
lineage Documentation
Release 4.3.1.post12+ge90058a

Andrew Riha

Mar 20, 2024

CONTENTS

1 lineage 3
1.1 Capabilities . 3
1.2 Supported Genotype Files . 3
1.3 Installation . 3
1.4 Dependencies . 4
1.5 Examples . 4
1.6 Documentation . 10
1.7 Acknowledgements . 10

2 Output Files 11
2.1 Save SNPs . 11
2.2 Find Discordant SNPs . 11
2.3 Find Shared DNA . 12
2.4 Find Shared Genes . 17

3 Installation 19
3.1 Installation and Usage on a Raspberry Pi . 19
3.2 Installation on Linux . 20

4 Changelog 21

5 Contributing 23
5.1 Bug reports . 23
5.2 Documentation improvements . 23
5.3 Feature requests and feedback . 23
5.4 Development . 24
5.5 Documentation . 25

6 Contributors 27
6.1 Core Developers . 27
6.2 Other Contributors . 27

7 Code Documentation 29
7.1 lineage . 29
7.2 lineage.individual . 32
7.3 lineage.resources . 32
7.4 lineage.visualization . 35

8 Indices and tables 37

Python Module Index 39

i

Index 41

ii

lineage Documentation, Release 4.3.1.post12+ge90058a

tools for genetic genealogy and the analysis of consumer DNA test results

CONTENTS 1

https://github.com/apriha/lineage/actions/workflows/ci.yml
https://codecov.io/gh/apriha/lineage
https://lineage.readthedocs.io/
https://pypi.python.org/pypi/lineage
https://www.python.org
https://pepy.tech/project/lineage
https://github.com/apriha/lineage/blob/master/LICENSE.txt

lineage Documentation, Release 4.3.1.post12+ge90058a

2 CONTENTS

CHAPTER

ONE

LINEAGE

lineage provides a framework for analyzing genotype (raw data) files from direct-to-consumer (DTC) DNA testing
companies, primarily for the purposes of genetic genealogy.

1.1 Capabilities

• Find shared DNA and genes between individuals

• Compute centiMorgans (cMs) of shared DNA using a variety of genetic maps (e.g., HapMap Phase II, 1000
Genomes Project)

• Plot shared DNA between individuals

• Find discordant SNPs between child and parent(s)

• Read, write, merge, and remap SNPs for an individual via the snps package

1.2 Supported Genotype Files

lineage supports all genotype files supported by snps.

1.3 Installation

lineage is available on the Python Package Index. Install lineage (and its required Python dependencies) via pip:

$ pip install lineage

Also see the installation documentation.

3

https://github.com/apriha/snps
https://github.com/apriha/snps
https://pypi.org/project/lineage/
https://pypi.org
https://lineage.readthedocs.io/en/stable/installation.html

lineage Documentation, Release 4.3.1.post12+ge90058a

1.4 Dependencies

lineage requires Python 3.8+ and the following Python packages:

• numpy

• pandas

• matplotlib

• atomicwrites

• snps

1.5 Examples

1.5.1 Initialize the lineage Framework

Import Lineage and instantiate a Lineage object:

>>> from lineage import Lineage
>>> l = Lineage()

1.5.2 Download Example Data

First, let’s setup logging to get some helpful output:

>>> import logging, sys
>>> logger = logging.getLogger()
>>> logger.setLevel(logging.INFO)
>>> logger.addHandler(logging.StreamHandler(sys.stdout))

Now we’re ready to download some example data from openSNP:

>>> paths = l.download_example_datasets()
Downloading resources/662.23andme.340.txt.gz
Downloading resources/662.ftdna-illumina.341.csv.gz
Downloading resources/663.23andme.305.txt.gz
Downloading resources/4583.ftdna-illumina.3482.csv.gz
Downloading resources/4584.ftdna-illumina.3483.csv.gz

We’ll call these datasets User662, User663, User4583, and User4584.

4 Chapter 1. lineage

https://www.python.org
https://numpy.org
https://pandas.pydata.org
https://matplotlib.org
https://github.com/untitaker/python-atomicwrites
https://github.com/apriha/snps
https://opensnp.org

lineage Documentation, Release 4.3.1.post12+ge90058a

1.5.3 Load Raw Data

Create an Individual in the context of the lineage framework to interact with the User662 dataset:

>>> user662 = l.create_individual('User662', ['resources/662.23andme.340.txt.gz',
→˓'resources/662.ftdna-illumina.341.csv.gz'])
Loading SNPs('662.23andme.340.txt.gz')
Merging SNPs('662.ftdna-illumina.341.csv.gz')
SNPs('662.ftdna-illumina.341.csv.gz') has Build 36; remapping to Build 37
Downloading resources/NCBI36_GRCh37.tar.gz
27 SNP positions were discrepant; keeping original positions
151 SNP genotypes were discrepant; marking those as null

Here we created user662 with the name User662. In the process, we merged two raw data files for this individual.
Specifically:

• 662.23andme.340.txt.gz was loaded.

• Then, 662.ftdna-illumina.341.csv.gz was merged. In the process, it was found to have Build 36. So, it
was automatically remapped to Build 37 (downloading the remapping data in the process) to match the build of
the SNPs already loaded. After this merge, 27 SNP positions and 151 SNP genotypes were found to be discrepant.

user662 is represented by an Individual object, which inherits from snps.SNPs. Therefore, all of the properties
and methods available to a SNPs object are available here; for example:

>>> len(user662.discrepant_merge_genotypes)
151
>>> user662.build
37
>>> user662.build_detected
True
>>> user662.assembly
'GRCh37'
>>> user662.count
1006960

As such, SNPs can be saved, remapped, merged, etc. See the snps package for further examples.

