
Lithos Documentation
Release 0.18.4

Paul Colomiets

Aug 10, 2018

Contents

1 Configuration Overview 3

2 Master Configuration 5

3 Sandbox Config 9

4 Process Config 15

5 Container Configuration 17

6 Metrics 27

7 Volumes 29

8 Tips and Conventions 31

9 Frequently Asked Questions 39

10 Lithos Changes By Release 45

11 Indices and tables 51

i

ii

Lithos Documentation, Release 0.18.4

Contents:

Contents 1

Lithos Documentation, Release 0.18.4

2 Contents

CHAPTER 1

Configuration Overview

Lithos has 4 configs:

1. /etc/lithos/master.yaml – global configuration for whole lithos daemon. Empty config should work
most of the time. Master Configuration

2. /etc/lithos/sandboxes/<NAME>.yaml – the allowed paths and other system limits for every sandbox.
You may think of a sandbox as a single application. Sandbox Config

3. /etc/lithos/processes/<NAME>.yaml – you may think of it as a list of pairs (image_name,
num_of_processes_to_run). It’s only a tiny bit longer than that. Process Config

4. <IMAGE>/config/<NAME>.yaml – configuration of process to run. It’s where all the needed to run process
are. It’s stored inside the image (so updated with new image), and limited by limits in sandbox config. Container
Configuration

It may look too much. But note that in some real-world deployment I have first two configs contain 8 lines (5 unique
settings). The third is simple. And the fourth has essential info you need to run process in like in any other supervisor.

3

Lithos Documentation, Release 0.18.4

4 Chapter 1. Configuration Overview

CHAPTER 2

Master Configuration

Master configuration file is the one that usually at /etc/lithos/master.yaml and defines small subset of global
configuration parameters. Minimal configuration is an empty file but it must exist anyway. Here is the reference of
the parameters along with the default values:

sandboxes-dir
The directory for per-application configuration files which contain limits of what application might use. If path
is relative it’s relative to the directory where configuration file is. Default is ./sandboxes.

processes-dir
The directory for per-application configuration files which contain name of image directory, instance number,
etc., to run. If path is relative it’s relative to the directory where configuration file is. Default is ./processes.

runtime-dir
The directory where pid file of master process is stored and also the base directory for state-dir and
mount-dir. Path must be absolute. It’s expected to be stored on tmpfs. Default /run/lithos.

state-dir
The directory where to keep container’s state dirs. If path is relative it’s relative to runtime-dir. Default
state (i.e. /run/lithos/state). Path should be on tmpfs.

mount-dir
An empty directory to use for mounting. If path is relative it’s relative to runtime-dir. Default mnt.

devfs-dir
The directory where /dev filesystem for container exists. If it’s not /dev (which is not recommended), you
should create the directory with lithos_mkdev script. Default /var/lib/lithos/dev.

cgroup-name
The name of the root cgroup for all lithos processes. Specify null (or any other form of YAMLy null) to turn
cgroups off completely.

cgroup-controllers
List of cgroup controllers to initialize for each container. Note: the empty list is treated as default. Default is
[name, cpu, cpuacct, memory, blkio]. If you have some controllers joined together like cpu,
cpuacct it’s ok.

5

Lithos Documentation, Release 0.18.4

Use cgroup-name: null to turn cgroup tracking off (not empty list here). And use
cgroup-controllers: [name] to only use cgroups for naming processes but not for resource control.

Note: turning off cgroups means that resource limits does not work completely. lithos will not try to enforce
them by polling or some other means

default-log-dir
(default /var/log/lithos) The directory where master and each of the application logs are created (unless
are overrided by sandbox config).

config-log-dir
(default /var/log/lithos/config) The directory where configurations of the processes are stored. These
are used by lithos_clean to find out when it’s safe to clean directories. You may also reconstruct processes
configuration at any point in time using this directory.

Changed in version 0.10.2: Parameter can be null:

config-log-dir: null

In this case no configuration logging is done. This is mainly useful if you track configurations and versions by
some other means.

Note: This is enabled by default for backwards-compatibility reasons. We consider resetting this value to null
by default in lithos 1.0 as this parameter is not as useful as were expected.

stdio-log-dir
(default /var/log/lithos/stderr) The directory where stderr of the processes will be forwarded. One
file per sandbox is created.

These files are created by lithos and file descriptor is passed to the application as both the stdout and stderr.
Lithos does not parse, copy or otherwise proxy the data. The operating system does all the work. This also
means lithos can’t rotate or do any other magical things with the log.

This should be used only to tackle the critical errors. Application should send log to a syslog or write some
rotating log files on it’s own, because there is no good tools to groups lines of the stderr into solid log messages
that include tracebacks and other fancy stuff.

Good utilities to manage the files:

• logrotate in copytruncate mode

• rsyslog with file input plugin

This can be overridden in process by stdout-stderr-file.

Note: The path is reopened on process restart. If restart-process-only is true then it’s only reopened
when configuration changes. This is good to know if you remove or rename the file by hand.

log-file
(default master.log) Master log file. Relative paths are treated from default-log-dir.

log-level
(default warn) Level of logging. Can be overriden on the command line.

syslog-facility
(no default) Enables logging to syslog (with specified facility) instead of file.

6 Chapter 2. Master Configuration

Lithos Documentation, Release 0.18.4

syslog-name
(default lithos) Application name for master process in syslog. The child processes are prefixed by this value.
For example lithos-django (where django is a sandbox name).

7

Lithos Documentation, Release 0.18.4

8 Chapter 2. Master Configuration

CHAPTER 3

Sandbox Config

This config resides in /etc/lithos/sandboxes/NAME.yaml (by default). Where NAME is the name of a
sandbox.

The configuration file contains security and resource limits for the container. Including:

• A directory where image resides

• Set of directories that are mounted inside the container (i.e. all writable directories for the container, the /
tmp. . .)

• ulimit settings

• cgroup limits

3.1 Reference

config-file
The path for the processes config. In most cases should be left unset. Default is null which is results into
/etc/lithos/processes/NAME.yaml with all other settings being defaults.

image-dir
Directory where application images are. Every subdir of the image-dir may be mounted as a root file system
in the container. Required.

image-dir-levels
(default 1) A number of directory components required for image name in image-dir

log-file
The file name where to put supervisor log of the container. Default is /var/log/lithos/
SANDBOX_NAME.yaml.

log-level
(default warn). The logging level of the supervisor.

9

Lithos Documentation, Release 0.18.4

readonly-paths
The mapping of virtual_directory: host_system_directory of folders which are visible for
the container in read-only mode. (Note currently if you have submounts in the source directory, thay may be
available as writeable). See Volumes for more details.

writable-paths
The mapping of virtual_directory: host_system_directory of folders which are visible for
the container in writable mode. See Volumes for more details.

allow-users
List of ranges of user ids which can be used by container. For containers without user namespaces, it’s just a
limit of the user-id setting.

Example:

allow-users: [1, 99, 1000-2000]

For containers which have uid maps enabled in sandbox this is a list of users available after uid mapping applied.
For example, the following maps uid 100000 as root in namespace (e.g. for file permissions), but doesn’t allow
to start process as root (even if it’s 100000 ouside):

uid-map: [{outside: 100000, inside: 0, count: 65536}]
allow-users: [1-65535]

For containers which do have uid maps enabled in container config, it limits all the user ids available to the
namespace (i.e. for the outside setting of the uid map).

default-user
(no default) A user id used in the container if no user-id is specified in container config. By default user-id
is required.

Note: default-user value must be contained in the allow-users range

allow-groups
List of ranges of group ids for the container. Works similarly to allow-users.

default-group
(default 0) A group id used in the container if no group-id is specified in container config.

Note: default-group value must be contained in the allow-users range

allow-tcp-ports
List of ranges of allowed TCP ports for container. This is currently not enforced in any way except:

1. Ports < 1024 are restricted by OS for non-root (but may be allowed here)

2. It restricts bind-port setting in container config

Note: if you have overlapping TCP port for different sandboxes, only single file descriptor will be used for
each port. The config for opening port will be used arbitrary from single config amonst all users, which have
obvious security implications.

Warning: tcp-ports bind at port in host namespace, i.e. it effectively discards bridged-network
for that port this is both the feature and might be a pitfall. So most of the time you should avoid non-empty
allow-tcp-ports if using bridged-network.

