
lofn Documentation
Release 0.4.0

Michael T. Neylon

Dec 06, 2017

Contents:

1 Introduction to lofn 1
1.1 How It Works . 1
1.2 Supported Features . 1

2 Getting Started 3
2.1 Installation . 3
2.2 Dependencies . 3
2.3 Running on Standalone . 3
2.4 Running on YARN . 4
2.5 Examples . 4

3 Using lofn on AWS 5
3.1 Security Settings . 5
3.2 Manual Setup . 5
3.3 Automatic Setup . 6

4 lofn package 9
4.1 Subpackages . 9
4.2 Submodules . 10
4.3 lofn.api module . 10
4.4 lofn.docker_handler module . 12
4.5 lofn.hdfs_handler module . 13
4.6 lofn.tmp_file_handler module . 13

5 Indices and tables 17

Python Module Index 19

i

ii

CHAPTER 1

Introduction to lofn

A magical wrapper for serial tools to parallelize them using Spark and Docker.

1.1 How It Works

lofn uses Spark to partition data and schedule tasks. The tasks are carried out by Docker. lofn writes the partitions to
temp files for Docker to mount. The Docker container carries out the commands you set up and writes the resultant
files to the same temp directory to be read back into Spark.

A program that can be broken down into map and reduce steps can be parallelized using lofn. This can work on both
serial and parallelized tools. If a program is built to work in a multi-core environment but not on a cluster, lofn can
help deploy it on a cluster and each task can still run with its native parallel code.

Explore some of our examples.

1.2 Supported Features

• Map and Reduce for text files and binary files.

– map_binary takes text as input and produces binary output that can be passed to reduce_binary

• User volumes as a global reference that are not partitioned.

• User defined functions can override how to write the temp files from the partition, such as unpacking key, value
pairs into separate files.

1

https://github.com/michaeltneylon/lofn/blob/master/example

lofn Documentation, Release 0.4.0

2 Chapter 1. Introduction to lofn

CHAPTER 2

Getting Started

2.1 Installation

pip install lofn

2.2 Dependencies

You can use python 2 or 3, 2.7+ and 3.6+ preferably.

Running a script on this framework requires Spark and Docker.

2.2.1 Install Docker

See the Docker Docs on how to install.

2.2.2 Install Spark

See the Downloading Spark instructions to get started. It will require Java be installed and in your PATH or set
JAVA_HOME and downloading the jar files. Then set SPARK_HOME as the path to this directory and add its bin
directory to PATH as well.

2.3 Running on Standalone

lofn can be run on Spark standalone on a cluster or a single node. Use spark-submit to submit your application to
Spark.

3

https://docs.docker.com/engine/installation/
https://spark.apache.org/docs/latest/#downloading
http://spark.apache.org/downloads.html

lofn Documentation, Release 0.4.0

2.4 Running on YARN

Some configurations are required for lofn to work on YARN.

2.4.1 Configure the Cluster

Beyond having Spark setup on a YARN cluster ready to submit jobs, follow these steps for lofn to work:

• install lofn on each node

• install Docker on each node

• create a Docker group

• add $USER and yarn user to Docker group

• restart yarn daemons and your shell for changes to take effect

See the next page ‘Using lofn on AWS’ for instructions on how to setup an EMR cluster automatically for lofn

2.4.2 Submission

• User volumes must be in HDFS and your volumes dictionary should provide the absolute path to the directory
on HDFS

• use spark-submit to submit the application to Spark

2.5 Examples

Explore some of our examples to get started.

4 Chapter 2. Getting Started

https://github.com/michaeltneylon/lofn/blob/master/example

CHAPTER 3

Using lofn on AWS

Setup an Elastic Map Reduce cluster on Amazon with lofn

Setup an EMR cluster with Spark installed. Increase the root volume size from the default since lofn uses this for its
temporary files.

3.1 Security Settings

• make sure port 22 is open on each node for SSH

• For docker swarm ensure ports are open: docker swarm

3.2 Manual Setup

The manual steps give a good outline for what is necessary to get a YARN cluster setup for lofn but may vary depending
on the OS.

3.2.1 Master Node

Run the following commands on the master node:

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-resourcemanager
sudo /sbin/start hadoop-yarn-resourcemanager
sudo pip install lofn

5

https://docs.docker.com/engine/swarm/swarm-tutorial/#use-docker-for-mac-or-docker-for-windows

lofn Documentation, Release 0.4.0

3.2.2 Worker Node

Run the following commands on the worker node:

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-nodemanager
sudo /sbin/start hadoop-yarn-nodemanager
sudo pip install lofn

exit each shell and log back in for Docker group changes to take effect.

