

LightMVC Framework’s documentation

[image: _images/logo.png]
And, then, there was truly light!

LightMVC Framework Home Page [https://lightmvcframework.net/]

Easily create PHP applications by using any PHP library within this very modular, event-driven and Swoole-enabled framework!

	Installation
	Prerequisites

	Installation using Composer

	Configuration
	Event Sourcing Configuration

	Routing Configuration

	Session Configuration

	View Configuration

	Middleware Configuration

	Model Configuration

	Autoloading

	HTTP Messages
	ServerRequest Object

	Response Object

	Services
	Event Manager

	Service Manager

	Routing
	Routes

	Caching Routes

	Controllers
	Controller Methods

	Controller Factories

	Event Sourcing
	Aggregates

	Event Dispatcher

	Aggregate Events

	Aggregate Value Objects

	Aggregate Event Listeners

	Aggregate Read Models

	Aggregate Policies

	Aggregate Commands

	Event Logger

	Views

	Models

	Middleware

	Sessions

	LightMVC Skeleton Application
	Installation

	File Structure

	Running on Swoole

	What’s new in version 5.0.1 (2023-01-16)

	What’s new in version 5.0.0 (2023-01-10)

	What’s new in version 4.0.0 (2020-05-19)

	What’s new in version 3.3.0 (2019-12-03)

	What’s new in version 3.2.3 (2019-12-02)

	What’s new in version 3.2.2 (2019-09-27)

	What’s new in version 3.2.1 (2019-09-05)

	What’s new in version 3.2.0 (2019-07-10)

	What’s new in version 3.1.2 (2019-05-13)

	What’s new in version 3.1.1 (2019-05-08)

	What’s new in version 3.1.0 (2019-04-30)

	What’s new in version 3.0.0 (2019-04-16)

	What’s new in version 2.1.1 (2019-04-16)

	What’s new in version 2.1.0 (2019-04-10)

	What’s new in version 2.0.4 (2019-04-16)

	What’s new in version 2.0.3 (2019-04-10)

	What’s new in version 2.0.2 (2019-01-23)

	What’s new in version 2.0.1 (2019-01-20)

	What’s new in version 2.0.0 (2019-01-15)

	LightMVC License
	Apache License

Indices and tables

	Index

	Search Page

Installation

Prerequisites

	PHP 7.2

Installation using Composer

To add the LightMVC Framework package to your PHP project, you can simply run the following command on your computer’s CLI:

$ composer require lightmvc/ascmvc

You can also use the LightMVC Skeleton Application by issuing these commands:

$ git clone https://github.com/lightmvc/lightmvcskel
$ cd lightmvcskel
$ composer install

Note

The LightMVC Skeleton Application can also be downloaded as an archive file from the LightMVC Download Page [https://lightmvcframework.net/download].

 Configuration

Configuration

The framework’s configuration is set within a configuration file named config/config.php inside
the project’s root directory. It is possible to override the configurations found within this file
by creating a file named config.local.php within the same config directory.

All configuration options must be stored within an index of the $baseConfig array.

The main preconfigured indexes of this array are:

	BASEDIR, which contains the full path to the project’s root directory,

	URLBASEADDR, which contains the Web URL of the project,

	appFolder, which contains the name of the project’s root directory,

	env, which contains an environment setting (‘production’ or ‘development’),

	routes, which contains an array of FastRouter routes to be used,

	templateManager, which contains the name of the Template Manager that is to be used (‘Plates’, ‘Twig’ or ‘Smarty’),

	templateDir under the templates index, which contains the name of the folder where the templates are stored,

	async_process_bin, which contains the path to the PHP script that will be used to fork processes in order to run event sourcing commands,

	async_commands, which contains an array of fully-qualified class names to run asynchronously,

	events, which contains an array of parameters in order to configure the LightMVC event sourcing controller-based aggregates,

	session, which contains an array of parameters in order to configure the LightMVC asynchronous PHP session.

Note

The Twig and Smarty template managers require additional indexes under the templates index. These are: compileDir, configDir and cacheDir.

