
Developer Guide

Linux Mint

Jan 26, 2024

GETTING STARTED

1 Requirements 3
1.1 Speaking English . 3
1.2 Knowing how to use Git . 3
1.3 Knowing how to use Github . 3
1.4 Running Linux . 4

2 Set Up 5
2.1 Create a Sandbox . 5
2.2 Install mint-dev-tools . 5

3 Technology 7
3.1 Computer Languages . 7
3.2 GNOME Toolkit and libraries . 8
3.3 Tools . 8

4 Mint tools 11
4.1 mint-common . 11
4.2 mintbackup . 11
4.3 mintdesktop . 12
4.4 mintdrivers . 13
4.5 mintinstall . 13
4.6 mintlocale . 15
4.7 mintmenu . 16
4.8 mintnanny . 16
4.9 mintreport . 17
4.10 mintsources . 17
4.11 mintstick . 19
4.12 mintsystem . 20
4.13 mintupdate . 20
4.14 mintupload . 20
4.15 mintwelcome . 21

5 Cinnamon 23
5.1 Processes . 23
5.2 Libraries . 24
5.3 Core components . 25
5.4 Visible desktop layer . 26

6 XApps 29
6.1 libxapp . 29
6.2 python-xapp . 30

i

6.3 xed . 30
6.4 xviewer . 30
6.5 xplayer . 32
6.6 xreader . 32
6.7 pix . 32
6.8 blueberry . 34
6.9 slick-greeter . 34
6.10 lightdm-settings . 36

7 Building 37
7.1 Downloading the source code . 37
7.2 Building a project for the first time . 37
7.3 Building a project . 37
7.4 Respecting the build order . 38

8 Romeo 39
8.1 Enabling Romeo . 39
8.2 Upgrading software to unstable versions . 39
8.3 Downgrading back to stable . 39

9 Coding Guidelines 41
9.1 Coding Style . 41

10 Cinnamon Javascript Optimization Techniques 43
10.1 Notes . 43
10.2 Reducing the overal number of gsettings signal listeners . 43
10.3 Using declared functions in signal listeners . 43
10.4 Factorizing callbacks . 44
10.5 Grouping properties in smaller objects . 44
10.6 Using hashmaps vs properties . 44

ii

Developer Guide

If you want to help us develop Linux Mint, you’ve come to the right place!

Welcome to the Linux Mint Development Guide.

GETTING STARTED 1

Developer Guide

2 GETTING STARTED

CHAPTER

ONE

REQUIREMENTS

You don’t need much to get started. If you know more than us you’ll teach us; if we know more than you, we’ll teach
you. :)

That said, there are a few things you’ll require before going further. Let’s go through them.

1.1 Speaking English

Developers come from all around the world; but, if you speak English, then you’ll be able to work with just about
anybody.

You’re probably OK if you’re here reading this guide. You don’t need to be fluent or to have great English, but you
need to understand English sufficiently to communicate with us.

1.2 Knowing how to use Git

Git is the version control system we’re using to keep track of changes. We’re using it all the time and everywhere.

If you don’t know about Git, stop right there: you need to learn it.

To learn Git, visit Github.io.

Make sure you’re familiar with the concepts of commits, branches, remotes, reverts and rebases.

Hint: If you’re new to Git, enjoy! It’s both easy and really fun.

If you ask our developers, then most of them will tell you that Git is by far their favorite toy.

1.3 Knowing how to use Github

We’re using Github to host our Git repositories and to work together on the code.

You’ll need to have a Github account set up.

To open a Github account, visit Github.com.

You’ll also need to know how to use Github to browse code changes, to fork a project, to make pull requests, etc.

To set up your Github account properly and learn how to use Github, visit the Github Help.

3

https://try.github.io/
https://github.com
https://help.github.com/

Developer Guide

1.4 Running Linux

For most projects, you’ll need a computer running the latest version of Linux Mint or else the latest version of LMDE.

You can run an earlier version, or a different distribution, but if you run the latest Linux Mint or LMDE release you’re
guaranteed everything will work.

4 Chapter 1. Requirements

CHAPTER

TWO

SET UP

This chapter explains how to get your computer set up.

2.1 Create a Sandbox

When you build projects it produces .deb packages in their parent directory, so it’s a good idea to create a directory for
all your development needs, in which you’ll have subdirectories for each project, or each group of projects. This keeps
things tidy and well organized in your computer so it becomes easier to search for code across different projects.

We commonly call our main development directory “Sandbox” and place it in our home folder.

mkdir ~/Sandbox

Of course, you can call your “Sandbox” whatever you want and place it anywhere you want as well.

