
Livestreamer
Release 1.12.2

Nov 11, 2017

Contents

1 Features 3

2 Quickstart 5

3 User guide 7
3.1 Installation . 8
3.2 Command-Line Interface . 11
3.3 Plugins . 22
3.4 Players . 25
3.5 Common issues . 26
3.6 API Guide . 27
3.7 API Reference . 30

Python Module Index 37

i

ii

Livestreamer, Release 1.12.2

Livestreamer is a command-line utility that pipes video streams from various services into a video player, such as
VLC. The main purpose of Livestreamer is to allow the user to avoid buggy and CPU heavy flash plugins but still be
able to enjoy various streamed content. There is also an API available for developers who want access to the video
stream data.

• Latest release: 1.12.2 (changelog)

• GitHub: https://github.com/chrippa/livestreamer

• Issue tracker: https://github.com/chrippa/livestreamer/issues

• PyPI: https://pypi.python.org/pypi/livestreamer

• Discussions: https://groups.google.com/forum/#!forum/livestreamer

• IRC: #livestreamer @ Freenode

• Free software: Simplified BSD license

Contents 1

http://videolan.org/
https://github.com/chrippa/livestreamer
https://github.com/chrippa/livestreamer/issues
https://pypi.python.org/pypi/livestreamer
https://groups.google.com/forum/#!forum/livestreamer

Livestreamer, Release 1.12.2

2 Contents

CHAPTER 1

Features

Livestreamer is built upon a plugin system which allows support for new services to be easily added. Currently most
of the big streaming services are supported, such as:

• Dailymotion

• Livestream

• Twitch

• UStream

• YouTube Live

... and many more. A full list of plugins currently included can be found on the Plugins page.

3

http://dailymotion.com/live
http://livestream.com
http://twitch.tv
http://ustream.tv
http://youtube.com

Livestreamer, Release 1.12.2

4 Chapter 1. Features

CHAPTER 2

Quickstart

The default behaviour of Livestreamer is to playback a stream in the default player (VLC).

pip install livestreamer
$ livestreamer twitch.tv/day9tv best
[cli][info] Found matching plugin twitch for URL twitch.tv/day9tv
[cli][info] Opening stream: source (hls)
[cli][info] Starting player: vlc

For more in-depth usage and install instructions see the User guide.

5

http://videolan.org/

Livestreamer, Release 1.12.2

6 Chapter 2. Quickstart

CHAPTER 3

User guide

Livestreamer is made up of two parts, a Command-Line Interface and a library API. See their respective sections for
more information on how to use them.

7

Livestreamer, Release 1.12.2

3.1 Installation

3.1.1 Linux and BSD packages

Distribution Installing
Arch Linux (package)

pacman -S livestreamer

Arch Linux (aur, git) Installing AUR packages
CRUX

$ cd /usr/ports/contrib/livestreamer
pkgmk -d -i

Debian
apt-get install livestreamer

Exherbo Linux
Fedora

yum install livestreamer

FreeBSD (package)
pkg install multimedia/livestreamer

FreeBSD (ports)
$ cd /usr/ports/multimedia/livestreamer
make install clean

Gentoo Linux
emerge net-misc/livestreamer

NetBSD (pkgsrc)
$ cd /usr/pkgsrc/multimedia/livestreamer
make install clean

OpenBSD (package)
pkg_add livestreamer

OpenBSD (ports)
$ cd /usr/ports/multimedia/livestreamer
make install clean

Slackware Linux Installing Slackbuilds
Ubuntu

apt-get install livestreamer

8 Chapter 3. User guide

https://archlinux.org/packages/?q=livestreamer
https://aur.archlinux.org/packages/livestreamer-git/
https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages
http://crux.nu/portdb/?a=search&q=livestreamer
https://packages.debian.org/search?keywords=livestreamer&searchon=names&exact=1&suite=all§ion=all
http://git.exherbo.org/summer/packages/media/livestreamer/index.html
https://admin.fedoraproject.org/pkgdb/package/livestreamer/
http://www.freshports.org/multimedia/livestreamer
http://www.freshports.org/multimedia/livestreamer
https://packages.gentoo.org/package/net-misc/livestreamer
http://pkgsrc.se/multimedia/livestreamer
http://openports.se/multimedia/livestreamer
http://openports.se/multimedia/livestreamer
http://slackbuilds.org/result/?search=livestreamer
http://slackbuilds.org/howto/
http://packages.ubuntu.com/search?keywords=livestreamer&searchon=names&exact=1&suite=all§ion=all

Livestreamer, Release 1.12.2

3.1.2 Other platforms

Platform Installing
Mac OS X

easy_install -U livestreamer

Microsoft Windows See Windows binaries.

3.1.3 Source code

If a package is not available for your platform (or it’s out of date) you can install Livestreamer via source.

There are a few different methods to do this, pip the Python package manager, easy_install the older package
manager included with python-setuptools or by checking out the latest code with Git.

The commands listed here will also upgrade any existing version of Livestreamer.

Version Installing
Latest release (pip)

pip install -U livestreamer

Latest release (easy_install)
easy_install -U livestreamer

Development version (pip)
pip install -U git+https://github.com/
→˓chrippa/livestreamer.git

Development version (git)
$ git clone git://github.com/chrippa/
→˓livestreamer.git
$ cd livestreamer
python setup.py install

Dependencies

To install Livestreamer from source you will need these dependencies.

Name Notes
Python At least version 2.6 or 3.3.
python-setuptools
Automatically installed by the setup script
python-argparse Only needed on Python 2.6.
python-futures Only needed on Python 2.x.
python-requests At least version 1.0.
python-singledispatch Only needed on Python versions older than 3.4.
Optional
RTMPDump Required to play RTMP streams.
PyCrypto Required to play some encrypted streams.
python-librtmp Required by the ustreamtv plugin to be able to use non-mobile streams.

3.1. Installation 9

http://pip.readthedocs.org/en/latest/installing.html
http://pypi.python.org/pypi/setuptools
http://git-scm.com/downloads
https://pypi.python.org/pypi/livestreamer
https://pypi.python.org/pypi/livestreamer
https://github.com/chrippa/livestreamer
https://github.com/chrippa/livestreamer
http://python.org/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/argparse
http://pypi.python.org/pypi/futures
http://python-requests.org/
http://pypi.python.org/pypi/singledispatch
http://rtmpdump.mplayerhq.hu/
https://www.dlitz.net/software/pycrypto/
https://github.com/chrippa/python-librtmp

Livestreamer, Release 1.12.2

Installing without root permissions

If you do not wish to install Livestreamer globally on your system it’s recommended to use virtualenv to create a user
owned Python environment instead.

Creating an environment
$ virtualenv ~/myenv

Activating the environment
$ source ~/myenv/bin/activate

Installing livestreamer into the environment
(myenv)$ pip install livestreamer

Using livestreamer in the enviroment
(myenv)$ livestreamer ...

Deactivating the enviroment
(myenv)$ deactivate

Using livestreamer without activating the environment
$ ~/myenv/bin/livestreamer ...

Note: This may also be required on some OS X versions that seems to have weird permission issues (see issue #401).

3.1.4 Windows binaries

Installer

This is a installer which contains:

• A compiled version of Livestreamer that does not require an existing Python installation

• RTMPDump for viewing RTMP streams

and performs the following tasks:

• Generates a default configuration file

• Adds Livestreamer to your $PATH (making it possible to use livestreamer directly from the command
prompt without specifying its directory)

Zip archive

This is minimal zip archive containing a compiled version of Livestreamer that does not require an existing Python
installation.