 Autoloading

Autoloading

The framework’s autoloading is managed by Composer. By default, the LightMVC Framework uses PSR-4 compliant
autoloading. To add new namespaces within a LightMVC application, it is necessary to declare these namespace
mappings within the application’s composer.json file. For example, here are the namespaces of the
LightMVC Skeleton Application:

"autoload": {
 "psr-4": {
 "Application\\Models\\": "models/Application/Models",
 "Application\\Middleware\\": "middleware/Application/Middleware",
 "Application\\Controllers\\": "controllers/Application/Controllers",
 "Application\\Services\\": "controllers/Application/Services",
 "Specialmodule\\Controllers\\": "controllers/Specialmodule/Controllers"
 }
},

Therefore, adding new namespaces is simply a question of adding new entries in this part of the file and running
the following command from a CLI:

$ composer update

Note

A PSR-4 autoloader class is available within the framework if you wish to use configuration files instead of Composer’s autoloading capabilities.

 HTTP Messages

HTTP Messages

The LightMVC Framework’s HTTP message objects are the \Laminas\Diactoros\ServerRequest and the
\Laminas\Diactoros\Response objects. These are PSR-7 compliant classes and are compatible with
PSR-15 compliant middleware.

ServerRequest Object

In order to get a better understanding of the ServerRequest object, please see the
Laminas documentation on server-side applications [https://docs.laminas.dev/laminas-diactoros/v2/usage/#server-side-applications].

Response Object

The Response object makes it possible to add headers and provide content to the application’s final response
to the client. Here is a simple example in order to do so:

$response = new Laminas\Diactoros\Response();

// Write to the response body:
$response->getBody()->write("Hello");

// Multiple calls to write() append:
$response->getBody()->write(" World"); // now "Hello World"

// Add headers
// Note: headers can be added to the response after the data has been written to the body
$response = $response
 ->withHeader('Content-Type', 'text/plain')
 ->withAddedHeader('X-Custom-Header', 'example');

For further reading on the Response object, please see the
Laminas documentation [https://docs.laminas.dev/laminas-diactoros/v2/usage/#manipulating-the-response].

 Services

Services

This framework’s main services are:

	Event Manager (\Ascmvc\Mvc\AscmvcEventManager),

	Service Manager (\Pimple\Container).

Event Manager

The \Ascmvc\Mvc\AscmvcEventManager event manager is an extension of the \Laminas\EventManager\EventManager.
It is available through the application object’s getEventManager() method. It is configured WITH a
\Laminas\EventManager\SharedEventManager. It is possible to get the shared manager by calling the main
event manager’s getSharedManager() method. This same shared manager will also be readily available
within each controller aggregate by getting it from the controller’s PSR-14 event dispatcher (event bus)
like so:

// From within a controller's action method for example.
$sharedEventManager = $this->eventDispatcher->getSharedManager();

By doing so, it becomes possible to dispatch custom events not only to other parts of the current aggregate,
but to also dispatch custom events to other aggregates outside of the current controller aggregate. Thus,
Aspect-Oriented Programming becomes a clear possibility and allows for separation of concerns and
code modularity.

Note

Each controller has access to a segregated event dispatcher (event bus), as the controller is considered to be the Aggregate Root of its event sourcing aggregate.

 Routing

Routing

The framework uses the nikic/fast-route library - FastRoute - as its main routing service.

All configuration must be given in the $baseConfig array, under the routes index.

Note

For more information on configuring the application’s routes, please see the Routing Configuration section.

 Controllers

Controllers

The framework’s controllers are extensions of the Ascmvc\Mvc\Controller or the
Ascmvc\EventSourcing\AggregateRootController classes, which both implement
the Ascmvc\AscmvcEventManagerListenerInterface interface. The AggregateRootController also implements
the Ascmvc\EventSourcing\AggregateEventListenerInterface. Within the LightMVC Framework, controllers
are considered to be the Aggregate Root (main command) of the each and every event sourcing aggregate.

Note

For more information on configuring an application’s event sourcing aggregates and the application’s event log, please see the Event Sourcing Configuration section.