1.5.4 Compare Individuals

Let’s create another Individual for the User663 dataset:

>>> user663 = l.create_individual('User663', 'resources/663.23andme.305.txt.gz')
Loading SNPs('663.23andme.305.txt.gz')

Now we can perform some analysis between the User662 and User663 datasets.

1.5. Examples 5

https://snps.readthedocs.io/en/stable/snps.html
https://snps.readthedocs.io/en/stable/snps.html
https://github.com/apriha/snps

lineage Documentation, Release 4.3.1.post12+ge90058a

Find Discordant SNPs

First, let’s find discordant SNPs (i.e., SNP data that is not consistent with Mendelian inheritance):

>>> discordant_snps = l.find_discordant_snps(user662, user663, save_output=True)
Saving output/discordant_snps_User662_User663_GRCh37.csv

All output files are saved to the output directory (a parameter to Lineage).

This method also returns a pandas.DataFrame, and it can be inspected interactively at the prompt, although the same
output is available in the CSV file.

>>> len(discordant_snps.loc[discordant_snps['chrom'] != 'MT'])
37

Not counting mtDNA SNPs, there are 37 discordant SNPs between these two datasets.

Find Shared DNA

lineage uses the probabilistic recombination rates throughout the human genome from the International HapMap
Project and the 1000 Genomes Project to compute the shared DNA (in centiMorgans) between two individuals. Addi-
tionally, lineage denotes when the shared DNA is shared on either one or both chromosomes in a pair. For example,
when siblings share a segment of DNA on both chromosomes, they inherited the same DNA from their mother and
father for that segment.

With that background, let’s find the shared DNA between the User662 and User663 datasets, calculating the centi-
Morgans of shared DNA and plotting the results:

>>> results = l.find_shared_dna([user662, user663], cM_threshold=0.75, snp_
→˓threshold=1100)
Downloading resources/genetic_map_HapMapII_GRCh37.tar.gz
Downloading resources/cytoBand_hg19.txt.gz
Saving output/shared_dna_User662_User663_0p75cM_1100snps_GRCh37_HapMap2.png
Saving output/shared_dna_one_chrom_User662_User663_0p75cM_1100snps_GRCh37_HapMap2.csv

Notice that the centiMorgan and SNP thresholds for each DNA segment can be tuned. Additionally, notice that two
files were downloaded to facilitate the analysis and plotting - future analyses will use the downloaded files instead of
downloading the files again. Finally, notice that a list of individuals is passed to find_shared_dna. . . This list can
contain an arbitrary number of individuals, and lineage will find shared DNA across all individuals in the list (i.e.,
where all individuals share segments of DNA on either one or both chromosomes).

Output is returned as a dictionary with the following keys (pandas.DataFrame and pandas.Index items):

>>> sorted(results.keys())
['one_chrom_discrepant_snps', 'one_chrom_shared_dna', 'one_chrom_shared_genes', 'two_
→˓chrom_discrepant_snps', 'two_chrom_shared_dna', 'two_chrom_shared_genes']

In this example, there are 27 segments of shared DNA:

>>> len(results['one_chrom_shared_dna'])
27

Also, output files are created; these files are detailed in the documentation and their generation can be disabled with a
save_output=False argument. In this example, the output files consist of a CSV file that details the shared segments
of DNA on one chromosome and a plot that illustrates the shared DNA:

6 Chapter 1. lineage

https://lineage.readthedocs.io/en/stable/output_files.html
https://www.genome.gov/10001688/international-hapmap-project/
https://www.genome.gov/10001688/international-hapmap-project/
https://www.internationalgenome.org
https://lineage.readthedocs.io/en/stable/output_files.html

lineage Documentation, Release 4.3.1.post12+ge90058a

1.5. Examples 7

lineage Documentation, Release 4.3.1.post12+ge90058a

Find Shared Genes

The Central Dogma of Molecular Biology states that genetic information flows from DNA to mRNA to proteins: DNA
is transcribed into mRNA, and mRNA is translated into a protein. It’s more complicated than this (it’s biology after
all), but generally, one mRNA produces one protein, and the mRNA / protein is considered a gene.

Therefore, it would be interesting to understand not just what DNA is shared between individuals, but what genes are
shared between individuals with the same variations. In other words, what genes are producing the same proteins?*0

Since lineage can determine the shared DNA between individuals, it can use that information to determine what
genes are also shared on either one or both chromosomes.

For this example, let’s create two more Individuals for the User4583 and User4584 datasets:

>>> user4583 = l.create_individual('User4583', 'resources/4583.ftdna-illumina.3482.csv.gz
→˓')
Loading SNPs('4583.ftdna-illumina.3482.csv.gz')

>>> user4584 = l.create_individual('User4584', 'resources/4584.ftdna-illumina.3483.csv.gz
→˓')
Loading SNPs('4584.ftdna-illumina.3483.csv.gz')

Now let’s find the shared genes, specifying a population-specific 1000 Genomes Project genetic map (e.g., as predicted
by ezancestry!):

>>> results = l.find_shared_dna([user4583, user4584], shared_genes=True, genetic_map="CEU
→˓")
Downloading resources/CEU_omni_recombination_20130507.tar
Downloading resources/knownGene_hg19.txt.gz
Downloading resources/kgXref_hg19.txt.gz
Saving output/shared_dna_User4583_User4584_0p75cM_1100snps_GRCh37_CEU.png
Saving output/shared_dna_one_chrom_User4583_User4584_0p75cM_1100snps_GRCh37_CEU.csv
Saving output/shared_dna_two_chroms_User4583_User4584_0p75cM_1100snps_GRCh37_CEU.csv
Saving output/shared_genes_one_chrom_User4583_User4584_0p75cM_1100snps_GRCh37_CEU.csv
Saving output/shared_genes_two_chroms_User4583_User4584_0p75cM_1100snps_GRCh37_CEU.csv

The plot that illustrates the shared DNA is shown below. Note that in addition to outputting the shared DNA segments
on either one or both chromosomes, the shared genes on either one or both chromosomes are also output.

