
Lithoxyl Documentation

May 23, 2020

Contents

i

ii

Lithoxyl Documentation,

Lithoxyl is a next-generation instrumentation toolkit for Python applications,
offering a semantic, action-oriented approach to logging and metrics collection.
Lithoxyl integration is compact and performant, minimizing impact on codebase
readability and system performance.

Contents 1

Lithoxyl Documentation,

2 Contents

CHAPTER 1

Sections

1.1 Lithoxyl Overview
Lithoxyl is next-generation logging and instrumentation for Python. This

practical tutorial walks new users through the fundamentals necessary to get
up and running with Lithoxyl in under 10 minutes.

1.1.1 Motivating factors

Lithoxyl began as a response to the tired traditions of logging. Traditions that
included omission, procrastination, and only adding it once things break.

Logging is not the last step anymore. Lithoxyl makes instrumentation worth-
while from day 1, so all your projects are designed for introspection. Lithoxyl
achieves this by taking full advantage of Python’s rich syntax and runtime,
providing features ranging from metrics collection to structured logging to in-
teractive debugging hooks.

The Lithoxyl approach is practical. After running pip install lithoxyl,
integrating Lithoxyl comes down to two steps: instrumentation and configura-
tion. First, instrumentation.

1.1.2 Instrumenting with Actions

With Lithoxyl, all instrumentation, including logging, starts with knowing your
application. We want to find the important parts of your application and wrap
them in microtransactions, called Actions.

Much more than print statements, Actions are lightweight objects that track
the state of code execution, from timing information to uncaught exceptions.
Each Action also has a name and a level, to enable aggregation and filtering.

3

Lithoxyl Documentation,

Actions are created with Loggers. We get into creating and configuring Loggers
later in the overview, but here’s a basic example of creating an info-level Action
with a preconfigured Logger:

import backend # some convenient backend logic for
→˓brevity
from log import app_log # preconfigured Lithoxyl Logger

def create_entry(name):
with app_log.info('adding entry by name'):

name = name.strip()
backend.add_by_name(name)

return True

As you can see, the transactionality of Actions translates well to Python’s with
context manager syntax. A single line of logging code succinctly records the
beginning and ending of this code block. Even better, there’s no chance of
missing an unexpected exception. For instance, if name is not a string, and
.strip() raises an AttributeError, then that exception is guaranteed to be
captured and recorded.

You can do so much more with actions. Using dictionary syntax, arbitrary data
can be added to the action. And while actions finish with a success status and
autogenerate a message if no exception is raised, failures and exceptions can
also be set manually:

import backend
from log import app_log

def set_entry_state(name, state):

with app_log.info('setting entry state') as act:
act['name'] = name
status = backend.STATE_MAP[state.lower()]
success = backend.set_entry_state(name, state)
if not success:

act.failure('set {name} status to {state} failed',
→˓state=state)

return success

As seen above, actions can also have a custom completion message, which sup-
ports templating with new-style formatting syntax, using data from within the
action’s data map (name), as well as arguments and keyword arguments (state).

Note: Even if message formatting fails, the log message will still be recorded.
Only the failing segments will be left unformatted. As a rule, Lithoxyl degrades
gracefully, to minimize impact to your application’s primary functionality.

Furthermore, in cases like this, where you want the whole function logged, you
can use the logger’s wrap() method.:

import backend
from log import app_log

(continues on next page)

4 Chapter 1. Sections

Lithoxyl Documentation,

(continued from previous page)

@app_log.wrap('critical', inject_as='act')
def delete_entry(name, act):

try:
ret = backend.delete_entry_by_name(name.strip())

except backend.EntryNotFound:
log soft error, let other exceptions raise through
act.failure('no entry with name: {}', name)
ret = False

return ret

Note the decorator syntax, as well as the ability to inject the action as one of the
arguments of the function. This reduces the instrumentation’s code footprint
even further.

That about covers creating and interacting with actions. Now we turn to the
origin and destination of the actions we create and populate: Loggers and Sinks.

1.1.3 Creating Loggers

Actions make up most of an application’s interaction with Lithoxyl, but it would
not be very easy to create an Action without a Logger.

As we learned above, before an Action can be populated, it must be created,
and Actions are created through Logger. As for the Logger itself, here is how it
is created:

from lithoxyl import Logger

app_log = Logger('entry_system')

Like that, the Logger we’ve been using above is ready to be imported. A Logger
is a lightweight, simple object, requiring only a name. They are designed to be
created once, configured, and imported by other modules. That said, they are
conceptually very useful.

