# **lifetimes Documentation**

Release 0.11.2

**Cameron Davidson-Pilon** 

Jul 06, 2020

# Contents:

| 1  | Introduction         1.1       Applications         1.2       Specific Application: Customer Lifetime Value | <b>3</b><br>3<br>3                                                                 |  |  |
|----|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| 2  | Installation                                                                                                | 5                                                                                  |  |  |
| 3  | Documentation and tutorials                                                                                 | 7                                                                                  |  |  |
| 4  | Questions? Comments? Requests?                                                                              | 9                                                                                  |  |  |
| 5  | <ul> <li>5.2 High Level Overview</li></ul>                                                                  | <ol> <li>11</li> <li>20</li> <li>25</li> <li>25</li> <li>27</li> <li>63</li> </ol> |  |  |
| 6  | 6 Indices and tables 6                                                                                      |                                                                                    |  |  |
| Ру | Python Module Index                                                                                         |                                                                                    |  |  |
| In | ndex                                                                                                        |                                                                                    |  |  |

# 

# CHAPTER 1

# Introduction

Lifetimes can be used to analyze your users based on a few assumption:

- 1. Users interact with you when they are "alive".
- 2. Users under study may "die" after some period of time.

I've quoted "alive" and "die" as these are the most abstract terms: feel free to use your own definition of "alive" and "die" (they are used similarly to "birth" and "death" in survival analysis). Whenever we have individuals repeating occurrences, we can use Lifetimes to help understand user behaviour.

# **1.1 Applications**

If this is too abstract, consider these applications:

- Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn't for them)
- Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient moved to a new city, or became deceased.)
- Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die = removed the app)
- Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with your product)
- · Predicting the lifetime value of your customers

# **1.2 Specific Application: Customer Lifetime Value**

As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most important part of your business's sales efforts. And (apparently) everyone is doing it wrong. *Lifetimes* is a Python library to calculate CLV for you.

# CHAPTER 2

Installation

pip install lifetimes

# chapter $\mathbf{3}$

Documentation and tutorials

Official documentation

# CHAPTER 4

Questions? Comments? Requests?

Please create an issue in the lifetimes repository.

# CHAPTER 5

# More Information

- 1. Roberto Medri did a nice presentation on CLV at Etsy.
- 2. Papers, lots of papers.
- 3. R implementation is called BTYD (for, Buy 'Til You Die).

# 5.1 Quickstart

For the following examples, we'll use a dataset from an ecommerce provider to analyze their customers' repeat purchases. The examples below are using the cdnow\_customers.csv located in the datasets/ directory.

```
from lifetimes.datasets import load_cdnow_summary
data = load_cdnow_summary(index_col=[0])
print(data.head())
.....
                                Т
     frequency
                  recency
ID
     2
1
                  30.43
                               38.86
2
     1
                   1.71
                               38.86
                   0.00
3
     0
                               38.86
4
     0
                   0.00
                               38.86
5
                               38.86
     0
                   0.00
.....
```

## 5.1.1 The shape of your data

For all models, the following nomenclature is used:

• frequency represents the number of *repeat* purchases the customer has made. This means that it's one less than the total number of purchases. This is actually slightly wrong. It's the count of time periods the customer had a purchase in. So if using days as units, then it's the count of days the customer had a purchase on.

- T represents the age of the customer in whatever time units chosen (weekly, in the above dataset). This is equal to the duration between a customer's first purchase and the end of the period under study.
- recency represents the age of the customer when they made their most recent purchases. This is equal to the duration between a customer's first purchase and their latest purchase. (Thus if they have made only 1 purchase, the recency is 0.)
- monetary\_value represents the average value of a given customer's purchases. This is equal to the sum of all a customer's purchases divided by the total number of purchases. Note that the denominator here is different than the frequency described above.

If your data is not in the format (very common), there are *utility functions* in lifetimes to transform your data to look like this.

## 5.1.2 Basic Frequency/Recency analysis using the BG/NBD model

We'll use the **BG/NBD model** first. There are other models which we will explore in these docs, but this is the simplest to start with.

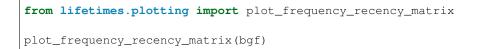
```
from lifetimes import BetaGeoFitter
# similar API to scikit-learn and lifelines.
bqf = BetaGeoFitter(penalizer_coef=0.0)
bgf.fit(data['frequency'], data['recency'], data['T'])
print(bgf)
\leftrightarrow r: 0.24>
.....
bgf.summary
.....
         coef se(coef) lower 95% bound upper 95% bound
   0.242593 0.012557
                           0.217981 0.267205
r
     4.413532 0.378221
                            3.672218
                                          5.154846
alpha
     0.792886 0.185719
                            0.428877
                                          1.156895
а
     2.425752 0.705345
                           1.043276
                                          3.808229
b
.....
```

After fitting, we have lots of nice methods and properties attached to the fitter object, like param\_ and summary.

