and context specific handlers any more.

• Added a function to redirect warnings to logbook (logbook.compat.redirected_warnings()).

• Fixed and improved logbook.LoggerGroup.

• The logbook.TestHandler now keeps the record open for further inspection.

• The traceback is now removed from a log record when the record is closed. The formatted traceback is a cached
property instead of a function.

• Added ticketing handlers that send logs directly into a database.

• Added MongoDB backend for ticketing handlers

• Added a logbook.base.dispatch_record() function to dispatch records to handlers independently of
a logger (uses the default record dispatching logic).

• Renamed logger_name to channel.

• Added a multi processing log handler (logbook.more.MultiProcessingHandler).

• Added a twitter handler.

• Added a ZeroMQ handler.

• Added a Growl handler.

• Added a Libnotify handler.

• Added a monitoring file handler.

• Added a handler wrapper that moves the actual handling into a background thread.

52 Chapter 1. Documentation

Logbook Documentation, Release 0.4

• The mail handler can now be configured to deliver each log record not more than n times in m seconds.

• Added support for Python 2.5

• Added a logbook.queues.SubscriberGroup to deal with multiple subscribers.

• Added a logbook.compat.LoggingHandler for redirecting logbook log calls to the standard library’s
logging module.

1.13.5 Version 0.1

First public release.

1.13. Logbook Changelog 53

http://docs.python.org/library/logging.html#module-logging

Logbook Documentation, Release 0.4

54 Chapter 1. Documentation

CHAPTER 2

Project Information

• Download from PyPI

• Master repository on GitHub

• Mailing list

• IRC: #pocoo on freenode

55

http://pypi.python.org/pypi/Logbook
https://github.com/mitsuhiko/logbook
http://groups.google.com/group/pocoo-libs

Logbook Documentation, Release 0.4

56 Chapter 2. Project Information

Python Module Index

l
logbook, 33
logbook.base, 44
logbook.compat, 42
logbook.handlers, 46
logbook.more, 39
logbook.notifiers, 41
logbook.queues, 34
logbook.ticketing, 37

57

Logbook Documentation, Release 0.4

58 Python Module Index

Index

A
add() (logbook.queues.SubscriberGroup method), 36
add_logger() (logbook.base.LoggerGroup method), 20
applicationbound() (logbook.base.Flags method), 23
applicationbound() (logbook.base.Processor method), 23
applicationbound() (logbook.base.StackedObject

method), 44
applicationbound() (logbook.handlers.Handler method),

25
args (logbook.base.LogRecord attribute), 20

B
BackendBase (class in logbook.ticketing), 38
batch_emit_reason (log-

book.handlers.FingersCrossedHandler at-
tribute), 31

blackhole (logbook.handlers.Handler attribute), 25
BoxcarHandler (class in logbook.notifiers), 42
bubble (logbook.handlers.Handler attribute), 25
buffer_size (logbook.handlers.FingersCrossedHandler at-

tribute), 32
buffered_records (logbook.handlers.FingersCrossedHandler

attribute), 32

C
call_handlers() (logbook.base.Logger method), 19
call_handlers() (logbook.base.RecordDispatcher

method), 44
call_handlers() (logbook.more.TaggingLogger method),

39
callback (logbook.base.Processor attribute), 23
calling_frame (logbook.base.LogRecord attribute), 20
catch_exceptions() (in module logbook), 33
catch_exceptions() (logbook.base.Logger method), 19
catch_exceptions() (logbook.base.LoggerMixin method),

45
channel (logbook.base.LogRecord attribute), 20
check_delivery() (logbook.handlers.LimitingHandlerMixin

method), 33
close() (logbook.base.LogRecord method), 20

close() (logbook.handlers.Handler method), 25
close() (logbook.handlers.StreamHandler method), 27
close() (logbook.handlers.TestHandler method), 28
close() (logbook.queues.ZeroMQSubscriber method), 34
close_connection() (logbook.handlers.MailHandler

method), 30
collapse_mails() (logbook.handlers.MailHandler

method), 30
ColorizedStderrHandler (class in logbook.more), 41
ColorizingStreamHandlerMixin (class in logbook.more),

41
context (logbook.queues.ZeroMQHandler attribute), 34
context (logbook.queues.ZeroMQSubscriber attribute),