Loggers generally correspond to parts or aspects of the application. Small- to
medium-sized applications can be fully instrumented with just one Logger, but
as applications grow, they tend to add aspects. For example, if file access grows
increasingly important to an application, it would make sense to add a dedicated
low-level log just for instrumenting file access:

file_log = Logger('file_access')

In short, Loggers themselves are simple, and designed to be fit to your ap-
plication, no matter how many aspects it may have. On their own, they are
conceptually useful, but without Sinks, they are all potential.

1.1.4 Configuring Sinks

So far, we have discovered two uses of the Lithoxyl Logger:

• Creating actions

• Segmenting and naming aspects of an application

1.1. Lithoxyl Overview 5

Lithoxyl Documentation,

Now, we are ready to add the third: publishing log events to the appropriate
handlers, called Sinks. Actions can carry all manner of messages and measure-
ments. That variety is only surpassed by the Sinks, which handle aggregation
and persistence, through log files, network streams, and much more. Before
getting into those complexities, let’s configure our app_log with a simple but
very useful sink:

from lithoxyl import AggregateSink

agg_sink = AggregateSink(limit=100)
app_log.add_sink(agg_sink)

Now, by adding an instance of the AggregateSink to the app_log, we have a
technically complete system. At any given point after this, the last 100 events
that passed through our application log will be available inside agg_sink.
However, AggregateSinks only provide in-memory storage, meaning data must
be pulled out, either through a monitoring thread or network service. Most de-
velopers expect persistent logging to streams (stdout/stderr) and files. Lithoxyl
is more than capable.

1.1.5 Logging Sensibly

For developers who want a sensible and practical default Sink, Lithoxyl provides
the SensibleSink. The Sensible Suite chapter has a full introduction, so let’s just
cover the basics.

The Sensible approach has 3 steps:

1. Filter - Optionally ignore events for a given Sink.

2. Format - Convert an event into a string.

3. Emit - Output the formatted string to a file, database, network, etc.

While totally pluggable and overridable, the Sensible suite ships with types for
each of these:

from lithoxyl import (SensibleFilter,
SensibleFormatter,
StreamEmitter,
SensibleSink)

Create a filter that controls output verbosity
fltr = SensibleFilter(success='critical',

failure='info',
exception='debug')

Create a simple formatter with just two bits of info:
The time since startup/import and end event message.
These are just two of the built-in "fields",
and the syntax is new-style string formatting syntax.
fmtr = SensibleFormatter('+{import_delta_s} - {end_message}')

Create an emitter to write to stderr. 'stdout' and open file
→˓objects
also behave predictably.
emtr = StreamEmitter('stderr')

(continues on next page)

6 Chapter 1. Sections

Lithoxyl Documentation,

(continued from previous page)

Tie them all together. Note that filters accepts an iterable
sink = SensibleSink(filters=[fltr], formatter=fmtr,
→˓emitter=emtr)

Add the sink to app_log, a vanilla Logger created above
app_log.add_sink(sink)

In these six lines of code, using only built-in Lithoxyl types, we create a filter,
formatter, and emitter, then we bind them all together with a SensibleSink.
The output is first filtered by our SensibleFilter, which only shows critical-level
successes and info-level failures, but shows all exceptions. Our SensibleFormat-
ter provides a simple but practical output, giving us a play-by-play timing and
message. That message is output to stderr by our StreamEmitter. Just don’t
forget to add our newly-created SensibleSink to the app_log.

As configured, the app_log will now write to stderr output that looks like:

+0.015255 - "load credential succeeded"
+0.179199 - "client authorization succeeded"
+0.344523 - "load configuration succeeded"
+0.547119 - "optional backup failed"
+1.258266 - "processing task succeeded"

Ain’t it a thing of beauty? Here we see the SensibleFormatter at work. It may
not look like much, but there is a powerful feature at work.

The ambitious aim underlying the Sensible approach is to create human-readable
structured logs. These are logs that are guaranteed to be uniformly formatted
and escaped, allowing them to be loaded for further processing steps, such as
collation with other logs, ETL into database/OLAP, and calculation of system-
wide statistics. Extending the flow of logged information opens up many new
roads in debugging, optimization, and system robustification, easily justifying
a bit of extra up-front setup.

Here we only used two fields, import_time_s and end_message. The list of
Sensible built-in fields is quite expansive and worth a look when designing your
own log formats.