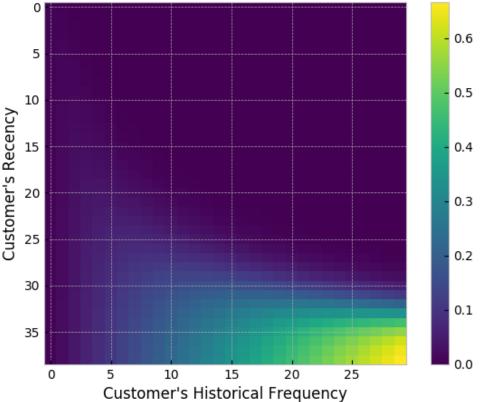
For small samples sizes, the parameters can get implausibly large, so by adding an 12 penalty the likelihood, we can control how large these parameters can be. This is implemented as setting as positive penalizer\_coef in the initialization of the model. In typical applications, penalizers on the order of 0.001 to 0.1 are effective.

#### Visualizing our Frequency/Recency Matrix

Consider: a customer bought from you every day for three weeks straight, and we haven't heard from them in months. What are the chances they are still "alive"? Pretty small. On the other hand, a customer who historically buys from you once a quarter, and bought last quarter, is likely still alive. We can visualize this relationship using the **Frequency/Recency matrix**, which computes the expected number of transactions an artificial customer is to make in the next time period, given his or her recency (age at last purchase) and frequency (the number of repeat transactions he or she has made).







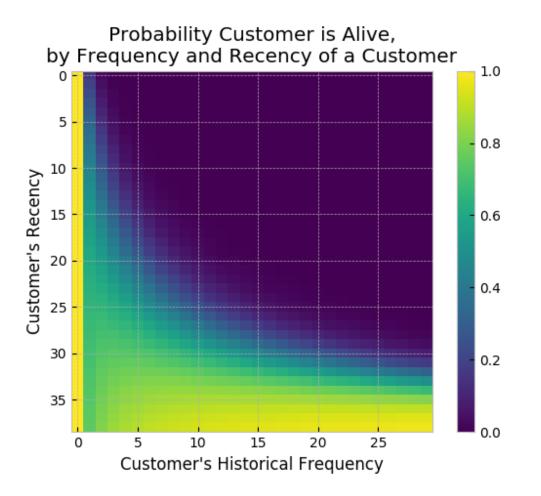
We can see that if a customer has bought 25 times from you, and their latest purchase was when they were 35 weeks old (given the individual is 35 weeks old), then they are your best customer (bottom-right). Your coldest customers are those that are in the top-right corner: they bought a lot quickly, and we haven't seen them in weeks.

There's also that beautiful "tail" around (5,25). That represents the customer who buys infrequently, but we've seen him or her recently, so they *might* buy again - we're not sure if they are dead or just between purchases.

Another interesting matrix to look at is the probability of still being *alive*:

```
from lifetimes.plotting import plot_probability_alive_matrix
plot_probability_alive_matrix(bgf)
```

fr\_matrix



prob

#### Ranking customers from best to worst

Let's return to our customers and rank them from "highest expected purchases in the next period" to lowest. Models expose a method that will predict a customer's expected purchases in the next period using their history.

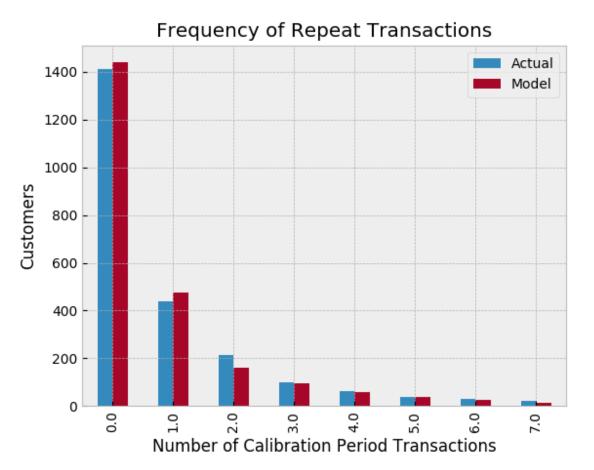
```
t = 1
data['predicted_purchases'] = bgf.conditional_expected_number_of_purchases_up_to_
⇔time(t, data['frequency'], data['recency'], data['T'])
data.sort_values(by='predicted_purchases').tail(5)
.....
       frequency recency
                                Т
                                         predicted_purchases
ID
509
      18
                   35.14
                                35.86
                                          0.424877
841
      19
                   34.00
                                34.14
                                          0.474738
1981
      17
                   28.43
                                28.86
                                          0.486526
157
      29
                   37.71
                                38.00
                                          0.662396
1516
      26
                   30.86
                                31.00
                                          0.710623
.....
```

Great, we can see that the customer who has made 26 purchases, and bought very recently from us, is probably going to buy again in the next period.