3.2.3 Build Docker Images

If you are using custom images that are not available in a registry, build the images on each node.

3.3 Automatic Setup

If using EMR, the following steps can setup a template for automatically building a cluster that is ready to use lofn.

3.3.1 Elastic Map Reduce (EMR)

You can run a bootstrap script on EMR to automatically install Docker Engine and lofn on each node. After the cluster
is up, we then need to configure Docker and join a swarm (to host our Docker images).

Bootstrap

This bootstrap script will install Docker and lofn on each node. Create a shell script in an S3 bucket to run as a
bootstrap step using the commands below:

#! /bin/bash

sudo yum update -y
sudo yum install -y git docker
sudo service docker start
sudo groupadd docker
sudo usermod -a -G docker hadoop
sudo pip install lofn

Step

Run the following as a step, to run after the cluster is running. This only executes on the master, so it will generate
some scripts for you to run upon your first login so they can be executed on the workers.

Store the code below in an S3 bucket and choose a step as a Custom Jar, the path to which is s3://<region>.
elasticmapreduce/libs/script-runner/script-runner.jar which allows you to execute a script.
Add the s3 path to your script as an argument.

6 Chapter 3. Using lofn on AWS

lofn Documentation, Release 0.4.0

#! /bin/bash

sudo usermod -a -G docker yarn
sudo /sbin/stop hadoop-yarn-resourcemanager
sudo /sbin/start hadoop-yarn-resourcemanager

echo '#! /bin/bash' > $HOME/runme.sh
echo 'docker swarm init' >> $HOME/runme.sh
echo 'command=$(docker swarm join-token worker | sed "s/.*command:*//" | tr --delete
→˓"\n" | tr --delete "\\\\")' >> $HOME/runme.sh
echo "echo '#! /bin/bash' > $HOME/worker_setup.sh" >> $HOME/runme.sh
echo "echo 'sudo usermod -a -G docker yarn' >> $HOME/worker_setup.sh" >> $HOME/runme.
→˓sh
echo "echo 'sudo /sbin/stop hadoop-yarn-nodemanager' >> $HOME/worker_setup.sh" >>
→˓$HOME/runme.sh
echo "echo 'sudo /sbin/start hadoop-yarn-nodemanager' >> $HOME/worker_setup.sh" >>
→˓$HOME/runme.sh
echo 'echo $command >> $HOME/worker_setup.sh' >> $HOME/runme.sh

workers=$(hdfs dfsadmin -report | grep ^Name | cut -f2 -d: | cut -f2 -d ' ')

for host in $workers;
do

echo "ssh -A -oStrictHostKeyChecking=no " $host " 'bash -s' < worker_setup.sh" >>
→˓$HOME/runme.sh
done
chmod 700 $HOME/runme.sh

3.3.2 Login and Finish Setup

When this is finished, log in to the master node with SSH agent forwarding. The agent forwarding will enable SSH
into the worker nodes from the master node.

Make sure you add your AWS identity to your local SSH agent:

ssh-add <awsid.pem>

login to the master:

ssh -A hadoop@MASTER_PUBLIC_DNS

Execute the script ‘runme.sh’:

./runme.sh

3.3.3 Build and Serve Images

At this point, Docker Swarm is running on the cluster and can host a Docker Registry as a service. This enables lofn
to use custom images that are not available in a registry without having to manually build the image on each node.

create an overlay network and the registry service on the swarm:

docker network create --driver overlay lofn-network
docker service create --name registry --publish 5000:5000 --network lofn-network
→˓registry:2

3.3. Automatic Setup 7

lofn Documentation, Release 0.4.0

Build the image, tag it, and push it into the registry. In the example below we are using an image from one of the
examples

git clone https://github.com/michaeltneylon/lofn.git
cd lofn/example/advanced/gsnap_samtools
docker build -t gsnap_samtools .
docker tag gsnap_samtools localhost:5000/gsnap_samtools
docker push localhost:5000/gsnap_samtools

Now in the code, our images will be named as localhost:5000/gsnap_samtools so each node in the swarm
knows from where to pull the image.

8 Chapter 3. Using lofn on AWS

https://github.com/michaeltneylon/lofn/blob/master/example/advanced
https://github.com/michaeltneylon/lofn/blob/master/example/advanced/YARN/alignment.py

CHAPTER 4

lofn package

4.1 Subpackages

4.1.1 lofn.base package

Submodules

lofn.base.hdfs module

Base classes and functions to interact with HDFS.

lofn.base.hdfs.get(remote, local)
Get from HDFS

lofn.base.hdfs.mkdir_p(path)
Make directory with parents if they don’t exist

lofn.base.hdfs.put(local, remote)
Put into HDFS

lofn.base.hdfs.rm_r(path)
Remove recursively

lofn.base.tmp module

Base functions and classes for using temp files.

lofn.base.tmp.create_temp_directory(directory=None)
Create a temporary directory. Supports setting a parent directory that is not temporary and will try to create it if
it does not already exist.