10 Chapter 3. Sandbox Config

Lithos Documentation, Release 0.18.4

additional-hosts
Mapping of hostname: ip for names that will be added to /etc/hosts file. This is occasinally used for
cheap but static service discovery.

uid-map, gid-map
The list of mapping for uids(gids) in the user namespace of the container. If they are not specified the user
namespace is not used. This setting allows to run processes with uid zero without the risk of being the root
on host system.

Here is a example of maps:

uid-map:
- {inside: 0, outside: 1000, count: 1}
- {inside: 1, outside: 1, count: 1}
gid-map:
- {inside: 0, outside: 100, count: 1}

Note: Currently you may have uid-map either in a sandbox or in a container config, not both.

used-images-list
(optional) A text file that is used by lithos_clean to keep images alive. It’s not used by any other means
except lithos_clean utility.

Each line of the file should contain image name relative to the image_dir.

It’s expected that the list is kept up by some orchestration system or by deployment scripts or by any other tool
meaningful for ops team.

This setting is only useful if auto-clean is true (default)

auto-clean
(default true) Clean images of this sandbox when running lithos_clean. This is a subject of the following
caveats:

1. Lithos clean is not run by lithos automatically, you ought to run it using cron tab

2. If same image-dir is used for multiple sandboxes it will be cleaned if at least one of them has non-falsy
auto-clean.

resolv-conf
(default /etc/resolv.conf) default place to copy resolv.conf from for containers.

Note: Container itself can override it’s own resolv.conf file, but can’t read original /etc/resolv.conf if
this setting is changed.

hosts-file
(default /etc/hosts) default place to copy hosts from for containers.

Note: Container itself can override it’s own hosts file, but can’t read original /etc/hosts if this setting is
changed.

bridged-network
(default is absent) a network bridge configuration for all the cotainers in the bridge

Example:

bridged-network:
bridge: br0
network: 10.0.0.0/24

(continues on next page)

3.1. Reference 11

Lithos Documentation, Release 0.18.4

(continued from previous page)

default_gateway: 10.0.0.1
after-setup-command: [/usr/bin/arping, -U, -c1, '@{container_ip}']

Note: when bridged network is active your Process Config should contain a list of ip addresses one for each
container.

Note: this setting does not affect tcp-ports. So usually you should keep allow-tcp-ports setting
empty when using bridged network.

Options:

after-setup-command
Command to run after setting up container namespace but before running actual container. The example
shown above sends unsolicited arp packet to notify router and other machines on the network that MAC
address corresponding to container’s IP is changed.

Command must have absolute path, and has almost empty environment, so don’t assume PATH is there if
you’re writing a script. Command runs in container’s network namespace but with all other namespaces
in host system (in particular in host filesystem and with permissions of root in host system)

Replacement variables that work in command-line:

• @{container_ip} – replaced with IP address of a container being set up

Few examples:

1. [/usr/bin/arping, -U, -c1, '@{container_ip}'] – default in v0.17.x. This notifies
other peers that MAC address for this IP changed.

2. [/usr/bin/arping, -c1, '10.0.0.1'] – other way to do that, that often does the same as
in (1) a side-effect (where 10.0.0.1 is a default gateway)

3. [/usr/bin/ping, -c1, '10.0.0.1'] – doing same as (2) but using ICMP instead of ARP
directly

Most of the time containers should work with empty after-setup-command, but because container
gets new MAC address each time it starts, there might be a small delay (~ 5 sec) after container’s start
where packets going to that IP are lost (so it appears that host is unavailable).

secrets-private-key
(default is absent) Use the specified private key(s) to decode secrets in container’s secret-environ setting.

The key in this file is openssh-compatible ed25519 private key (RSA keys are not supported). File can contain
multiple keys (concatenated), if secret matches any of them it will be decoded.

To create a key use normal ssh-keygen and leave the password empty (password-protected keys aren’t sup-
ported):

ssh-keygen -t ed25519 -t /etc/lithos/keys/secret.key

Note: the key must be owned by root with permissions of 0600 (default for ssh-keygen).

secrets-namespaces
(default is [“”]) allow only secrets with listed namespaces. Useful only if secrets-private-key is set.

For example:

12 Chapter 3. Sandbox Config

Lithos Documentation, Release 0.18.4

secrets-namespaces:
- project1.web
- project1.celery

The idea is you might want to use single secret private key for a whole cluster. But diferent services having
different “namespaces”. This means you can use single public key for encyption and specify different namespace
for each service. With this setup user can’t just copy a key from one service to another if that another service
isn’t authorized to read the namespace using secrets-namespaces.

To encrypt secret for a specific namespace use:

lithos_crypt encrypt -k key.pub -d "secret" -n "project1.web"

By default both lithos_crypt and secrets-namespaces specify empty string as a namespace. This is
good enough if you don’t have multiple teams sharing the same cluster.

Currently namespaces are limited to a regexp ^[a-zA-Z0-9_.-]*$

See Encrypted Variables for more info.

3.1. Reference 13

Lithos Documentation, Release 0.18.4

14 Chapter 3. Sandbox Config

CHAPTER 4

Process Config

This config resides in /etc/lithos/processes/NAME.yaml (by default). Where NAME is the name of a
sandbox.

It mainly contains three things:

• image the process is run from

• config file name inside the image that specifies command-line and other process execution parameters

• number instances of the process to run

For example:

django:
image: django.v3.5.7
config: /config/worker_process.yaml
instances: 3

redis:
image: redix.v1
config: /config/redis.yaml
instances: 1

This will start three python django worker processes and one redis.

Hint: Usually this config is generated by some tool like ansible or confd.

There is also a way to create ad-hoc commands. For example:

manage:
kind: Command
image: django.v3.5.7
config: /config/manage_py.yaml

This will allow to start a manage.py command with:

15

http://www.ansible.com/
https://github.com/kelseyhightower/confd

Lithos Documentation, Release 0.18.4

$ lithos_cmd SANDBOX_NAME manage syncdb

This runs command in the same sandbox like the worker process itself but the command is actually attached to current
shell. The commands may be freely mixed with Daemon items (which is default kind) in same config. The only
limitation is that names must not be duplicated

The Command is occasionally useful, but should be used with care. To start a command you need root privileges on
host system, so it’s only useful for SysOp tasks or may be for cron tasks but not for normal operation of application.

4.1 Options

instances
Number of instances to run

image
Identifier of the image to run container from

config
Configuration file name (absolute name in container) to run

ip-addresses
A list of ip addresses if bridged-network is enforced in sandbox. Note the number of items in this list must
match instances value.

variables
A mapping of variable: value for variables that can be used in process config.

extra-secrets-namespaces
Additional secrets namespaces allowed for this specific project. In addition to secrets-namespaces. See
Encrypted Variables for more info.

4.2 Variables

You can also add variables for specific config:

For example:

django:
image: django.v3.5.7
config: /config/worker_process.yaml
variables:

tcp_port: 10001
instances: 3

Only variables that are declared in container config can be substituted. Extra variables are ignored. If there is a
declared variable but it’s not present in process config, it doesn’t pass configuration check.

16 Chapter 4. Process Config

CHAPTER 5

Container Configuration

Container configuration is a YAML file which is usually put into /config/<service_name>.yaml into con-
tainer image itself.

Note: Curently container configuration may be put into any folder inside the image, but we may fix this folder later.
The arbitrary path for container configuration may be a security vulnerability.

The somewhat minimal configuration is looks like following:

kind: Daemon
user-id: 1
volumes:

/tmp: !Tmpfs { size: 100m }
executable: /bin/sleep
arguments: [60]

5.1 Variables

Container can declare some things, that can be changed in specific instantiation of the service, for example:

variables:
tcp_port: !TcpPort

kind: Daemon
user-id: 1
volumes:

/tmp: !Tmpfs { size: 100m }
executable: /bin/some_program
arguments:
- "--listen=localhost:@{tcp_port}"

The variables key declares variable names and types. Value for these variables can be provided in variables
in Process Config.

17

Lithos Documentation, Release 0.18.4

There are the following types of variables:

TcpPort Allows a number between 1-65535 and ensures that the number matches port range allowed in sandbox (see
allow-tcp-ports)

Changed in version 0.17.4: Added activation parameter as a shortcut to support systemd activation proto-
col. I.e. the following (showing two ports for more comprehensive example):

variables:
port1: !TcpPort { activation: systemd }
port2: !TcpPort { activation: systemd }

Means to add something like this:

variables:
port1: !TcpPort
port2: !TcpPort

tcp-ports:
"@{port1}":
fd: 3

"@{port2}":
fd: 4

environ:
LISTEN_FDS: 1
LISTEN_FDNAMES: "port1:port2"
LISTEN_PID: "@{lithos:pid}"

This works for any number of sockets. And it requires that
``LISTEN_FDS`, ``LISTEN_FDNAMES``, ``LISTEN_PID`` were absent in the
``environ`` as written in the file. Also it doesn't allow fine-grained
control over parameters of the socket and file descriptor numbers.
Use full form if you need specific options.