Nightly build

This is an automatically generated build of the latest development code from the git repo.

Note: The binaries requires Microsoft Visual C++ 2008 Redistributable Package to be installed.

10 Chapter 3. User guide

http://virtualenv.readthedocs.org/en/latest/
https://github.com/chrippa/livestreamer/issues/401
http://rtmpdump.mplayerhq.hu/
http://www.microsoft.com/en-us/download/details.aspx?id=29

Livestreamer, Release 1.12.2

3.2 Command-Line Interface

3.2.1 Tutorial

Livestreamer is command-line application, this means the commands described here should be typed into a terminal.
On Windows this means you should open the command prompt or PowerShell, on Mac OS X open the Terminal app
and if you’re on Linux or BSD you probably already know the drill.

The way Livestreamer works is that it’s only a means to extract and transport the streams, and the playback is done by
an external video player. Livestreamer works best with VLC or mpv, which are also cross-platform, but other players
may be compatible too, see the Players page for a complete overview.

Now to get into actually using Livestreamer, let’s say you want to watch the stream located on http://twitch.tv/day9tv,
you start off by telling Livestreamer where to attempt to extract streams from. This is done by giving the URL to the
command livestreamer as the first argument:

$ livestreamer twitch.tv/day9tv
[cli][info] Found matching plugin twitch for URL twitch.tv/day9tv
Available streams: audio, high, low, medium, mobile (worst), source (best)

Note: You don’t need to include the protocol when dealing with HTTP URLs, e.g. just twitch.tv/day9tv is
enough and quicker to type.

This command will tell Livestreamer to attempt to extract streams from the URL specified, and if it’s successful, print
out a list of available streams to choose from.

To select a stream and start playback, we simply add the stream name as a second argument to the livestreamer
command:

$ livestreamer twitch.tv/day9tv source
[cli][info] Found matching plugin twitch for URL twitch.tv/day9tv
[cli][info] Opening stream: source (hls)
[cli][info] Starting player: vlc

The stream you chose should now be playing in the player. It’s a common use case to just want start the highest quality
stream and not be bothered with what it’s named. To do this just specify best as the stream name and Livestreamer
will attempt to rank the streams and open the one of highest quality. You can also specify worst to get the lowest
quality.

Now that you have a basic grasp of how Livestreamer works, you may want to look into customizing it to your own
needs, such as:

• Creating a configuration file of options you want to use

• Setting up your player to cache some data before playing the stream to help avoiding buffering issues

3.2.2 Configuration file

Writing the command-line options every time is inconvenient, that’s why Livestreamer is capable of reading options
from a configuration file instead.

Livestreamer will look for config files in different locations depending on your platform:

3.2. Command-Line Interface 11

http://windows.microsoft.com/en-us/windows/command-prompt-faq#1TC=windows-8
http://www.microsoft.com/powershell
http://en.wikipedia.org/wiki/Terminal_(OS_X)
http://videolan.org/
http://mpv.io/
http://twitch.tv/day9tv

Livestreamer, Release 1.12.2

Platform Location
Unix-like (POSIX)

• $XDG_CONFIG_HOME/livestreamer/config
• ~/.livestreamerrc

Windows %APPDATA%\livestreamer\livestreamerrc

You can also specify the location yourself using the --config option.

Note:

• $XDG_CONFIG_HOME is ~/.config if it has not been overridden

• %APPDATA% is usually <your user directory>\Application Data

Note: On Windows there is a default config created by the installer but on any other platform you must create the file
yourself.

Syntax

The config file is a simple text file and should contain one command-line option (omitting the dashes) per line in the
format:

option=value

or for a option without value:

option

Note: Any quotes used will be part of the value, so only use when the value needs them, e.g. specifiying a player
with a path containing spaces.

Example

Player options
player=mpv --cache 2048
player-no-close

Authenticate with Twitch
twitch-oauth-token=mytoken

3.2.3 Plugin specific configuration file

You may want to use specific options for some plugins only. This can be accomplished by placing those settings inside
a plugin specific config file. Options inside these config files will override the main config file when a URL matching
the plugin is used.

Livestreamer expects this config to be named like the main config but with .<plugin name> attached to the end.

12 Chapter 3. User guide

Livestreamer, Release 1.12.2

Examples

Platform Location
Unix-like (POSIX)

• $XDG_CONFIG_HOME/livestreamer/config.twitch
• ~/.livestreamerrc.ustreamtv

Windows %APPDATA%\livestreamer\livestreamerrc.youtube

Have a look at the list of plugins to see the name of each built-in plugin.

3.2.4 Plugin specific usage

Authenticating with Twitch

It’s possible to access subscription content on Twitch by giving Livestreamer access to your account.

Authentication is done by creating an OAuth token that Livestreamer will use to access your account. It’s done like
this:

$ livestreamer --twitch-oauth-authenticate

This will open a web browser where Twitch will ask you if you want to give Livestreamer permission to access your
account, then forwards you to a page with further instructions on how to use it.

Authenticating with Crunchyroll

Crunchyroll requires authenticating with a premium account to access some of their content. To do
so, the plugin provides a couple of options to input your information, --crunchyroll-username and
--crunchyroll-password.

You can login like this:

$ livestreamer --crunchyroll-username=xxxx --crunchyroll-password=xxx http://
→˓crunchyroll.com/a-crunchyroll-episode-link

Note: If you omit the password, livestreamer will ask for it.

Once logged in, the plugin makes sure to save the session credentials to avoid asking your username and password
again.

Neverthless, these credentials are valid for a limited amount of time, so it might be a good idea to save your username
and password in your configuration file anyway.

Warning: The API this plugin uses isn’t supposed to be available to use it on computers. The plugin tries to blend
in as a valid device using custom headers and following the API usual flow (e.g. reusing credentials), but this does
not assure that your account will be safe from being spotted for unusual behavior.

HTTP proxy with Crunchyroll

You can use the --http-proxy and --https-proxy options (you need both since the plugin uses both proto-
cols) to access the Crunchyroll servers through a proxy to be able to stream region locked content.

3.2. Command-Line Interface 13

Livestreamer, Release 1.12.2

When doing this, it’s very probable that you will get denied to access the stream; this occurs because the session and
credentials used by the plugin where obtained when logged from your own region, and the server still assumes you’re
in that region.

For this, the plugin provides the --crunchyroll-purge-credentials option, which removes your saved
session and credentials and tries to log in again using your username and password.

3.2.5 Sideloading plugins

Livestreamer will attempt to load standalone plugins from these directories:

Platform Location
Unix-like (POSIX) $XDG_CONFIG_HOME/livestreamer/plugins
Windows %APPDATA%\livestreamer\plugins

Note: If a plugin is added with the same name as a built-in plugin then the added plugin will take precedence. This
is useful if you want to upgrade plugins independently of the Livestreamer version.

3.2.6 Playing built-in streaming protocols directly

There are many types of streaming protocols used by services today and Livestreamer supports most of them. It’s
possible to tell Livestreamer to access a streaming protocol directly instead of relying on a plugin to extract the
streams from a URL for you.