 Event Sourcing

Event Sourcing

The framework’s event sourcing library allows you to set up an event sourcing infrastructure, that uses
CQRS or not, based on controllers as the aggregate root (main command and main event listener) of
each and every aggregate. The principle of it is that all of the software’s underlying commands and
interactions with other systems (internal or external) will be called through the dispatching of events.
These events are named ‘aggregate events’ and can be any custom event that the controller can dispatch
through an event dispatcher, also known as the event bus. The event dispatcher will then notify
any listener that is attached to this event.

Typically, an event sourcing aggregate will have Read Model and Policy listeners. These event
listeners will then call aggregate commands by passing any values received through the aggregate event.
In order to make things more simple, these values are normally wrapped inside an immutable value object
that allows for a unified interface to deal with these values throughout the entire aggregate life cycle.

Since all of the aggregate’s underlying commands are called through events, logging the aggregate’s activities
is made much more simple. Auditing and monitoring are added benefits that come with event sourcing.

To read further on event sourcing, please see the
Martin Fowler’s definition and explanations on this subject [https://martinfowler.com/eaaDev/EventSourcing.html].

Note

For more information on configuring an application’s event sourcing aggregates and the application’s event log, please see the Event Sourcing Configuration section.

 Views

Views

By default, the framework uses the Plates template manager. Twig and Smarty are also available. In order
to change the template manager, one only has to change the parameters in the config/view.config.php file.

For more information on configuring the template managers and view elements, please see the View Configuration section.

By default, a LightMVC application should hold two folders for the view scripts:
a templates folder and a templates_c folder.

The templates_c folder is used by the Twig and Smarty template managers in order to store compiled versions
of the templates. This template cache will only be active if the application is in production mode
(see the Configuration). Plates does not use a cache by default.

For more information on Plates, please see the Plates website [http://platesphp.com/].

For more information on Twig, please see the Twig website [https://twig.symfony.com/].

For more information on Smarty, please see the Smarty website [https://www.smarty.net/].

 Models

Models

The framework offers two backend frameworks by default: Doctrine and Atlas. Doctrine is very
useful when dealing with Domain Logic, and Atlas is very useful when dealing with Persistence Logic.

To learn how to configure these backend services in the LightMVC Framework, please see the Model Configuration section.

For more information on Doctrine, please see the Doctrine website [https://www.doctrine-project.org/].

For more information on Atlas, please see the Atlas website [http://atlasphp.io/].

Code examples of how to use these backend frameworks are given in the LightMVC Skeleton Application application section of this documentation.

 Middleware

Middleware

The LightMVC Framework uses Laminas Stratigility for its middleware implementation. This implementation is therefore PSR-15 compliant.

Configuring middleware is very straightforward in the LightMVC Framework. In a config/middleware.config.php file, one might
configure some middleware as per the following:

$baseConfig['middleware'] = [
 '/foo' => function ($req, $handler) {
 $response = new \Laminas\Diactoros\Response();
 $response->getBody()->write('FOO!');

 return $response;
 },
 function ($req, $handler) {
 if (! in_array($req->getUri()->getPath(), ['/bar'], true)) {
 return $handler->handle($req);
 }

 $response = new \Laminas\Diactoros\Response();
 $response->getBody()->write('Hello world!');

 return $response;
 },
 '/baz' => [
 \Application\Middleware\SessionMiddleware::class,
 \Application\Middleware\ExampleMiddleware::class,
],
];

Any callable or any class that implements the \Psr\Http\Server\MiddlewareInterface interface can be
used as valid middleware.

use \Psr\Http\Server\MiddlewareInterface;

class ExampleMiddleware implements MiddlewareInterface
{
 public function process(ServerRequestInterface $request, RequestHandlerInterface $handler): ResponseInterface
 {
 }
}

Middleware can be configured with or without paths. When indicating a path as the name of the array index of
the middleware, the middleware will only run if the path matches the request URI. If the middleware’s array index
is an integer, the middleware will run on every request. Finally, it is possible to stack middleware within
the same array index. In this latter case, the LightMVC Framework will lazy-load this FIFO stack of middleware
and will run it in the given order.