Choice Allows a value from a fixed set of choices (example: !Choice ["high-priority",
"low-priority"])

Name Allows a value that matches regex ^[0-9a-zA-Z_-]+$. Useful for passing names of things into a script
without having a chance to keep value unescaped when passing somewhere within a script or using it as a
filename.

New in version 0.10.3.

DottedName Allows arbitrary DNS-like name. It’s defined as dot-separated name with only alphanumeric and un-
derscores, where no component could start or end with a dash and no consequent dots allowed.

New in version 0.17.4.

All entries of @{variable_name} are substituted in the following fields:

1. arguments

2. The values of environ (not in the keys yet)

3. The key in the tcp-ports (i.e. port number)

The expansion in any other place does not work yet, but may be implemented in the future. Only declared variables
can be substituted. Trying to substitute undeclared variables or non-existing built-in variable results into configuration
syntax error.

There are the number of builtin variables that start with lithos::

lithos:name Name of the process, same as inserted in LITHOS_NAME environment variable

18 Chapter 5. Container Configuration

Lithos Documentation, Release 0.18.4

lithos:config_filename Full path of this configuration file as visible from within container

lithos:pid Pid of the process as visible inside of the container. Note: this variable can only be in environment and
can only be full value of the variable. I.e. PID: “@{lithos:pid}” is fine, but PID: “pid is @{lithos:pid}” is not
allowed. (In most cases this variable is exaclty 2, this is expected but might not be always true in some cases).

More built-in variables may be added in the future. Built-in variables doesn’t have to be declared.

5.2 Reference

kind
One of Daemon (default), Command or CommandOrDaemon.

The Daemon is long-running process that is monitored by supervisor.

The Command things are just one-off tasks, for example to initialize local file system data, or to check health of
daemon process. The Command things are run by lithos_cmd utility

The CommandOrDaemon may be used in both ways, based on how it was declared in Process Config. In the
command itself you can distinguish how it is run by /cmd. in LITHOS_NAME or cgroup name or better you
can pass variable to a specific command and/or daemon.

New in version 0.10.3: ContainerOrDaemon mode

user-id
The numeric user indentifier for the process. It must be one of the allowed values in lithos configuration. Usually
value of 0 is not allowed.

group-id
The numeric group indentifier for the process. It must be one of the allowed values in lithos configuration.
Usually value of 0 is not allowed.

memory-limit
The memory limit for process and it’s children. This is enforced by cgroups, so this needs memory cgroup to be
enabled (otherwise its no-op). See cgroup-controllers for more info. Default: nolimit.

You can use ki, Mi and Gi units for memory accounting. See integer-units.

Changed in version 0.14.0: Previously it only set memory.limit_in_bytes but now it also sets memory.
memsw.limit_in_bytes if the latter exists (otherwise skipping silently). This helps to kill processes earlier
instead of swapping out to disk.

cpu-shares
The number of CPU shares for the process. Default is 1024 which means all processes get equal share. You
may split them to different values like 768 for one process and 256 for another one.

This is enforced by cgroups, so this needs cpu cgroup to be enabled (otherwise its no-op). See
cgroup-controllers for more info.

fileno-limit
The limit on file descriptors for process. Default 1024.

restart-timeout
The minimum time to wait between subsequent restarts of failed processes in seconds. This is to ensure that it
doesn’t boggles down CPU. Default is 1 second. It’s enough so that lithos itself do not hang. But it should be
bigger for heavy-weight processes. Note: this is time between restarts, i.e. if process were running more than
this number of seconds it will be restarted immediately.

5.2. Reference 19

http://rust-quire.readthedocs.io/en/latest/user.html#units

Lithos Documentation, Release 0.18.4

kill-timeout
(default 5 seconds) The time to wait for application to die. If it is not dead by this number of seconds we kill it
with KILL.

You should not rely on this timeout to be precise for multiple reasons:

1. Unidentified children are killed with a default timeout (5 sec). This includes children which are being
killed when their configuration is removed.

2. When lithos is restarted (i.e. to reload a configuration) during the timeout, the timeout is reset. I.e. the
process may hang more than this time.

executable
The path to executable to run. Only absolute paths are allowed.

arguments
The list of arguments for the command. Except argument zero.

environ
The mapping of values that are set for process. You must set all needed environment variables here. The only
variable that is propagated by default is TERM. Also few special LITHOS_ variables may be set. This means
you must set all the basic LANG, HOME and so on explicitly. This is to ensure that your environment is always
the same regardless of where you run process.

secret-environ
Similarlty to environ but contains encrypted environment variables. For example:

secret-environ:
DB_PASSWORD:

→˓v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/
→˓1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc

Note: if environment variable is both in environ and secret-environwhich one overrides is not specified
for now.

You can encrypt variables using lithos_crypt:

lithos_crypt encrypt -k key.pub -d "secret" -n "some.namespace"

You only need public key for encryption. So the idea is that public key is published somewhere and anyone,
even users having to access to server/private key can add a secret.

The -n / --namespace parameter must match one of the secrets-namespaces defined for project’s
sandbox.

Usually there is only one private key for every deployment (cluster), and a single namespace per project. But
in some cases you might need single lithos config for multiple destinations or just want to rotate private key
smoothly. So you can put secret(s) encoded for multiple keys and/or namespaces:

secret-environ:
DB_PASSWORD:
- v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/

→˓mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE
-

→˓v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/
→˓zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==
- v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/

→˓mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE

Note: technically you can encrypt different secrets here, we can’t enforce that, but it’s very discouraged.

20 Chapter 5. Container Configuration

Lithos Documentation, Release 0.18.4

The underlying encyrption is curve25519xsalsa20poly1305 which is compatible with libnacl and libsodium.

See Encrypted Variables for more info.

This option conflicts with secret-environ-file.

secret-environ-file
Path to the file where to read secret environ from. Instead of including secret-environ in the container
config itself you can use a separate file where data is contained. This is useful to keep single set of secrets shared
between multiple containers.

The target file is also yaml, but it containers just mapping of names of the secrets to their values (or lists). For
example:

PASSWD1: v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/
→˓1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc
PASSWD2:
- v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/
→˓mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE
- v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/
→˓zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==

Absolute paths here interpreted relative to the container root and relative paths are interpreted relative to the
container config itself. Note: we currently support reading file from container’s filesystem only, whether reading
from a volume works or not is unspecified at the moment.

This option conflicts with secret-environ.

workdir
The working directory for target process. Default is /. Working directory must be absolute.

resolv-conf

Parameters of the /etc/resolv.conf file to generate. Default configuration is:

resolv-conf:
mount: nil # which basically means "auto"
copy-from-host: true

Which means resolv.conf from host where lithos is running is copied to the “state” directory of
the container. Then if /etc/resolv.conf in container is a file (and not a symlink) resolv conf is
mounted over the /etc/resolv.conf.

More options are expected to be added later.

Changed in version 0.15.0: mount option added. Previously to make use of resolv.conf you
should symlink ln -s /state/resolv.conf /etc/resolv.conf in the container’s im-
age.

Another change is that copy-from-host copies file that is specified in sandbox’s resolv.conf
which default to /etc/resolv.conf but may be different.

Parameters:

copy-from-host (default true) Copy resolv.conf file from host machine.

Note: even if copy-from-host is true, additional-hosts from sandbox config work, which
may lead to duplicate or conflicting entries if some names are specified in both places.

Changed in version v0.11.0: The parameter used to be false by default, because we were thinking about
better (perceived) isolation.

5.2. Reference 21

Lithos Documentation, Release 0.18.4

mount (default nil, which means “auto”) Mount copied resolv.conf file over /etc/resolf.conf.

nil enables mounting if /etc/resolv.conf is present in the container and is a file (not a symlink) and
also copy-from-host is true

New in version 0.15.0.

hosts-file

Parameters of the /etc/hosts file to generate. Default configuration is:

hosts-file:
mount: nil # which basically means "auto"
localhost: true
public-hostname: true
copy-from-host: false

Changed in version 0.15.0: mount option added. Previously to make use of resolv.conf you
should symlink ln -s /state/resolv.conf /etc/resolv.conf in the container’s im-
age.