A protocol can be accessed directly by specifying it in the URL format:

protocol://path [key=value]

Accessing a stream that requires extra parameters to be passed along (e.g. RTMP):

$ livestreamer "rtmp://streaming.server.net/playpath live=1 swfVfy=http://server.net/
→˓flashplayer.swf"

Most streaming technologies simply requires you to pass a HTTP URL, this is a Adobe HDS stream:

$ livestreamer hds://streaming.server.net/playpath/manifest.f4m

Supported streaming protocols

Name Prefix
Adobe HTTP Dynamic Streaming hds://
Akamai HD Adaptive Streaming akamaihd://
Apple HTTP Live Streaming hls:// hlsvariant://
Real Time Messaging Protocol rtmp:// rtmpe:// rtmps:// rtmpt:// rtmpte://
Progressive HTTP, HTTPS, etc httpstream://

3.2.7 Command-line usage

$ livestreamer [OPTIONS] [URL] [STREAM]

14 Chapter 3. User guide

Livestreamer, Release 1.12.2

Positional arguments

[URL]
A URL to attempt to extract streams from.

If it’s a HTTP URL then “http://” can be omitted.

[STREAM]
Stream to play.

Use “best” or “worst” for highest or lowest quality available.

Fallback streams can be specified by using a comma-separated list:

"720p,480p,best"

If no stream is specified and --default-stream is not used then a list of available streams will be printed.

General options

-h, --help
Show this help message and exit.

-V, --version
Show version number and exit.

--plugins
Print a list of all currently installed plugins.

--can-handle-url URL
Check if Livestreamer has a plugin that can handle the specified URL.

Returns status code 1 for false and 0 for true.

Useful for external scripting.

--config FILENAME
Load options from this config file.

Can be repeated to load multiple files, in which case the options are merged on top of each other where the last
config has highest priority.

-l LEVEL, --loglevel LEVEL
Set the log message threshold.

Valid levels are: none, error, warning, info, debug

-Q, --quiet
Hide all log output.

Alias for “--loglevel none”.

-j, --json
Output JSON representations instead of the normal text output.

Useful for external scripting.

--no-version-check
Do not check for new Livestreamer releases.

--version-check
Runs a version check and exits.

3.2. Command-Line Interface 15

http://

Livestreamer, Release 1.12.2

Player options

-p COMMAND, --player COMMAND
Player to feed stream data to. This is a shell-like syntax to support passing options to the player. For example:

"vlc --file-caching=5000"

To use a player that is located in a path with spaces you must quote the path:

"'/path/with spaces/vlc' --file-caching=5000"

By default VLC will be used if it can be found in its default location.

-a ARGUMENTS, --player-args ARGUMENTS
This option allows you to customize the default arguments which are put together with the value of --player
to create a command to execute.

This value can contain formatting variables surrounded by curly braces, { and }. If you need to include a brace
character, it can be escaped by doubling, e.g. {{ and }}.

Formatting variables available:

filename This is the filename that the player will use. It’s usually “-” (stdin), but can also be a URL or a file
depending on the options used.

It’s usually enough to use --player instead of this unless you need to add arguments after the filename.

Default is: “{filename}”.

-v, --verbose-player
Allow the player to display its console output.

-n, --player-fifo, --fifo
Make the player read the stream through a named pipe instead of the stdin pipe.

--player-http
Make the player read the stream through HTTP instead of the stdin pipe.

--player-continuous-http
Make the player read the stream through HTTP, but unlike --player-http it will continuously try to open
the stream if the player requests it.

This makes it possible to handle stream disconnects if your player is capable of reconnecting to a HTTP stream.
This is usually done by setting your player to a “repeat mode”.

--player-external-http
Serve stream data through HTTP without running any player. This is useful to allow external devices like
smartphones or streaming boxes to watch streams they wouldn’t be able to otherwise.

Behavior will be similar to the continuous HTTP option, but no player program will be started, and the server
will listen on all available connections instead of just in the local (loopback) interface.

The URLs that can be used to access the stream will be printed to the console, and the server can be interrupted
using CTRL-C.

--player-external-http-port PORT
A fixed port to use for the external HTTP server if that mode is enabled. Omit or set to 0 to use a random high
(>1024) port.

--player-passthrough TYPES
A comma-delimited list of stream types to pass to the player as a URL to let it handle the transport of the stream
instead.

16 Chapter 3. User guide

Livestreamer, Release 1.12.2

Stream types that can be converted into a playable URL are:

• hls

• http

• rtmp

Make sure your player can handle the stream type when using this.

--player-no-close
By default Livestreamer will close the player when the stream ends. This is to avoid “dead” GUI players
lingering after a stream ends.

It does however have the side-effect of sometimes closing a player before it has played back all of its cached
data.

This option will instead let the player decide when to exit.

File output options

-o FILENAME, --output FILENAME
Write stream data to FILENAME instead of playing it.

You will be prompted if the file already exists.

-f, --force
When using -o, always write to file even if it already exists.

-O, --stdout
Write stream data to stdout instead of playing it.

Stream options

--default-stream STREAM
Open this stream when no stream argument is specified, e.g. “best”.

--retry-streams DELAY
Will retry fetching streams until streams are found while waiting DELAY (seconds) between each attempt.

--retry-open ATTEMPTS
Will try ATTEMPTS times to open the stream until giving up.

Default is: 1.

--stream-types TYPES, --stream-priority TYPES
A comma-delimited list of stream types to allow.

The order will be used to separate streams when there are multiple streams with the same name but different
stream types.

Default is: “rtmp,hls,hds,http,akamaihd”.

--stream-sorting-excludes STREAMS
Fine tune best/worst synonyms by excluding unwanted streams.

Uses a filter expression in the format:

[operator]<value>

3.2. Command-Line Interface 17

Livestreamer, Release 1.12.2

Valid operators are >, >=, < and <=. If no operator is specified then equality is tested.

For example this will exclude streams ranked higher than “480p”:

">480p"

Multiple filters can be used by separating each expression with a comma.

For example this will exclude streams from two quality types:

">480p,>medium"

Stream transport options

--hds-live-edge SECONDS
The time live HDS streams will start from the edge of stream.

Default is: 10.0.

--hds-segment-attempts ATTEMPTS
How many attempts should be done to download each HDS segment before giving up.

Default is: 3.

--hds-segment-threads THREADS
The size of the thread pool used to download HDS segments. Minimum value is 1 and maximum is 10.

Default is: 1.

--hds-segment-timeout TIMEOUT
HDS segment connect and read timeout.

Default is: 10.0.

--hds-timeout TIMEOUT
Timeout for reading data from HDS streams.

Default is: 60.0.

--hls-live-edge SEGMENTS
How many segments from the end to start live HLS streams on.

The lower the value the lower latency from the source you will be, but also increases the chance of buffering.

Default is: 3.

--hls-segment-attempts ATTEMPTS
How many attempts should be done to download each HLS segment before giving up.

Default is: 3.

--hls-segment-threads THREADS
The size of the thread pool used to download HLS segments. Minimum value is 1 and maximum is 10.

Default is: 1.

--hls-segment-timeout TIMEOUT
HLS segment connect and read timeout.

Default is: 10.0.

--hls-timeout TIMEOUT
Timeout for reading data from HLS streams.

18 Chapter 3. User guide

Livestreamer, Release 1.12.2

Default is: 60.0.

--http-stream-timeout TIMEOUT
Timeout for reading data from HTTP streams.

Default is: 60.0.

--ringbuffer-size SIZE
The maximum size of ringbuffer. Add a M or K suffix to specify mega or kilo bytes instead of bytes.

The ringbuffer is used as a temporary storage between the stream and the player. This is to allows us to download
the stream faster than the player wants to read it.

The smaller the size, the higher chance of the player buffering if there are download speed dips and the higher
size the more data we can use as a storage to catch up from speed dips.

It also allows you to temporary pause as long as the ringbuffer doesn’t get full since we continue to download
the stream in the background.