2.2 Install mint-dev-tools

Install the mint-dev-tools package from the Linux Mint repositories.

apt update
apt install mint-dev-tools --install-recommends

It contains useful tools to help you compile and develop Linux Mint projects.

5

Developer Guide

6 Chapter 2. Set Up

CHAPTER

THREE

TECHNOLOGY

This chapter gives you an overview of the technology we’re using.

3.1 Computer Languages

We use a variety of computer languages in Linux Mint.

You don’t need to know them all and you don’t need to know them well. It really depends on which project you want
to work and what you want to achieve.

Here are the languages we use the most.

3.1.1 Python

Scripts which run in terminals or in the backgrounds are usually either written in Bash or in Python.

Some software applications and most configuration tools are also written in Python.

The advantage of Python is that it is easy to learn and fast to develop with.

3.1.2 C

Many software applications and most libraries are written in C.

The C language is low-level, hard to master and tedious to develop with, but it gives fast performance and it’s the most
supported language in Linux (everything is accessible from C).

3.1.3 Javascript

The graphical elements of Cinnamon, as well as Cinnamon applets, desklets and extensions are written in Javascript.

7

https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://www.python.org/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/JavaScript

Developer Guide

3.1.4 Vala

Vala is used in Slick Greeter (the login screen).

3.2 GNOME Toolkit and libraries

All our user interfaces use GTK3 toolkit.

Our development relies heavily on the GNOME libraries, in particular we use Gio, GLib, GObject and dconf a lot.

In C we access these libraries directly.

In Python and Javascript we access them via GObject Introspection.

3.3 Tools

3.3.1 Development environment

To write and edit code, you can use anything you want. Some people prefer lightweight editors while others prefer
full-fledge IDEs. It’s a matter of taste. Development is all about fun, so what matters the most is that you love the tools
you use.

If you’re not sure what to use, have a look around and try a few editors/IDE until you find your favorite one.

Many developers within the team use Sublime.

apt update
apt install sublime-text

If you install Sublime, also install its Package Control and then use it to install the GitGutter and TrailingSpaces
extensions.

Visual Studio Code is also very popular within the team.

You can also check out Atom, Brackets and Geany.

And if you want a complete IDE, there’s also Eclipse and Netbeans.

3.3.2 Version control

There’s less choice when it comes to version control because we’re all using git and nothing else. All our code is
version-controlled with it.

That being said, you don’t necessarily have to use the git command line.

Here are a few tools you can use to make using git easier.

gitk is ugly and looks dated (it was developed in Tcl/Tk) but it’s very useful to quickly look at the commit history, to
create branches and to cherry pick.

You can install it from the repositories:

8 Chapter 3. Technology

https://wiki.gnome.org/Projects/Vala
https://developer.gnome.org/gtk3/stable/
https://developer.gnome.org/
https://gi.readthedocs.io/en/latest/
https://www.sublimetext.com/
https://packagecontrol.io/installation
https://code.visualstudio.com/
https://atom.io/
http://brackets.io/
https://www.geany.org/
https://www.eclipse.org/
https://netbeans.apache.org/

Developer Guide

apt update
apt install gitk
cd ~/Sandbox/
git clone https://github.com/linuxmint/mintsystem.git
cd mintsystem
gitk

From a project directory, simply type gitk to see the history of commits. You can also specify a branch name to see
that branch instead, or a subdirectory to only see the history of a particular directory.

gitg is very similar and it looks better (it’s using Gtk), but its feature set is slightly different.

apt update
apt install gitg
cd ~/Sandbox/
git clone https://github.com/linuxmint/mintsystem.git
cd mintsystem
gitg

Note: gitg is included in mint-dev-tools. You can find gitg and other tools that will help with development on mint
already installed.

From the repository you can also look at git-cola and git-gui.

If you’re looking for a more complete solution, have a look at Gitkraken.

And last but not least, check the plugins and features available in your IDE/editor. Visual Studio Code, Atom and
Sublime in particular come with a lot of support for Git and Github.

3.3.3 Glade

We can write our user interfaces in programming language, or we can use Glade and draw them with the mouse.

Glade is a tool to design and edit GTK user interfaces and save them in XML (in a .glade or .ui file).

apt update
apt install glade

Once a user interface is saved, we simply tell our program to open that file and we can access the widgets from it
programmatically.

Many of our projects separate the code from the user interface.

3.3.4 devhelp

Devhelp shows the reference manuals for the development libraries installed on your computer. For most libraries, the
documentation is included in their -dev or -doc package (for instance, if you’re working with GTK3, make sure to install
libgtk-3-dev and libgtk-3-doc).

apt update
apt install devhelp

You can launch DevHelp from the applications menu and use it to browse or search the libraries reference manuals.
You’ll often need to check the syntax or the arguments of a particular function. It’s nice to be able to get the information
locally without having to search online.