Note: Shared DNA is not computed on the X chromosome with the 1000 Genomes Project genetic maps since the X
chromosome is not included in these genetic maps.

In this example, there are 15,976 shared genes on both chromosomes transcribed from 36 segments of shared DNA:

>>> len(results['two_chrom_shared_genes'])
15976
>>> len(results['two_chrom_shared_dna'])
36

0 In theory, shared segments of DNA should be producing the same proteins, but there are many complexities, such as copy number variation
(CNV), gene expression, etc.

8 Chapter 1. lineage

https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
https://www.internationalgenome.org/faq/which-populations-are-part-your-study/
https://github.com/arvkevi/ezancestry

lineage Documentation, Release 4.3.1.post12+ge90058a

1.5. Examples 9

lineage Documentation, Release 4.3.1.post12+ge90058a

1.6 Documentation

Documentation is available here.

1.7 Acknowledgements

Thanks to Whit Athey, Ryan Dale, Binh Bui, Jeff Gill, Gopal Vashishtha, CS50, and openSNP.

lineage incorporates code and concepts generated with the assistance of OpenAI’s ChatGPT (GPT-3.5).

10 Chapter 1. lineage

https://lineage.readthedocs.io/
https://cs50.harvard.edu
https://opensnp.org
https://openai.com
https://chat.openai.com

CHAPTER

TWO

OUTPUT FILES

The various output files produced by lineage are detailed below. Output files are saved in the output directory, which
is defined at the instantiation of the Lineage object. Generation of output files can usually be enabled or disabled via
a save_output argument to the associated method.

2.1 Save SNPs

See here.

2.2 Find Discordant SNPs

Discordant SNPs between two or three individuals can be identified with find_discordant_snps(). One CSV file
is optionally output when save_output=True.

2.2.1 discordant_snps_<name1>_<name2>_GRCh37.csv

Where name1 is the name of the first Individual and name2 is the name of the second Individual.

Column Description
rsid SNP ID
chrom Chromosome of SNP
pos Position of SNP
genotype_<name1> Genotype of first individual
genotype_<name2> Genotype of second individual

2.2.2 discordant_snps_<name1>_<name2>_<name3>_GRCh37.csv

Where name1 is the name of the first Individual, name2 is the name of the second Individual, and name3 is the
name of the third Individual.

11

https://snps.readthedocs.io/en/latest/output_files.html#save-snps

lineage Documentation, Release 4.3.1.post12+ge90058a

Column Description
rsid SNP ID
chrom Chromosome of SNP
pos Position of SNP
genotype_<name1> Genotype of first individual
genotype_<name2> Genotype of second individual
genotype_<name3> Genotype of third individual

2.3 Find Shared DNA

Shared DNA between two or more individuals can be identified with find_shared_dna(). One PNG file and up to
two CSV files are output when save_output=True.

In the filenames below,

• name1 is the name of the first Individual

• name2 is the name of the second Individual

• cM_threshold corresponds to the same named parameter of find_shared_dna(); “.” is replaced by “p” with
precision of 2, e.g., “0p75”

• snp_threshold corresponds to the same named parameter of find_shared_dna()

• genetic_map corresponds to the same named parameter of find_shared_dna().

Note: If more than two individuals are compared, all Individual names will be included in the filenames and plot
titles using the same conventions.

Note: Genetic maps do not have recombination rates for the Y chromosome since the Y chromosome does not recom-
bine. Therefore, shared DNA will not be shown on the Y chromosome.

12 Chapter 2. Output Files

lineage Documentation, Release 4.3.1.post12+ge90058a

2.3.1 shared_dna_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.png

This plot illustrates shared DNA (i.e., no shared DNA, shared DNA on one chromosome, and shared DNA on both
chromosomes). The centromere for each chromosome is also detailed. Two examples of this plot are shown below.

2.3. Find Shared DNA 13

lineage Documentation, Release 4.3.1.post12+ge90058a

14 Chapter 2. Output Files

lineage Documentation, Release 4.3.1.post12+ge90058a

In the above plot, note that the two individuals only share DNA on one chromosome. In this plot, the larger regions
where “No shared DNA” is indicated are due to SNPs not being available in those regions (i.e., SNPs were not tested
in those regions).

2.3. Find Shared DNA 15

lineage Documentation, Release 4.3.1.post12+ge90058a

16 Chapter 2. Output Files

lineage Documentation, Release 4.3.1.post12+ge90058a

In the above plot, the areas where “No shared DNA” is indicated are the regions where SNPs were not tested or where
DNA is not shared. The areas where “One chromosome shared” is indicated are regions where the individuals share
DNA on one chromosome. The areas where “Two chromosomes shared” is indicated are regions where the individuals
share DNA on both chromosomes in the pair (i.e., the individuals inherited the same DNA from their father and mother
for those regions). Note that the regions where DNA is shared on both chromosomes is a subset of the regions where
one chromosome is shared.

2.3.2 shared_dna_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

If DNA is shared on one chromosome, a CSV file details the shared segments of DNA.

