

 Navigation

 	
 index

 	
 next |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Welcome to the Mirantis OpenStack LMA Collector Developer Documentation!

	Overview

	Common Message Format
	Field Format

	Log Messages
	Log Messages Format

	Notification Messages
	Notification Messages Format

	Metric Messages
	Metric Messages Format

	Supported Outputs
	Elasticsearch

	InfluxDB

	Installation without Fuel
	Pre-requisites

	Download the packages

	Building the Puppet modules

	Installing the Puppet modules

	Running the main Puppet manifest(s)

	Running tests

Indices and Tables

	Search Page

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Overview

The Mirantis OpenStack LMA (Logging, Monitoring and Alerting) Toolchain is comprised
of a collection of open-source tools to help you monitor and diagnose problems in your
OpenStack environment. These tools are packaged and delivered as Fuel plugins [https://wiki.openstack.org/wiki/Fuel/Plugins] you can install from within the
graphic user interface of Fuel starting with Mirantis OpenStack version 6.1.

From a high level view, the LMA Toolchain includes:

	The LMA Collector (or just the Collector) to gather all operational data that we
think are relevant to increase the operational visibility over your OpenStack
environment. Those data are collected from a variety of sources including the log messages,
collectd [https://collectd.org/], and the OpenStack notifications bus [https://wiki.openstack.org/wiki/SystemUsageData]

	Pluggable external systems we call satellite clusters which can take action on the
data received from the Collectors running on the OpenStack nodes.

The Collector is best described as a pluggable message processing and routing pipeline.
Its core components are :

	Collectd that is bundled with a collection of monitoring plugins. Many of them are purpose-built
for OpenStack.

	Heka [https://github.com/mozilla-services/heka] which is the cornerstone component
of the Collector.

	A collection of Heka plugins written in Lua to decode, process and encode the data to be sent
to external systems.

The primary function of the Collector is to transform the acquired raw
operational data into an internal message representation that is based on the
Heka message structure [http://hekad.readthedocs.io/en/latest/message/index.html].
that can be further exploited to, for example, detect anomalies or create
new metric messages.

The satellite clusters delivered as part of the LMA Toolchain starting with Mirantis OpenStack 6.1 include:

	Elasticsearch [http://www.elasticsearch.org/], a powerful open source search server based
on Lucene and analytics engine that makes data like log messages and notifications easy to explore and analyse.

	InfluxDB [http://influxdb.com/], an open-source and distributed time-series database to store and search metrics.

By combining Elasticsearch with Kibana [http://www.elasticsearch.org/overview/kibana/],
the LMA Toolchain provides an effective way to search and correlate all service-affecting events
that occurred in the system for root cause analysis.

Likewise, by combining InfluxDB with Grafana [http://grafana.org/], the LMA Toolchain
brings you insightful metrics analytics to visualise how OpenStack behaves over time.
This includes metrics for the OpenStack services status and a variety of resource usage
and performance indicators. The ability to visualise time-series over a period of time that
can vary from 5 minutes to the last 30 days helps anticipating failure conditions and plan
capacity ahead of time to cope with a changing demand.

Furthermore, the LMA Toolchain has been designed with the dual objective to be both insightful and adaptive.

It is, for example, quite possible (without any code change) to integrate the Collector
with an external monitoring application like Nagios. This could simply be done through enabling
the Nagios output plugin of Heka for a subset of messages matching the
message matcher [https://hekad.readthedocs.io/en/latest/message_matcher.html#message-matcher]
syntax of the output plugin. You should probably not modify the configuration of the LMA
Collector manually but apply any configuration change to the Puppet manifests that are shipped
with the LMA Collector plugin for Fuel. Many other integration combinations are possible thanks
to the extreme flexibility of Heka.

We recommend you to read the Heka documentation [https://hekad.readthedocs.io/en/latest/index.html]
to become more familiar with that technology.

The rest of this document is organised in several chapters that will take you through a
description of the internal message structure for the categories of operational data
that are handled by the LMA Toolchain.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Common Message Format

Heka turns the incoming data into Heka messages [1] with a well-defined format
which is described below.

	Timestamp (number), the timestamp of the message (in nanoseconds since the
Epoch).

	Logger (string), the datasource from the Heka’s standpoint.

	Type (string), the type of message.

	Hostname (string), the name of the host that emitted the message.

	Severity (number), severity level as defined by the Syslog RFC
5424 [https://tools.ietf.org/html/rfc5424].