#### Assessing model fit

Ok, we can predict and we can visualize our customers' behaviour, but is our model correct? There are a few ways to assess the model's correctness. The first is to compare your data versus artificial data simulated with your fitted model's parameters.

```
from lifetimes.plotting import plot_period_transactions
plot_period_transactions(bgf)
```



model\_fit\_1

We can see that our actual data and our simulated data line up well. This proves that our model doesn't suck.

#### Example using transactional datasets

Most often, the dataset you have at hand will be at the transaction level. Lifetimes has some utility functions to transform that transactional data (one row per purchase) into summary data (a frequency, recency and age dataset).

(continues on next page)

(continued from previous page)

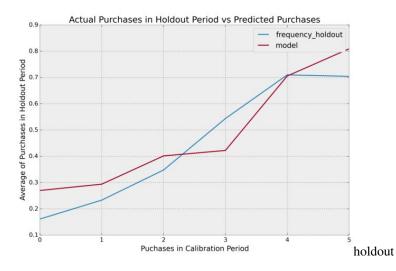
```
2014-05-21 00:00:00
1
                        1
2
  2014-03-14 00:00:00
                        2
 2014-04-09 00:00:00
                        2
3
4 2014-05-21 00:00:00
                        2
.....
summary = summary_data_from_transaction_data(transaction_data, 'id', 'date',...
→observation_period_end='2014-12-31')
print(summary.head())
frequency recency
                       T
id
         0.0
0
                 0.0 298.0
1
         0.0
                 0.0 224.0
              142.0 292.0
2
         6.0
                0.0 147.0
3
         0.0
         2.0
                 9.0 183.0
4
.....
bgf.fit(summary['frequency'], summary['recency'], summary['T'])
# <lifetimes.BetaGeoFitter: fitted with 5000 subjects, a: 1.85, alpha: 1.86, b: 3.18,
→r: 0.16>
```

#### More model fitting

With transactional data, we can partition the dataset into a calibration period dataset and a holdout dataset. This is important as we want to test how our model performs on data not yet seen (think cross-validation in standard machine learning literature). Lifetimes has a function to partition our dataset like this:

```
from lifetimes.utils import calibration_and_holdout_data
summary_cal_holdout = calibration_and_holdout_data(transaction_data, 'id', 'date',
                                        calibration_period_end='2014-09-01',
                                        observation_period_end='2014-12-31' )
print(summary_cal_holdout.head())
.....
    frequency_cal recency_cal T_cal frequency_holdout duration_holdout
id
0
             0.0
                          0.0 177.0
                                                     0.0
                                                                       121
             0.0
                          0.0 103.0
1
                                                     0.0
                                                                       121
2
                        142.0 171.0
             6.0
                                                     0.0
                                                                       121
3
                         0.0 26.0
              0.0
                                                     0.0
                                                                       121
4
              2.0
                          9.0 62.0
                                                     0.0
                                                                       121
.....
```

With this dataset, we can perform fitting on the \_cal columns, and test on the \_holdout columns:



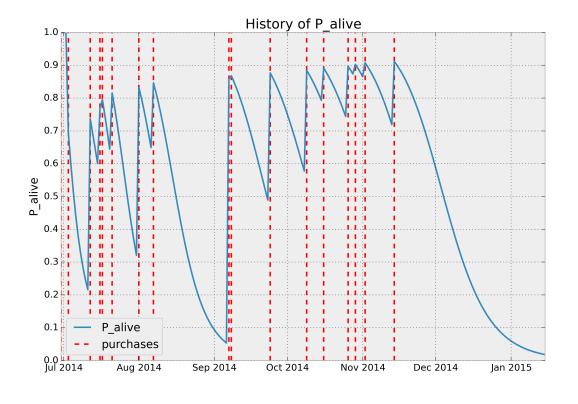
#### **Customer Predictions**

Based on customer history, we can predict what an individuals future purchases might look like:

#### **Customer Probability Histories**

Given a customer transaction history, we can calculate their historical probability of being alive, according to our trained model. For example:

```
from lifetimes.plotting import plot_history_alive
id = 35
days_since_birth = 200
sp_trans = transaction_data.loc[transaction_data['id'] == id]
plot_history_alive(bgf, days_since_birth, sp_trans, 'date')
```



history

## 5.1.3 Estimating customer lifetime value using the Gamma-Gamma model

For this whole time we didn't take into account the economic value of each transaction and we focused mainly on transactions' occurrences. To estimate this we can use the Gamma-Gamma submodel. But first we need to create summary data from transactional data also containing economic values for each transaction (i.e. profits or revenues).

```
from lifetimes.datasets import load_cdnow_summary_data_with_monetary_value
summary_with_money_value = load_cdnow_summary_data_with_monetary_value()
summary_with_money_value.head()
returning_customers_summary = summary_with_money_value[summary_with_money_value[
\rightarrow 'frequency']>0]
print (returning_customers_summary.head())
.....
                                       T monetary_value
              frequency recency
customer_id
1
                      2
                           30.43 38.86
                                                    22.35
2
                      1
                            1.71 38.86
                                                    11.77
                      7
                                                    73.74
6
                           29.43 38.86
7
                      1
                                                    11.77
                            5.00
                                  38.86
9
                      2
                                  38.86
                                                    25.55
                           35.71
.....
```