Note: A smaller size is recommended on lower end systems (such as Raspberry Pi) when playing stream types
that require some extra processing (such as HDS) to avoid unnecessary background processing.

Default is: “16M”.

--rtmp-proxy PROXY, --rtmpdump-proxy PROXY
A SOCKS proxy that RTMP streams will use.

Example: 127.0.0.1:9050

--rtmp-rtmpdump FILENAME, --rtmpdump FILENAME, -r FILENAME
RTMPDump is used to access RTMP streams. You can specify the location of the rtmpdump executable if it is
not in your PATH.

Example: “/usr/local/bin/rtmpdump”

--rtmp-timeout TIMEOUT
Timeout for reading data from RTMP streams.

Default is: 60.0.

--stream-segment-attempts ATTEMPTS
How many attempts should be done to download each segment before giving up.

This is generic option used by streams not covered by other options, such as stream protocols specific to plugins,
e.g. UStream.

Default is: 3.

--stream-segment-threads THREADS
The size of the thread pool used to download segments. Minimum value is 1 and maximum is 10.

This is generic option used by streams not covered by other options, such as stream protocols specific to plugins,
e.g. UStream.

Default is: 1.

--stream-segment-timeout TIMEOUT
Segment connect and read timeout.

This is generic option used by streams not covered by other options, such as stream protocols specific to plugins,
e.g. UStream.

Default is: 10.0.

3.2. Command-Line Interface 19

Livestreamer, Release 1.12.2

--stream-timeout TIMEOUT
Timeout for reading data from streams.

This is generic option used by streams not covered by other options, such as stream protocols specific to plugins,
e.g. UStream.

Default is: 60.0.

--stream-url
If possible, translate the stream to a URL and print it.

--subprocess-cmdline, --cmdline, -c
Print command-line used internally to play stream.

This is only available on RTMP streams.

--subprocess-errorlog, --errorlog, -e
Log possible errors from internal subprocesses to a temporary file. The file will be saved in your systems
temporary directory.

Useful when debugging rtmpdump related issues.

HTTP options

--http-proxy HTTP_PROXY
A HTTP proxy to use for all HTTP requests.

Example: http://hostname:port/

--https-proxy HTTPS_PROXY
A HTTPS capable proxy to use for all HTTPS requests.

Example: http://hostname:port/

--http-cookie KEY=VALUE
A cookie to add to each HTTP request.

Can be repeated to add multiple cookies.

--http-header KEY=VALUE
A header to add to each HTTP request.

Can be repeated to add multiple headers.

--http-query-param KEY=VALUE
A query parameter to add to each HTTP request.

Can be repeated to add multiple query parameters.

--http-ignore-env
Ignore HTTP settings set in the environment such as environment variables (HTTP_PROXY, etc) or ~/.netrc
authentication.

--http-no-ssl-verify
Don’t attempt to verify SSL certificates.

Usually a bad idea, only use this if you know what you’re doing.

--http-ssl-cert FILENAME
SSL certificate to use.

Expects a .pem file.

20 Chapter 3. User guide

http://hostname:port/
http://hostname:port/

Livestreamer, Release 1.12.2

--http-ssl-cert-crt-key CRT_FILENAME KEY_FILENAME
SSL certificate to use.

Expects a .crt and a .key file.

--http-timeout TIMEOUT
General timeout used by all HTTP requests except the ones covered by other options.

Default is: 20.0.

Plugin options

--plugin-dirs DIRECTORY
Attempts to load plugins from these directories.

Multiple directories can be used by separating them with a semi-colon.

--twitch-oauth-token TOKEN
An OAuth token to use for Twitch authentication. Use --twitch-oauth-authenticate to create a
token.

--twitch-oauth-authenticate
Open a web browser where you can grant Livestreamer access to your Twitch account which creates a token for
use with --twitch-oauth-token.

--twitch-cookie COOKIES
Twitch cookies to authenticate to allow access to subscription channels.

Example:

"_twitch_session_id=xxxxxx; persistent=xxxxx"

Note: This method is the old and clunky way of authenticating with Twitch, using
--twitch-oauth-authenticate is the recommended and simpler way of doing it now.

--ustream-password PASSWORD
A password to access password protected UStream.tv channels.

--crunchyroll-username USERNAME
A Crunchyroll username to allow access to restricted streams.

--crunchyroll-password [PASSWORD]
A Crunchyroll password for use with --crunchyroll-username.

If left blank you will be prompted.

--crunchyroll-purge-credentials
Purge cached Crunchyroll credentials to initiate a new session and reauthenticate.

--livestation-email EMAIL
A Livestation account email to access restricted or premium quality streams.

--livestation-password PASSWORD
A Livestation account password to use with --livestation-email.

3.2. Command-Line Interface 21

Livestreamer, Release 1.12.2

3.3 Plugins

This is a list of the currently built in plugins and what URLs and features they support. Livestreamer’s primary focus
is live streams, so VOD support is limited.

Name URL(s) Live VOD Notes
afreeca afreecatv.com Yes No
afreecatv afreeca.tv Yes No
aftonbladet aftonbladet.se Yes Yes
alieztv aliez.tv Yes Yes
ard_live live.daserste.de Yes – Streams may be

geo-restricted to
Germany.

ard_mediathek ardmediathek.de Yes Yes Streams may be
geo-restricted to
Germany.

artetv arte.tv Yes Yes
azubutv azubu.tv Yes No
beattv be-at.tv Yes Yes Playlist not imple-

mented yet.
bambuser bambuser.com Yes Yes
chaturbate chaturbate.com Yes No
connectcast connectcast.tv Yes Yes
crunchyroll crunchyroll.com – Yes
cybergame cybergame.tv Yes Yes
dailymotion dailymotion.com Yes Yes
disney_de

•
video.disney.de

•
disneychannel.de

Yes Yes Streams may be
geo-restricted to
Germany.

dommune dommune.com Yes –
douyutv douyutv.com Yes –
dmcloud api.dmcloud.net Yes –
drdk dr.dk Yes Yes Streams may be

geo-restricted to
Denmark.

euronews euronews.com Yes No
filmon filmon.com Yes Yes Only SD quality

streams.
filmon_us filmon.us Yes Yes
furstream furstre.am Yes No
gaminglive gaminglive.tv Yes Yes
gomexp gomexp.com Yes No
goodgame goodgame.ru Yes No Only HLS streams

are available.
hitbox hitbox.tv Yes Yes
itvplayer itv.com/itvplayer Yes Yes Streams may be

geo-restricted to
Great Britain.