Column Description
segment Shared DNA segment number
chrom Chromosome with matching DNA segment
start Start position of matching DNA segment
end End position of matching DNA segment
cMs CentiMorgans of matching DNA segment
snps Number of SNPs in matching DNA segment

2.3.3 shared_dna_two_chroms_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

If DNA is shared on two chromosomes, a CSV file details the shared segments of DNA.

Column Description
segment Shared DNA segment number
chrom Pair of chromosomes with matching DNA segment
start Start position of matching DNA segment on each chromosome
end End position of matching DNA segment on each chromosome
cMs CentiMorgans of matching DNA segment on each chromosome
snps Number of SNPs in matching DNA segment on each chromosome

2.4 Find Shared Genes

Shared genes (with the same genetic variations) between two or more individuals can be identified with
find_shared_dna(), with the parameter shared_genes=True. In addition to the outputs produced by Find Shared
DNA, up to two additional CSV files are output that detail the shared genes when save_output=True.

In the filenames below, name1 is the name of the first Individual and name2 is the name of the second Individual.
(If more individuals are compared, all Individual names will be included in the filenames using the same convention.)

2.4. Find Shared Genes 17

lineage Documentation, Release 4.3.1.post12+ge90058a

2.4.1 shared_genes_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

If DNA is shared on one chromosome, this file details the genes shared between the individu-
als on at least one chromosome; these genes are located in the shared DNA segments specified in
shared_dna_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv.

Column* Description*
name Name of gene
geneSymbol Gene symbol
chrom Reference sequence chromosome or scaffold
strand + or - for strand
txStart Transcription start position (or end position for minus strand item)
txEnd Transcription end position (or start position for minus strand item)
refseq RefSeq ID
proteinID UniProt display ID, UniProt accession, or RefSeq protein ID
description Description

* UCSC Genome Browser / UCSC Table Browser

2.4.2 shared_genes_two_chroms_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

If DNA is shared on both chromosomes in a pair, this file details the genes shared between the in-
dividuals on both chromosomes; these genes are located in the shared DNA segments specified in
shared_dna_two_chroms_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv.

The file has the same columns as shared_genes_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv.

18 Chapter 2. Output Files

http://genome.ucsc.edu
http://genome.ucsc.edu/cgi-bin/hgTables

CHAPTER

THREE

INSTALLATION

lineage is available on the Python Package Index. Install lineage (and its required Python dependencies) via pip:

$ pip install lineage

3.1 Installation and Usage on a Raspberry Pi

The instructions below provide the steps to install lineage on a Raspberry Pi (tested with “Raspberry Pi OS (32-bit)
Lite”, release date 2020-08-20). For more details about Python on the Raspberry Pi, see here.

Note: Text after a prompt (e.g., $) is the command to type at the command line. The instructions assume a fresh install
of Raspberry Pi OS and that after logging in as the pi user, the current working directory is /home/pi.

1. Install pip for Python 3:

pi@raspberrypi:~ $ sudo apt install python3-pip

Press “y” followed by “enter” to continue. This enables us to install packages from the Python Package Index.

2. Install the venv module:

pi@raspberrypi:~ $ sudo apt install python3-venv

Press “y” followed by “enter” to continue. This enables us to create a virtual environment to isolate the lineage
installation from other system Python packages.

3. Install ATLAS:

pi@raspberrypi:~ $ sudo apt install libatlas-base-dev

Press “y” followed by “enter” to continue. This is required for NumPy, a dependency of lineage.

4. Install Pillow dependencies:

pi@raspberrypi:~ $ sudo apt install libjbig0 liblcms2-2 libopenjp2-7 libtiff5␣
→˓libwebp6 libwebpdemux2 libwebpmux3

Press “y” followed by “enter” to continue. This is required for Matplotlib, a dependency of lineage.

5. Create a directory for lineage and change working directory:

19

https://pypi.org/project/lineage/
https://pypi.org
https://www.raspberrypi.org
https://www.raspberrypi.org/downloads/raspberry-pi-os/
https://www.raspberrypi.org/documentation/linux/software/python.md
https://docs.python.org/3/library/venv.html
https://github.com/Kitt-AI/snowboy/issues/262#issuecomment-324997127
https://numpy.org
https://www.piwheels.org/project/Pillow/
https://matplotlib.org

lineage Documentation, Release 4.3.1.post12+ge90058a

pi@raspberrypi:~ $ mkdir lineage
pi@raspberrypi:~ $ cd lineage

6. Create a virtual environment for lineage:

pi@raspberrypi:~/lineage $ python3 -m venv .venv

The virtual environment is located at /home/pi/lineage/.venv.

7. Activate the virtual environment:

pi@raspberrypi:~/lineage $ source .venv/bin/activate

Now when you invoke Python or pip, the virtual environment’s version will be used (as indicated by the (.venv)
before the prompt). This can be verified as follows:

(.venv) pi@raspberrypi:~/lineage $ which python
/home/pi/lineage/.venv/bin/python

8. Install lineage:

(.venv) pi@raspberrypi:~/lineage $ pip install lineage

9. Start Python:

(.venv) pi@raspberrypi:~/lineage $ python
Python 3.7.3 (default, Jul 25 2020, 13:03:44)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

10. Use lineage; examples shown in the README should now work.

11. At completion of usage, the virtual environment can be deactivated:

(.venv) pi@raspberrypi:~/lineage $ deactivate
pi@raspberrypi:~/lineage $

3.2 Installation on Linux

On Linux systems, the following system-level installs may also be required:

$ sudo apt install python3-tk
$ sudo apt install gfortran
$ sudo apt install python-dev
$ sudo apt install python-devel
$ sudo apt install python3.X-dev # (where X == Python minor version)