If computing the monetary value from your own data, note that it is the **mean** of a given customer's value, not the **sum**. monetary\_value can be used to represent profit, or revenue, or any value as long as it is consistently calculated for each customer.

#### The Gamma-Gamma model and the independence assumption

The model we are going to use to estimate the CLV for our userbase is called the Gamma-Gamma submodel, which relies upon an important assumption. The Gamma-Gamma submodel, in fact, assumes that there is no relationship between the monetary value and the purchase frequency. In practice we need to check whether the Pearson correlation between the two vectors is close to 0 in order to use this model.

At this point we can train our Gamma-Gamma submodel and predict the conditional, expected average lifetime value of our customers.

We can now estimate the average transaction value:

```
print (ggf.conditional_expected_average_profit (
        summary_with_money_value['frequency'],
        summary_with_money_value['monetary_value']
    ).head(10))
.....
customer_id
      24.658619
1
2
      18.911489
3
      35.170981
4
      35.170981
5
      35.170981
6
      71.462843
7
      18.911489
8
      35.170981
9
      27.282408
      35.170981
10
dtype: float64
.....
print("Expected conditional average profit: %s, Average profit: %s" % (
    ggf.conditional_expected_average_profit(
        summary_with_money_value['frequency'],
        summary_with_money_value['monetary_value']
    ).mean(),
    summary_with_money_value[summary_with_money_value['frequency']>0]['monetary_value
\rightarrow ].mean()
))
.....
```

(continues on next page)

(continued from previous page)

```
Expected conditional average profit: 35.2529588256, Average profit: 35.078551797
"""
```

While for computing the total CLV using the DCF method (https://en.wikipedia.org/wiki/Discounted\_cash\_flow) adjusting for cost of capital:

```
# refit the BG model to the summary_with_money_value dataset
bgf.fit(summary_with_money_value['frequency'], summary_with_money_value['recency'],

→ summary_with_money_value['T'])

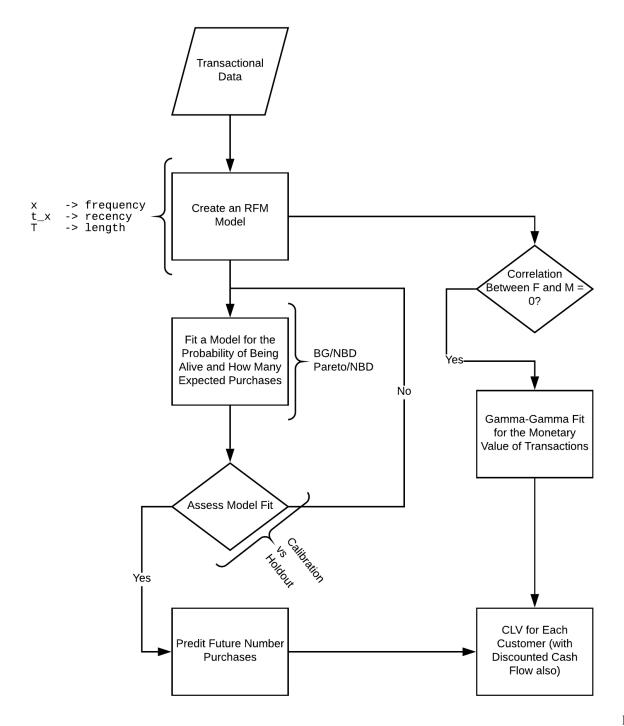
print(ggf.customer_lifetime_value(
    bgf, #the model to use to predict the number of future transactions
    summary_with_money_value['frequency'],
    summary_with_money_value['recency'],
    summary_with_money_value['T'],
    summary_with_money_value['monetary_value'],
    time=12, # months
    discount_rate=0.01 # monthly discount rate ~ 12.7% annually
).head(10))
.....
customer_id
1
      140.096211
2
       18.943467
3
        38.180574
4
        38.180574
5
        38.180574
6
      1003.868107
7
        28.109683
8
        38.180574
9
       167.418216
        38.180574
10
Name: clv, dtype: float64
.....
```

# 5.2 High Level Overview

This is intended to be a high-level documentation of how the code is structured. Whenever possible, UML is used. Some of the standards applied in this documentation can be found here.