Continued on next page

22 Chapter 3. User guide

Livestreamer, Release 1.12.2

Table 3.1 – continued from previous page
Name URL(s) Live VOD Notes
letontv leton.tv Yes –
livestation livestation.com Yes –
livestream new.livestream.com Yes –
media_ccc_de

• media.ccc.de
• streaming...4

Yes Yes Only mp4 and HLS
ar are supported.

mips mips.tv Yes – Requires rtmpdump
with K-S-V patches.

mlgtv mlg.tv Yes –
nhkworld nhk.or.jp/nhkworld Yes No
nos nos.nl Yes Yes Streams may be

geo-restricted to
Netherlands.

npo npo.nl Yes Yes Streams may be
geo-restricted to
Netherlands.

nrk
• tv.nrk.no
• radio.nrk.no

Yes Yes Streams may be
geo-restricted to
Norway.

oldlivestream original.liv...3 Yes No Only mobile
streams are sup-
ported.

periscope periscope.tv Yes –
picarto picarto.tv Yes –
rtve rtve.es Yes No
sbsdiscovery

• kanal5play.se
• kanal9play.se
•

kanal11play.se

– Yes

seemeplay seemeplay.ru Yes Yes
speedrunslive speedrunslive.com Yes – URL forwarder to

Twitch channels.
ssh101 ssh101.com Yes No
streamingvi...1 streamingvid...2 Yes – RTMP streams

requires rtmpdump
with K-S-V patches.

streamlive streamlive.to Yes –
svtplay

• svtplay.se
• svtflow.se
• oppetarkiv.se

Yes Yes Streams may be
geo-restricted to
Sweden.

tga
• star.plu.cn
• star.tga.plu.cn

Yes No

Continued on next page

3.3. Plugins 23

Livestreamer, Release 1.12.2

Table 3.1 – continued from previous page
Name URL(s) Live VOD Notes
tv3cat tv3.cat Yes Yes Streams may be

geo-restricted to
Spain.

tv4play
• tv4play.se
•

fotbollskanalen.se

Yes Yes Streams may be
geo-restricted to
Sweden. Only non-
premium streams
currently supported.

tvcatchup
•

tvcatchup.com

Yes No Streams may be
geo-restricted to
Great Britain.

tvplayer tvplayer.com Yes No
twitch twitch.tv Yes Yes Possible to authen-

ticate for access
to subscription
streams.

ustreamtv ustream.tv Yes Yes
vaughnlive

• vaughnlive.tv
• breakers.tv
• instagib.tv
• vapers.tv

Yes –

veetle veetle.com Yes Yes
vgtv vgtv.no Yes Yes
viagame viagame.com
viasat

• tv3play.se
• tv3play.no
• tv3play.dk
• tv3play.ee
• tv3play.lt
• tv3play.lv
• tv6play.se
• tv6play.no
• tv8play.se
• tv10play.se
•

viasat4play.no
• play.tv3.lt
• juicyplay.se

Yes Yes Streams may be
geo-restricted.

wattv wat.tv – Yes
weeb weeb.tv Yes – Requires rtmpdump

with K-S-V patches.
youtube

• youtube.com
• youtu.be

Yes Yes Protected videos are
not supported.

Continued on next page

24 Chapter 3. User guide

Livestreamer, Release 1.12.2

Table 3.1 – continued from previous page
Name URL(s) Live VOD Notes
zdf_mediathek zdf.de Yes Yes

3.4 Players

3.4.1 Transport modes

There are three different modes of transporting the stream to the player.

Name Description
Standard input pipe This is the default behaviour when there are no other options specified.
Named pipe (FIFO) Use the --player-fifo option to enable.
HTTP Use the --player-http or --player-continuous-http options to enable.

3.4.2 Player compatibility

This is a list of video players and their compatibility with the transport modes.

Name Stdin Pipe Named Pipe HTTP
Daum Pot Player No No Yes1

MPC-HC Yes2 No Yes1

MPlayer Yes Yes Yes
MPlayer2 Yes Yes Yes
mpv Yes Yes Yes
QuickTime No No No
VLC media player Yes3 Yes Yes

3.4.3 Known issues and workarounds

MPC-HC reports “File not found”

Upgrading to version 1.7 or newer will solve this issue since reading data from standard input is not supported in
version 1.6.x of MPC-HC.

MPC-HC only plays sound on Twitch streams

Twitch sometimes returns badly muxed streams which may confuse players. The following workaround was con-
tributed by MPC-HC developer @kasper93:

4 streaming.media.ccc.de
3 original.livestream.com
1 streamingvideoprovider
2 streamingvideoprovider.co.uk
1 --player-continuous-http must be used. Using HTTP with players that rely on Windows’ codecs to access HTTP streams may have

a long startup time since Windows tend to do multiple HTTP requests and Livestreamer will attempt to open the stream for each request.
2 Stdin requires MPC-HC 1.7 or newer.
3 Some versions of VLC might be unable to use the stdin pipe and prints the error message:

VLC is unable to open the MRL 'fd://0'

Use one of the other transport methods instead to work around this.

3.4. Players 25

http://potplayer.daum.net
http://mpc-hc.org/
http://mplayerhq.hu
http://mplayer2.org
http://mpv.io
http://apple.com/quicktime
http://videolan.org
https://github.com/kasper93

Livestreamer, Release 1.12.2

To fix this problem go to options -> internal filters -> open splitter settings and increase “Stream Analysis
Duration” this will let ffmpeg to properly detect all streams.

Using --player-passthrough hls has also been reported to work.

MPlayer tries to play Twitch streams at the wrong FPS

This is a bug in MPlayer, using the MPlayer fork mpv instead is recommended.

VLC hangs when buffering and no playback starts

Some versions of 64-bit VLC seem to be unable to read the stream created by rtmpdump. Using the 32-bit version of
VLC might help.

3.5 Common issues

3.5.1 Streams are buffering/lagging

Enable caching in your player

By default most players do not cache the data they receieve from Livestreamer. Caching can reduce the amount of
buffering you run into because the player will have some breathing room between receving the data and playing it.

Player Parameter Note
MPC-
HC

– Currently no way of configuring the
cache

MPlayer -cache <kbytes> Between 1024 and 8192 is
recommended

MPlayer2 -cache <kbytes> Between 1024 and 8192 is
recommended

mpv --cache <kbytes> Between 1024 and 8192 is
recommended

VLC --file-caching <ms> --network-caching
<ms>

Between 1000 and 10000 is
recommended

Use the --player option to pass these options to your player.

Multi-threaded streaming

On segmented streaming protocols (such as HLS and HDS) it’s possible to use multiple threads to potentially increase
the throughput. Each stream type has it’s own option, these options are currently available:

Option Used by these plugins
--hls-segment-threads twitch, youtube and many more.
--hds-segment-threads dailymotion, mlgtv and many more.
--stream-segment-threadsustreamtv, beattv and any other plugins implementing their own segmented

streaming protocol.

Note: Using 2 or 3 threads should be enough to see an impact on live streams, any more will likely not show much
effect.

26 Chapter 3. User guide

http://mpv.io

Livestreamer, Release 1.12.2

3.6 API Guide

This API is what powers the Command-Line Interface but is also available to developers that wish to make use of the
data Livestreamer can retrieve in their own application.

3.6.1 Extracting streams

The simplest use of the Livestreamer API looks like this:

>>> import livestreamer
>>> streams = livestreamer.streams("http://twitch.tv/day9tv")

This simply attempts to find a plugin and use it to extract streams from the URL. This works great in simple cases but
if you want more fine tuning you need to use a session object instead.

The returned value is a dict containing Stream objects:

>>> streams
{'best': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'high': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'low': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'medium': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'mobile': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'source': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>,
'worst': <HLSStream('http://video11.fra01.hls.twitch.tv/ ...')>}

If no plugin for the URL is found, a NoPluginError will be raised. If an error occurs while fetching streams, a
PluginError will be raised.

3.6.2 Opening streams to read data

Now that you have extracted some streams we might want to read some data from one of them. When you call open()
on a stream, a file-like object will be returned, which you can call .read(size) and .close() on.

>>> stream = streams["source"]
>>> fd = stream.open()
>>> data = fd.read(1024)
>>> fd.close()

If an error occurs while opening a stream, a StreamError will be raised.

3.6.3 Inspecting streams

It’s also possible to inspect streams internal parameters, see Stream subclasses to see what attributes are available for
inspection for each stream type.

For example this is a HLSStream object which contains a url attribute.

>>> stream.url
'http://video38.ams01.hls.twitch.tv/hls11/ ...'