20 Chapter 3. Installation

CHAPTER

FOUR

CHANGELOG

The changelog is maintained here: https://github.com/apriha/lineage/releases

21

https://github.com/apriha/lineage/releases

lineage Documentation, Release 4.3.1.post12+ge90058a

22 Chapter 4. Changelog

CHAPTER

FIVE

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.2 Documentation improvements

lineage could always use more documentation, whether as part of the official lineage docs, in docstrings, or even
on the web in blog posts, articles, and such. See below for info on how to generate documentation.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/apriha/lineage/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome :)

23

https://github.com/apriha/lineage/issues
https://github.com/apriha/lineage/issues

lineage Documentation, Release 4.3.1.post12+ge90058a

5.4 Development

To set up lineage for local development:

1. Fork lineage (look for the “Fork” button).

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/lineage.git

3. Create a branch for local development from the develop branch:

$ cd lineage
$ git checkout develop
$ git checkout -b name-of-your-bugfix-or-feature develop

4. Setup a development environment:

$ pip install pipenv
$ pipenv install --dev

5. When you’re done making changes, run all the tests with:

$ pipenv run pytest --cov-report=html --cov=lineage tests

Note: Downloads during tests are disabled by default. To enable downloads, set the environment variable
DOWNLOADS_ENABLED=true.

Note: If you receive errors when running the tests, you may need to specify the temporary directory with an
environment variable, e.g., TMPDIR="/path/to/tmp/dir".

Note: After running the tests, a coverage report can be viewed by opening htmlcov/index.html in a browser.

6. Check code formatting:

$ pipenv run black --check --diff .

7. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

8. Submit a pull request through the GitHub website.

24 Chapter 5. Contributing

https://github.com/apriha/lineage

lineage Documentation, Release 4.3.1.post12+ge90058a

5.4.1 Pull request guidelines

If you need some code review or feedback while you’re developing the code, just make the pull request.

For merging, you should:

1. Ensure tests pass.

2. Update documentation when there’s new API, functionality, etc.

3. Add yourself to CONTRIBUTORS.rst if you’d like.

5.5 Documentation

After the development environment has been setup, documentation can be generated via the following command:

$ pipenv run sphinx-build -T -E -D language=en docs docs/_build

Then, the documentation can be viewed by opening docs/_build/index.html in a browser.

5.5. Documentation 25

lineage Documentation, Release 4.3.1.post12+ge90058a

26 Chapter 5. Contributing

CHAPTER

SIX

CONTRIBUTORS

Contributors to lineage are listed below.

6.1 Core Developers

Name GitHub
Andrew Riha @apriha

6.2 Other Contributors

Listed in alphabetical order.

Name GitHub
Anatoli Babenia @abitrolly
Kevin Arvai @arvkevi
Will Jones @willgdjones
Yoan Bouzin

27

https://github.com/apriha/lineage/graphs/contributors
https://github.com/apriha
https://github.com/abitrolly
https://github.com/arvkevi
https://github.com/willgdjones

lineage Documentation, Release 4.3.1.post12+ge90058a

28 Chapter 6. Contributors

CHAPTER

SEVEN

CODE DOCUMENTATION

7.1 lineage

lineage

tools for genetic genealogy and the analysis of consumer DNA test results

class lineage.Lineage(output_dir='output', resources_dir='resources', parallelize=False, processes=2)
Bases: object

Object used to interact with the lineage framework.

__init__(output_dir='output', resources_dir='resources', parallelize=False, processes=2)
Initialize a Lineage object.

Parameters

• output_dir (str) – name / path of output directory

• resources_dir (str) – name / path of resources directory

• parallelize (bool) – utilize multiprocessing to speedup calculations

• processes (int) – processes to launch if multiprocessing

create_individual(name, raw_data=(), **kwargs)
Initialize an individual in the context of the lineage framework.

Parameters

• name (str) – name of the individual

• raw_data (str, bytes, SNPs (or list or tuple thereof)) – path(s) to file(s), bytes, or SNPs
object(s) with raw genotype data

• **kwargs – parameters to snps.SNPs and/or snps.SNPs.merge

Returns
Individual initialized in the context of the lineage framework

Return type
Individual

download_example_datasets()

Download example datasets from openSNP.

Per openSNP, “the data is donated into the public domain using CC0 1.0.”

Returns
paths – paths to example datasets

29

https://opensnp.org
http://creativecommons.org/publicdomain/zero/1.0/

lineage Documentation, Release 4.3.1.post12+ge90058a

Return type
list of str or empty str

References

1. Greshake B, Bayer PE, Rausch H, Reda J (2014), “openSNP-A Crowdsourced Web Resource for Per-
sonal Genomics,” PLOS ONE, 9(3): e89204, https://doi.org/10.1371/journal.pone.0089204

find_discordant_snps(individual1, individual2, individual3=None, save_output=False)
Find discordant SNPs between two or three individuals.

Parameters

• individual1 (Individual) – reference individual (child if individual2 and individual3 are
parents)

• individual2 (Individual) – comparison individual

• individual3 (Individual) – other parent if individual1 is child and individual2 is a parent

• save_output (bool) – specifies whether to save output to a CSV file in the output directory

Returns
discordant SNPs and associated genetic data

Return type
pandas.DataFrame

References

1. David Pike, “Search for Discordant SNPs in Parent-Child Raw Data Files,” David Pike’s Utilities,
http://www.math.mun.ca/~dapike/FF23utils/pair-discord.php

2. David Pike, “Search for Discordant SNPs when given data for child and both parents,” David Pike’s
Utilities, http://www.math.mun.ca/~dapike/FF23utils/trio-discord.php

find_shared_dna(individuals=(), cM_threshold=0.75, snp_threshold=1100, shared_genes=False,
save_output=True, genetic_map='HapMap2')

Find the shared DNA between individuals.