34
convert_level() (logbook.compat.LoggingHandler

method), 43
convert_level() (logbook.compat.RedirectLoggingHandler

method), 43
convert_record() (logbook.compat.LoggingHandler

method), 43
convert_record() (logbook.compat.RedirectLoggingHandler

method), 43
convert_time() (logbook.compat.LoggingHandler

method), 43
convert_time() (logbook.compat.RedirectLoggingHandler

method), 43
count_tickets() (logbook.ticketing.BackendBase method),

38
create_notification_handler() (in module log-

book.notifiers), 41
create_syshandler() (in module logbook.handlers), 30
CRITICAL (in module logbook.base), 24
critical() (in module logbook), 33
critical() (logbook.base.Logger method), 19
critical() (logbook.base.LoggerMixin method), 45

D
DEBUG (in module logbook.base), 24
debug() (in module logbook), 33
debug() (logbook.base.Logger method), 19
debug() (logbook.base.LoggerMixin method), 45

59

Logbook Documentation, Release 0.4

default_backend (logbook.ticketing.TicketingHandler at-
tribute), 38

default_format_string (log-
book.handlers.StringFormatterHandlerMixin
attribute), 32, 46

delete_ticket() (logbook.ticketing.BackendBase method),
38

deliver() (logbook.handlers.MailHandler method), 30
disabled (logbook.base.LoggerGroup attribute), 20
dispatch_forever() (log-

book.queues.MultiProcessingSubscriber
method), 36

dispatch_forever() (logbook.queues.SubscriberBase
method), 37

dispatch_forever() (logbook.queues.ZeroMQSubscriber
method), 34

dispatch_in_background() (log-
book.queues.MultiProcessingSubscriber
method), 36

dispatch_in_background() (log-
book.queues.SubscriberBase method), 37

dispatch_in_background() (log-
book.queues.ZeroMQSubscriber method),
35

dispatch_once() (logbook.queues.MultiProcessingSubscriber
method), 36

dispatch_once() (logbook.queues.SubscriberBase
method), 37

dispatch_once() (logbook.queues.ZeroMQSubscriber
method), 35

dispatch_record() (in module logbook.base), 44
dispatcher (logbook.base.LogRecord attribute), 21

E
emit() (logbook.handlers.Handler method), 25
emit() (logbook.ticketing.TicketingHandler method), 38
emit_batch() (logbook.handlers.Handler method), 25
ERROR (in module logbook.base), 24
error() (in module logbook), 33
error() (logbook.base.Logger method), 19
error() (logbook.base.LoggerMixin method), 45
exc_info (logbook.base.LogRecord attribute), 21
exception() (in module logbook), 33
exception() (logbook.base.Logger method), 19
exception() (logbook.base.LoggerMixin method), 45
exception_message (logbook.base.LogRecord attribute),

21
exception_name (logbook.base.LogRecord attribute), 21
exception_shortname (logbook.base.LogRecord at-

tribute), 21
ExceptionHandler (class in logbook.more), 40
export_record() (logbook.queues.ZeroMQHandler

method), 34
ExternalApplicationHandler (class in logbook.more), 40

extra (logbook.base.LogRecord attribute), 21

F
FileHandler (class in logbook.handlers), 27
filename (logbook.base.LogRecord attribute), 21
files_to_delete() (logbook.handlers.TimedRotatingFileHandler

method), 28
filter (logbook.handlers.Handler attribute), 26
find_caller() (logbook.compat.RedirectLoggingHandler

method), 43
find_extra() (logbook.compat.RedirectLoggingHandler

method), 43
FingersCrossedHandler (class in logbook.handlers), 31
Flags (class in logbook.base), 22
flush() (logbook.handlers.StreamHandler method), 27
format() (logbook.handlers.Handler method), 26
format_and_encode() (logbook.handlers.StreamHandler

method), 27
format_related_record() (logbook.handlers.MailHandler

method), 30
format_string (logbook.handlers.StringFormatterHandlerMixin

attribute), 32, 46
formatted_exception (logbook.base.LogRecord attribute),

21
formatted_records (logbook.handlers.TestHandler at-

tribute), 28
formatter (logbook.handlers.Handler attribute), 26
formatter_class (logbook.handlers.StringFormatterHandlerMixin

attribute), 32, 46
formatter_class (logbook.more.TwitterHandler attribute),

40
frame (logbook.base.LogRecord attribute), 21
from_dict() (logbook.base.LogRecord class method), 21
func_name (logbook.base.LogRecord attribute), 21