	Payload (string), the input data in most cases.

	Pid (number), the Process ID that generated the message.

	Fields, array of Field structures (see below).

Field Format

Every message (either originating from logs, metrics or notifications) is
populated with a set of predefined fields:

Attributes in bold are always present in the messages while attributes in
italic are optional.

	deployment_id (number), the deployment identifier of the Fuel
environment.

	openstack_region (string), the name of the OpenStack region.

	openstack_release (string), the name of the OpenStack release.

	openstack_roles (string), a comma-separated list of the node’s roles (eg
‘controller’, ‘compute,cinder’).

	environment_label (string), the label assigned to the OpenStack
environment.

Note

All date/time fields represented as string are formatted according
to the RFC3339 [http://tools.ietf.org/html/rfc3339] document.

	[1]	Heka message structure [http://hekad.readthedocs.io/en/latest/message/index.html]

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Log Messages

The Heka collector service is configured to tail the following log files:

	System logs.
	/var/log/syslog

	/var/log/messages

	/var/log/debug

	/var/log/auth.log

	/var/log/cron.log

	/var/log/daemon.log

	/var/log/kern.log

	/var/log/pacemaker.log

	MySQL server logs (for controller nodes).

	RabbitMQ server logs (for controller nodes).

	Pacemaker logs (for controller nodes).

	OpenStack logs.

	Open vSwitch logs (all nodes).
	/var/log/openvswitch/ovsdb-server.log

	/var/log/openvswitch/ovs-vswitchd.log

Log Messages Format

In addition to the common Common Message Format, log-based messages have
additional properties.

Attributes in bold are always present in the messages while attributes in
italic are optional.

	Logger (string), system.<service>, mysql or
openstack.<service>.

	Type (string), always log.

	Fields
	severity_label (string), the textual representation of the severity
level.

	programname (string), the application name for Syslog-based messages, or
the OpenStack service daemon name for OpenStack log messages (eg
“nova-compute”).

	syslogfacility (number), the Syslog facility for Syslog-based messages.

	python_module (string), the Python module that generated the log message
for OpenStack service logs.

	http_method (string), the HTTP method (for instance ‘GET’).

	http_client_ip_address (string), the IP address of the client that
originated the HTTP request.

	http_response_size (number), the size of the HTTP response (in bytes).

	http_response_time (number), the HTTP response time (in seconds).

	http_status (string), the HTTP response status.

	http_url (string), the requested HTTP URL.

	http_version (string), the HTTP version (eg ‘1.1).

	request_id (string), the UUID of the OpenStack request to which the
message applies.

	tenant_id (string), the UUID of the OpenStack tenant to which the message
applies.

	user_id (string), the UUID of the OpenStack user to which the message
applies.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Notification Messages

OpenStack services can be configured to send notifications on the message bus
about the executing task or the state of the cloud resources [1]. These
notifications are received by the LMA collector service and turned into Heka
messages.

Notification Messages Format

In addition to the Common Message Format, notification-based messages
have additional properties.

Attributes in bold are always present in the messages while attributes in
italic are optional.

	Logger (string), the OpenStack service that emitted the notification,
(eg, nova).

	Payload (string), the payload of the OpenStack notification.

	Hostname (string), the name of the host that originated the notification.

	Type (string), always notification.

	Fields
	hostname (string), the name of the host that originated the
notification.

	publisher (string), the name of the underlying service that emitted the
notification (eg, scheduler).

	severity_label (string), the textual representation of the severity
level.

	event_type (string), the notification’s type (eg
compute.instance.create.end).

	tenant_id (string), the UUID of the OpenStack tenant to which the message
applies.

	user_id (string), the UUID of the OpenStack user to which the message
applies.

	instance_id (string), the UUID of the virtual instance to which the
message applies.

	image_name (string), the image used by the image.

	display_name (string), the visible name of the resource.

	instance_type (string), the type of instance (eg m1.small).

	availability_zone (string), the availability zone of the instance.

	vcpus (number), the number of VCPU provisioned for the instance.

	memory_mb (number), the amount of RAM provisioned for the instance.

	disk_gb (number), the disk space provisioned for the instance.

	old_state (string), the previous state of the instance (eg building).

	state (string), the state of the instance (eg active).

	old_task_state (string), the previous task state for the instance (eg
block_device_mapping).

	new_task_state (string), the new task state for the instance (eg
spawning).

	created_at (string): the date of creation of the instance.

	launched_at (string): the date when the instance was effectively
launched.

	deleted_at (string): the date of deletion of the instance.

	terminated_at (string): the date when the instance was effectively
terminated.