#### 5.2.1 Workflow

The usual workflow of using the Lifetimes library is exemplified in the *Quickstart* page. It can also be represented through the following fluxogram:



#### Workflow

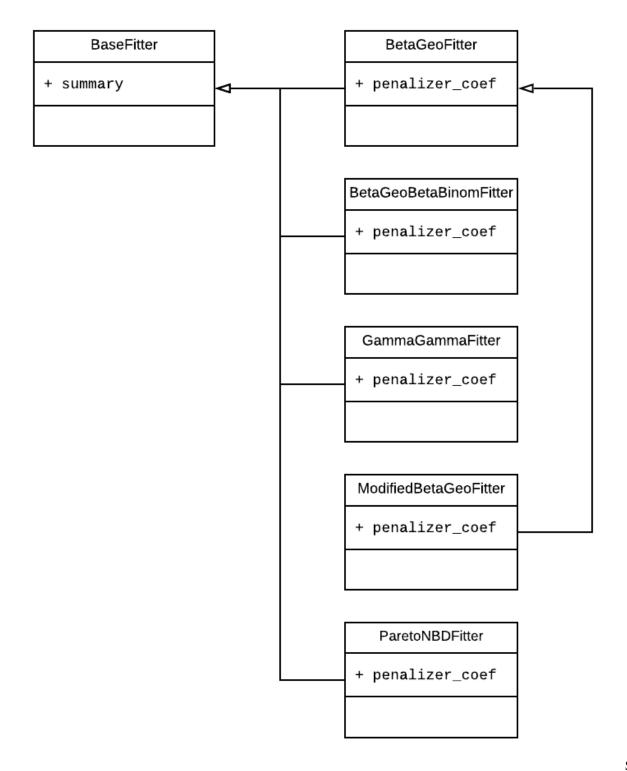
Notice that the right-most branch of the fluxogram actually refers to monetary value modeling.

### 5.2.2 Fitters

The core fitter is the BaseFitter class is inside the \_\_init\_\_.py, which serves as a *superclass* for most of the the other fitters. So far, only the ModifiedBetaGeoFitter is set on a higher layer, inheriting from the

Basic

BetaGeoFitter. The following image shows the simplified interaction of the main fitter classes.



Simplified

Fitters Fluxograms

Below is a more detailed fluxogram of the classes. The arrows with the empty arrowheads symbolize inheritance. If the image is too small, you can find the source here.

| BaseFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ]   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| + summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| <pre>unload_params(*args) : list<br/>+ save_model(path, save_data, save_generate_data_method, values_to_save) : None<br/>+ load_model(path) : model<br/>compute_standard_errors() : matrix<br/>compute_standard_errors() : array<br/>compute_standard_errors() : array<br/>compute_standard_errorsl() : DataFrame<br/>fit(minimizing_function_args, initial_params, params_size, disp, tol=1e-7, bounds=None, **Kwargs) : BaseFitter</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| BetaGeoFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1   |
| + penalizer_coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   |
| <pre>+ fit(frequency, recency, T, weights, initial_params, verbose, tol, index, **kwargs) : BetaGeoFitter - negative_log_likelihood(log_params, freq, rec, T, weights, penalizer_coef) : float + conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T) : array_like + conditional_probability_alive_frequency, recency, T) : array + conditional_probability_alive_matrix(max_frequency, max_recency) : matrix + expected_number_of_purchases_up_to_time(t) : array_like + probability_of_n_purchases_up_to_time(t, n) : float</pre>                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]   |
| BetaGeoBetaBinomFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| + penalizer_coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| - loglikelihood(x, tx, T) : array - loglikelihood(log_params, frequency, recency, n_periods, weights, penalizer_coef) : float + fit(frequency, recency, n_periods, weights, initial_params, verbose, tol, index, "*kwargs) : BetaGeoBetaBinomFitter - negative log_likelihood(log_params, freq, rec, T, weights, penalizer_coef) : float + conditional_probability_alive(m_periods_in_future, frequency, recency, n_periods) : array_like + conditional_probability_alive(m_periods_in_future, frequency, recency, n_periods) : array + expected_number_of_transactions_in_first_n_periods(n) : float + conditional_probability_alive(m_periods(n) : float) + expected_number_of_transactions_in_first_n_periods(n) : float + conditional_probability_alive(m_periods(m_s, recency)) : matrix + expected_number_of_transactions(ine(t) : array_like + probability_of_n_purchases_up_to_time(t, n) : float |     |
| GammaGammaFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ן ו |
| + penalizer_coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   |
| <ul> <li><u>negative log likelihood</u>(log_params, frequency, avg_monetary_value, weights, penalizer_coef) : float</li> <li>conditional_expected_average_profit(frequency, monetary_value) : array-like</li> <li>fit(frequency, monetary_value, weights, initial_params, verbose, tol, index, q_constraint, **kwargs) : GammaGammaFitter</li> <li>customer_lifetime_value(transaction_prediction_model, frequency, recency, T, monetary_value, time, discount_rate, freq) : Series</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| ModifiedBetaGeoFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı   |
| + penalizer_coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| <pre>+ fit(frequency, recency, T, weights, initial_params, verbose, tol, index, **kwargs) : ModifiedBetaGeoFitter<br/>negative_log_likelihood(log_params, freq, rec, T, weights, penalizer_coef) : float<br/>+ conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T) : array_like<br/>+ conditional_probability_alive(frequency, recency, T) : array<br/>+ conditional_probability_alive_matrix(max_frequency, max_recency) : matrix<br/>+ expected_number_of_purchases_up_to_time(t) : array_like<br/>+ orchetility of_nurchases_up_to_time(t) : array_like</pre>                                                                                                                                                                                                                                                                                                                |     |
| + probability_of_n_purchases_up_to_time(t, n) : float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| ParetoNBDFitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   |
| + penalizer_coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   |
| <pre>+ fit(frequency, recency, T, weights, iterative_fitting, initial_params, verbose, tol, index, fit_method, maxiter, **kwargs) : ParetoNBDFitter - log_A_0(params, freq, recency, age) : float - conditional_log_likelihood(params, freq, rec, T) : float - negative_log_likelihood(params, freq, rec, T, weights, penalizer_coef) : float + conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T) : array-like + conditional_probability_alive(frequency, recency, T) : float + conditional_probability_alive(matrix(max_frequency, max_recency) : matrix + expected_number_of_purchases_up_to_time(t) : farequency</pre>                                                                                                                                                                                                                                                     |     |
| <pre>* conditional_probability_of_n_purchases_up_to_time(n, t, frequency, recency, T) : array-likefit(minimizing_function_args, iterative_fitting, initial_params, params_size, disp, tol=le-6, fit_method="Nelder-Mead", maxiter=2000, **kwargs) : tuple</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |

UML Fluxogram

Complete

## 5.2.3 Graphs

Graphs are plotted with functions coming from the plotting.py file. The main functions are cited below, alongside a brief description of how they are created.

ploting.py coalesce(\*args) plot\_calibration\_purchases\_vs\_holdout\_purchases(model, calibration\_holdout\_matrix, kind, n, \*\*kwargs) plot\_afrequency\_recency\_matrix(model, T, max\_frequency, max\_recency, title, xlabel, ylabel, \*\*kwargs) plot\_probability\_alive\_matrix(model, T, max\_frequency, max\_recency, title, xlabel, ylabel, \*\*kwargs) plot\_protexpred\_repeat\_purchases(model, title, xlabel, xlabel, \*\*kwargs) plot\_spected\_repeat\_purchases(model, title, xlabel, xlabel, \*\*kwargs) plot\_thistory\_alive(model, t, transactions, datetime\_col, freq, start\_date, ax, \*\*kwargs) plot\_cremental\_transactions(model, transactions, datetime\_col, customer\_id\_col, t, t\_cal, datetime\_format, freq, set\_index\_date, title, xlabel, ylabel, ax, \*\*kwargs) plot\_transaction\_rate\_heterogeneity(model, suptitle, xlabel, ylabel, suptitle\_fontsize, \*\*kwargs) plot\_dropout\_rate\_heterogeneity(model, suptitle, xlabel, ylabel, suptitle\_fontsize, \*\*kwargs) plot\_dropout\_rate\_heterogeneity(model, suptitle, xlabel, ylabel, suptitle\_fontsize, \*\*kwargs)

plotting.py

functions

- plot\_period\_transactions : aggregation on how many purchases each customer has made in the calibration period.
- plot\_calibration\_purchases\_vs\_holdout\_purchases : aggregation over the conditional expected number of purchases.
- plot\_frequency\_recency\_matrix : conditional expected number of purchases.
- plot\_probability\_alive\_matrix : conditional probability of the customer being alive.
- plot\_expected\_repeat\_purchases : expected number of purchases.
- plot\_history\_alive : resampling with the model with the specific parameters of the customer, using the calculate\_alive\_path from the utils.py file.
- plot\_cumulative\_transactions: plot coming from the expected\_cumulative\_transactions function.
- plot\_incremental\_transactions : decumulative sum over the expected\_cumulative\_transactions function.
- plot\_transaction\_rate\_heterogeneity : Gamma Distribution Histogram.
- plot\_dropout\_rate\_heterogeneity : Beta Distribution Histogram.

#### 5.2.4 The utils.py File

In the utils.py file we can find some useful functions that are used inside the library and/or can be accessed by the end-user. Some of them are listed below:

- calibration\_and\_holdout\_data : RFM data separated into calibration and holdout.
- \_find\_first\_transactions : DataFrame with the first transactions.
- summary\_data\_from\_transaction\_data : RFM model for each customer coming from the transactional data.
- calculate\_alive\_path : alive path (history) of a specified customer based on the fitted model.
- expected\_cumulative\_transactions : expected and actual repeated cumulative transactions.