3.6. API Guide 27

Livestreamer, Release 1.12.2

3.6.4 Session object

The session allows you to set various options and is more efficient when extracting streams more than once. You start
by creating a Livestreamer object:

>>> from livestreamer import Livestreamer
>>> session = Livestreamer()

You can then extract streams like this:

>>> streams = session.streams("http://twitch.tv/day9tv")

or set options like this:

>>> session.set_option("rtmp-rtmpdump", "/path/to/rtmpdump")

See Livestreamer.set_option() to see which options are available.

3.6.5 Examples

Simple player

This example uses the PyGObject module to playback a stream using the GStreamer framework.

#!/usr/bin/env python

from __future__ import print_function

import sys

import gi

from gi.repository import GObject as gobject, Gst as gst
from livestreamer import Livestreamer, StreamError, PluginError, NoPluginError

def exit(msg):
print(msg, file=sys.stderr)
sys.exit()

class LivestreamerPlayer(object):
def __init__(self):

self.fd = None
self.mainloop = gobject.MainLoop()

This creates a playbin pipeline and using the appsrc source
we can feed it our stream data
self.pipeline = gst.ElementFactory.make("playbin", None)
self.pipeline.set_property("uri", "appsrc://")

When the playbin creates the appsrc source it will call
this callback and allow us to configure it
self.pipeline.connect("source-setup", self.on_source_setup)

Creates a bus and set callbacks to receive errors
self.bus = self.pipeline.get_bus()

28 Chapter 3. User guide

https://wiki.gnome.org/action/show/Projects/PyGObject
http://gstreamer.freedesktop.org/

Livestreamer, Release 1.12.2

self.bus.add_signal_watch()
self.bus.connect("message::eos", self.on_eos)
self.bus.connect("message::error", self.on_error)

def exit(self, msg):
self.stop()
exit(msg)

def stop(self):
Stop playback and exit mainloop
self.pipeline.set_state(gst.State.NULL)
self.mainloop.quit()

Close the stream
if self.fd:

self.fd.close()

def play(self, stream):
Attempt to open the stream
try:

self.fd = stream.open()
except StreamError as err:

self.exit("Failed to open stream: {0}".format(err))

Start playback
self.pipeline.set_state(gst.State.PLAYING)
self.mainloop.run()

def on_source_setup(self, element, source):
When this callback is called the appsrc expects
us to feed it more data
source.connect("need-data", self.on_source_need_data)

def on_source_need_data(self, source, length):
Attempt to read data from the stream
try:

data = self.fd.read(length)
except IOError as err:

self.exit("Failed to read data from stream: {0}".format(err))

If data is empty it's the end of stream
if not data:

source.emit("end-of-stream")
return

Convert the Python bytes into a GStreamer Buffer
and then push it to the appsrc
buf = gst.Buffer.new_wrapped(data)
source.emit("push-buffer", buf)

def on_eos(self, bus, msg):
Stop playback on end of stream
self.stop()

def on_error(self, bus, msg):
Print error message and exit on error
error = msg.parse_error()[1]
self.exit(error)

3.6. API Guide 29

Livestreamer, Release 1.12.2

def main():
if len(sys.argv) < 3:

exit("Usage: {0} <url> <quality>".format(sys.argv[0]))

Initialize and check GStreamer version
gi.require_version("Gst", "1.0")
gobject.threads_init()
gst.init(None)

Collect arguments
url = sys.argv[1]
quality = sys.argv[2]

Create the Livestreamer session
livestreamer = Livestreamer()

Enable logging
livestreamer.set_loglevel("info")
livestreamer.set_logoutput(sys.stdout)

Attempt to fetch streams
try:

streams = livestreamer.streams(url)
except NoPluginError:

exit("Livestreamer is unable to handle the URL '{0}'".format(url))
except PluginError as err:

exit("Plugin error: {0}".format(err))

if not streams:
exit("No streams found on URL '{0}'".format(url))

Look for specified stream
if quality not in streams:

exit("Unable to find '{0}' stream on URL '{1}'".format(quality, url))

We found the stream
stream = streams[quality]

Create the player and start playback
player = LivestreamerPlayer()

Blocks until playback is done
player.play(stream)

if __name__ == "__main__":
main()

3.7 API Reference

This ia reference of all the available API methods in Livestreamer.

30 Chapter 3. User guide

Livestreamer, Release 1.12.2

3.7.1 Livestreamer

livestreamer.streams(url, **params)
Attempts to find a plugin and extract streams from the url.

params are passed to Plugin.streams().

Raises NoPluginError if no plugin is found.

3.7.2 Session

class livestreamer.Livestreamer
A Livestreamer session is used to keep track of plugins, options and log settings.

get_option(key)
Returns current value of specified option.

Parameters key – key of the option

get_plugin_option(plugin, key)
Returns current value of plugin specific option.

Parameters

• plugin – name of the plugin

• key – key of the option

get_plugins()
Returns the loaded plugins for the session.

load_plugins(path)
Attempt to load plugins from the path specified.

Parameters path – full path to a directory where to look for plugins

resolve_url(url)
Attempts to find a plugin that can use this URL.

The default protocol (http) will be prefixed to the URL if not specified.

Raises NoPluginError on failure.

Parameters url – a URL to match against loaded plugins

set_loglevel(level)
Sets the log level used by this session.

Valid levels are: “none”, “error”, “warning”, “info” and “debug”.

Parameters level – level of logging to output

set_logoutput(output)
Sets the log output used by this session.

Parameters output – a file-like object with a write method

set_option(key, value)
Sets general options used by plugins and streams originating from this session object.

Parameters

• key – key of the option

• value – value to set the option to

3.7. API Reference 31

Livestreamer, Release 1.12.2

Available options:

32 Chapter 3. User guide

Livestreamer, Release 1.12.2

hds-live-edge (float) Specify the time live HDS streams will start from the edge of stream, default:
10.0

hds-segment-
attempts

(int) How many attempts should be done to download each HDS segment, default: 3

hds-segment-
threads

(int) The size of the thread pool used to download segments, default: 1

hds-segment-
timeout

(float) HDS segment connect and read timeout, default: 10.0

hds-timeout (float) Timeout for reading data from HDS streams, default: 60.0
hls-live-edge (int) How many segments from the end to start live streams on, default: 3
hls-segment-
attempts

(int) How many attempts should be done to download each HLS segment, default: 3

hls-segment-
threads

(int) The size of the thread pool used to download segments, default: 1

hls-segment-
timeout

(float) HLS segment connect and read timeout, default: 10.0

hls-timeout (float) Timeout for reading data from HLS streams, default: 60.0
http-proxy (str) Specify a HTTP proxy to use for all HTTP requests
https-proxy (str) Specify a HTTPS proxy to use for all HTTPS requests
http-cookies (dict or str) A dict or a semi-colon (;) delimited str of cookies to add to each HTTP

request, e.g. foo=bar;baz=qux
http-headers (dict or str) A dict or semi-colon (;) delimited str of headers to add to each HTTP

request, e.g. foo=bar;baz=qux
http-query-
params

(dict or str) A dict or a ampersand (&) delimited string of query parameters to add to
each HTTP request, e.g. foo=bar&baz=qux

http-trust-env (bool) Trust HTTP settings set in the environment, such as environment variables
(HTTP_PROXY, etc) and ~/.netrc authentication

http-ssl-verify (bool) Verify SSL certificates, default: True
http-ssl-cert (str or tuple) SSL certificate to use, can be either a .pem file (str) or a .crt/.key pair