	[1]	OpenStack notifications [http://docs.openstack.org/admin-guide-cloud/telemetry-data-collection.html#notifications]

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Metric Messages

Metrics are extracted from several sources:

	Data received from collectd.

	Log messages processed by the collector service.

	OpenStack notifications processed by the collector service.

Metric Messages Format

In addition to the common Common Message Format, metric messages have
additional properties.

Attributes in bold are always present in the messages while attributes in
italic are optional.

	Logger (string), the datasource from the Heka’s standpoint, it can be
collectd, notification_processor or http_log_parser.

	Type (string)

	metric or heka.sandbox.metric for the single-value metrics.

	heka.sandbox.multivalue_metric for the multi-valued metrics (eg annotations).

	heka.sandbox.bulk_metric for the metrics sent by bulk.

	heka.sandbox.afd_service_metric for the AFD service metrics.

	heka.sandbox.afd_node_metric for the AFD node metrics.

	heka.sandbox.gse_service_cluster_metric for the GSE service cluster metrics.

	heka.sandbox.gse_node_cluster_metric for the GSE node cluster metrics.

	heka.sandbox.gse_cluster_metric for the GSE global cluster metrics.

	Severity (number), it is always equal to 6 (INFO).

	Fields

	name (string), the name of the metric. See the User Documentation [http://fuel-plugin-lma-collector.readthedocs.io/en/latest/appendix_b.html] for the
current metric names that are emitted.

	value (number), the value associated to the metric.

	type (string), the metric’s type, either gauge (a value that can go
up or down), counter (an always increasing value) or derive (a
per-second rate).

	source (string), the source from where the metric comes from, it can be
the name of the collectd plugin, <service>-api for HTTP response metrics.

	hostname (string), the name of the host to which the metric applies. It
may be different from the Hostname value. For instance when the metric is
extracted from an OpenStack notification, Hostname is the host that
captured the notification and Fields[hostname] is the host that emitted
the notification.

	interval (number), the interval at which the metric is emitted (for
the collectd metrics).

	tenant_id (string), the UUID of the OpenStack tenant to which the metric
applies.

	user_id (string), the UUID of the OpenStack user to which the metric
applies.

Metric messages may include additional fields to specify the scope of the
measurement. Refer to the User Documentation [http://fuel-plugin-lma-collector.readthedocs.io/en/latest/appendix_b.html] for more details.

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Supported Outputs

The LMA collector can forward part or all of the processed Heka messages to any
kind of external system, provided that the system supports a protocol-based
interface such as HTTP, SMTP or AMQP.

The supported backends are described hereunder.

Elasticsearch

The LMA collector is able to send Log Messages and Notification Messages to
Elasticsearch [http://elasticsearch.org/].

There is one index per day and per type of message:

	Index for log messages is log-<YYYY-MM-DD>.

	Index for notification messages is notification-<YYYY-MM-DD>.

InfluxDB

The LMA collector is able to send Metric Messages to InfluxDB [http://influxdb.com/].

A metric message is stored into a measurement whose name is taken from
Fields[name]. The datapoint’s timestamp is taken from the Timestamp field
and Fields[value] is stored as the value field. Note that numerical values
are always encoded as float numbers.

Some tags are associated to all measurements:

	deployment_id

	hostname

If the metric message contains a non-empty Fields[tag_fields] list, the
items listed in this field are encoded as additional key-value tags.

For instance, lets take the following Heka message:

2015/09/15 16:16:05
:Timestamp: 2015-09-15 16:15:37.645999872 +0000 UTC
:Type: metric
:Hostname: node-1
:Pid: 15595
:Uuid: e67f91c5-259b-489f-adfa-8eea0b389eb2
:Logger: collectd
:Payload: {"type":"cpu","values":[0],"type_instance":"idle","dsnames":["value"],
 "plugin":"cpu","time":1442333737.646,"interval":10,"host":"node-1",
 "dstypes":["derive"],"plugin_instance":"0"}
:EnvVersion:
:Severity: 6
:Fields:
 | name:"type" type:string value:"derive"
 | name:"source" type:string value:"cpu"
 | name:"deployment_id" type:string value:"1"
 | name:"openstack_roles" type:string value:"primary-controller"
 | name:"openstack_release" type:string value:"2015.1.0-7.0"
 | name:"tag_fields" type:string value:"cpu_number"
 | name:"openstack_region" type:string value:"RegionOne"
 | name:"name" type:string value:"cpu_idle"
 | name:"hostname" type:string value:"node-1"
 | name:"value" type:double value:0
 | name:"environment_label" type:string value:"deploy_lma_infra_alerting_ha"
 | name:"interval" type:double value:10
 | name:"cpu_number" type:string value:"95"