Another change is that copy-from-host copies file that is specified in sandbox’s resolv.conf
which default to /etc/resolv.conf but may be different.

Parameters:

copy-from-host (default true) Copy hosts file from host machine.

Note: even if copy-from-host is true, additional-hosts from sandbox config work, which
may lead to duplicate or conflicting entries if some names are specified in both places.

Changed in version v0.11.0: The parameter used to be false by default, because we were thinking about
better (perceived) isolation. And also because hostname in Ubuntu doesn’t resolve to real IP of the host.
But we find those occassions where it matters to be quite rare in practice and using hosts-file as well
as resolv.conf from the host system as the most expected and intuitive behavior.

mount (default nil, which means “auto”) Mount produced hosts file over /etc/hosts.

nil enables mounting if /etc/hosts is present in the container and is a file (not a symlink).

Value of true fails if /etc/hosts is not a file. Value of false leaves /etc/hosts intact.

New in version 0.15.0.

localhost (default is true when copy-from-host is false) A boolean which defines whether to add 127.0.
0.1 localhost record to hosts

public-hostname (default is true when copy-from-host is false) Add to hosts file the result of
gethostname system call along with the ip address that name resolves into.

uid-map, gid-map
The list of mapping for uids(gids) in the user namespace of the container. If they are not specified the user
namespace is not used. This setting allows to run processes with uid zero without the risk of being the root
on host system.

Here is a example of maps:

uid-map:
- {inside: 0, outside: 1000, count: 1}
- {inside: 1, outside: 1, count: 1}
gid-map:
- {inside: 0, outside: 100, count: 1}

22 Chapter 5. Container Configuration

Lithos Documentation, Release 0.18.4

Note: Currently you may have uid-map either in a sandbox or in a container config, not both.

stdout-stderr-file
This redirects both stdout and stderr to a file. The path is opened inside the container. So must reside on one
of the mounted writeable Volumes. Probably you want Persistent volume. While it can be on Tmpfs or
Statedir the applicability of such thing is very limited.

Usually log is put into the directory specified by stdio-log-dir.

interactive
(default false) Useful only for containers of kind Command. If true lithos_cmd doesn’t clobber stdin and
doesn’t redirect stdout and stderr to a log file, effectively allowing command to be used for interactive commands
or as a part of pipeline.

Note: for certain use cases, like pipelines it might be better to use fifo’s (see man mkfifo) and a Daemon
instead of this one because daemons may be restarted on death or for software upgrade, while Command is not
supervised by lithos.

New in version 0.6.3.

Changed in version 0.5: Commands were always interactive

restart-process-only
(default false) If true when restarting process (i.e. in case process died or was killed), lithos restarts just the
failed process. This means container will not be recreated, volumes will not be remounted, tmpfs will not be
cleaned and some daemon processes may leave running.

By default lithos_knot which is pid 1 in the container exits when process dies. Which means all other
processes will die on KILL signal, and container will be removed and created again. It’s a little bit slower but
safer default. This leaves no hanging daemons, orphan files in state dir and tmpfs garbage.

volumes
The mapping of mountpoint to volume definition. See Volumes for more info

tcp-ports
Binds address and provides file descriptor to the child process. All the children receive dup of the same file
descriptor, so may all do accept() simultaneously. The configuration looks like:

tcp-ports:
7777:

fd: 3
host: 0.0.0.0
listen-backlog: 128
reuse-addr: true
reuse-port: false

All the fields except fd are optional.

Programs may require to pass listening file descriptor number by some means (usually environment). For
example to run nginx with port bound (so you don’t need to start it as root) you need:

tcp-ports:
80:

fd: 3
set-non-block: true

(continues on next page)

5.2. Reference 23

Lithos Documentation, Release 0.18.4

(continued from previous page)

environ:
NGINX: "3;"

To run gunicorn you may want:

tcp-ports:
80:

fd: 3
environ:
GUNICORN_FD: "3"

More examples are in Handing TCP Ports

Parameters:

key TCP port number.

Warning:

• The paramters (except fd) do not change after socket is bound even if configuration change

• You can’t bind same port with different hostnames in a single process (previously there was
a global limit for the single port for whole lithos master, currently this is limited just because
tcp-ports is a mapping)

Port parameter should be unique amongst all containers. But sharing port works because it is useful if
you are doing smooth software upgrade (i.e. you have few old processes running and few new processes
running both sharing same port/file-descriptor). Running them on single port is not the best practices for
smooth software upgrade but that topic if out of scope of this documentation.

fd Required. File descriptor number

host (default is 0.0.0.0 meaning all addresses) Host to bind to. It must be IP address, hostname is not
supported.

listen-backlog (default 128) the value to pass to the listen() system call. The value is capped by net.core.
somaxconn

reuse-addr (default true) Sets SO_REUSEADDR socket option

reuse-port (default false) If set to true this changes behavior of the lithos with respect of the socket. In
default case lithos binds socket as quick as possible and passes to each child on start. When this set to
true, lithos creates a separate socket and calls bind for each process start. This has two consequences:

• Socket is not bound when no processes started (i.e. they are failing)

• Each process gets separate in-kernel queue of connections to accept

This should be set to true only on very high performant servers that experience assymetric workload in
default case.

set-non-block (default false) Sets socket into non-blocking mode. This is usually done by an application
itself but some of them (especially ones, that don’t expect socket to be created by an external utility, e.g.
nginx) don’t do it themselves.

external (default false) If set to true listen on the port in the external network (host network of the system
not bridged network). This is only effective if bridged-network is enabled for container.

24 Chapter 5. Container Configuration

Lithos Documentation, Release 0.18.4

Changed in version 0.17.0: Previously we only allowed external ports to be declared in lithos config. It
was expected that container in bridged network can listen port itself. But it turned out file descriptors are
still convenient for some use-cases even inside a bridge.

metadata
(optional) Allows to add arbitrary metadata to lithos configuration file. Lithos does not use and does not validate
this data in any way (except that it must be a valid YAML). The metadata can be used by other tools that
inspect lithos configs and extract data from it. In particular, we use metadata for our deployment tools (to keep
configuration files more consolidated instead of keeping then in small fragments).

normal-exit-codes
(optional) A list of exit codes which are considered normal for process death. This currently only improves
failures metric. See Determining Failure.

Note: by default even 0 exit code is considered an error for daemons, and for commands (lithos_cmd) 0 is
considered successful.

This setting is intended for daemons which may voluntarily exit for some reason (soft memory limit, version
upgrade, configuration reload).

It’s not recommended to add 0 or 1 into the list, as some commands threat them pretty arbitrarily. For example
0 is exit code of most utilities running –help so this mistake will not be detected. And 1 is used for arbitrary
crashes in scripting languages. So the good idea is to define some specific code in range of 8..120 to define
successful exit.

5.2. Reference 25

Lithos Documentation, Release 0.18.4

26 Chapter 5. Container Configuration

CHAPTER 6

Metrics

Lithos submits metrics via a cantal-compatible protocol.

All metrics usually belong to lithos’s cgroup, so for example in graphite you can find them under cantal.
<cluster-name>.<hostname>.lithos.groups.*. Or you cand find them without this prefix in http:/
/hostname:22682/local/process_metrics without a prefix.

In the following description we skip the common prefix and only show metric names.

Metrics of lithos master process:

• master.restarts (counter) amount of restarts of a master process. Usually restart equals to configuration
reload via lithos_switch or any other way.

• master.sandboxes (gauge) number of sandboxes configured

• master.containers (gauge) number of containers (processes) conigured

• master.queue (gauge) length of the internal queue, the queue consists of processes to run and hanging
processes to kill

Per-process metrics:

• processes.<sandbox_name>.<process_name>.started – (counter) number of times process
have been started

• processes.<sandbox_name>.<process_name>.deaths – (counter) number of times process have
exited for any reason

• processes.<sandbox_name>.<process_name>.failures – (counter) number of times process
have exited for failure reason, for whatever reason lithos thinks it was failure. See Determining Failure

• processes.<sandbox_name>.<process_name>.running – (gauge) number of procesess that are
currently running (was started but not yet found to be exited)

Global metrics for all sandboxes and containers:

• containers.started – (counter) same as for processes.* but for all containers

• containers.deaths – (counter) see above

27

http://cantal.readthedocs.io/en/latest/mmap.html

Lithos Documentation, Release 0.18.4

• containers.failures – (counter) see above

• containers.running – (gauge) see above

• containers.unknown – (gauge) number of child processes of lithos that are found to be running but do not
belong to any of the process groups known to lithos (they are being killed, and they are probably from deleted
configs)

6.1 Determining Failure

Currently there are two kinds of process death that are considered non-failures:

1. Processes that had been sent SIGTERM signal to (with any exit status) or ones dead on SIGTERM signal are
considered non-failed.