# 5.3 Saving and loading model

When you have lots of data and training takes a lot of time option with saving and loading model could be useful. First you need to fit the model, then save it and load.

## 5.3.1 Fit model

## 5.3.2 Saving model

Model will be saved with dill to pickle object. Optional parameters save\_data and save\_generate\_data\_method are present to reduce final pickle object size for big dataframes. Optional parameters:

- save\_data is used for saving data from model or not (default: True).
- save\_generate\_data\_method is used for saving generate\_new\_data method from model or not
   (default: True)

```
bgf.save_model('bgf.pkl')
```

or to save only model with minumum size without data and generate\_new\_data:

bgf.save\_model('bgf\_small\_size.pkl', save\_data=False, save\_generate\_data\_method=False)

# 5.3.3 Loading model

Before loading you should initialize the model first and then use method load\_model

# 5.4 More Examples and recipes

#### 5.4.1 Example SQL statement to transform transactional data into RFM data

Let's review what our variables mean:

- frequency represents the number of *repeat* purchases the customer has made. This means that it's one less than the total number of purchases. This is actually slightly wrong. It's the count of distinct time periods the customer had a purchase in. So if using days as units, then it's the count of distinct days the customer had a purchase on.
- T represents the age of the customer in whatever time units chosen. This is equal to the duration between a customer's first purchase and the end of the period under study.
- recency represents the age of the customer when they made their most recent purchases. This is equal to the duration between a customer's first purchase and their latest purchase. (Thus if they have made only 1 purchase, the recency is 0.)

Thus, executing a query against a transactional dataset, called orders, in a SQL-store may look like:

```
SELECT
customer_id,
COUNT(distinct date(transaction_at)) - 1 as frequency,
datediff('day', MIN(transaction_at), MAX(transaction_at)) as recency,
AVG(total_price) as monetary_value,
datediff('day', CURRENT_DATE, MIN(transaction_at)) as T
FROM orders
GROUP BY customer_id
```

#### 5.4.2 Create table with RFM summary matrix with holdout

Variables frequency, T and recency have the same meaning as in previous section.

Two variables to set before executing:

- duration\_holdout holdout duration in days.
- CURRENT\_DATE current date, could be changed to final date of the transactional data.

```
select
    a.*,
    COALESCE (b.frequency_holdout, 0) as frequency_holdout,
    duration_holdout as duration_holdout
from (
    select
        customer_id,
        datediff(max(event_date), min(event_date)) as recency,
        count(*) - 1 as frequency,
        datediff(date_sub(CURRENT_DATE, duration_holdout), min(event_date)) as T
    from orders
    where event_date < date_sub(CURRENT_DATE, duration_holdout)</pre>
    group by customer_id
) a
left join (
    select
        customer_id,
        count(*) as frequency_holdout
    from orders
    where event_date >= date_sub(CURRENT_DATE, duration_holdout)
      and event_date < CURRENT_DATE
    group by customer_id
) b
on a.customer_id = b.customer_id
```

# 5.5 lifetimes package

#### 5.5.1 lifetimes.fitters

#### lifetimes.fitters.beta\_geo\_beta\_binom\_fitter module

Beta Geo Beta BinomFitter.

class lifetimes.fitters.beta\_geo\_beta\_binom\_fitter.BetaGeoBetaBinomFitter(penalizer\_coef=0.0)
 Bases: lifetimes.fitters.BaseFitter

Also known as the Beta-Geometric/Beta-Binomial Model<sup>1</sup>.

Future purchases opportunities are treated as discrete points in time. In the literature, the model provides a better fit than the Pareto/NBD model for a nonprofit organization with regular giving patterns.

The model is estimated with a recency-frequency matrix with n transaction opportunities.

**Parameters penalizer\_coef** (float) – The coefficient applied to an l2 norm on the parame-

ters

#### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

#### params\_

The fitted parameters of the model

Туре

obj Series

data

A DataFrame with the values given in the call to *fit* 

Туре

obj DataFrame

#### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

Туре

obj DataFrame

#### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

#### standard\_errors\_

A Series with the standard errors of the parameters

Type

obj Series

<sup>1</sup> Fader, Peter S., Bruce G.S. Hardie, and Jen Shang (2010), "Customer-Base Analysis in a Discrete-Time Noncontractual Setting," Marketing Science, 29 (6), 1086-1108.

#### summary

A DataFrame containing information about the fitted parameters

Type

obj DataFrame

#### References

```
conditional_expected_number_of_purchases_up_to_time (m_periods_in_future,
frequency, recency,
n_periods)
Conditional expected purchases in future time period.
```

Conditional expected purchases in future time period.

The expected number of future transactions across the next m\_periods\_in\_future transaction opportunities by a customer with purchase history (x, tx, n).