Computes the genetic distance in centiMorgans (cMs) between SNPs using the specified genetic map. Ap-
plies thresholds to determine the shared DNA. Plots shared DNA. Optionally determines shared genes (i.e.,
genes transcribed from the shared DNA).

All output is saved to the output directory as CSV or PNG files.

Notes

The code is commented throughout to help describe the algorithm and its operation.

To summarize, the algorithm first computes the genetic distance in cMs between SNPs common to all
individuals using the specified genetic map.

Then, individuals are compared for whether they share one or two alleles for each SNP in common; in this
manner, where all individuals share one chromosome, for example, there will be several SNPs in a row
where at least one allele is shared between individuals for each SNP. The cM_threshold is then applied

30 Chapter 7. Code Documentation

https://doi.org/10.1371/journal.pone.0089204
http://www.math.mun.ca/~dapike/FF23utils/pair-discord.php
http://www.math.mun.ca/~dapike/FF23utils/trio-discord.php

lineage Documentation, Release 4.3.1.post12+ge90058a

to each of these “matching segments” to determine whether the segment could be a potential shared DNA
segment (i.e., whether each segment has a cM value greater than the threshold).

The matching segments that passed the cM_threshold are then checked to see if they are adjacent to
another matching segment, and if so, the segments are stitched together, and the single SNP separating the
segments is flagged as potentially discrepant. (This means that multiple smaller matching segments passing
the cM_threshold could be stitched, identifying the SNP between each segment as discrepant.)

Next, the snp_threshold is applied to each segment to ensure there are enough SNPs in the segment and
the segment is not only a few SNPs in a region with a high recombination rate; for each segment that passes
this test, we have a segment of shared DNA, and the total cMs for this segment are computed.

Finally, discrepant SNPs are checked to ensure that only SNPs internal to a shared DNA segment are re-
ported as discrepant (i.e., don’t report a discrepant SNP if it was part of a segment that didn’t pass the
snp_threshold). Currently, no action other than reporting is taken on discrepant SNPs.

Parameters

• individuals (iterable of Individuals)

• cM_threshold (float) – minimum centiMorgans for each shared DNA segment

• snp_threshold (int) – minimum SNPs for each shared DNA segment

• shared_genes (bool) – determine shared genes

• save_output (bool) – specifies whether to save output files in the output directory

• genetic_map ({‘HapMap2’, ‘ACB’, ‘ASW’, ‘CDX’, ‘CEU’, ‘CHB’, ‘CHS’, ‘CLM’, ‘FIN’,
‘GBR’, ‘GIH’, ‘IBS’, ‘JPT’, ‘KHV’, ‘LWK’, ‘MKK’, ‘MXL’, ‘PEL’, ‘PUR’, ‘TSI’, ‘YRI’}) –
genetic map to use for computation of shared DNA; HapMap2 corresponds to the HapMap
Phase II genetic map from the International HapMap Project and all others correspond
to the population-specific genetic maps generated from the 1000 Genomes Project phased
OMNI data. Note that shared DNA is not computed on the X chromosome with the 1000
Genomes Project genetic maps since the X chromosome is not included in these genetic
maps.

Returns

dict with the following items:

one_chrom_shared_dna (pandas.DataFrame)
segments of shared DNA on one chromosome

two_chrom_shared_dna (pandas.DataFrame)
segments of shared DNA on two chromosomes

one_chrom_shared_genes (pandas.DataFrame)
shared genes on one chromosome

two_chrom_shared_genes (pandas.DataFrame)
shared genes on two chromosomes

one_chrom_discrepant_snps (pandas.Index)
discrepant SNPs discovered while finding shared DNA on one chromosome

two_chrom_discrepant_snps (pandas.Index)
discrepant SNPs discovered while finding shared DNA on two chromosomes

Return type
dict

7.1. lineage 31

https://www.genome.gov/10001688/international-hapmap-project/
https://www.internationalgenome.org/faq/which-populations-are-part-your-study/
https://www.internationalgenome.org

lineage Documentation, Release 4.3.1.post12+ge90058a

7.2 lineage.individual

Class for representing individuals within the lineage framework.

class lineage.individual.Individual(name, raw_data=(), **kwargs)
Bases: SNPs

Object used to represent and interact with an individual.

The Individual object maintains information about an individual. The object provides methods for loading an
individual’s genetic data (SNPs) and normalizing it for use with the lineage framework.

Individual inherits from snps.SNPs. See here for details about the SNPs object: https://snps.readthedocs.io/
en/latest/snps.html

__init__(name, raw_data=(), **kwargs)
Initialize an Individual object.

Parameters

• name (str) – name of the individual

• raw_data (str, bytes, SNPs (or list or tuple thereof)) – path(s) to file(s), bytes, or SNPs
object(s) with raw genotype data

• **kwargs – parameters to snps.SNPs and/or snps.SNPs.merge

get_var_name()

property name

Get this Individual’s name.