2. Processes exited with one of the exit codes specified in normal-exit-codes

28 Chapter 6. Metrics

CHAPTER 7

Volumes

Volumes in lithos are just some kind of mount-points. The mount points are not created by lithos itself. So they
must exist either in original image. Or on respective volume (if mount point is inside a volume).

There are the following kinds of volumes:

Readonly
Example: !Readonly "/path/to/dir"

A read-only bind mount for some dir. The directory is mounted with ro,nosuid,noexec,nodev

Persistent
Example: !Persistent { path: /path/to/dir, mkdir: false, mode: 0o700,
user: 0, group: 0 }

A writeable bind mount. The directory is mounted with rw,nosuid,noexec,nodev. If you need directory
to be created set mkdir to true. You also probably need to customize either the user (to the one running
command e.g. same as user-id of the container) or the mode (to something like 0o1777, i.e. sticky writable
by anyone).

Statedir
Example: !Statedir { path: /, mode: 0o700, user: 0, group: 0 }

Mount subdir of the container’s own state directory. This directory is used to store generated resolv.conf
and hosts files as well as for other kinds of small state which is dropped when container dies. If you mount
something other than / you should custimize mode or an owner similarly to !Persistent volumes (except
that you can’t create statedir subdirectory by hand because statedir is created for each process at start)

Tmpfs
Example: !Tmpfs { size: 100Mi, mode: 0o766 }

The tmpfs mount point. Currently only size and mode options supported. Note that syntax of size and mode
is generic syntax for numbers for our configuration library, not the syntax supported by kernel.

29

Lithos Documentation, Release 0.18.4

30 Chapter 7. Volumes

CHAPTER 8

Tips and Conventions

This documents describes how to prepare images to run by lithos. You don’t have to obey all the rules. And you are
free to create your own rules within the organization. But hopefully this will help you a lot when you’re confused.

Contents:

8.1 Handing TCP Ports

There are couple of reasons you want lithos to open tcp port on behalf of your application:

1. Running multiple instances of the application, each sharing the same port

2. Smooth upgrade of you app, where some of processes are running old version of software and some run new
one

3. Grow and shrink number of processes without any application code to support that

4. Using port < 1024 and not starting process as root

5. Each process is in separate cgroup, so monitoring tools can have fine-grained metrics over them

Note: While you could use SO_REUSE_PORT socket option for solving #1 it’s not universally available option.

Forking inside the application doesn’t work as well as running each process by lithos because in the former case your
memory limits apply to all the processes rather than being fine-grained.

Following sections describe how to configure various software stacks and frameworks to use tcp-ports opened by
lithos.

It’s possible to run any software that supports systemd socket activation with tcp-ports of lithos. With the config
similar to this:

31

http://0pointer.de/blog/projects/socket-activation.html

Lithos Documentation, Release 0.18.4

environ:
LISTEN_FDS: 1 # application receives single file descriptor
... more env vars ...

tcp-ports:
8080: # port number
fd: 3 # SD_LISTEN_FDS_START, first fd number systemd passes
host: 0.0.0.0
listen-backlog: 128 # application may change this on its own
reuse-addr: true

... other process settings ...

8.1.1 Python3 + Asyncio

For development purposes you probably have the code like this:

async def init(app):
...
handler = app.make_handler()
srv = await loop.create_server(handler, host, port)

To use tcp-ports you should check environment variable and pass socket if that exists:

import os
import socket

async def init(app):
...
handler = app.make_handler()
if os.environ.get("LISTEN_FDS") == "1":

srv = await loop.create_server(handler,
sock=socket.fromfd(3, socket.AF_INET, socket.SOCK_STREAM))

else:
srv = await loop.create_server(handler, host, port)

This assumes you are configured environ and tcp-ports as described above.

8.1.2 Python + Werkzeug (Flask)

Werkzeug supports the functionality out of the box, just put configure the environment:

environ:
WERKZEUG_SERVER_FD: 3
... more env vars ...

tcp-ports:
8080: # port number
fd: 3 # this corresponds to WERKZEUG_SERVER_FD
host: 0.0.0.0
listen-backlog: 128 # default in werkzeug
reuse-addr: true

... other process settings ...

Or you can pass fd=3 to werkzeug.serving.BaseWSGIServer.

Another hint: do not use processes != 1. Better use lithos’s instances to control the number of processes.

32 Chapter 8. Tips and Conventions

Lithos Documentation, Release 0.18.4

8.1.3 Python + Twisted

Old code that looks like:

reactor.listenTCP(PORT, factory)

You need to change into something like this:

if os.environ.get("LISTEN_FD") == "1":
import socket
sock = socket.fromfd(3, socket.AF_INET, socket.SOCK_STREAM)
sock.set_blocking(False)
reactor.adoptStreamPort(sock.fileno(), AF_INET, factory)
sock.close()
os.close(3)

else:
reactor.listenTCP(PORT, factory)

8.1.4 Golang + net/http

Previous code like this:

import "net/http"

srv := &http.Server{ .. }
if err := srv.ListenAndServe(); err != nil {

log.Fatalf("Error listening")
}

You should wrap into something like this:

import "os"
import "net"
import "net/http"

srv := &http.Server{ .. }
if os.Getenv("LISTEN_FDS") == "1" {

listener, err := net.FileListener(os.NewFile(3, "fd 3"))
if err != nil {

log.Fatalf("Can't open fd 3")
}
if err := srv.Serve(listener); err != nil {

log.Fatalf("Error listening on fd 3")
}

} else {
if err := srv.ListenAndServe(); err != nil {

log.Fatalf("Error listening")
}

}

8.1.5 Node.js with Express Framework

Normal way to run express:

8.1. Handing TCP Ports 33

Lithos Documentation, Release 0.18.4

let port = 3000
app.listen(port, function() {

console.log('server is listening on', this.address().port);
})

Turns into the following code:

let port = 3000;
if (process.env.LISTEN_FDS && parseInt(process.env.LISTEN_FDS, 10) === 1) {

port = {fd:3};
}
app.listen(port, function() {

console.log('server is listening on', this.address().port);
})

8.2 Deploying Vagga Containers

Vagga is a common way to develop applications for later deployment using lithos. Also vagga is a common way to
prepare a container image for use with lithos.

Usually vagga does it’s best to make containers as close to production as possible. Still vagga tries to make good
trade-off to make it’s easier to use for development, so there are few small quircks that you may or may not notice
when deploying.

Here is a boring list, later sections describe some things in more detail:

1. Unsurprisingly /work directory is absent in production container. Usually this means three things:

(a) Your sources must be copied/installed into container (e.g. using Copy)

(b) There is no current working directory, unless you specify it explicitly current directory is root /

(c) You can’t write into working directory or /work/somewhere

2. All directories are read-only by default. Basic consequences are:

(a) There is no writable /tmp unless you specify one. This also means there is no default for temporary dir,
you have to chose whether this is an in-memory Tmpfs or on-disk Persistent.

(b) There is no /dev/shm by default. This is just another tmpfs volume in every system nowadays, so just
measure how much you need and mount a Tmpfs. Be aware that each container even on same machine
get’s it’s own instance.

(c) We can’t even overwrite /etc/resolv.conf and /etc/hosts, see below.

3. There are few environment variables that vagga sets in container by default:

(a) TERM – is propagated from external environment. For daemons it should never matter. For
interactive commands it may matter.

(b) PATH – in vagga is set to hard-coded value. There is no default value in lithos. If your program runs any
binaries (and usually lots of them do, even if you don’t expect), you want to set PATH.

(c) Various *_proxy variables are propagated. They are almost never useful for daemons. But are written
here for completeness.