(tuple)
http-timeout (float) General timeout used by all HTTP requests except the ones covered by other

options, default: 20.0
http-stream-
timeout

(float) Timeout for reading data from HTTP streams, default: 60.0

subprocess-
errorlog

(bool) Log errors from subprocesses to a file located in the temp directory

ringbuffer-size (int) The size of the internal ring buffer used by most stream types, default:
16777216 (16MB)

rtmp-proxy (str) Specify a proxy (SOCKS) that RTMP streams will use
rtmp-
rtmpdump

(str) Specify the location of the rtmpdump executable used by RTMP streams, e.g.
/usr/local/bin/rtmpdump

rtmp-timeout (float) Timeout for reading data from RTMP streams, default: 60.0
stream-
segment-
attempts

(int) How many attempts should be done to download each segment, default: 3.
General option used by streams not covered by other options.

stream-
segment-
threads

(int) The size of the thread pool used to download segments, default: 1. General
option used by streams not covered by other options.

stream-
segment-
timeout

(float) Segment connect and read timeout, default: 10.0. General option used by
streams not covered by other options.

stream-
timeout

(float) Timeout for reading data from stream, default: 60.0. General option used by
streams not covered by other options.

3.7. API Reference 33

Livestreamer, Release 1.12.2

set_plugin_option(plugin, key, value)
Sets plugin specific options used by plugins originating from this session object.

Parameters

• plugin – name of the plugin

• key – key of the option

• value – value to set the option to

streams(url, **params)
Attempts to find a plugin and extract streams from the url.

params are passed to Plugin.streams().

Raises NoPluginError if no plugin is found.

3.7.3 Plugins

class livestreamer.plugin.Plugin(url)
A plugin can retrieve stream information from the URL specified.

Parameters url – URL that the plugin will operate on

get_streams(*args, **kwargs)
Deprecated since version 1.9.0.

Has been renamed to Plugin.streams(), this is an alias for backwards compatibility.

streams(stream_types=None, sorting_excludes=None)
Attempts to extract available streams.

Returns a dict containing the streams, where the key is the name of the stream, most commonly the
quality and the value is a Stream object.

The result can contain the synonyms best and worst which points to the streams which are likely to be of
highest and lowest quality respectively.

If multiple streams with the same name are found, the order of streams specified in stream_types will
determine which stream gets to keep the name while the rest will be renamed to “<name>_<stream type>”.

The synonyms can be fine tuned with the sorting_excludes parameter. This can be either of these types:

• A list of filter expressions in the format [operator]<value>. For example the filter “>480p” will
exclude streams ranked higher than “480p” from the list used in the synonyms ranking. Valid operators
are >, >=, < and <=. If no operator is specified then equality will be tested.

• A function that is passed to filter() with a list of stream names as input.

Parameters

• stream_types – A list of stream types to return.

• sorting_excludes – Specify which streams to exclude from the best/worst syn-
onyms.

Changed in version 1.4.2: Added priority parameter.

Changed in version 1.5.0: Renamed priority to stream_types and changed behaviour slightly.

Changed in version 1.5.0: Added sorting_excludes parameter.

34 Chapter 3. User guide

Livestreamer, Release 1.12.2

Changed in version 1.6.0: sorting_excludes can now be a list of filter expressions or a function that is
passed to filter().

3.7.4 Streams

All streams inherit from the Stream class.

class livestreamer.stream.Stream(session)

open()
Attempts to open a connection to the stream. Returns a file-like object that can be used to read the stream
data.

Raises StreamError on failure.

Stream subclasses

You are able to inspect the parameters used by each stream, different properties are available depending on stream
type.

class livestreamer.stream.AkamaiHDStream(session, url, swf=None, seek=None)
Implements the AkamaiHD Adaptive Streaming protocol

Attributes:

• url URL to the stream

• swf URL to a SWF used by the handshake protocol

• seek Position to seek to when opening the stream

class livestreamer.stream.HDSStream(session, baseurl, url, bootstrap, metadata=None, time-
out=60, **request_params)

Implements the Adobe HTTP Dynamic Streaming protocol

Attributes:

• baseurl Base URL

• url Base path of the stream, joined with the base URL when fetching fragments

• bootstrap Either a URL pointing to the bootstrap or a bootstrap Box object used for initial information
about the stream

• metadata Either None or a ScriptData object that contains metadata about the stream, such as height,
width and bitrate

classmethod parse_manifest(session, url, timeout=60, pvswf=None, **request_params)
Parses a HDS manifest and returns its substreams.

Parameters

• url – The URL to the manifest.

• timeout – How long to wait for data to be returned from from the stream before raising
an error.

• pvswf – URL of player SWF for Akamai HD player verification.

3.7. API Reference 35

Livestreamer, Release 1.12.2

class livestreamer.stream.HLSStream(session_, url, **args)
Implementation of the Apple HTTP Live Streaming protocol

Attributes:

• url The URL to the HLS playlist.

• args A dict containing keyword arguments passed to requests.request(), such as headers and
cookies.

Changed in version 1.7.0: Added args attribute.

classmethod parse_variant_playlist(session_, url, name_key=’name’, name_prefix=’‘,
check_streams=False, **request_params)

Attempts to parse a variant playlist and return its streams.

Parameters

• url – The URL of the variant playlist.

• name_key – Prefer to use this key as stream name, valid keys are: name, pixels, bitrate.

• name_prefix – Add this prefix to the stream names.

• check_streams – Only allow streams that are accesible.

class livestreamer.stream.HTTPStream(session_, url, buffered=True, **args)
A HTTP stream using the requests library.

Attributes:

• url The URL to the stream, prepared by requests.

• args A dict containing keyword arguments passed to requests.request(), such as headers and
cookies.

class livestreamer.stream.RTMPStream(session, params, redirect=False)
RTMP stream using rtmpdump.

Attributes:

• params A dict containing parameters passed to rtmpdump

3.7.5 Exceptions

Livestreamer has three types of exceptions:

exception livestreamer.LivestreamerError
Any error caused by Livestreamer will be caught with this exception.

exception livestreamer.PluginError
Plugin related error.

exception livestreamer.NoPluginError
No relevant plugin has been loaded.

exception livestreamer.StreamError
Stream related error.

36 Chapter 3. User guide

Python Module Index

l
livestreamer, 27
livestreamer.plugin, 34
livestreamer.stream, 35

37

Livestreamer, Release 1.12.2

38 Python Module Index

Index

Symbols
–can-handle-url URL

command line option, 15
–config FILENAME

command line option, 15
–crunchyroll-password [PASSWORD]