1.2 The Action

Actions are Lithoxyl’s primary interface for instrumenting your application.
Actions are created with a Logger instance, and are used to wrap functions
and code blocks.

At their most basic, Actions have a:

• name - A string description of the behavior being wrapped.

• level - An indicator of the importance of the action (debug, info, critical).

• status - The state of the action (begin, success, failure, exception).

• duration - The time between the begin and end events of a completed
action, i.e., the time between entering and exiting a code block.

1.2. The Action 7

Lithoxyl Documentation,

To track this information, Lithoxyl wraps important pieces of your application
in microtransactions called Actions:

with log.info('user creation', username=name) as act:
succeeded = _create_user(name)
if not succeeded:

act.failure()

This pattern is using an info-level Action as a context manager. The indented
part of the code after the with statement is the code block managed by the
Action. Here is how the basics of the Action are populated in our example:

• name - “user creation”

• level - INFO

• status - failure if _create_user(name) returns a falsey value, excep-
tion if it raises an exception, otherwise defaults to success.

• duration - Set automatically, duration is the time difference from before
the execution of the first line of the code block to after the execution
of the last line in the code block, or the r.failure() call,
depending on the outcome of _create_user(name).

There’s quite a bit going on, but Lithoxyl has several tricks that let it flow with
the semantics of applications. First, let’s learn a bit about these attributes,
starting with the Action level.

1.2.1 Action level

Levels are a basic indicator of how important a block of application logic is.
Lithoxyl has three built-in levels. In order of increasing importance:

• debug - Of interest to developers. Supplementary info for when something
goes wrong.

• info - Informational. Can be helpful to know even when there are no
problems.

• critical - Core functionality. Essential details at all times.

When instrumenting with Lithoxyl, the developer is always asking, how sig-
nificant is the success of this code block, how catastrophic is a failure in this
function?

It’s only natural that instrumented code will start with more critical actions.
The most important parts should be instrumented first. Eventually the instru-
mentation spreads to lower levels.

Note: As a general tendency, as code gets closer to the operating system, the
corresponding Action also gets a lower level. High-level operations get higher
levels of Actions. Start high and move lower as necessary.

8 Chapter 1. Sections

Lithoxyl Documentation,

1.2.2 Action status

The Lithoxyl Action has an eventful lifetime. Even the most basic usage sees
the Action going from creation to beginning to one of the ending states: success,
failure, or exception.

First, simply creating an Action does not “begin” it. An action begins when it
is entered with a with statement, as we saw in the example above. Entering an
action creates a timestamp and makes it the parent of future actions, until it is
ended.

There are three end statuses:

• success - The action described by the action completed without issue.
This is the automatic default when no exception is raised.

• failure - The action did not complete successfully, and the failure was
expected and/or handled within the application.

• exception - The action terminated unexpectedly, likely with a Python
exception. This is the automatic default when an exception is raised within
an action context manager.

The split between failure and exception should be familiar to users of standard
testing frameworks like OuterLinkColorpy.test. Test frameworks distinguish
between a test that fails and a test that could not be fully run because the test
code raised an unexpected exception. Lithoxyl brings these semantics into an
application’s runtime instrumentation.

Note: If an action is manually set to complete with success() or
failure(), and an unexpected exception occurs, the Action will end with
the exception status.

1.2.3 Action API

Actions are usually constructed through Loggers, but it can help to know the
underlying API and see the obvious parallels.

class lithoxyl.action.Action(logger, level, name, data=None,
reraise=True, parent=None,
frame=None)

The Action type is one of the core Lithoxyl types, and the key to in-
strumenting application logic. Actions are usually instantiated through
convenience methods on Logger instances, associated with their level
(e.g., critical()).

Parameters

• logger – The Logger instance responsible for creating
and publishing the Action.

• level – Log level of the Action. Generally one of
DEBUG, INFO, or CRITICAL. Defaults to None.

• name (OuterLinkColorstr) – A string description of
some application action.

1.2. The Action 9

http://pytest.org
https://docs.python.org/2.7/library/functions.html#str

Lithoxyl Documentation,

• data (OuterLinkColordict) – A mapping of non-
builtin fields to user values. Defaults to an empty dict
({}) and can be populated after Action creation by ac-
cessing the Action like a dict.

• reraise (OuterLinkColorbool) – Whether or not the
Action should catch and reraise exceptions. Defaults to
True. Setting to False will cause all exceptions to be
caught and logged appropriately, but not reraised. This
should be used to eliminate try/except verbosity.