G
generate_mail() (logbook.handlers.MailHandler method),

30
get_color() (logbook.more.ColorizingStreamHandlerMixin

method), 41
get_connection() (logbook.handlers.MailHandler

method), 30
get_expires() (logbook.notifiers.LibNotifyHandler

method), 42
get_flag() (logbook.base.Flags static method), 23
get_level_name() (in module logbook.base), 24
get_logger() (logbook.compat.LoggingHandler method),

43
get_oauth_token() (logbook.more.TwitterHandler

method), 40
get_occurrences() (logbook.ticketing.BackendBase

method), 38
get_priority() (logbook.notifiers.GrowlHandler method),

41

60 Index

Logbook Documentation, Release 0.4

get_recipients() (logbook.handlers.MailHandler method),
30

get_screen_name() (logbook.notifiers.BoxcarHandler
method), 42

get_ticket() (logbook.ticketing.BackendBase method), 38
get_tickets() (logbook.ticketing.BackendBase method),

38
get_urgency() (logbook.notifiers.LibNotifyHandler

method), 42
group (logbook.base.RecordDispatcher attribute), 45
GroupHandler (class in logbook.handlers), 32
GrowlHandler (class in logbook.notifiers), 41

H
handle() (logbook.base.Logger method), 19
handle() (logbook.base.RecordDispatcher method), 45
handle() (logbook.handlers.Handler method), 26
handle() (logbook.more.TaggingLogger method), 39
handle_error() (logbook.handlers.Handler method), 26
Handler (class in logbook.handlers), 24
handlers (logbook.base.RecordDispatcher attribute), 45
has_critical() (logbook.handlers.TestHandler method), 28
has_criticals (logbook.handlers.TestHandler attribute), 28
has_debug() (logbook.handlers.TestHandler method), 28
has_debugs (logbook.handlers.TestHandler attribute), 28
has_error() (logbook.handlers.TestHandler method), 28
has_errors (logbook.handlers.TestHandler attribute), 29
has_info() (logbook.handlers.TestHandler method), 29
has_infos (logbook.handlers.TestHandler attribute), 29
has_notice() (logbook.handlers.TestHandler method), 29
has_notices (logbook.handlers.TestHandler attribute), 29
has_warning() (logbook.handlers.TestHandler method),

29
has_warnings (logbook.handlers.TestHandler attribute),

29
hash_record() (logbook.handlers.HashingHandlerMixin

method), 32
hash_record_raw() (log-

book.handlers.HashingHandlerMixin method),
32

hash_record_raw() (log-
book.ticketing.TicketingBaseHandler method),
37

HashingHandlerMixin (class in logbook.handlers), 32
heavy_init() (logbook.base.LogRecord method), 21
heavy_initialized (logbook.base.LogRecord attribute), 21

I
INFO (in module logbook.base), 24
info() (in module logbook), 33
info() (logbook.base.Logger method), 19
info() (logbook.base.LoggerMixin method), 45
information_pulled (logbook.base.LogRecord attribute),

21

is_sticky() (logbook.notifiers.GrowlHandler method), 41

J
JinjaFormatter (class in logbook.more), 41

K
keep_open (logbook.base.LogRecord attribute), 21
kwargs (logbook.base.LogRecord attribute), 21