4. In vagga we don’t update /etc/resolv.conf and /etc/hosts, but in lithos we have such mechanism.
The mechanism is following:

34 Chapter 8. Tips and Conventions

http://vagga.readthedocs.io/en/latest/
http://vagga.readthedocs.io/en/latest/
http://vagga.readthedocs.io/en/latest/build_steps.html?highlight=Copy#step-Copy

Lithos Documentation, Release 0.18.4

(a) In container you make the symlinks /etc/resolv.conf -> /state/resolv.conf, /etc/
hosts -> /state/hosts

(b) The /state directory is mounted as Statedir

(c) Lithos automatically puts resolv.conf and hosts into statedir when container is created (respecting
resolv-conf and hosts-file)

(d) Then files can be updated by updating files in /var/run/lithos/state/<sandbox>/
<process>/

5. Because by default neither vagga nor lithos have network isolation, some things that are accessible in the dev
system may not be accessible in the server system. This includes both, services on localhost as well as in
abstract unix socket namespace. Known examples are:

(a) Dbus: for example if DBUS_SESSION_BUS_ADDRESS starts with unix:abstract=

(b) Xorg: X Window System, the thing you configure with DISPLAY

(c) nscd: name service cache daemon (this thing may resolve DNS names even if TCP/IP network is absent
for your container)

(d) systemd-resolved: listens at 127.0.0.53:53 as well as on dbus

8.3 Storing Secrets

There are currently two ways to provide “secrets” for containers:

1. Encrypted values inserted into environment variable

2. Mount a directory from the host system

• Encrypted Variables

– Guide

– Ananomy of the Encrypted Key

– Security Notes

8.3.1 Encrypted Variables

Guide

Note: this guide covers both server setup and configuring specific containers. Usually setup (steps 1-3) is done once.
And adding keys to a container (steps 4-5) is more regular job.

1. Create a key private key on the server:

ssh-keygen -f /etc/lithos/keys/main.key -t ed25519 -P ""

You can create a shared key or a per-project key. Depending on your convenience. Synchronize the key accross
all the servers in the same cluster. This key should never leave that set of servers.

2. Add the reference to the key into your Sandbox Config (e.g. /etc/lithos/sandboxes/myapp.yaml):

8.3. Storing Secrets 35

Lithos Documentation, Release 0.18.4

secrets-private-key: /etc/lithos/keys/main.key
secrets-namespaces: [myapp]

You can omit secrets-namespaces if you’re sole owner of this server/cluster (it al-
lows only empty string as a namespace). You can also make per-process namespaces
(extra-secrets-namespaces).

3. Publish your public key /etc/lithos/keys/main.key.pub for your users. (Cryptography guarantees
that even if this key is shared publically, i.e. commited into a git repo, or accessible over non-authorized web
URL system is safe)

4. Your users may now fetch the public key and encrypt their secrets with lithos_crypt (get static binary on
releases page):

$ lithos_crypt encrypt -k main.key.pub -n myapp -d the_secret
v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGMzk57R/
→˓HsBhxeqCdC7Ljyf8pszBBjIGD33f6lwBM7Q==

The important thing here is to encrypt with the right key and the right namespace.

5. Then put a secret into your Container Configuration:

executable: /usr/bin/python3
environ:
DATABASE_URL: postgresql://myappuser@db.example.com/myappdb

secret-environ:
DATABASE_PASSWORD:

→˓v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGMzk57R/
→˓HsBhxeqCdC7Ljyf8pszBBjIGD33f6lwBM7Q==

That’s it. To add a new password to the same or another container repeat steps 4-5.

This scheme is specifically designed to be safe to store in a (public) git repository by using secure encryption.

Ananomy of the Encrypted Key

As you might see there is a pattern in an encrypted key. Here is how it looks like:

v2:ROit92I5:KqWSX0BY:8MtOoWUX:nHcVCIWZG2hivi0rKa8MRnAIbt7TDTHB8YC8bBnac3IGMwBM7Q==
^-- encrypted "namespace:actual_secret"

^^^^^^^^-- short hash of the password itself
^^^^^^^^-- short hash of the secrets namespace

^^^^^^^^-- short hash of the public key used for encryption
^^-- encryption version

Note the following things:

1. Only version v2 is supported (v1 was broken and dropped in 0.16.0)

2. The short hash is base64-encoded 6-bytes length blake2b hash of the value. You can check in using b2sum
utility from recent version of coreutils:

$ echo -n "the_secret" | b2sum -l48 | xxd -r -p | base64
8MtOoWUX

(Note: we need xxd because b2sum outputs hexadecimal bytes, also note -n in echo command, as it’s a
common mistake, without the option echo outputs newline at the end).

36 Chapter 8. Tips and Conventions

https://github.com/tailhook/lithos/releases

Lithos Documentation, Release 0.18.4

3. The encrypted payload contains <namespace>: prefix. While we could check just the hash. Prefix allows
providing better error messages.

The underlying encyrption is curve25519xsalsa20poly1305 which is compatible with libnacl and libsodium.

Let’s see how it might be helpful, here is the list of keys:

1 v2:h+M9Ue9x:82HdsExJ:Gd3ocJsr:/+f4ezLfKIP/mp0xdF7H6gfdM7onHWwbGFQX+M1aB+PoCNQidKyz/
→˓1yEGrwxD+i+qBGwLVBIXRqIc5FJ6/hw26CE

2 v2:ROit92I5:cX9ciQzf:Gd3ocJsr:LMHBRtPFpMRRrljNnkaU6Y9JyVvEukRiDs4mitnTksNGSX5xU/
→˓zADWDwEOCOtYoelbJeyDdPhM7Q1mEOSwjeyO317Q==

3 v2:ROit92I5:82HdsExJ:Gd3ocJsr:Hp3pngQZUos5b8ioKVUx40kegM1uDsYWwsWqC1cJ1/
→˓1KmQPQQWJZe86xgl1EOIxbuLj6PUlBH8yz5qCnWp//Ofbc

You can see that:

1. All of them have same secret (3rd column)

2. Second and third ones have same encryption key (1st column)

3. First and third ones have the same namespace (2nd column)

This is useful for versioning and debugging problems. You can’t deduce the actual password from this data anyway
unless your password is very simple (dictioanry attack) or you already know it.

Note: even if all three {encryption key, namespace, secret} match, the last part of data (encrypted payload) will be
different each time you encode that same value. All of the outputs are equally right.

Security Notes

1. Namespaces allow to divide security zones between many projects without nightmare of generating, syncing
and managing secret keys per project.

2. Namespaces match exactly they aren’t prefixes or any other kind of pattern

3. If you rely on lithos_switch to switch containers securely (with untrusted Process Config), you need to
use different private key per project (as otherwise extra-secrets-namespaces can be used to steal keys)

8.3. Storing Secrets 37

Lithos Documentation, Release 0.18.4

38 Chapter 8. Tips and Conventions

CHAPTER 9

Frequently Asked Questions

9.1 How do I Start/Stop/Restart Processes Running By Lithos?

Short answer: You can’t.

Long answer: Lithos keep running all the processes that it’s configured to run. So:

• To stop process: remove it from the config

• To start process: add it to the config. If it’s added, it will be restarted indefinitely. Sometimes may want to fix
restart-timeout

• To restart process: well, kill it (with whatever signal you want).

The ergonomic of these operations is intentionally not very pleasing. This is because you are supposed to have higher-
level tool to manage lithos. At least you want to use ansible, chef or puppet.

9.2 Why /run/lithos/mnt is empty?

This is a mount point. It’s never mounted in host system namespace (well it’s never visible in guest namespace too).
The containerization works as follows:

1. The mount namespace is unshared (which means no future mounts are visible in the host system)

2. The root filesystem image is mounted to /run/lithos/mnt

3. Other things set up in root file system (/dev, /etc/hosts, whatever)

4. Pivot root is done, which means that /run/lithos/mnt is now visible as root dir, i.e. just plain / (you can
think of it as good old chroot)

This all means that if you error like this:

[2015-11-17T10:29:40Z][ERROR] Fatal error: Can't mount pseudofs /run/lithos/mnt/dev/
→˓pts (newinstance, options: devpts): No such file or directory (os error 2)

39

http://ansible.com/
http://chef.io/
http://puppetlabs.com/

Lithos Documentation, Release 0.18.4

Or like this:

[2015-10-19T15:04:48Z][ERROR] Fatal error: Can't mount bind /whereever/external/
→˓storage/is to /run/lithos/mnt/storage: No such file or directory (os error 2)

It means that lithos have failed on step #3. And that it failed to mount the directory in the guest container file system
(/dev/pts and /storage respectively)

9.3 How to Organize Logging?

There is variety of ways. Here are some hints. . .

9.3.1 Syslog

You may accept logs by UDP. Since lithos has no network namespacing (yet). The UDP syslog just works.