Note

Normally, the middleware pipeline should always return a valid PSR-7 compliant response object. Otherwise, the pipeline would throw an exception. In the case of the LightMVC Framework, the pipeline can quietly fail in order to allow the MVC components to handle the request.

 Sessions

Sessions

As mentioned in the Session Configuration section, setting up asynchronous PHP sessions with LightMVC is
a matter of adding the appropriate configuration in the config/session.config.php file. But, one might
need to use an asynchronous session in a customized way. To do so, it is necessary to instantiate a session
Config object, constructor injecting into it any custom configuration array that might be deemed
necessary, and obtaining an instance of the SessionManager object by requesting it through
the getSessionManager() static method. Once this is done, it is a question of invoking
the SessionManager’s start() method to get the session started. Here is a working example:

Note

As of LightMVC 5.0.0, the DoctrineCommonCache namespace is replaced with the AscmvcSessionCommonCache namespace. Please update your session.config.php configuration file accordingly.

 LightMVC Skeleton Application

LightMVC Skeleton Application

A LightMVC Framework Skeleton Application is available as a working example of the framework itself.

Installation

To start using the Skeleton Application, simply clone it from Github:

$ git clone https://github.com/lightmvc/lightmvcskel

Note

Please make sure that the public folder is accessible to the Web server and that the cache, logs and templates_c folders are writable.

 What’s new in version 5.0.1 (2023-01-16)

What’s new in version 5.0.1 (2023-01-16)

	Updates the project’s dependencies.

What’s new in version 5.0.0 (2023-01-10)

	Makes the \Doctrine\Common library a core ASCMVC library (\Ascmvc\Session\Common).

	Updates the project’s dependencies.

What’s new in version 4.0.0 (2020-05-19)

	Migrates to Laminas and updates the project’s dependencies.

What’s new in version 3.3.0 (2019-12-03)

	Updates the Doctrine DBAL and ORM libraries (with possible BC breaks).

	Updates the CI test matrix to include PHP 7.3 and PHP 7.4.

	Updates the project’s dependencies.

What’s new in version 3.2.3 (2019-12-02)

	Updates the project’s dependencies.

What’s new in version 3.2.2 (2019-09-27)

	Fixes an issue whereby the protocol is not detected correctly if running behind a proxy server.

What’s new in version 3.2.1 (2019-09-05)

	Updates the project’s dependencies.

	Updates the user documentation.

What’s new in version 3.2.0 (2019-07-10)

	Adds built-in token regeneration to LightMVC Sessions.

	Adds new session configuration options to allow for domain configuration of session cookies.

	Adds a new controller-based pre-dispatch event for all controllers.

	Adds the possibility to configure multiple listeners on a same event when using an AggregateRootController.

	Updates the user documentation.

What’s new in version 3.1.2 (2019-05-13)

	Removes some dead code (Skeleton Application).

	Updates the project’s dependencies.

	Updates the user documentation.

What’s new in version 3.1.1 (2019-05-08)

	Updates all the templates (Skeleton Application).

	Updates the documentation.

What’s new in version 3.1.0 (2019-04-30)

	Adds aggregate root controllers for easier usage of aggregate-based functionality.

	Adds asynchronous functionality to the Event Dispatcher.

	Adds asynchronous commands in non-Swoole environments using ReactPHP/Symfony Process.

	Adds a Command Runner to make running commands independent of the PHP environment (Swoole or non-Swoole).

	Updates the documentation.

What’s new in version 3.0.0 (2019-04-16)

	Adds controller-based Event Sourcing aggregates to the framework with a PSR-14 compliant Event Dispatcher (event bus).

	Adds the facilities to use CQRS.

	Updates the documentation.

What’s new in version 2.1.1 (2019-04-16)

	Fixes a few unit tests and a few minor issues concerning code comments.

What’s new in version 2.1.0 (2019-04-10)

	Adds asynchronous non-blocking PHP sessions (Swoole compatible).

	Adds a PSR-6 compliant interface and a corresponding proxy class to Doctrine\Common\Cache classes for session caching.