command line option, 21
–crunchyroll-purge-credentials

command line option, 21
–crunchyroll-username USERNAME

command line option, 21
–default-stream STREAM

command line option, 17
–hds-live-edge SECONDS

command line option, 18
–hds-segment-attempts ATTEMPTS

command line option, 18
–hds-segment-threads THREADS

command line option, 18
–hds-segment-timeout TIMEOUT

command line option, 18
–hds-timeout TIMEOUT

command line option, 18
–hls-live-edge SEGMENTS

command line option, 18
–hls-segment-attempts ATTEMPTS

command line option, 18
–hls-segment-threads THREADS

command line option, 18
–hls-segment-timeout TIMEOUT

command line option, 18
–hls-timeout TIMEOUT

command line option, 18
–http-cookie KEY=VALUE

command line option, 20
–http-header KEY=VALUE

command line option, 20
–http-ignore-env

command line option, 20

–http-no-ssl-verify
command line option, 20

–http-proxy HTTP_PROXY
command line option, 20

–http-query-param KEY=VALUE
command line option, 20

–http-ssl-cert FILENAME
command line option, 20

–http-ssl-cert-crt-key CRT_FILENAME
KEY_FILENAME

command line option, 20
–http-stream-timeout TIMEOUT

command line option, 19
–http-timeout TIMEOUT

command line option, 21
–https-proxy HTTPS_PROXY

command line option, 20
–livestation-email EMAIL

command line option, 21
–livestation-password PASSWORD

command line option, 21
–no-version-check

command line option, 15
–player-continuous-http

command line option, 16
–player-external-http

command line option, 16
–player-external-http-port PORT

command line option, 16
–player-http

command line option, 16
–player-no-close

command line option, 17
–player-passthrough TYPES

command line option, 16
–plugin-dirs DIRECTORY

command line option, 21
–plugins

command line option, 15
–retry-open ATTEMPTS

39

Livestreamer, Release 1.12.2

command line option, 17
–retry-streams DELAY

command line option, 17
–ringbuffer-size SIZE

command line option, 19
–rtmp-proxy PROXY, –rtmpdump-proxy PROXY

command line option, 19
–rtmp-rtmpdump FILENAME, –rtmpdump FILENAME,

-r FILENAME
command line option, 19

–rtmp-timeout TIMEOUT
command line option, 19

–stream-segment-attempts ATTEMPTS
command line option, 19

–stream-segment-threads THREADS
command line option, 19

–stream-segment-timeout TIMEOUT
command line option, 19

–stream-sorting-excludes STREAMS
command line option, 17

–stream-timeout TIMEOUT
command line option, 19

–stream-types TYPES, –stream-priority TYPES
command line option, 17

–stream-url
command line option, 20

–subprocess-cmdline, –cmdline, -c
command line option, 20

–subprocess-errorlog, –errorlog, -e
command line option, 20

–twitch-cookie COOKIES
command line option, 21

–twitch-oauth-authenticate
command line option, 21

–twitch-oauth-token TOKEN
command line option, 21

–ustream-password PASSWORD
command line option, 21

–version-check
command line option, 15

-O, –stdout
command line option, 17

-Q, –quiet
command line option, 15

-V, –version
command line option, 15

-a ARGUMENTS, –player-args ARGUMENTS
command line option, 16

-f, –force
command line option, 17

-h, –help
command line option, 15

-j, –json
command line option, 15

-l LEVEL, –loglevel LEVEL
command line option, 15

-n, –player-fifo, –fifo
command line option, 16

-o FILENAME, –output FILENAME
command line option, 17

-p COMMAND, –player COMMAND
command line option, 16

-v, –verbose-player
command line option, 16

A
AkamaiHDStream (class in livestreamer.stream), 35

C
command line option

–can-handle-url URL, 15
–config FILENAME, 15
–crunchyroll-password [PASSWORD], 21
–crunchyroll-purge-credentials, 21
–crunchyroll-username USERNAME, 21
–default-stream STREAM, 17
–hds-live-edge SECONDS, 18
–hds-segment-attempts ATTEMPTS, 18
–hds-segment-threads THREADS, 18
–hds-segment-timeout TIMEOUT, 18
–hds-timeout TIMEOUT, 18
–hls-live-edge SEGMENTS, 18
–hls-segment-attempts ATTEMPTS, 18
–hls-segment-threads THREADS, 18
–hls-segment-timeout TIMEOUT, 18
–hls-timeout TIMEOUT, 18
–http-cookie KEY=VALUE, 20
–http-header KEY=VALUE, 20
–http-ignore-env, 20
–http-no-ssl-verify, 20
–http-proxy HTTP_PROXY, 20
–http-query-param KEY=VALUE, 20
–http-ssl-cert FILENAME, 20
–http-ssl-cert-crt-key CRT_FILENAME

KEY_FILENAME, 20
–http-stream-timeout TIMEOUT, 19
–http-timeout TIMEOUT, 21
–https-proxy HTTPS_PROXY, 20
–livestation-email EMAIL, 21
–livestation-password PASSWORD, 21
–no-version-check, 15
–player-continuous-http, 16
–player-external-http, 16
–player-external-http-port PORT, 16
–player-http, 16
–player-no-close, 17
–player-passthrough TYPES, 16
–plugin-dirs DIRECTORY, 21

40 Index

Livestreamer, Release 1.12.2

–plugins, 15
–retry-open ATTEMPTS, 17
–retry-streams DELAY, 17
–ringbuffer-size SIZE, 19
–rtmp-proxy PROXY, –rtmpdump-proxy PROXY,

19
–rtmp-rtmpdump FILENAME, –rtmpdump FILE-

NAME, -r FILENAME, 19
–rtmp-timeout TIMEOUT, 19
–stream-segment-attempts ATTEMPTS, 19
–stream-segment-threads THREADS, 19
–stream-segment-timeout TIMEOUT, 19
–stream-sorting-excludes STREAMS, 17
–stream-timeout TIMEOUT, 19
–stream-types TYPES, –stream-priority TYPES, 17
–stream-url, 20
–subprocess-cmdline, –cmdline, -c, 20
–subprocess-errorlog, –errorlog, -e, 20
–twitch-cookie COOKIES, 21
–twitch-oauth-authenticate, 21
–twitch-oauth-token TOKEN, 21
–ustream-password PASSWORD, 21
–version-check, 15
-O, –stdout, 17
-Q, –quiet, 15
-V, –version, 15
-a ARGUMENTS, –player-args ARGUMENTS, 16
-f, –force, 17
-h, –help, 15
-j, –json, 15
-l LEVEL, –loglevel LEVEL, 15
-n, –player-fifo, –fifo, 16
-o FILENAME, –output FILENAME, 17
-p COMMAND, –player COMMAND, 16
-v, –verbose-player, 16

G
get_option() (livestreamer.Livestreamer method), 31
get_plugin_option() (livestreamer.Livestreamer method),

31
get_plugins() (livestreamer.Livestreamer method), 31
get_streams() (livestreamer.plugin.Plugin method), 34

H
HDSStream (class in livestreamer.stream), 35
HLSStream (class in livestreamer.stream), 35
HTTPStream (class in livestreamer.stream), 36

L
Livestreamer (class in livestreamer), 31
livestreamer (module), 27, 30
livestreamer.plugin (module), 34
livestreamer.stream (module), 35
LivestreamerError, 36

load_plugins() (livestreamer.Livestreamer method), 31

N
NoPluginError, 36

O
open() (livestreamer.stream.Stream method), 35

P
parse_manifest() (livestreamer.stream.HDSStream class

method), 35
parse_variant_playlist() (livestreamer.stream.HLSStream

class method), 36
Plugin (class in livestreamer.plugin), 34
PluginError, 36

R
resolve_url() (livestreamer.Livestreamer method), 31
RTMPStream (class in livestreamer.stream), 36

S
set_loglevel() (livestreamer.Livestreamer method), 31
set_logoutput() (livestreamer.Livestreamer method), 31
set_option() (livestreamer.Livestreamer method), 31
set_plugin_option() (livestreamer.Livestreamer method),

33
Stream (class in livestreamer.stream), 35
StreamError, 36
streams() (in module livestreamer), 31
streams() (livestreamer.Livestreamer method), 34
streams() (livestreamer.plugin.Plugin method), 34

Index 41

	Features
	Quickstart
	User guide
	Installation
	Command-Line Interface
	Plugins
	Players
	Common issues
	API Guide
	API Reference

	Python Module Index