• frame – Frame of the callpoint creating the Action.
Defaults to the caller’s frame.

Most of these parameters are managed by the Actions and respective
Logger themselves. While they are provided here for advanced use cases,
usually only the name and raw_message are provided.

Actions are OuterLinkColordict-like, and can be accessed as mappings

and used to store additional structured data:

>>> action['my_data'] = 20.0
>>> action['my_lore'] = -action['my_data'] / 10.0
>>> from pprint import pprint
>>> pprint(action.data_map)
{'my_data': 20.0, 'my_lore': -2.0}

exception(message=None, *a, **kw)
Mark this Action as having had an exception. Also sets the Action’s
message template similar to Action.success() and Action.
failure().

Unlike those two attributes, this method is rarely called explicitly by
application code, because the context manager aspect of the Action
catches and sets the appropriate exception fields. When called explic-
itly, this method should only be called in an OuterLinkColorexcept
block.

failure(message=None, *a, **kw)
Mark this Action failed. Also set the Action’s message template. Po-
sitional and keyword arguments will be used to generate the format-
ted message. Keyword arguments will also be added to the Action’s
data_map attribute.

get_elapsed_time()
Simply get the amount of time that has passed since begin was called
on this action, or 0.0 if it has not begun. This method has no side
effects.

success(message=None, *a, **kw)
Mark this Action successful. Also set the Action’s message tem-
plate. Positional and keyword arguments will be used to generate
the formatted message. Keyword arguments will also be added to
the Action’s data_map attribute.

10 Chapter 1. Sections

https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/reference/compound_stmts.html#except

Lithoxyl Documentation,

1.2.4 Action concurrency

TODO

1.3 The Logger

The Logger is the application developer’s primary interface to using Lithoxyl.
It is used to conveniently create Actions and publish them to sinks.

class lithoxyl.logger.Logger(name, sinks=None, **kwargs)
The Logger is one of three core Lithoxyl types, and the main entrypoint
to creating Action instances, and publishing those actions to sinks.

Parameters

• name (OuterLinkColorstr) – Name of this Logger.

• sinks (list) – A list of sink objects to be attached
to the Logger. Defaults to []. Sinks can be added later
with Logger.add_sink().

• module (OuterLinkColorstr) – Name of the module
where the new Logger instance will be stored. Defaults
to the module of the caller.

Most Logger methods and attributes fal into three categories: Action
creation, Sink registration, and Event handling.

1.3.1 Action creation

The Logger is primarily used through its Action-creating convenience methods
named after various log levels: debug(), info(), and critical().

Each creates a new action with a given name, passing any additional keyword
arguments on through to the lithoxyl.action.Action constructor.

Logger.debug(action_name, **kw)
Returns a new DEBUG-level Action named name.

Logger.info(action_name, **kw)
Returns a new INFO-level Action named name.

Logger.critical(action_name, **kw)
Returns a new CRITICAL-level Action named name.

The action level can also be passed in:

Logger.action(level, action_name, **kw)
Return a new Action named name classified as level.

1.3.2 Sink registration

Another vital aspect of Loggers is the registration and management of Sinks.

Logger.sinks
A copy of all sinks set on this Logger. Set sinks with Logger.
set_sinks().

1.3. The Logger 11

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

Lithoxyl Documentation,

Logger.add_sink(sink)
Add sink to this Logger’s sinks. Does nothing if sink is already in this
Logger’s sinks.

Logger.set_sinks(sinks)
Replace this Logger’s sinks with sinks.

Logger.clear_sinks()
Clear this Logger’s sinks.

1.3.3 Event handling

The event handling portion of the Logger API exists for Logger-Sink interac-
tions.

Logger.on_begin(begin_event)
Publish begin_event to all sinks with on_begin() hooks.

Logger.on_end(end_event)
Publish end_event to all sinks with on_end() hooks.

Logger.on_warn(warn_event)
Publish warn_event to all sinks with on_warn() hooks.

Logger.on_exception(exc_event, exc_type, exc_obj, exc_tb)
Publish exc_event to all sinks with on_exception() hooks.

1.4 The Sink

In Lithoxyl’s system of instrumentation, Actions are used to carry messages,
data, and timing metadata through the Loggers to their destination, the Sinks.
This chapter focuses in on this last step.