	Updates the documentation.

What’s new in version 2.0.4 (2019-04-16)

	Fixes a few unit tests and a few minor issues concerning code comments.

What’s new in version 2.0.3 (2019-04-10)

	Fixes an issue when requesting an unknown controller method.

What’s new in version 2.0.2 (2019-01-23)

	Fixes an issue when running in Swoole mode behind an NGINX HTTPS proxy server.

	Fixes an issue with the way the controller namespace was obtained from the file path.

	Updates the documentation.

What’s new in version 2.0.1 (2019-01-20)

	Fixes an issue with the Bootstrap event on Windows.

	Modifies the Controller Manager in order to receive an instance from a Controller Factory directly.

	Updates the documentation.

	Updates the API documentation.

What’s new in version 2.0.0 (2019-01-15)

	Adds support for running the framework on Swoole.

	Uses PSR-7 compliant HTTP messages (Zend Diactoros).

	Uses PSR-15 compliant middleware and pipelines (Zend Stratigility).

	Uses the nikic/fast-route routing library.

	Uses the Pimple Container as a service manager.

	Uses an event-driven architecture (Zend EventManager).

	Uses Plates as the default template manager.

	Adds Twig as a possible template manager.

	Updates the Smarty template manager.

	Adds TailwindCSS to the default templates.

	Updates Bootstrap CSS Framework in alternative templates.

	Updates the Doctrine Framework (domain logic).

	Adds the Atlas ORM Framework (persistence logic).

 LightMVC License

LightMVC License

Copyright 2019, Foreach Code Factory.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and
You must cause any modified files to carry prominent notices stating that You changed the files; and
You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

 Index

Index

 A
 | C
 | E
 | F
 | H
 | I
 | L
 | M
 | R
 | S
 | V

A

 	
 	Autoloading

C

 	
 	Caching routes

 	Configuration

 	Configuration files

 	Configuration Model

 	Configuration View

 	
 	Controller factories

 	Controller factory interface

 	Controller Manager

 	Controller methods

 	Controllers

E

 	
 	Event Manager

 	Event Sourcing

 	Event Sourcing Aggregate Events

 	Event Sourcing Aggregates

 	Event Sourcing Bus

 	Event Sourcing Commands

 	
 	Event Sourcing Dispatcher

 	Event Sourcing Event Aggregate Listeners

 	Event Sourcing Logger

 	Event Sourcing Policies

 	Event Sourcing Read Models

 	Event Sourcing Root Aggregates

 	Event Sourcing Values Objects

F

 	
 	FastRoute

 	
 	FastRouter

H

 	
 	HTTP Messages

I

 	
 	Installation

L

 	
 	License

M

 	
 	Middleware

 	
 	Model configuration

 	Models

R

 	
 	Request

 	Request handler methods

 	Response

 	
 	Router

 	Routes

 	Routing

S

 	
 	Service Manager

 	Services

 	Sessions

 	
 	Skeleton Application

 	Skeleton Application Installation

 	Skeleton Application Structure

 	Swoole

V

 	
 	View configuration

 	
 	Views

_static/up-pressed.png

_static/up.png

_images/logo.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 LightMVC Framework’s documentation

 		
 Installation

 		
 Prerequisites

 		
 Installation using Composer

 		
 Configuration

 		
 Event Sourcing Configuration

 		
 Routing Configuration

 		
 Session Configuration

 		
 View Configuration

 		
 Middleware Configuration

 		
 Model Configuration

 		
 Autoloading

 		
 HTTP Messages

 		
 ServerRequest Object

 		
 Response Object

 		
 Services

 		
 Event Manager

 		
 Service Manager

 		
 Routing

 		
 Routes

 		
 Caching Routes

 		
 Controllers

 		
 Controller Methods

 		
 Controller Factories

 		
 Event Sourcing

 		
 Aggregates

 		
 Event Dispatcher

 		
 Aggregate Events

 		
 Aggregate Value Objects

 		
 Aggregate Event Listeners

 		
 Aggregate Read Models