To setup syslog using unix sockets you may configure syslog daemon on the host system to listen for the socket inside
the container’s /dev. For example, here is how to configure rsyslog for default lithos config:

module(load="imuxsock") # needs to be done just once
input(type="imuxsock" Socket="/var/lib/lithos/dev/log")

Alternatively, (but not recommended) you may configure devfs-dir:

devfs-dir: /dev

9.3.2 Stdout/Stderr

It’s recommended to use syslog or any similar solutions for logs. But there are still reasons to write logs to a file:

1. You may want to log early start errors (when you have not yet initialized the logging subsystem of the applica-
tion)

2. If you have single server and don’t want additional daemons

Starting with version v0.5.0 lithos has a per-sandbox log file which contains all the stdout/stderr output of the
processes. By default it’s in /var/log/lithos/stderr/<sandbox_name>.log. See stdio-log-dir
for more info.

9.4 How to Update Configs?

The best way to update config of processes is to put it into a temporary file and run lithos_switch (see
lithos_switch --help for more info). This is a main kind config you update multiple times a day.

In case you’ve already put config in place, or for master and sandbox config, you should first run lithos_check
to check that all configs are valid. Then just send QUIT signal to the lithos_tree process. Usually the following
command-line is enough for manual operation:

pkill -QUIT lithos_tree

40 Chapter 9. Frequently Asked Questions

http://www.rsyslog.com/doc/v8-stable/configuration/modules/imuxsock.html

Lithos Documentation, Release 0.18.4

But if you for authomation it’s better to use lithos_switch.

Note: note

By sending QUIT signal we’re effectivaly emulate crash of the supervisor daemon. It’s designed in a way that allows
it survive crash and keep all fresh child processes alive. After an in-place restart it checks configuration of child
processes, kills outdated ones and executes new configs.

9.5 How to Run Commands in Container?

There are two common ways:

1. If you have container already running use nsenter

2. Prepare a special command for lithos_cmd

9.5.1 Running nsenter

This way only works if you have a running container. It’s hard to get work if your process crashes too fast after start.

You must also have a working shell in container, we use /bin/sh in examples.

You can use nsenter to join most namespaces, except user namespace. For example, if you know pid, the following
command would allow you to run shell in container and investigate files:

nsenter -m -p --target 12345 /bin/sh

If you don’t know PID, you may easily discover it with lithos_ps or automate it with pgrep:

nsenter -m -p \
--target=$(pgrep -f 'lithos_knot --name sandbox-name/process-name.0') \
/bin/sh

Warning: This method is very insecure. It runs command in original user namespace with the host root user.
While basic sandboxing (i.e. filesystem root) is enabled by -m and -p, the program that you’re trying to run (i.e.
the shell itself) can still escape that sandbox.

Because we do mount namespaces and user namespaces in different stages of container initialization there is
currently no way to join both user namespace and mount namespace. (You can join just user namespace by running
nsenter -U --target=1235 where 123 is the pid of the process inside the container, not lithos_knot. But
this is probably useless)

9.5.2 Running lithos_cmd

In some cases you may want to have a special container with a shell to run with lithos_cmd. This is just a normal
lithos container configuration with kind: Command and interactive: true and shell being specified as a
command. So you run your shell.yaml with:

lithos_cmd sandbox-name shell

There are three important points about this method:

9.5. How to Run Commands in Container? 41

Lithos Documentation, Release 0.18.4

1. If you’re trying to investigate problem with the daemon config you copy daemon config into this interactive
command. It’s your job to keep both configs in sync. This config must also be exposed in processes config just
like any other.

2. It will run another (although identical) container on each run. You will not see processes running as daemons
and other shells in ps or similar commands.

3. You must have shell in container to get use of it. Sometimes you just don’t have it. But you may use any
interactive interpreter, like python or even non-interactive commands.

9.6 How to Find Files Mounted in Container?

Linux provides many great tools to introspect running container. Here is short overview:

1. /proc/<pid>/root is a directory where you can cd into and look at files

2. /proc/<pid>/mountinfo is a mapping between host system directories and ones container

3. And you can join container’s namespace

9.6.1 Example 1

Let’s try to explore some common tasks. First, let’s find container’s pid:

$ pgrep -f 'lithos_name --name sandbox-name/process-name.0'
12345

Now we can find out the OS release used to build container:

$ sudo cat /proc/12345/root/etc/alpine-release
3.4.6

Warning: There is a caveat. Symlinks that point to paths starting with root are resolved differently that in
container. So ensure that you’re not accessing a symlink (and that any intermediate components is not a symlink).

9.6.2 Example 2

Now, let’s find out which volume is mounted as /app/data inside the container.

If you have quire recent findmnt it’s easy:

$ findmnt -N 12345 /app/data
TARGET SOURCE FSTYPE OPTIONS
/app/data /dev/mapper/Disk-main[/all-storages/myproject] ext4 rw,noatime,discard,
→˓data=ordered

Here we can see that /app/data in container is a LVM partition main in group Disk with the path
all-storages/myproject relative to the root of the partition. You can find out where this volume is mounted
on host system by inspecting the output of mount or findmnt commands.

Manual way is to look at /proc/<pid>/mountinfo (stripped output):

42 Chapter 9. Frequently Asked Questions

Lithos Documentation, Release 0.18.4

$ cat /proc/12345/mountinfo
347 107 9:1 /all-images/sandbox-name/myproject.c17cb162 / ro,relatime - ext4 /dev/md1
→˓rw,data=ordered
356 347 0:267 / /tmp rw,nosuid,nodev,relatime - tmpfs tmpfs rw,size=102400k
360 347 9:1 /all-storages/myproject /app/data rw,relatime - ext4 /dev/mapper/Disk-
→˓main rw,data=ordered

Here you can observe same info. Important parts are:

• Fifth column is the mountpoint (but be careful in complex cases there might be multiple overlapping mount
points);

• Fourth column is the path relative to the volume root;

• And, 9th column (next to the last) is the volume name.

Let’s find out where it is on host system:

$ mount | grep Disk-main
/dev/mapper/Disk-main on /srv type ext4 (rw,noatime,discard,data=ordered)

That’s it, now you can look at /srv/all-storages/myproject to find files seen by an application.

9.6. How to Find Files Mounted in Container? 43

Lithos Documentation, Release 0.18.4

44 Chapter 9. Frequently Asked Questions

CHAPTER 10

Lithos Changes By Release

10.1 v0.18.4

• Bugfix: only send SIGTERM to the process once when upgrading or stopping it (this prevents certain issues
with the applications themselves)

• Bugfix: use don’t reset kill timeout on SIGQUIT of lithos_tree

• Bugfix: correctly wait for kill timeout for retired children (not in the config any more)

10.2 v0.18.3

• Bugfix: it looks like that reading through /proc/ is inherently racy, i.e. some process may be skipped. This
commit fixes walk faster and traverse directory twice. More elaborate fix will be implemented in future.

10.3 v0.18.2

• Feature: add secret-environ-file which can be used to offload secrets to a separate (perhaps shared)
file

10.4 v0.18.1

• Feature: add set-non-block option to tcp-ports

45

Lithos Documentation, Release 0.18.4

10.5 v0.18.0

• Breaking: we don’t run arping after container setup by default, as it doesn’t work in certain environments.
Use after-setup-command instead.