1.4.1 Writing a simple Sink

Sinks can grow to be very involved, but a useful Sink can be as simple as:

import sys

class DotSink(object):
def on_end(self, end_event):

sys.stdout.write('.')
sys.stdout.flush()

Note that our new Sink does not have to inherit from any special object.
DotSink is a correct and capable Sink, ready to be instantiated and installed
with Logger.add_sink(), just like in the overview . Once added to your
Logger, every time an Action ends, a dot will be written out to your console.

In this example, on_end is the handler for just one of Lithoxyl’s events. The
next section takes a look at all five of them.

12 Chapter 1. Sections

Lithoxyl Documentation,

1.4.2 Events

Lithoxyl Events are state changes associated with a particular Action. Five
types of events can happen in the Lithoxyl system:

• begin - The beginning of an Action, whether manually or through entering
a context-managed block of code.

The begin event corresponds to the method signature on_begin(self,
begin_event). Designed to be called once per Action.

• end - The completion of an Action, whether manually (success() and
failure()) or through exiting a context-managed block of code. There
are three ways an Action can end, success, failure, and exception, but
all of them result in an end event.

The end event corresponds to the method signature on_end(self,
end_event). Designed to be called once per Action.

• exception - Called immediately when an exception is raised from within
the context-managed block, or when an exception is manually handled
with Action.exception(). Actions ending in exception state typically fire
two events, one for handling the exception, and one for ending the Action.

The exception event corresponds to the Sink method signature
on_exception(self, exc_event, exc_type, exc_obj,
exc_tb). Designed to be called up to once.

• warn - The registration of a warning within an Action.

Corresponds to the Sink method signature on_warn(self,
warn_event). Can be called an arbitrary number of times.

• comment - The registration of a comment from a Logger. Comments are
used for publishing metadata associated with a Logger.

The comment event corresponds to the Sink method signature
on_comment(self, comment_event). See here for more about com-
ments. Can be called an arbitrary number of times.

A Sink handles the event by implementing the respective method. The event
objects that accompany every event are meant to be practically immutable;
their values are set once, at creation.

1.5 The Sensible Suite

Structured logging creates logs with a consistent format, allowing them to be
loaded later for further processing and analysis.

One of Lithoxyl’s primary uses is as a toolkit for creating these structured logs.
The Sensible Suite is the first generalized approach to offer structured logging
without sacrificing human readability.

Let’s look at an example. Perhaps the most common structured log is the HTTP
server access log, such as the one created by Apache or nginx. A couple entries
from that log might look like:

1.5. The Sensible Suite 13

Lithoxyl Documentation,

78.178.243.200 - - [22/Jun/2013:15:02:31 -0700] "GET /favicon.
→˓ico HTTP/1.1" 404 570 "-" "Mozilla/5.0 (Windows NT 6.1;
→˓WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.
→˓1453.116 Safari/537.36" "-"
119.63.193.132 - - [22/Jun/2013:14:19:36 -0700] "GET / HTTP/1.1
→˓" 200 9755 "-" "Mozilla/4.0 (compatible; MSIE 7.0; Windows
→˓NT 6.0)" "-"

It’s a bit on the wide side, but here we see:

• The OuterLinkColorIP of the client

• The local date and time the request was received

• The request line, including the method, path, and version

• The response code returned to the client

• The size of the response in bytes

• The user agent from the client browser

With the Sensible suite, each of these values becomes a field, represented by
SensibleField objects. The Sensible suite comes with over twenty built-in fields
to cover most use cases, and sensible default handling for other values. These
fields are used to create a template for the SensibleFormatter, which knows how
to turn a Lithoxyl Action into a structured string. Let’s see how it all comes
together by creating an equivalent log that uses Lithoxyl built-in behavior:

from lithoxyl import SensibleFormatter, FileEmitter, Logger

a_log = Logger('access_log')

a_fmtr = SensibleFormatter('{ip} - [{iso_begin_local}] {req_
→˓line} {resp_code} {resp_len} {user_agent}')

a_sink = SensibleSink(formatter=fmtr, emitter=FileEmitter(
→˓'access.log'))

a_log.add_sink(a_sink)

No arcane configuration format here. Everything is configured through explicit
Python code. The a_log logger has only one sink right now, a SensibleSink
that ties together three entities, in their running order:

• Filters - This list of objects checks each event, and returns True/False
depending on whether it should be logged. See the SensibleFilter for
more info.

• Formatter - Turns events that make it through the filters into strings.
The SensibleFormatter is the canonical formatter of the suite, though
you’re free to provide your own.