Parameters directory – specify a parent directory instead of using default (None -> /tmp)

Returns path to directory

9

lofn Documentation, Release 0.4.0

lofn.base.tmp.write_binary_to_temp_file(data, path)
Write string directly to file for binary data.

lofn.base.tmp.write_to_temp_file(iterable, path)
Write iterable to temporary file, an item per line.

Parameters

• iterable – list or tuples of contents to write to file

• path – absolute path to file. We use a tempdir as parent.

Returns path to temporary file

4.2 Submodules

4.3 lofn.api module

Wrapper to execute docker containers as spark tasks.

class lofn.api.DockerPipe(spark_configuration, **kwargs)
Bases: object

Main entry point for lofn.

Parameters spark_configuration – spark configuration (e.g. pyspark.SparkConf())

Keyword Arguments

• temporary_directory_parent – specify an absolute path to the parent directory
to use for temp dirs and files. The default is None, which then uses a location specified
by a platform-dependent list or uses environment variables TMPDIR, TEMP, or TMP. If
specifying a path, it either needs to exist on all nodes or you must run it with appropriate
permissions so lofn can attempt to create it.

• shared_mountpoint – the path to the directory inside each docker container that maps
to the temporary directory on the host. (Default ‘/shared/’)

• volumes – User defined volumes to mount in the container. This is useful for data that is
not being partitioned and needs to be read into each container, such as a global reference.
This must be given as a dictionary. The keys for the dictionary are the absolute paths to
the directory on the host you want to bind. The value of each of these keys is the infor-
mation on how to bind that volume. Provide a ‘bind’ path, which is the absolute path in
the container you want that volume to mount on, and optionally provide a ‘mode’, as ro
(read-only, the default) or rw (read-write). The structure of this input is similar to docker-py
volumes, and resembles the following structure: {‘[host_directory_path]’: {‘bind’: ‘[con-
tainer_directory_path]’, ‘mode’: ‘[ro|rw] } }

map(rdd, image_name, command, **kwargs)
Map step by applying Spark’s mapPartitions. This writes the partition to temp file(s) and executes a docker
container to run the commands, which is read back into a new RDD.

Parameters

• rdd – a spark RDD as input

• image_name – Docker image name

• command – Command to run in the docker container

10 Chapter 4. lofn package

https://docs.python.org/2/library/functions.html#object

lofn Documentation, Release 0.4.0

Keyword Arguments

• container_input_name – the name of the file within the shared_mountpoint that is
written to before the map from the host, and read from as the first step in the map in the
container. (Default ‘input.txt’)

• container_output_name – the name of the file the map step writes to inside the
container. This path will belong inside of the shared_mountpoint which maps to the host
temp directory for that partition. (Default ‘output.txt’)

• docker_options – additional docker options to provide for ‘docker run’. Must be a
list.

• map_udf – optional keyword argument to pass a function that accepts a partition and
transforms the data into a dictionary with a key as filename and value as contents, a list
(iterable) of elements to write to that file within the temporary directory.

Returns transformed RDD

map_binary(*args, **kwds)
Map binary output as a context manager. This currently takes rdd as input and will output a directory of
the newly written binary files so that they can be read by the user with sc.binaryFiles. After finishing with
the context manager, the temp files are destroyed.

Parameters

• rdd – spark RDD input

• image_name – docker image

• command – docker command to run

Keyword Arguments

• container_input_name – the name of the file within the shared_mountpoint that is
written to before the map steps from the host, and read from as the first step in the map in
the container. (Default ‘input.txt’)

• container_binary_output_name – the name of the output file in map_binary step
inside the container. This path will belong inside of the shared_mountpoint which maps to
the host temp directory for that partition. (Default ‘output.bin’)

• docker_options – additional docker options

• map_udf – function that takes one input, the partition, and returns a dictionary of file-
name: contents (as iterable).

• hdfs_tempdir – temporary directory on HDFS to hold binary files. The default at-
tempts to find the home directory for the user, but can be overridden by specifying an
absolute path to use.

Returns directory path containing the output binary files to be read

reduce(rdd, image_name, command, **kwargs)
Apply a Spark reduce function to the input RDD. This will take rolling pairs and write to temp files, run
a docker container, execute a command in the container over the temp files, write to temp files, and return
the result.