Return type
str

7.3 lineage.resources

Class for downloading and loading required external resources.

lineage uses tables and data from UCSC’s Genome Browser:

• http://genome.ucsc.edu/

• http://genome.ucsc.edu/cgi-bin/hgTables

References

1. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The UCSC Table Browser
data retrieval tool. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D493-6. PubMed PMID: 14681465;
PubMed Central PMCID: PMC308837. https://www.ncbi.nlm.nih.gov/pubmed/14681465

2. Tyner C, Barber GP, Casper J, Clawson H, Diekhans M, Eisenhart C, Fischer CM, Gibson D, Gonzalez
JN, Guruvadoo L, Haeussler M, Heitner S, Hinrichs AS, Karolchik D, Lee BT, Lee CM, Nejad P, Raney
BJ, Rosenbloom KR, Speir ML, Villarreal C, Vivian J, Zweig AS, Haussler D, Kuhn RM, Kent WJ. The
UCSC Genome Browser database: 2017 update. Nucleic Acids Res. 2017 Jan 4;45(D1):D626-D634. doi:
10.1093/nar/gkw1134. Epub 2016 Nov 29. PubMed PMID: 27899642; PubMed Central PMCID: PMC5210591.
https://www.ncbi.nlm.nih.gov/pubmed/27899642

32 Chapter 7. Code Documentation

https://snps.readthedocs.io/en/latest/snps.html
https://snps.readthedocs.io/en/latest/snps.html
http://genome.ucsc.edu/
http://genome.ucsc.edu/cgi-bin/hgTables
https://www.ncbi.nlm.nih.gov/pubmed/14681465
https://www.ncbi.nlm.nih.gov/pubmed/27899642

lineage Documentation, Release 4.3.1.post12+ge90058a

3. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. http://dx.doi.org/10.1038/35057062

4. hg19 (GRCh37): Hiram Clawson, Brooke Rhead, Pauline Fujita, Ann Zweig, Katrina Learned, Donna Karolchik
and Robert Kuhn, https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19

5. Yates et. al. (doi:10.1093/bioinformatics/btu613), http://europepmc.org/search/?query=DOI:10.1093/
bioinformatics/btu613

6. Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098

class lineage.resources.Resources(*args, **kwargs)
Bases: Resources

Object used to manage resources required by lineage.

__init__(resources_dir='resources')
Initialize a Resources object.

Parameters
resources_dir (str) – name / path of resources directory

download_example_datasets()

Download example datasets from openSNP.

Per openSNP, “the data is donated into the public domain using CC0 1.0.”

Returns
paths to example datasets

Return type
list of str or empty str

References

1. Greshake B, Bayer PE, Rausch H, Reda J (2014), “openSNP-A Crowdsourced Web Resource for Per-
sonal Genomics,” PLOS ONE, 9(3): e89204, https://doi.org/10.1371/journal.pone.0089204

get_all_resources()

Get / download all resources (except reference sequences) used throughout lineage.

Returns
dict of resources

Return type
dict

get_cytoBand_hg19()

Get UCSC cytoBand table for Build 37.

Returns
cytoBand table if loading was successful, else empty DataFrame

Return type
pandas.DataFrame

7.3. lineage.resources 33

http://dx.doi.org/10.1038/35057062
https://genome.ucsc.edu/cgi-bin/hgGateway?db=hg19
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613
http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613
https://doi.org/10.1093/nar/gkx1098
https://opensnp.org
http://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1371/journal.pone.0089204

lineage Documentation, Release 4.3.1.post12+ge90058a

References

1. Ryan Dale, GitHub Gist, https://gist.github.com/daler/c98fc410282d7570efc3#file-ideograms-py

get_genetic_map(genetic_map)
Get specified genetic map.

Parameters
genetic_map ({‘HapMap2’, ‘ACB’, ‘ASW’, ‘CDX’, ‘CEU’, ‘CHB’, ‘CHS’, ‘CLM’, ‘FIN’,
‘GBR’, ‘GIH’, ‘IBS’, ‘JPT’, ‘KHV’, ‘LWK’, ‘MKK’, ‘MXL’, ‘PEL’, ‘PUR’, ‘TSI’, ‘YRI’}) –
HapMap2 corresponds to the HapMap Phase II genetic map from the International HapMap
Project and all others correspond to the population-specific genetic maps generated from the
1000 Genomes Project phased OMNI data.

Returns
dict of pandas.DataFrame genetic maps if loading was successful, else {}

Return type
dict

get_genetic_map_1000G_GRCh37(pop)
Get population-specific 1000 Genomes Project genetic map.12

Notes

From README_omni_recombination_201305071 :

Genetic maps generated from the 1000G phased OMNI data.

[Build 37] OMNI haplotypes were obtained from the Phase 1 dataset
(/vol1/ftp/phase1/analysis_results/supporting/omni_haplotypes/).

Genetic maps were generated for each population separately using LDhat (http://ldhat.
sourceforge.net/). Haplotypes were split into 2000 SNP windows with an overlap of 200 SNPs
between each window. The recombination rate was estimated for each window independently,
using a block penalty of 5 for a total of 22.5 million iterations with a sample being taken from
the MCMC chain every 15,000 iterations. The first 7.5 million iterations were discarded as burn
in. Once rates were estimated, windows were merged by splicing the estimates at the mid-point
of the overlapping regions.

LDhat estimates the population genetic recombination rate, rho = 4Ner. In order to convert to per-
generation rates (measured in cM/Mb), the LDhat rates were compared to pedigree-based rates
from Kong et al. (2010). Specifically, rates were binned at the 5Mb scale, and a linear regression
performed between the two datasets. The gradient of this line gives an estimate of 4Ne, allowing
the population based rates to be converted to per-generation rates.