• Emitters - Writes formatted strings into files or network streams. Emit-
ters are not strictly a Sensible construct; several can be found in the
emitters module.

The flow through the SensibleSink is clear: Filtration → Formatting → Output.
Any actions passing through the a_log Logger will have their end events logged
to access.log.

14 Chapter 1. Sections

https://en.wikipedia.org/wiki/IP_address

Lithoxyl Documentation,

1.5.1 The Sensible Interfaces

To achieve human-readable strutured logging, Lithoxyl’s Sensible suite uses four
key types with a sensible naming scheme:

• The SensibleSink

• The SensibleFilter

• The SensibleFormatter

• The SensibleField

The first three are used fairly regularly, but SensibleField is mostly behind the
scenes. That said, the built-in fields can in many ways the most important part.
See the Sensible Fields section below for details on those.

class sensible.SensibleSink(formatter=None, emitter=None,
filters=None, on=(’begin’, ’warn’,
’end’, ’exception’, ’comment’))

class sensible.SensibleFilter(base=None, **kw)

class sensible.SensibleFormatter(base=None, **kwargs)

1.5.2 Sensible Fields

There are many built-in Sensible Fields, for a variety of use cases. First, some
example code to set the context for the field examples:

logger = Logger('test_logger')
with logger.critical('test_task', reraise=False) as act:

time.sleep(0.7)
act['item'] = 'cur_item'
act.failure('task status: {status_str}')
raise ValueError('unexpected value for {item}')

return act

And now the fields themselves:

Name Description Example
logger_name The name of the Logger, as set in the constructor. Quoted. "test_logger"
logger_id An automatic integer ID. See Action concurrency . 3
action_name Short string description of the action. Quoted. "test_task"
action_id An automatic integer ID. See Action concurrency . 17
action_guid A globally unique ID string. See Action concurrency . c3124107db02ff33dbde8e85
status_str The full name of action status. See Action status. exception
status_char A single-character action status. See Action status. E
level_name Full name of the action level. critical
level_name_upper Full name of the action level, in uppercase. See Action level . CRITICAL
level_char Single-character form of the action level. C
level_number The integer value associated with the action level. 90
data_map JSON-serialized form of all values in the Action data map. {"item": "cur_item"}
data_map_repr repr()-serialized form of all values in the Action data map. {"item": "cur_item"}
begin_message The message associated with the event’s action’s begin event. "test_task beginning"
begin_message_raw Same as begin_message, before formatting. "test_task beginning"

Continued on next page

1.5. The Sensible Suite 15

Lithoxyl Documentation,

Table 1 – continued from previous page
Name Description Example

end_message The message associated with the event’s action’s end event. "test_task raised ... ue for cur_item',)"
end_message_raw Same as end_message, before formatting. "test_task raised ... lue for {item}',)"
event_message The message associated with the event. "test_task raised ... ue for cur_item',)"
event_message_raw Same as event_message, before formatting. "test_task raised ... lue for {item}',)"
duration_s Duration in floating point number of seconds. 0.701
duration_ms Duration in floating point number of milliseconds (ms). 700.908
duration_us Duration in floating point number of microseconds (us). 700907.946
duration_auto Duration in floating point with automatic unit (s/ms/us). 700.908ms
module_name The name of the module where the action was created. "__main__"
module_path The path of the module where the action was created. "misc/gen_field_table.py"
func_name The name of the function that created the action get_test_action
line_number The line number where the action was created. 26
exc_type The name of the exception type, if an exception was caught. ValueError
exc_message The exception message, if there was one. Quoted. "unexpected value for {item}"
exc_tb_str The exception’s full traceback, if there was one. Quoted. "Traceback (most r ... ue for {item}')\n"
exc_tb_list A JSON representation of the exception traceback. Quoted. "[Callpoint('get_t ... for {item}')\")]"
process_id The integer process ID. See OuterLinkColoros.getpid(). 19828

There can be some subtle nuances when designing your log structure. For in-
stance, when choosing which message to use for an event, you almost certainly
want event_message, which works equally well with all event types, including
begin, end, comment, and warn.

Timestamp fields

Timestamps are so important to logging, especially structured logging, that they
get a table of their own:

16 Chapter 1. Sections

https://docs.python.org/2.7/library/os.html#os.getpid

Lithoxyl Documentation,

Name Description Example
iso_begin The full ISO8601 begin

event UTC timestamp,
with timezone.