Parameters

• rdd – a spark RDD as input

• image_name – Docker image name

• command – Command to run in the docker container

4.3. lofn.api module 11

lofn Documentation, Release 0.4.0

Keyword Arguments

• container_input_name – the name of the file within the shared_mountpoint that is
written to before the reduce from the host, and read from as the first step in reduce in the
container. (Default ‘input.txt’)

• container_output_name – the name of the file the reduce step writes to inside the
container. This path will belong inside of the shared_mountpoint which maps to the host
temp directory for that partition. (Default ‘output.txt’)

• docker_options – additional docker options to provide for ‘docker run’. Must be a
list.

• reduce_udf – The default behavior for handling the pairs of partitions is to append right
to left and write to one temp file. This can be overridden by supplying a ‘reduce_udf’ func-
tion that takes two inputs, the pair of partitions, and transforms them to return a dictionary
mapping a key of filename to value of contents in a list (iterable) of elements to write to a
file within the temp directory.

reduce_binary(rdd, image_name, command, **kwargs)
Reduce partitions from map_binary output. The format of these partitions is different so this handles them
and also writes the temp files as one string rather than trying to split newlines since these are binary.

Parameters

• rdd – spark RDD

• image_name – docker image

• command – docker command

Keyword Arguments

• container_binary_input_1_name – the name of the left side file in re-
duce_binary step inside the container. This path will belong inside of the
shared_mountpoint which maps to the host temp directory for that partition. (Default
‘input_1.bin’)

• container_binary_input_2_name – the name of the right side file in re-
duce_binary step inside the container. This path will belong inside of the
shared_mountpoint which maps to the host temp directory for that partition. (Default
‘input_2.bin’)

• container_binary_output_name – the name of the output file in reduce_binary
step inside the container. This path will belong inside of the shared_mountpoint which
maps to the host temp directory for that partition. (Default ‘output.bin’)

• docker_options – additional docker options

• reduce_udf – default behavior for reduce_binary is to write each input as a temp file
to give two binary input files to the container. Write a UDF here that takes two inputs and
outputs a dictionary mapping filename: contents (a string)

Returns iterable of reduce results

4.4 lofn.docker_handler module

Run Docker containers.

12 Chapter 4. lofn package

lofn Documentation, Release 0.4.0

exception lofn.docker_handler.DockerFailure
Bases: exceptions.Exception

Custom exception to communicate the container failed.

lofn.docker_handler.execute(command)
Use the shell to invoke Docker. Catch exceptions and return to master to be caught and reported helpfully.

Parameters command – bash command to call docker with requested configuration

Returns if failure, the message about why it failed is returned, otherwise it returns False

lofn.docker_handler.run(image_name, command, bind_files, volume_files, **kwargs)
Make system calls with subprocess to run our containers.

Parameters

• image_name – docker image to run a container

• command – docker command to run in container

• bind_files – container paths to set as mount point

• volume_files – host paths to mount

Keyword Arguments

• docker_options – additional options to pass to docker run as a list

• temporary_directory_parent – specify the parent directory for temporary direc-
tories and files. Must exist or have permission to create the directory. The default is None,
which uses the a default from a platform-dependent list or the system’s environment variable
for TMP, TMPDIR, or TEMPDIR.

Returns status of execution, False is no issues otherwise returns failure message.

lofn.docker_handler.validate_user_input(volumes)
Validate the user input. Checks the type and structure.

4.5 lofn.hdfs_handler module

Interact with HDFS.

lofn.hdfs_handler.setup_user_volumes_from_hdfs(*args, **kwds)
GET a local copy of the volume to mount in Docker and update and map the volumes dictionary with the new
local temp directory.

Parameters volumes – Docker volumes specification as a dictionary, similar to structure seen in
DockerPy. User defined volumes to mount in the container. example: {‘[host_directory_path]’:
{‘bind’: ‘[container_directory_path]’, ‘mode’: ‘[ro|rw] }} The host directory path in the dictio-
nary must be the absolute path to the directory on HDFS.

Keyword Arguments temporary_directory_parent – manually specify the parent direc-
tory or the temp files directories, else default is None which uses the system’s TMP/TMPDIR.

Returns a volumes dictionary mapping to the new temporary directories

4.6 lofn.tmp_file_handler module

Create temp files for Docker read/write

4.5. lofn.hdfs_handler module 13

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

lofn Documentation, Release 0.4.0

class lofn.tmp_file_handler.UDF(temporary_directory, user_function, **kwargs)
Bases: object

Define how to handle RDD partitions to temp files.