Returns
dict of pandas.DataFrame population-specific 1000 Genomes Project genetic maps if loading
was successful, else {}

Return type
dict

1 Adam Auton, May 7th, 2013
2 The 1000 Genomes Project Consortium., Corresponding authors., Auton, A. et al. A global reference for human genetic variation. Nature 526,

68–74 (2015). https://doi.org/10.1038/nature15393

34 Chapter 7. Code Documentation

https://gist.github.com/daler/c98fc410282d7570efc3#file-ideograms-py
https://www.genome.gov/10001688/international-hapmap-project/
https://www.genome.gov/10001688/international-hapmap-project/
https://www.internationalgenome.org/faq/which-populations-are-part-your-study/
https://www.internationalgenome.org
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/README_omni_recombination_20130507
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/omni_haplotypes/
http://ldhat.sourceforge.net/
http://ldhat.sourceforge.net/
https://doi.org/10.1038/nature15393

lineage Documentation, Release 4.3.1.post12+ge90058a

References

get_genetic_map_HapMapII_GRCh37()

Get International HapMap Consortium HapMap Phase II genetic map for Build 37.45

Returns
dict of pandas.DataFrame HapMapII genetic maps if loading was successful, else {}

Return type
dict

References

get_kgXref_hg19()

Get UCSC kgXref table for Build 37.

Returns
kgXref table if loading was successful, else empty DataFrame

Return type
pandas.DataFrame

get_knownGene_hg19()

Get UCSC knownGene table for Build 37.

Returns
knownGene table if loading was successful, else empty DataFrame

Return type
pandas.DataFrame

7.4 lineage.visualization

Chromosome plotting functions.

Notes

Adapted from Ryan Dale’s GitHub Gist for plotting chromosome features.6

4 “The International HapMap Consortium (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851-861.”
5 “The map was generated by lifting the HapMap Phase II genetic map from build 35 to GRCh37. The original map was generated using LDhat

as described in the 2007 HapMap paper (Nature, 18th Sept 2007). The conversion from b35 to GRCh37 was achieved using the UCSC liftOver tool.
Adam Auton, 08/12/2010”

6 Ryan Dale, GitHub Gist, https://gist.github.com/daler/c98fc410282d7570efc3#file-ideograms-py

7.4. lineage.visualization 35

https://gist.github.com/daler/c98fc410282d7570efc3#file-ideograms-py

lineage Documentation, Release 4.3.1.post12+ge90058a

References

lineage.visualization.plot_chromosomes(one_chrom_match, two_chrom_match, cytobands, path, title,
build)

Plots chromosomes with designated markers.

Parameters

• one_chrom_match (pandas.DataFrame) – segments to highlight on the chromosomes rep-
resenting one shared chromosome

• two_chrom_match (pandas.DataFrame) – segments to highlight on the chromosomes rep-
resenting two shared chromosomes

• cytobands (pandas.DataFrame) – cytobands table loaded with Resources

• path (str) – path to destination .png file

• title (str) – title for plot

• build ({37}) – human genome build

36 Chapter 7. Code Documentation

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

37

lineage Documentation, Release 4.3.1.post12+ge90058a

38 Chapter 8. Indices and tables

PYTHON MODULE INDEX

l
lineage, 29
lineage.individual, 32
lineage.resources, 32
lineage.visualization, 35

39

lineage Documentation, Release 4.3.1.post12+ge90058a

40 Python Module Index

INDEX

Symbols
__init__() (lineage.Lineage method), 29
__init__() (lineage.individual.Individual method), 32
__init__() (lineage.resources.Resources method), 33

C
create_individual() (lineage.Lineage method), 29

D
download_example_datasets() (lineage.Lineage

method), 29
download_example_datasets() (lin-

eage.resources.Resources method), 33

F
find_discordant_snps() (lineage.Lineage method),

30
find_shared_dna() (lineage.Lineage method), 30

G
get_all_resources() (lineage.resources.Resources

method), 33
get_cytoBand_hg19() (lineage.resources.Resources

method), 33
get_genetic_map() (lineage.resources.Resources

method), 34
get_genetic_map_1000G_GRCh37() (lin-

eage.resources.Resources method), 34
get_genetic_map_HapMapII_GRCh37() (lin-

eage.resources.Resources method), 35
get_kgXref_hg19() (lineage.resources.Resources

method), 35
get_knownGene_hg19() (lineage.resources.Resources

method), 35
get_var_name() (lineage.individual.Individual

method), 32

I
Individual (class in lineage.individual), 32

L
lineage

module, 29
Lineage (class in lineage), 29
lineage.individual

module, 32
lineage.resources

module, 32
lineage.visualization

module, 35

M
module

lineage, 29
lineage.individual, 32
lineage.resources, 32
lineage.visualization, 35

N
name (lineage.individual.Individual property), 32

P
plot_chromosomes() (in module lineage.visualization),

36

R
Resources (class in lineage.resources), 33

41

	lineage
	Capabilities
	Supported Genotype Files
	Installation
	Dependencies
	Examples
	Initialize the lineage Framework
	Download Example Data
	Load Raw Data
	Compare Individuals
	Find Discordant SNPs
	Find Shared DNA
	Find Shared Genes

	Documentation
	Acknowledgements

	Output Files
	Save SNPs
	Find Discordant SNPs
	discordant_snps_<name1>_<name2>_GRCh37.csv
	discordant_snps_<name1>_<name2>_<name3>_GRCh37.csv

	Find Shared DNA
	shared_dna_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.png
	shared_dna_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv
	shared_dna_two_chroms_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

	Find Shared Genes
	shared_genes_one_chrom_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv
	shared_genes_two_chroms_<name1>_<name2>_<cM_threshold>cM_<snp_threshold>snps_GRCh37_<genetic_map>.csv

	Installation
	Installation and Usage on a Raspberry Pi
	Installation on Linux

	Changelog
	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development
	Pull request guidelines

	Documentation

	Contributors
	Core Developers
	Other Contributors

	Code Documentation
	lineage
	lineage.individual
	lineage.resources
	lineage.visualization

	Indices and tables
	Python Module Index
	Index