2016-05-22T10:41:06.
470354+0000

iso_end The full ISO8601 end event
UTC timestamp, with
timezone.

2016-05-22T10:41:07.
171262+0000

iso_begin_notzThe begin event ISO UTC
timestamp, without time-
zone.

2016-05-22T10:41:06.
470354

iso_end_notz The end event ISO UTC
timestamp, without time-
zone.

2016-05-22T10:41:07.
171262

iso_begin_localThe begin event ISO local
timestamp, with timezone.

2016-05-22T03:41:06.
470354-0700

iso_end_localThe end event ISO local
timestamp, with timezone.

2016-05-22T03:41:07.
171262-0700

iso_begin_local_notzThe begin event ISO local
timestamp, without time-
zone.

2016-05-22T03:41:06.
470354

iso_end_local_notzThe end event ISO local
timestamp, without time-
zone.

2016-05-22T03:41:07.
171262

iso_begin_local_nomsThe begin event ISO local
timestamp, without sub-
second timing.

2016-05-22T03:41:06
PDT

iso_end_local_nomsThe end event ISO local
timestamp, without sub-
second timing.

2016-05-22T03:41:07
PDT

iso_begin_local_noms_notzThe begin event local
times, without subsecond
or timezone.

2016-05-22T03:41:06

iso_end_local_noms_notzThe end event local times,
without subsecond or time-
zone.

2016-05-22T03:41:07

The timestamp fields above are geared toward long-running processes like
servers. For shorter running processes, it’s often more readable and more useful
to know the time between the log message and process start.

Name Description Exam-
ple

im-
port_delta_s

Floating-point number of seconds since
lithoxyl import.

2.
887265

im-
port_delta_ms

Floating-point number of milliseconds
since lithoxyl import.

2887.
265

1.5. The Sensible Suite 17

Lithoxyl Documentation,

Creating custom fields

Most custom data does not require new fields. Unrecognized fields are treated
as quoted and escaped string data. If you want to change that representation,
you can create a SensibleField and either register it locally with a Formatter,
or globally, using sensible.register_field().

class sensible.SensibleField(fname, fspec=’s’, getter=None,
**kwargs)

Fields specify whether or not they should be quoted (i.e., whether or
not values will contain whitespace or other delimiters), but not the ex-
act method for their quoting. That aspect is reserved for the Formatter.

1.6 The Logging Tradition

For experienced engineers, it can help to understand Lithoxyl by taking a hard
look at the past and current state of logging.

1.6.1 Logging in General

Without getting into Python specifics, most ecosystems have pretty low stan-
dards for logging. Logging is an afterthought, added when the application mis-
behaves and needs to be debugged. Just having any logging can easily put an
application in the top quartile for quality.

And worse yet, the opposite can be true. Logging’s place in software is so
low that having logging is often a yellow flag for lower-quality code in need of
constant debugging. If the code needed so much logging, it must have had a lot
of problems.

This is the past and present reality of logging in general.

1.6.2 Logging in Python

This will be frank, so first things first: all due respect to Vinay Sajip and all
the Python contributors who worked on Python logging. Without their work,
there is no telling where we would be today. Now, the critique.

The built-in OuterLinkColorlogging module itself followed this afterthought
pattern. Little more than a knockoff of OuterLinkColorLog4j, logging pays
virtually no mind to performance, practicality, or the fact that Python is not
Java.

Application instrumentation is important. Good metrics are worth more than
their weight in CPU cycles. By running a high-level language like Python,
a design decision has already been made to achieve a richer, more featureful
environment.

With that in mind, it is critical that Python libraries take the semantic high
road. Always emphasize maintainability, introspectability, and reliability in
Python code.

Because application instrumentation is vital to all these areas, the approach and
framework used must be closely matched. The built-in logging library is a

18 Chapter 1. Sections

https://docs.python.org/2.7/library/logging.html#module-logging
http://logging.apache.org/log4j/1.2/

Lithoxyl Documentation,

frumpy, secondhand suit, thrifted and worn without even a thorough cleaning.
Lithoxyl is new, tailored to fit Python and its many, many modern applications.

1.6.3 The Lithoxyl Response

Python’s power lets us do better. And we can’t stop with just logging. We need
to look at instrumentation as a whole.

Tradition is to add logging to indicate breakage. Little more than print state-
ments and tracebacks piped to files.

Modern instrumentation is more than a debugging utility.