The return should be a dictionary, with filename as key and list of elements as value. These files are written
inside of the shared mount point temporary directory.

These file names override the input container name.

map_udf()
Unpack a partition into multiple files based on a user defined function. The udf should return a dictionary,
with filename as key and list of elements as value.These files are written inside of the shared mountpoint
temporary directory.

These filenames override the input container name.

reduce_udf()
Define handling of pairs of partitions for the reduce step. Pass a function to handle the pair of partitions
input and return a dictionary mapping file name as key and value as an iterable of contents to write to the
temp file.

This will override the input container name.

write_temp_files(inner_partitions)
Write contents to temp file with defined name. Iterables are written line by line, while binary data is written
as a single string.

Parameters inner_partitions – the content to write, either as iterable for regular files or
string for binary data

lofn.tmp_file_handler.handle_binary(origin_directory, destination_directory, input_path, mas-
ter_type)

Move, rename, and keep temp file outputs into one directory to be read back by user with sc.binaryFiles() and
then remove the original temp directory used by the containers.

Parameters

• origin_directory – temporary directory mounted by container

• destination_directory – the shared temporary directory, either locally or on hdfs,
for all the output files to be moved

• input_path – the full path to the file to be moved to on HDFS

• master_type – spark master type, yarn or standalone

Returns path to new file

lofn.tmp_file_handler.read_back(shared_dir, output_file)
Read text files back into an iterable from temp file then destroy the temp file and its parent directory.

Parameters

• shared_dir – the temporary directory that the container mounted

• output_file – path to output filename

Returns iterable of output file contents

lofn.tmp_file_handler.read_binary(shared_dir, output_file)
Read back binary file output from container into one string, not an iterable. Then remove the temporary parent
directory the container mounted.

Parameters

14 Chapter 4. lofn package

https://docs.python.org/2/library/functions.html#object

lofn Documentation, Release 0.4.0

• shared_dir – temporary directory container mounted

• output_file – path to output file

Returns str of file contents

4.6. lofn.tmp_file_handler module 15

lofn Documentation, Release 0.4.0

16 Chapter 4. lofn package

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

lofn Documentation, Release 0.4.0

18 Chapter 5. Indices and tables

Python Module Index

l
lofn.api, 10
lofn.base.hdfs, 9
lofn.base.tmp, 9
lofn.docker_handler, 12
lofn.hdfs_handler, 13
lofn.tmp_file_handler, 13

19

lofn Documentation, Release 0.4.0

20 Python Module Index

Index

C
create_temp_directory() (in module lofn.base.tmp), 9

D
DockerFailure, 12
DockerPipe (class in lofn.api), 10

E
execute() (in module lofn.docker_handler), 13

G
get() (in module lofn.base.hdfs), 9

H
handle_binary() (in module lofn.tmp_file_handler), 14

L
lofn.api (module), 10
lofn.base.hdfs (module), 9
lofn.base.tmp (module), 9
lofn.docker_handler (module), 12
lofn.hdfs_handler (module), 13
lofn.tmp_file_handler (module), 13

M
map() (lofn.api.DockerPipe method), 10
map_binary() (lofn.api.DockerPipe method), 11
map_udf() (lofn.tmp_file_handler.UDF method), 14
mkdir_p() (in module lofn.base.hdfs), 9

P
put() (in module lofn.base.hdfs), 9

R
read_back() (in module lofn.tmp_file_handler), 14
read_binary() (in module lofn.tmp_file_handler), 14
reduce() (lofn.api.DockerPipe method), 11
reduce_binary() (lofn.api.DockerPipe method), 12

reduce_udf() (lofn.tmp_file_handler.UDF method), 14
rm_r() (in module lofn.base.hdfs), 9
run() (in module lofn.docker_handler), 13

S
setup_user_volumes_from_hdfs() (in module

lofn.hdfs_handler), 13

U
UDF (class in lofn.tmp_file_handler), 13

V
validate_user_input() (in module lofn.docker_handler),

13

W
write_binary_to_temp_file() (in module lofn.base.tmp), 9
write_temp_files() (lofn.tmp_file_handler.UDF method),

14
write_to_temp_file() (in module lofn.base.tmp), 10

21

	Introduction to lofn
	How It Works
	Supported Features

	Getting Started
	Installation
	Dependencies
	Running on Standalone
	Running on YARN
	Examples

	Using lofn on AWS
	Security Settings
	Manual Setup
	Automatic Setup

	lofn package
	Subpackages
	Submodules
	lofn.api module
	lofn.docker_handler module
	lofn.hdfs_handler module
	lofn.tmp_file_handler module

	Indices and tables
	Python Module Index