L
late (logbook.base.LogRecord attribute), 22
level (logbook.base.LoggerGroup attribute), 20
level (logbook.base.LogRecord attribute), 22
level (logbook.base.RecordDispatcher attribute), 45
level (logbook.handlers.Handler attribute), 26
level_name (logbook.base.Logger attribute), 19
level_name (logbook.base.LoggerMixin attribute), 45
level_name (logbook.base.LogRecord attribute), 22
level_name (logbook.handlers.Handler attribute), 26
LibNotifyHandler (class in logbook.notifiers), 42
LimitingHandlerMixin (class in logbook.handlers), 33
lineno (logbook.base.LogRecord attribute), 22
log() (in module logbook), 33
log() (logbook.base.Logger method), 19
log() (logbook.base.LoggerMixin method), 45
logbook (module), 33
logbook.base (module), 19, 44
logbook.compat (module), 42
logbook.handlers (module), 24, 46
logbook.more (module), 39
logbook.notifiers (module), 41
logbook.queues (module), 34
logbook.ticketing (module), 37
Logger (class in logbook.base), 19
LoggerGroup (class in logbook.base), 20
LoggerMixin (class in logbook.base), 45
loggers (logbook.base.LoggerGroup attribute), 20
LoggingHandler (class in logbook.compat), 43
LogRecord (class in logbook.base), 20
lookup_level() (in module logbook.base), 24

M
MailHandler (class in logbook.handlers), 29
make_client() (logbook.more.TwitterHandler method), 40
make_record_and_handle() (logbook.base.Logger

method), 20
make_record_and_handle() (log-

book.base.RecordDispatcher method), 45
make_record_and_handle() (log-

book.more.TaggingLogger method), 39
make_text() (logbook.notifiers.NotificationBaseHandler

method), 42
make_title() (logbook.notifiers.NotificationBaseHandler

method), 42

Index 61

Logbook Documentation, Release 0.4

max_record_cache (logbook.handlers.MailHandler at-
tribute), 30

message (logbook.base.LogRecord attribute), 22
message_from_record() (logbook.handlers.MailHandler

method), 30
module (logbook.base.LogRecord attribute), 22
MongoDBBackend (class in logbook.ticketing), 39
MonitoringFileHandler (class in logbook.handlers), 27
msg (logbook.base.LogRecord attribute), 22
MultiProcessingHandler (class in logbook.queues), 35
MultiProcessingSubscriber (class in logbook.queues), 35

N
name (logbook.base.RecordDispatcher attribute), 45
NestedSetup (class in logbook.base), 26
notice() (in module logbook), 33
notice() (logbook.base.Logger method), 20
notice() (logbook.base.LoggerMixin method), 46
NotificationBaseHandler (class in logbook.notifiers), 42
NotifoHandler (class in logbook.notifiers), 42
NOTSET (in module logbook.base), 24
NTEventLogHandler (class in logbook.handlers), 30
NullHandler (class in logbook.handlers), 30

P
perform_rollover() (log-

book.handlers.RotatingFileHandlerBase
method), 46

pop_application() (logbook.base.Flags method), 23
pop_application() (logbook.base.Processor method), 23
pop_application() (logbook.base.StackedObject method),

44
pop_application() (logbook.handlers.Handler method),

26
pop_thread() (logbook.base.Flags method), 23
pop_thread() (logbook.base.Processor method), 23
pop_thread() (logbook.base.StackedObject method), 44
pop_thread() (logbook.handlers.Handler method), 26
process (logbook.base.LogRecord attribute), 22
process() (logbook.base.Processor method), 23
process_name (logbook.base.LogRecord attribute), 22
process_record() (logbook.base.Logger method), 20
process_record() (logbook.base.LoggerGroup method),

20
process_record() (logbook.base.RecordDispatcher

method), 45
process_record() (logbook.more.TaggingLogger

method), 39
process_record() (logbook.ticketing.TicketingHandler

method), 38
Processor (class in logbook.base), 23
processor (logbook.base.LoggerGroup attribute), 20
pull_information() (logbook.base.LogRecord method),

22

push_application() (logbook.base.Flags method), 23
push_application() (logbook.base.Processor method), 23
push_application() (logbook.base.StackedObject

method), 44
push_application() (logbook.handlers.Handler method),

26
push_thread() (logbook.base.Flags method), 23
push_thread() (logbook.base.Processor method), 24
push_thread() (logbook.base.StackedObject method), 44
push_thread() (logbook.handlers.Handler method), 26
Python Enhancement Proposals