3.3. Tools 9

https://linuxmint-developer-guide.readthedocs.io/en/latest/setup.html#install-mint-dev-tools/
https://www.gitkraken.com/
https://glade.gnome.org/

Developer Guide

3.3.5 d-feet

Some programs use DBus to communicate with others. We use d-feet to browse and troubleshoot DBus.

apt update
apt install d-feet

With d-feet you can quickly find a service on DBus, browse its interface and even call some of its functions manually.

3.3.6 meld

Meld is a visual diff tool. It shows the differences between two files and it’s great at it.

apt update
apt install meld

3.3.7 Other cool tools

Most of our configuration is stored in dconf and we use gsettings (from the command line) to look at it or modify it. If
you want to do it graphically, you can install dconf-editor.

awf is useful to test widgets when working on GTK themes.

apt update
apt install awf dconf-editor

10 Chapter 3. Technology

CHAPTER

FOUR

MINT TOOLS

The first Mint tools were developed around 2006 when the Linux Mint project was born. Throughout the years, new
tools were added to Linux Mint to implement functions that it was missing, or to make the user experience easier and
more comfortable.

Some tools, which were very useful in the past, also disappeared when they were no longer needed. Here’s a list of the
currently active tools projects developed by Linux Mint.

4.1 mint-common

Common utility functions and libraries used by the Mint tools are placed in the mint-common project.

This project is developed in Python and its source code is available on Github.

4.2 mintbackup

The Backup Tool, mintbackup, makes it easy to save and restore backups of files within the home directory.

Fig. 1: Backup Tool

11

https://github.com/linuxmint/mint-common

Developer Guide

It also supports the ability to save the list of installed packages, so they can be reinstalled later.

This project is developed in Python and its source code is available on Github.

4.3 mintdesktop

This is a tool which provides some additional settings for the MATE desktop environment and the ability to switch
window managers.

Fig. 2: Desktop Settings

This project is developed in Python and its source code is available on Github.

12 Chapter 4. Mint tools

https://github.com/linuxmint/mintbackup
https://github.com/linuxmint/mintdesktop

Developer Guide

4.4 mintdrivers

The Driver Manager, mintdrivers, makes it easy to install proprietary drivers when applicable.

Fig. 3: Driver Manager

It relies on the ubuntu-drivers backend and isn’t available in LMDE.

This project is developed in Python and its source code is available on Github.

4.5 mintinstall

The Software Manager, mintinstall, is an App store for Free Software. It provides access to popular applications from
within the repository.

It’s also compatible with Flatpak and able to list flatpaks from multiple flatpak repositories.

This project is developed in Python and its source code is available on Github.

4.4. mintdrivers 13

https://github.com/linuxmint/mintdrivers
https://github.com/linuxmint/mintinstall

Developer Guide

Fig. 4: Software Manager

14 Chapter 4. Mint tools

Developer Guide

4.6 mintlocale

The mintlocale project provides two configuration tools.

The first one is dedicated to locale selection and installation.

Fig. 5: Language Settings

The second one is dedicated to input methods:

Fig. 6: Input Methods

This project is developed in Python and its source code is available on Github.

4.6. mintlocale 15

https://github.com/linuxmint/mintlocale

Developer Guide

4.7 mintmenu

This is the main application menu for the MATE edition of Linux Mint.

Fig. 7: MintMenu

This project is developed in Python and its source code is available on Github.

4.8 mintnanny

The Domain Blocker, mintnanny, blocks outgoing traffic towards chosen domain names using /etc/hosts.

This project is developed in Python and its source code is available on Github.

16 Chapter 4. Mint tools

https://github.com/linuxmint/mintmenu
https://github.com/linuxmint/mintnanny

Developer Guide

Fig. 8: Domain Blocker

4.9 mintreport

The System Reports, mintreport, provides system information and helps the user collect information about application
crashes.

This project is developed in Python and its source code is available on Github.

4.10 mintsources

The Software Sources configuration tool, mintsources, helps the user configure software repositories, choose a mirror,
add PPAs and perform maintenance tasks related to package management.

This project is developed in Python and its source code is available on Github.

4.9. mintreport 17

https://github.com/linuxmint/mintreport
https://github.com/linuxmint/mintsources

Developer Guide

Fig. 9: System Reports

Fig. 10: Software Sources Configuration Tool

18 Chapter 4. Mint tools

Developer Guide

4.11 mintstick

The mintstick project provides two utilities.

The first one is dedicated to formatting USB sticks.