Using the InfluxDB line protocol, it would be encoded like this:

cpu_idle,cpu_number=0,deployment_id=1,hostname=node-1 value=95.000000 1442333737645

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Installation without Fuel

This section provides instructions and hints on how the LMA Collector service
can be deployed without using the Fuel plugin package. For instance, the Fuel
version that you are running isn’t compatible with the current release of the
LMA Collector or you want to have more control on the configuration of the LMA
Collector.

In such situations, it is possible to leverage directly the Puppet modules and
write your own Puppet manifests to configure and run the LMA Collector service
on the OpenStack nodes.

Pre-requisites

	The nodes are already deployed with the OpenStack services.

	The nodes can download and install packages from a repository server that you
manage.

	Configuration management is done with Puppet >= 3.x. Both master and
masterless methods [https://docs.puppetlabs.com/puppet/latest/reference/dirs_manifest.html]
are supported.

	You have already written the main Puppet manifests. You can have a look at the
reference documentation [https://github.com/openstack/fuel-plugin-lma-collector/tree/master/deployment_scripts/puppet/modules/lma_collector/README.md]
and at the examples [https://github.com/openstack/fuel-plugin-lma-collector/tree/master/deployment_scripts/puppet/modules/lma_collector/examples]
of the lma_collector Puppet module.

	The satellite clusters (Elasticsearch/Kibana, InfluxDB/Grafana and Nagios)
are already deployed and the nodes where LMA Collectors run have access
to them.

Download the packages

Before running the Puppet manifests, you have to make sure that the nodes will
be able to download and install the necessary packages.

This small script will get you started:

WORK_DIR=/tmp/lma_collector
PACKAGES_DIR=${WORK_DIR}/packages
mkdir -p ${PACKAGES_DIR}
rm -rf ${PACKAGES_DIR:?}/*
pushd $WORK_DIR
git clone https://github.com/openstack/fuel-plugin-lma-collector.git
cd fuel-plugin-lma-collector
./pre_build_hook
cp ./repositories/ubuntu/*.deb ${PACKAGES_DIR}
(cd ${PACKAGES_DIR} && dpkg-scanpackages . > Packages)
echo "The packages directory is available at ${PACKAGES_DIR}"
popd

Then you should copy the packages directory to your local repository server
and update the APT configuration on the deployed nodes accordingly to enable
the new source repository.

Building the Puppet modules

You have to build locally the lma_collector and heka Puppet modules because
they aren’t yet available from PuppetForge.

WORK_DIR=/tmp/lma_collector
mkdir -p ${WORK_DIR}
rm -rf ${WORK_DIR:?}/*
pushd $WORK_DIR
git clone https://github.com/openstack/fuel-plugin-lma-collector.git
cd fuel-plugin-lma-collector/deployment_scripts/puppet/modules/
for module in heka lma_collector
do
 pushd $module
 puppet module build
 cp pkg/*.tar.gz ${WORK_DIR}
 popd
done
echo "The Puppet modules are available at ${WORK_DIR}"
popd

Installing the Puppet modules

After building the lma_collector and heka Puppet modules, you need to
install them on your Puppet master or on all the nodes (in case of masterless
installation).

puppet module install mirantis-heka-1.0.0.tar.gz
puppet module install mirantis-lma_collector-1.0.0.tar.gz

Running the main Puppet manifest(s)

Finally you can run your main Puppet manifest(s). For the masterless case, it
would mean executing the puppet apply command similar to this snippet:

puppet apply /etc/puppet/manifests/

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	The LMA Collector Developer Documentation 0.9.0 documentation

Running tests

You need to have tox and bundler installed for running the tests.

Quickstart for Ubuntu Trusty:

apt-get install tox ruby ruby1.9.1-dev
gem install bundler
tox

For tox to run the Lua unit tests included in the lma_collector Puppet
module additional system packages are required:

apt-get install cmake lua5.1 liblua5.1 liblua5.1-dev lua-cjson lua-unit

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	The LMA Collector Developer Documentation 0.9.0 documentation

Index

 Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		The LMA Collector Developer Documentation 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mirantis Inc..
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