PEP 8, 4

R
record_cache_prune (logbook.handlers.MailHandler at-

tribute), 30
record_ticket() (logbook.ticketing.BackendBase method),

38
record_ticket() (logbook.ticketing.TicketingHandler

method), 38
RecordDispatcher (class in logbook.base), 44
records (logbook.handlers.TestHandler attribute), 29
recv() (logbook.queues.SubscriberBase method), 37
recv() (logbook.queues.ZeroMQSubscriber method), 35
redirect_logging() (in module logbook.compat), 43
redirect_warnings() (in module logbook.compat), 44
redirected_logging() (in module logbook.compat), 43
redirected_warnings() (in module logbook.compat), 44
RedirectLoggingHandler (class in logbook.compat), 43
remove_logger() (logbook.base.LoggerGroup method),

20
RotatingFileHandler (class in logbook.handlers), 27
RotatingFileHandlerBase (class in logbook.handlers), 46

S
set_notifier_icon() (logbook.notifiers.LibNotifyHandler

method), 42
setup_backend() (logbook.ticketing.BackendBase

method), 38
should_colorize() (logbook.more.ColorizingStreamHandlerMixin

method), 41
should_handle() (logbook.handlers.Handler method), 26
should_rollover() (logbook.handlers.RotatingFileHandlerBase

method), 46
socket (logbook.queues.ZeroMQHandler attribute), 34
socket (logbook.queues.ZeroMQSubscriber attribute), 35
solve_ticket() (logbook.ticketing.BackendBase method),

38
SQLAlchemyBackend (class in logbook.ticketing), 38
StackedObject (class in logbook.base), 44
start() (logbook.queues.ThreadController method), 37
start() (logbook.queues.TWHThreadController method),

37
StderrHandler (class in logbook.handlers), 27

62 Index

Logbook Documentation, Release 0.4

stop() (logbook.queues.SubscriberGroup method), 36
stop() (logbook.queues.ThreadController method), 37
stop() (logbook.queues.TWHThreadController method),

37
StreamHandler (class in logbook.handlers), 27
StringFormatter (class in logbook.handlers), 26
StringFormatterHandlerMixin (class in log-

book.handlers), 32, 46
SubscriberBase (class in logbook.queues), 37
SubscriberGroup (class in logbook.queues), 36
suppress_dispatcher (logbook.base.RecordDispatcher at-

tribute), 45
SyslogHandler (class in logbook.handlers), 30

T
TaggingHandler (class in logbook.more), 39
TaggingLogger (class in logbook.more), 39
TestHandler (class in logbook.handlers), 28
thread (logbook.base.LogRecord attribute), 22
thread_name (logbook.base.LogRecord attribute), 22
threadbound() (logbook.base.Flags method), 23
threadbound() (logbook.base.Processor method), 24
threadbound() (logbook.base.StackedObject method), 44
threadbound() (logbook.handlers.Handler method), 26
ThreadController (class in logbook.queues), 37
ThreadedWrapperHandler (class in logbook.queues), 36
TicketingBaseHandler (class in logbook.ticketing), 37
TicketingHandler (class in logbook.ticketing), 37
time (logbook.base.LogRecord attribute), 22
TimedRotatingFileHandler (class in logbook.handlers),

28
to_dict() (logbook.base.LogRecord method), 22
triggered (logbook.handlers.FingersCrossedHandler at-

tribute), 32
tweet() (logbook.more.TwitterHandler method), 40
TWHThreadController (class in logbook.queues), 37
TwitterHandler (class in logbook.more), 40

U
unregister_logger() (log-

book.handlers.NTEventLogHandler method),
30

update_from_dict() (logbook.base.LogRecord method),
22

W
warn() (in module logbook), 33
warn() (logbook.base.Logger method), 20
warn() (logbook.base.LoggerMixin method), 46
WARNING (in module logbook.base), 24
warning() (in module logbook), 33
warning() (logbook.base.Logger method), 20
warning() (logbook.base.LoggerMixin method), 46
WrapperHandler (class in logbook.handlers), 30

write() (logbook.handlers.StreamHandler method), 27

Z
ZeroMQHandler (class in logbook.queues), 34
ZeroMQSubscriber (class in logbook.queues), 34

Index 63

	Documentation
	What does it do?
	Quickstart
	Common Logbook Setups
	Stacks in Logbook
	Performance Tuning
	Logbook in Libraries
	Unittesting Support
	Logging to Tickets
	Logging Compatibility
	API Documentation
	The Design Explained
	Design Principles
	Logbook Changelog

	Project Information
	Python Module Index