Fig. 11: USB Stick Formatter

The second one is used to make live USB sticks from ISO images:

Fig. 12: USB Image Writer

This project is developed in Python and its source code is available on Github.

4.11. mintstick 19

https://github.com/linuxmint/mintstick

Developer Guide

4.12 mintsystem

This project provides small utilities, as well as files, scripts and resources used by the OS.

4.13 mintupdate

The Update Manager, mintupdate, provides users with software and security updates.

Fig. 13: Update Manager

This project is developed in Python and its source code is available on Github.

4.14 mintupload

The Upload Manager, mintupload, allows the user to upload files to a particular location, without browsing it, just by
dropping the files with the mouse.

This project is developed in Python and its source code is available on Github.

20 Chapter 4. Mint tools

https://github.com/linuxmint/mintupdate
https://github.com/linuxmint/mintupload

Developer Guide

Fig. 14: Welcome Screen

4.15 mintwelcome

The Welcome Screen, mintwelcome, welcomes new users into Linux Mint and guides them through their first steps.

This project is developed in Python and its source code is available on Github.

4.15. mintwelcome 21

https://github.com/linuxmint/mintwelcome

Developer Guide

Fig. 15: Welcome Screen

22 Chapter 4. Mint tools

CHAPTER

FIVE

CINNAMON

The Cinnamon desktop environment is a very large development project.

Between 2006 and 2010 the main desktop environment for Linux Mint was GNOME 2. It was very stable and very
popular.

In 2011, Linux Mint 12 was unable to ship with GNOME 2. The upstream GNOME team had released a brand new
desktop (GNOME 3 aka “Gnome Shell”) which was using new technologies (Clutter, GTK3), which had a completely
different design and implemented a radically different paradigm than its predecessor but which used the same names-
paces and thus it couldn’t be installed alongside GNOME 2. Following the decision from Debian to upgrade GNOME
to version 3, GNOME 2 was no longer available in Linux Mint.

To tackle this issue two new projects were started:

• A project called “MATE” was started by a developer called Perberos. Its goal was to rename and repackage
GNOME 2 so that it could be just as it was before.

• A project called “MGSE” was started by Linux Mint. Its goal was to develop extensions for GNOME 3 to give it
back some of the functionality it had lost and which was available in GNOME 2 (a panel, a systray, an application
menu, a window-centric alt-tab selector, a window-list..etc).

Linux Mint 12 shipped with both MATE and GNOME3+MGSE.

6 months later and after a huge amount of work, MATE was becoming stable, and from a set of extensions MGSE
became a fork of GNOME 3 called Cinnamon.

Linux Mint 13 was the first Linux release to ship with the Cinnamon desktop. Since then Linux Mint has a MATE and
a Cinnamon edition, both providing users with a conservative desktop paradigm, one forked from GNOME 2 and the
other forked and derived from GNOME 3.

5.1 Processes

Fig. 1: Binary view of the various processes within a Cinnamon session

The figure above shows the various processes at play within a Cinnamon session.

After you log in, the following processes are automatically started:

• cinnamon-session (the session manager which starts all the other processes)

• cinnamon (which is the visual part of the cinnamon desktop)

• nemo-desktop (which handles the desktop icons and desktop context menu)

• cinnamon-screensaver (the screensaver)

23

Developer Guide

• various csd-* processes (which are settings daemon plugins and run in the background)

The nemo process starts when you browse files and directories. It remains open as long as at least one file manager
window is open.

The cinnamon-settings process starts when you launch the System Settings and remains open as long as at least one
configuration module is open.

5.2 Libraries

5.2.1 cinnamon-menus

The cinnamon-menus library provides utility functions to read and monitor the set of desktop applications installed
on the computer. Thanks to cinnamon-menus, Cinnamon can quickly list installed applications within the application
menu, fetch application icons for the menu, the alt-tab selector and the window-list and keep this data in sync whenever
applications are installed or removed from the computer.

The cinnamon-menus library is developed in C and the source code is available on Github.

5.2.2 cinnamon-desktop

cinnamon-desktop is a set of utility libraries and settings used by other Cinnamon components.

Whenever multiple desktop components need to access the same resource (whether this is a setting or a utility function),
we place this resource in cinnamon-desktop.

Here’s an overview of some of the resources currently in cinnamon-desktop:

cinnamon.desktop dconf settings schemas used by several Cinnamon components
libcvc A PulseAudio utility library used to control sound volume and devices
gnomerr An Xrandr utility library to detect, load and save monitor configurations
gnome-xkb A keyboard layout utility library
gnome-bg A wallpaper utility library
gnome-installer A cross-distribution library used to install software applications

The cinnamon-desktop library is developed in C and the source code is available on Github.

5.2.3 muffin

Muffin, or libmuffin to be more precise is a window management library.