10.6 v0.17.8

• Bugfix: fixes issue with bridged networking when host system is alpine (#15)

10.7 v0.17.7

• Bugfix: log name of the process when lithos_knot failed

• Bugfix: more robust parsing of process names by lithos_ps

• Feature: add @{lithos:pid} magic variable

10.8 v0.17.6

• Bugfix: systemd protocol support fixed: LISTEN_FDNAMES and LISTEN_PID

10.9 v0.17.5

• Feature: check variable substitution with lithos_check even in --check-container (out of system)
mode

10.10 v0.17.4

• Feature: Add DottedName variable type

• Feature: Add activation parameter to TcpPort variable

10.11 v0.17.3

• Bugfix: fix EADDRINUSE error when all children requiring file descriptor where queued for restart (throttled),
bug was due to duped socket lying in scheduled command (where main socket is closed to notify peers there are
no listeners)

10.12 v0.17.2

• Bugfix: previously lithos_tree process after fork but before execing lithos_knot could be recognized as undefined
child and killed. This race-condition sometimes led to closing sockets prematurely and being unable to listen
them again

46 Chapter 10. Lithos Changes By Release

https://github.com/tailhook/lithos/issues/17
https://github.com/tailhook/lithos/issues/15

Lithos Documentation, Release 0.18.4

10.13 v0.17.1

• Bugfix: passing sockets as FDs in non-bridged network was broken in v0.17.0

10.14 v0.17.0

• Breaking: add external flag to tcp-ports, which by default is false (previous behavior was equal to
external: true)

• Bugfix: lithos_cmd now returns exit code 0 if underlying command is exited successfully (was broken in
0.15.5)

10.15 v0.16.0

• Breaking: remove v1 encryption for secrets (it was alive for a week)

• Feature: add secrets-namespaces and extra-secrets-namespaces option to allow namespacing
secrets on top of a single key

• Feature: add v2 key encryption scheme

10.16 v0.15.6

• Feature: add secret-environ and secrets-private-key` settings which allow to pass to the appli-
cation decrypted environment variables

• Bugfix: when bridged network is enabled we use arping to update ARP cache

10.17 v0.15.5

• Bugfix: add support for bridged-network and ip-addresses for lithos_cmd

• Bugfix: initialize looppack interface in container when bridged-network is configured

• Feature: allow lithos_cmd without ip_addresses (only loopback is initialized in this case)

• Bugfix: return error result from lithos_cmd if inner process failed

10.18 v0.15.4

• First release that stops support of ubuntu precise and adds repository for ubuntu bionic

• Bugfix: passing TCP port as fd < 3 didn’t work before, now we allow fd: 0 and fail gracefully on 1, 2.

10.13. v0.17.1 47

Lithos Documentation, Release 0.18.4

10.19 v0.15.3

• feature: Add default-user and default-group to simplify container config

• bugfix: fix containers having symlinks at /etc/{resolv.conf, hosts} (broken in v0.15.0)

10.20 v0.15.2

• bugfix: containers without bridged network work again

10.21 v0.15.1

• nothing changed, fixed tests only

10.22 v0.15.0

• feature: Add normal-exit-codes setting

• feature: Add resolv-conf and hosts-file to sandbox config

• feature: Add bridged-network option to sandbox config

• breaking: By default /etc/hosts and /etc/resolv.conf will be mounted if they are proper mount
points (can be opt out in container config)

10.23 v0.14.3

• Bugfix: when more than one variable is used lithos were restarting process every time (because of unstable
serialization of hashmap)

10.24 v0.14.2

• Bugfix: if auto-clean is different in several sandboxes looking at the same image directory we skip cleaning
the dir and print a warning

• Add a timestamp to lithos_clean output (in --delete-unused mode)

10.25 v0.14.1

• Bugfix: variable substitution was broken in v0.14.0

48 Chapter 10. Lithos Changes By Release

Lithos Documentation, Release 0.18.4

10.26 v0.14.0

• Sets memory.memsw.limit_in_bytes if that exists (usually requires swapaccount=1 in kernel
params).

• Adds a warning-level message on process startup

• Duplicates startup and death messages into stderr log, so you can corelate them with application messages

10.27 v0.13.2

• Upgrades many dependencies, no significant changes or bugfixes

10.28 v0.13.1

• Adds auto-clean setting

10.29 v0.13.0

• /dev/pts/ptmx is created with ptmxmode=0666, which makes it suitable for creating ptys by unprivileged
users. We always used newinstance option, so it should be safe enough. And it also matches how ptmx is
configured on most systems by default

10.30 v0.12.1

• Added image-dir-levels parameter which allows using images in form of xx/yy/zz (for value of 3)
instead of bare name

10.31 v0.12.0

• Fixed order of sandbox-name.process-name in metrics

• Dropped setting cantal-appname (never were useful, because cantal actually uses cgroup name, and lithos
master process actually has one)

10.32 v0.11.0

• Option cantal-appname added to a config

• If no CANTAL_PATH present in environment we set it to some default, along with
CANTAL_APPNAME=lithos unless cantal-appname is overriden.

• Added default container environment LITHOS_CONFIG. It may be used to log config name, read metadata and
other purposes.

10.26. v0.14.0 49

Lithos Documentation, Release 0.18.4

10.33 v0.10.7

• Cantal metrics added

50 Chapter 10. Lithos Changes By Release

https://cantal.readthedocs.io

CHAPTER 11

Indices and tables

• genindex

51

Lithos Documentation, Release 0.18.4

52 Chapter 11. Indices and tables

Index

A
additional-hosts

Option, 10
after-setup-command

Bridge Setup Option, 12
allow-groups

Option, 10
allow-tcp-ports

Option, 10
allow-users

Option, 10
arguments

Option, 20
auto-clean

Option, 11

B
Bridge Setup Option

after-setup-command, 12
bridged-network

Option, 11

C
cgroup-controllers

Option, 5
cgroup-name

Option, 5
config

Process Config Option, 16
config-file

Option, 9
config-log-dir

Option, 6
cpu-shares

Option, 19

D
default-group

Option, 10

default-log-dir
Option, 6

default-user
Option, 10

devfs-dir
Option, 5

E
environ

Option, 20
executable

Option, 20
extra-secrets-namespaces

Process Config Option, 16

F
fileno-limit

Option, 19

G
group-id

Option, 19

H
hosts-file

Option, 11, 22

I
image

Process Config Option, 16
image-dir

Option, 9
image-dir-levels

Option, 9
instances

Process Config Option, 16
interactive

Option, 23
ip-addresses

53

Lithos Documentation, Release 0.18.4

Process Config Option, 16

K
kill-timeout

Option, 19
kind

Option, 19

L
log-file

Option, 6, 9
log-level

Option, 6, 9

M
memory-limit

Option, 19
metadata

Option, 25
mount-dir

Option, 5

N
normal-exit-codes

Option, 25

O
Option

additional-hosts, 10
allow-groups, 10
allow-tcp-ports, 10
allow-users, 10
arguments, 20
auto-clean, 11
bridged-network, 11
cgroup-controllers, 5
cgroup-name, 5
config-file, 9
config-log-dir, 6
cpu-shares, 19
default-group, 10
default-log-dir, 6
default-user, 10
devfs-dir, 5
environ, 20
executable, 20
fileno-limit, 19
group-id, 19
hosts-file, 11, 22
image-dir, 9
image-dir-levels, 9
interactive, 23
kill-timeout, 19

kind, 19
log-file, 6, 9
log-level, 6, 9
memory-limit, 19
metadata, 25
mount-dir, 5
normal-exit-codes, 25
processes-dir, 5
readonly-paths, 9
resolv-conf, 11, 21
restart-process-only, 23
restart-timeout, 19
runtime-dir, 5
sandboxes-dir, 5
secret-environ, 20
secret-environ-file, 21
secrets-namespaces, 12
secrets-private-key, 12
state-dir, 5
stdio-log-dir, 6
stdout-stderr-file, 23
syslog-facility, 6
syslog-name, 6
tcp-ports, 23
uid-map,gid-map, 11, 22
used-images-list, 11
user-id, 19
volumes, 23
workdir, 21
writable-paths, 10

P
Persistent

Volume Type, 29
Process Config Option

config, 16
extra-secrets-namespaces, 16
image, 16
instances, 16
ip-addresses, 16
variables, 16

processes-dir
Option, 5

R
Readonly

Volume Type, 29
readonly-paths

Option, 9
resolv-conf

Option, 11, 21
restart-process-only

Option, 23
restart-timeout

54 Index

Lithos Documentation, Release 0.18.4

Option, 19
runtime-dir

Option, 5

S
sandboxes-dir

Option, 5
secret-environ

Option, 20
secret-environ-file

Option, 21
secrets-namespaces

Option, 12
secrets-private-key

Option, 12
state-dir

Option, 5
Statedir

Volume Type, 29
stdio-log-dir

Option, 6
stdout-stderr-file

Option, 23
syslog-facility

Option, 6
syslog-name

Option, 6

T
tcp-ports

Option, 23
Tmpfs

Volume Type, 29

U
uid-map,gid-map

Option, 11, 22
used-images-list

Option, 11
user-id

Option, 19

V
variables

Process Config Option, 16
Volume Type

Persistent, 29
Readonly, 29
Statedir, 29
Tmpfs, 29

volumes
Option, 23

W
workdir

Option, 21
writable-paths

Option, 10

Index 55

	Configuration Overview
	Master Configuration
	Sandbox Config
	Process Config
	Container Configuration
	Metrics
	Volumes
	Tips and Conventions
	Frequently Asked Questions
	Lithos Changes By Release
	Indices and tables