Lithoxyl provides structured data and online statistics to unlock your appli-
cation’s potential. Lithoxyl is a development tool, worth using from day one.
Good instrumentation focuses on the whole application lifecycle. It helps with
debugging problems, but it also offers direction when the sun is shining and the
monitoring is green. Lithoxyl is the Pythonic step toward that bright, intro-
spectable future.

1.7 Frequently Asked Questions

Lithoxyl’s new approach answers quite a lot of questions, but raises a few others.
These questions fall into two categories, Design and Background .

1.7.1 Design questions

Some questions are hard because they are ultimately decided by your applica-
tion’s design. Lithoxyl is mostly an API to instrumentation. There are many
right ways.

What is the difference between failure status and exception status?

There are a couple angles to answer this. First, it is pretty rare to set an excep-
tion status manually, as exception information is usually populated automat-
ically when there are uncaught exceptions. That contrasts with failure(),
which is seen more often.

So when to call failure()? As with many design questions, an example is
often best. With an HTTP server, returning a 4xx or even a 503 can be viewed
as failures outside of the control of the application, which is performing fine.
A 500, on the other hand, is generally unexpected and deserves an exception
status.

Why does Lithoxyl sometimes fail silently?

Built-in to the design of Lithoxyl itself, there are several deviations from what
one might consider standard practice. With most libraries, one expects that
code will “fail fast”. However, failing fast does not work well for instrumentation
code.

1.7. Frequently Asked Questions 19

Lithoxyl Documentation,

Lithoxyl assumes that you are instrumenting a system which has behavior other
than logging and statistics collection. Your system’s primary functions take
priority. Instrumentation must degrade gracefully.

This means if your message is malformed Lithoxyl will do its best to output
the most that it can and no exception will be raised. If your logging service is
down, maybe the Sink queues the message, but eventually that queues bounds
will be overrun and messages may silently drop.

This graceful degradation takes place at all the runtime integration points, i.e.,
action usage within your application code. For Sink and Logger configuration,
actions which are typically performed at startup and import time, exceptions are
still raised as usual. In fact, it is considered good Lithoxyl practice to forward-
check these configurations. This means checking that callable arguments are

If you discover a runtime scenario that should degrade with more grace or a
configuration-time scenario which could prevent runtime failures through more
forward checking, please do file an issue.

1.7.2 Background questions

Unlike the design questions above, background questions relate to just the ob-
jective facts.

What’s with the name, Lithoxyl, what’s that even mean?

Lithoxyl is a geological term for petrified wood. Fossilized trees. Rock-solid
logs.

1.8 Glossary

action An instance of the Action type, and one of the three fundamental
Lithoxyl types. The Action type is rarely instantiated directly, instead
they are created by loggers, manipulated, and automatically published to
sinks.

emitter An object capable of publishing formatted messages out of the process.
Emitters commonly publish to network services, local services, and files.
The last step in the Sensible Filter-Format-Emit logging process.

event An occurence associated with a Logger and Action. One of:

• begin - The start of an Action.

• end - The completion of an Action (success, failure, or exception)

• warn - A warning related to an Action.

• comment - A metadata event associated with a Logger

• exception - An unhandled exception during an Action.

Sinks implement methods to handle each of these events.

formatter An object responsible for transforming a action into a string, ready
to be encoded and emitted

20 Chapter 1. Sections

Lithoxyl Documentation,

lithoxyl Mineralized wood.

logger An instance of the Logger type. Responsible for facilitating the creation
and publication of actions. Generally there is one logger per aspect of an
application. For example, a request logger and a database query logger.

sink Any object implementing the Sink protocol for handling events. Typically
subscribed to actions by being attached to a logger . Some basic types of
sinks include action emitters, statistics collectors, and profilers.

status The completion state of an action, meant to represent one of four possible
task outcomes:

• Begin - not yet completed

• Success - no exceptions or failures

• Failure - anticipated or application-level unsuccessful completion
(e.g., invalid username)

• Exception - unanticipated or lower-level unsuccessful completion
(e.g., database connection interrupted)

with Python’s compact context manager syntax, roughly approximating a “try-
finally” block. With blocks have enter and exit hooks that enable tracking
of Action events, no matter whether the wrapped code executes success-
fully or raises an exception.

1.8. Glossary 21

Lithoxyl Documentation,

22 Chapter 1. Sections

Python Module Index

l
lithoxyl.action, ??
lithoxyl.logger, ??

23