Within the Cinnamon desktop environment, the Window Manager isn’t running in a separate process. The main cinna-
mon process implements the libmuffin library and therefore runs both the visible components (panel, applets..etc) and
the window manager.

Note: The muffin package also provides a muffin binary. This binary is a small program which implements libmuffin and
provides a minimal window manager, sometimes used by the developers as a troubleshooting tool. Note that whether
or not muffin is installed by default in Linux Mint, it doesn’t run by default in a Cinnamon session. The cinnamon
process, which also implements libmuffin, is the default window manager.

24 Chapter 5. Cinnamon

https://github.com/linuxmint/cinnamon-menus
https://github.com/linuxmint/cinnamon-desktop

Developer Guide

The clutter and cogl libraries are also part of the muffin package now. Clutter is a library for creating and displaying
both 2d and 3d graphical elements. It is used both by muffin itself (eg. for compositing and setting up the stage), and
also by St in cinnamon (all St widgets are clutter actors). Cogl is a library that clutter uses for 3d rendering.

Muffin is developed in C and the source code is available on Github.

5.2.4 cjs

CJS is Cinnamon’s Javascript interpreter. It uses MozJS (Mozilla’s SpiderMonkey) and makes it possible to work with
GObject and interact with GIR, GNOME and Cinnamon libraries using that language.

CJS is run by and within the main cinnamon process and the parts of the desktop written in Javascript are contained in
the main Cinnamon component.

CJS is developed in C++ and Javascript and the source code is available on Github.

5.3 Core components

5.3.1 cinnamon-session

The Cinnamon session manager is responsible for launching all the components needed by the session after you log in,
and closing the session properly when you want to log out.

Among other things, the session manager launches the core components required by the session (such as the desktop
itself and its components), as well as applications which are configured to start automatically.

Cinnamon-session also provides a DBus interface called the Presence interface, which makes it easy for applications
such as media players to set the sessions as busy and inhibit power management (suspend, hibernate, etc. . .) and the
screensaver during video playback.

Last but not least, the session management lets applications register so they can be closed cleanly. The text editor for
instance is registered to the session when launched and interacts with it on logout. If a document isn’t saved, the session
is aware of it and lets you save your work before proceeding to log out.

5.3.2 cinnamon-settings-daemon

cinnamon-settings-daemon is a collection of processes which run in the background during your Cinnamon session.

Here’s a description of some of these processes.

csd-automount Automatically mounts hardware devices when they are plugged in
csd-clipboard Manages the additional copy-paste buffer available via Ctrl+C/Ctrl+V
csd-housekeeping Handles the thumbnail cache and keeps an eye on the space available on the disk
csd-keyboard Handles keyboard layouts and configuration
csd-media-keys Handles media keys
csd-mouse Handles mice and touch devices
csd-orientation Handles accelerometers and screen orientation
csd-power Handles battery and power management
csd-print-notifications Handles printer notifications
csd-wacom Handles wacom devices
csd-xrandr Handles screen resolution and monitors configuration
csd-xsettings Handles X11 and GTK configuration

5.3. Core components 25

https://github.com/linuxmint/muffin
https://spidermonkey.dev/
https://github.com/linuxmint/cjs

Developer Guide

Cinnamon-settings-daemon is developed in C and the source code is available on Github.

5.4 Visible desktop layer

5.4.1 cinnamon-screensaver

The Cinnamon screensaver is responsible for locking the screen and to a lesser extent for handling some power man-
agement functions (although most of these are handled by csd-power within the Cinnamon Settings Daemon).

Cinnamon-screensaver is developed in Python and the source code is available on Github.

5.4.2 cinnamon

The Cinnamon github project is the biggest and most active project within the overall project.

It contains various subcomponents written in C:

St Cinnamon’s widget toolkit written on top of Clutter
Appsys An abstraction of Gio.AppInfo and cinnamon-menus, providing metadata on installed applications
DocInfo An abstraction of recently opened documents
Tray A small library for managing status icons

The visible layer of the desktop is written in Javascript:

Cinnamon JS The panels, window management, HUD, effects and most of what you see. . .
Applets The applets within the panel
Desklets The desklets on top of the desktop

The System Settings, its configuration modules and utility scripts are written in Python.

Cinnamon is developed in C, Python and Javascript and the source code is available on Github.

5.4.3 nemo

Nemo is Cinnamon’s file manager. When you open up your home directory or browse files you’re running Nemo.

Another little part of Nemo is nemo-desktop. Its role is to handle desktop icons and the desktop context menu.

When you log in, nemo-desktop is started automatically by cinnamon-session. The nemo process itself only starts when
you’re browsing through the directories and stops when you close the last opened file manager window.

Nemo is developed in C and the source code is available on Github.

26 Chapter 5. Cinnamon

https://github.com/linuxmint/cinnamon-settings-daemon
https://github.com/linuxmint/cinnamon-screensaver
https://github.com/linuxmint/cinnamon
https://github.com/linuxmint/nemo

Developer Guide

5.4.4 nemo-extensions

Nemo provides a set of APIs and is very easy to extend, both in C and in Python. nemo-extensions is the Github project
where common extensions are stored.

Some Nemo extensions are developed in C and some in Python. Their source code is available on Github.

5.4.5 cinnamon-control-center

Although cinnamon-settings (which is part of the Cinnamon project itself) and most of its modules are written in
Python. A few configuration modules are still written in C.

Note: Historically, when Cinnamon was forked from GNOME 3, all configuration modules were written in C, as part
of gnome-control-center. At the beginning of the Cinnamon project, all configurations modules were thus written in
C and were part of cinnamon-control-center. Since then the vast majority of modules were rewritten from scratch in
Python and moved to the Cinnamon project itself.

Nowadays, only a few modules are still in cinnamon-control-center:

color Color profiles
datetime Date and Time configuration
display Display and monitors configuration
network Network configuration
online-accounts Online Accounts configuration
wacom Wacom devices configuration

Cinnamon-control-center is developed in C and the source code is available on Github.

5.4. Visible desktop layer 27

https://github.com/linuxmint/nemo-extensions
https://github.com/linuxmint/cinnamon-control-center

Developer Guide

28 Chapter 5. Cinnamon

CHAPTER

SIX

XAPPS

A project called “X-Apps” was started in 2016 to produce generic applications for traditional GTK desktop environ-
ments.

The idea behind this project is to replace applications which no longer integrate properly outside of a particular en-
vironment (this is the case for a growing number of GNOME applications) and to give our desktop environments the
same set of core applications, so that each change, each new feature being developed, each little improvement made in
one of them will benefit not just one environment, but all of them.

The core ideas for X-Apps are:

• To use modern toolkits and technologies (GTK3 for HiDPI support, gsettings etc..)

• To use traditional user interfaces (titlebars, menubars)

• To work everywhere (to be generic, desktop-agnostic and distro-agnostic)

• To provide the functionality users already enjoy (or enjoyed in the past for distributions which already lost some
functionality)

• To be backward-compatible (in order to work on as many distributions as possible)

Within Linux Mint, users didn’t need to adapt to X-Apps, because in many cases, they were very similar or exactly
the same as the applications people were already using. For instance, Totem 3.18 was radically different than Totem
3.10 which shipped with Linux Mint 17, but Xplayer 1.0 (which was the default media player in Linux Mint 18) was
exactly the same. The goal of the X-Apps is not to reinvent the wheel. Quite the opposite in fact, it’s to guarantee
the maintenance of applications we already enjoyed and to steer their development in a direction that benefits multiple
desktop environments.

It makes no sense to develop 3 different text editors, 5 different calculators and so on. When we work on projects like
these, we want to make it count. An improvement in the text editor shouldn’t benefit only one edition, it should benefit
all of them.

All three editions of Linux Mint come with the same XApps libraries and applications. When working on XApps, our
development efforts are focused on improving all desktops.

6.1 libxapp

This is the XApps library. Anything that is cross-desktop goes in there.

It’s available in Python and JS as well, through GObject Introspection.

This project is developed in C and its source code is available on Github.

29

https://github.com/linuxmint/xapps

Developer Guide

6.2 python-xapp

This is a small Python library providing extra functionality.

This project is developed in Python and its source code is available on Github.

6.3 xed

Xed is based on Pluma and acts as the default text editor.

Fig. 1: Text Editor

This project is developed in C and its source code is available on Github.

6.4 xviewer

Xviewer is based on Eye of GNOME and acts as the default image viewer.

This project is developed in C and its source code is available on Github.

30 Chapter 6. XApps

https://github.com/linuxmint/python-xapp
https://github.com/linuxmint/xed
https://github.com/linuxmint/xviewer

Developer Guide

Fig. 2: Image Viewer

6.4. xviewer 31

Developer Guide

6.5 xplayer

Xplayer is based on Totem and acts as the default media player for music and videos.

Fig. 3: Multimedia Player

This project is developed in C and its source code is available on Github.

6.6 xreader

Xreader is based on Atril and acts as the default document and PDF reader.

This project is developed in C and its source code is available on Github.

6.7 pix

Pix is based on gThumb, which is an application to organize your photos.

This project is developed in C and its source code is available on Github.

32 Chapter 6. XApps

https://github.com/linuxmint/xplayer
https://github.com/linuxmint/xreader
https://github.com/linuxmint/pix

Developer Guide

Fig. 4: Document Viewer

6.7. pix 33

Developer Guide

Fig. 5: Pix

6.8 blueberry

The Bluetooth tool, blueberry, is a frontend to gnome-bluetooth with systray support.

The GNOME Bluetooth frontend was removed from gnome-bluetooth and made part of gnome-control-center, essen-
tially making gnome-bluetooth useless outside of GNOME. Blueberry provides that missing frontend and makes it
easy for other GTK desktops to use gnome-bluetooth.

This project is developed in Python and its source code is available on Github.

6.9 slick-greeter

Slick-greeter is the default login screen, it’s a LightDM greeter originally forked from unity-greeter and modified to
work on its own (without gnome-settings-daemon, gnome or unity).

This project is developed in Vala and its source code is available on Github.

34 Chapter 6. XApps

https://github.com/linuxmint/blueberry
https://github.com/linuxmint/slick-greeter

Developer Guide

Fig. 6: Bluetooth

Fig. 7: Slick Greeter

6.9. slick-greeter 35

Developer Guide

6.10 lightdm-settings

The lightdm-settings project provides a configuration tool to set up LightDM and slick-greeter.

Fig. 8: Login Window

This project is developed in Python and its source code is available on Github.

36 Chapter 6. XApps

https://github.com/linuxmint/lightdm-settings

CHAPTER

SEVEN

BUILDING

Once you’ve installed mint-dev-tools, building Linux Mint projects from source is extremely easy.

7.1 Downloading the source code

Use git clone to get the source from github.

For instance, to get the source for mintinstall type:

cd ~/Sandbox
git clone https://github.com/linuxmint/mintinstall.git

7.2 Building a project for the first time

Use mint-build to build a project for the first time.

mint-build doesn’t just build the project, it also fetches and installs the build dependencies (i.e. the packages which are
required for the build to succeed).

To build mintinstall you would type:

cd ~/Sandbox/mintinstall
mint-build

When the build is complete, the resulting binary .deb packages are located in the parent directory (in this example in
~/Sandbox).

7.3 Building a project

If all the build dependencies are already installed for a particular project (this is done by mint-build the first time you
build a project), you can build faster by just calling dpkg-buildpackage.

To build mintinstall you would type:

cd ~/Sandbox/mintinstall
dpkg-buildpackage

37

Developer Guide

7.4 Respecting the build order

If new changes in the project you’re trying to build require new changes in another project you might need to build and
install that other project first.

In general it’s a good idea to build mint-common and xapps first.

38 Chapter 7. Building

CHAPTER

EIGHT

ROMEO

The development team uses Romeo to push new BETA/ALPHA features.

Important: Romeo contains unstable builds and recent changes pushed by the developers on github. By using it you’ll
upgrade from stable to unstable versions which might introduce regressions or not work at all.

8.1 Enabling Romeo

To enable Romeo on your computer, open the Software Sources and check the option “Unstable packages (romeo)”.

8.2 Upgrading software to unstable versions

Use the Update Manager to refresh and upgrade your software to unstable versions.

8.3 Downgrading back to stable

To go back to stable versions, either restore a Timeshift snapshot, or disable Romeo (using the Software Sources),
update the APT cache and use the Maintenance -> Downgrade foreign packages section of the Software Sources tool.

39

Developer Guide

40 Chapter 8. Romeo

CHAPTER

NINE

CODING GUIDELINES

9.1 Coding Style

9.1.1 Simplicity

Prefer simple instructions over complicated ones, even if that means using more lines or duplicating code.

Avoid one-liners, complicated conditions, language specificities and abstract/generic patterns.

If your code needs to be explained, comment it.. or even better, rewrite it in a simpler way.

9.1.2 Consistency

Adopt the coding style used in the project you’re contributing to.

This guarantees consistency between your new code and the existing code.

9.1.3 Indentation

In new projects or new files, do not use tabs. Use 4 space characters instead.

9.1.4 Trailing spaces

Do not leave trailing spaces in your code.

Hint: In Sublime, install the TrailingSpaces plugin to automatically highlight trailing spaces and give you the
option to easily delete them.

41

Developer Guide

9.1.5 Maximum Line length

Fit your code within 120 columns.

If a line of code is longer than 120 characters, break it into two or more lines.

Hint: In Sublime, select View → Ruler → 120 to show a ruler.

42 Chapter 9. Coding Guidelines

CHAPTER

TEN

CINNAMON JAVASCRIPT OPTIMIZATION TECHNIQUES

This is a temporary chapter about Javascript optimization techniques in Cinnamon. It will be part of the dev guide
when the Cinnamon design is described and the content of this section will then fit into the right place.

10.1 Notes

Some of these optimization techniques don’t make sense to us and we cannot explain them all, but they were tested
methodically.

Jason is the only one in the team to see an impact from them. He’s running a slow CPU with multi-monitors and a
low-latency kernel with NVIDIA drivers. These were tested on Cinnamon 4.0. Performance boosts are witnessed in
terms of input lag when moving windows and selecting text in Visual Studio Code.

These changes were tested in windowManager.js, an area of Cinnamon which is run constantly and which is prominent
within the single execution thread.

10.2 Reducing the overal number of gsettings signal listeners

Here’s an example: https://github.com/linuxmint/Cinnamon/commit/47bef00856e3b1f5a1e1a19e829dec498376d033

Reducing the number of listeners has a significant positive impact on performance.

10.3 Using declared functions in signal listeners

We found out that using:

settings.connect('changed::property', (s, k) => { this.property = s.get_int(k); });

was slower than:

settings.connect('changed::property', (s, k) => this.setProperty(s, k));

i.e. declaring a function and referring to that function within the callback was faster than using an anonymous block of
instructions in the callback.

The impact was significant.

43

https://github.com/linuxmint/Cinnamon/commit/47bef00856e3b1f5a1e1a19e829dec498376d033

Developer Guide

10.4 Factorizing callbacks

settings.connect('changed::int_property1', (s, k) => this.setProperty1(s, k));
settings.connect('changed::string_property2', (s, k) => this.setProperty2(s, k));

was slower than:

settings.connect('changed::int_property1', (s, k) => this.setProperty(s, k, 'int'));
settings.connect('changed::string_property2', (s, k) => this.setProperty(s, k, 'string
→˓'));

It makes setProperty() slower of course, although that’s usually not critical, but it makes the overal project faster.

The impact wasn’t as significant and this optimization is probably only suited to critical paths such as windowman-
ager.js.

10.5 Grouping properties in smaller objects

Using this.smallobject.property is faster than this.property.

The idea is to avoid adding properties to large objects such as Main.wm.

So instead of using:

Main.wm.desktop_effects_enabled, we use Main.wm.settings.desktop_effects_enabled.

The impact is positive but subtle and this optimization is probably only suited to critical paths such as windowman-
ager.js.

10.6 Using hashmaps vs properties

Using this.smallobject['property'] is faster than this.smallobject.property.

The idea is confirmed by https://www.freecodecamp.org/news/dot-notation-vs-square-brackets-javascript/.

So instead of using:

Main.wm.desktop_effects_enabled, we use Main.wm.settings['desktop_effects_enabled'].

The impact is positive but subtle and this optimization is probably only suited to critical paths such as windowman-
ager.js.

44 Chapter 10. Cinnamon Javascript Optimization Techniques

https://www.freecodecamp.org/news/dot-notation-vs-square-brackets-javascript/

	Requirements
	Speaking English
	Knowing how to use Git
	Knowing how to use Github
	Running Linux

	Set Up
	Create a Sandbox
	Install mint-dev-tools

	Technology
	Computer Languages
	Python
	C
	Javascript
	Vala

	GNOME Toolkit and libraries
	Tools
	Development environment
	Version control
	Glade
	devhelp
	d-feet
	meld
	Other cool tools

	Mint tools
	mint-common
	mintbackup
	mintdesktop
	mintdrivers
	mintinstall
	mintlocale
	mintmenu
	mintnanny
	mintreport
	mintsources
	mintstick
	mintsystem
	mintupdate
	mintupload
	mintwelcome

	Cinnamon
	Processes
	Libraries
	cinnamon-menus
	cinnamon-desktop
	muffin
	cjs

	Core components
	cinnamon-session
	cinnamon-settings-daemon

	Visible desktop layer
	cinnamon-screensaver
	cinnamon
	nemo
	nemo-extensions
	cinnamon-control-center

	XApps
	libxapp
	python-xapp
	xed
	xviewer
	xplayer
	xreader
	pix
	blueberry
	slick-greeter
	lightdm-settings

	Building
	Downloading the source code
	Building a project for the first time
	Building a project
	Respecting the build order

	Romeo
	Enabling Romeo
	Upgrading software to unstable versions
	Downgrading back to stable

	Coding Guidelines
	Coding Style
	Simplicity
	Consistency
	Indentation
	Trailing spaces
	Maximum Line length

	Cinnamon Javascript Optimization Techniques
	Notes
	Reducing the overal number of gsettings signal listeners
	Using declared functions in signal listeners
	Factorizing callbacks
	Grouping properties in smaller objects
	Using hashmaps vs properties