 $E(X(n_{periods}, n_{periods} + m_{periods_in_future}) | \alpha, \beta, \gamma, \delta, frequency, recency, n_{periods})$ 

See (13) in Fader & Hardie 2010.

**Parameters** t (*array\_like*) – time n\_periods (n+t)

**Returns** *array\_like* – predicted transactions

**conditional\_probability\_alive** (*m\_periods\_in\_future, frequency, recency, n\_periods*) Conditional probability alive.

Conditional probability customer is alive at transaction opportunity n\_periods + m\_periods\_in\_future.

 $P(aliveatn_periods + m_periods_in_future | alpha, beta, gamma, delta, frequency, recency, n_periods)$ 

See (A10) in Fader and Hardie 2010.

**Parameters** m (array\_like) – transaction opportunities

Returns array\_like - alive probabilities

```
expected_number_of_transactions_in_first_n_periods (n)
```

Return expected number of transactions in first n n\_periods.

Expected number of transactions occurring across first n transaction opportunities. Used by Fader and Hardie to assess in-sample fit.

$$Pr(X(n) = x | \alpha, \beta, \gamma, \delta)$$

See (7) in Fader & Hardie 2010.

**Parameters** n (float) – number of transaction opportunities

**Returns** DataFrame – Predicted values, indexed by x

fit (frequency, recency, n\_periods, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, \*\*kwargs) Fit the BG/BB model.

#### **Parameters**

- **frequency** (*array\_like*) Total periods with observed transactions
- recency (array\_like) Period of most recent transaction
- **n\_periods** (*array\_like*) Number of transaction opportunities. Previously called *n*.

- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern. Previously called *n\_custs*.
- **verbose** (boolean, optional) Set to true to print out convergence diagnostics.
- tol (float, optional) Tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) Index for resulted DataFrame which is accessible via self.data
- kwargs Key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns BetaGeoBetaBinomFitter - fitted and with parameters estimated

#### lifetimes.fitters.beta\_geo\_fitter module

Beta Geo Fitter, also known as BG/NBD model.

```
class lifetimes.fitters.beta_geo_fitter.BetaGeoFitter(penalizer_coef=0.0)
    Bases: lifetimes.fitters.BaseFitter
```

Also known as the BG/NBD model.

Based on [2]\_, this model has the following assumptions:

- 1) Each individual, i, has a hidden lambda\_i and p\_i parameter
- 2) These come from a population wide Gamma and a Beta distribution respectively.
- 3) Individuals purchases follow a Poisson process with rate lambda\_i\*t .
- 4) After each purchase, an individual has a p\_i probability of dieing (never buying again).

**Parameters penalizer\_coef** (float) – The coefficient applied to an l2 norm on the parameters

#### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

#### params\_

The fitted parameters of the model

#### Type

obj Series

#### data

A DataFrame with the values given in the call to fit

#### Type

obj DataFrame

#### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

Туре

obj DataFrame

#### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

#### Туре

obj DataFrame

#### standard\_errors\_

A Series with the standard errors of the parameters

Туре

obj Series

#### summary

A DataFrame containing information about the fitted parameters

Туре

obj DataFrame

#### References

```
conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
```

Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly chosen individual from the population, given they have purchase history (frequency, recency, T).

This function uses equation (10) from [2]\_.

#### Parameters

- t (*array\_like*) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.
- **T** (*array\_like*) age of the customer.

Returns array\_like

#### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

#### conditional\_probability\_alive (frequency, recency, T)

Compute conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

From http://www.brucehardie.com/notes/021/palive\_for\_BGNBD.pdf

#### **Parameters**

- **frequency** (array or scalar) historical frequency of customer.
- **recency** (array or scalar) historical recency of customer.

• **T** (array or scalar) – age of the customer.

**Returns** *array* – value representing a probability

**conditional\_probability\_alive\_matrix** (*max\_frequency=None*, *max\_recency=None*) Compute the probability alive matrix.

Uses the conditional\_probability\_alive() method to get calculate the matrix.

#### Parameters

- **max\_frequency** (*float*, *optional*) the maximum frequency to plot. Default is max observed frequency.
- **max\_recency** (*float*, *optional*) the maximum recency to plot. This also determines the age of the customer. Default to max observed age.

**Returns** *matrix* – A matrix of the form [t\_x: historical recency, x: historical frequency]

#### expected\_number\_of\_purchases\_up\_to\_time(t)

Calculate the expected number of repeat purchases up to time t.

Calculate repeat purchases for a randomly chosen individual from the population.

Equivalent to equation (9) of [2]\_.

**Parameters** t (array\_like) – times to calculate the expection for

Returns array\_like

#### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

fit (frequency, recency, T, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, \*\*kwargs)

Fit a dataset to the BG/NBD model.

#### Parameters

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **initial\_params** (*array\_like*, *optional*) set the initial parameters for the fitter.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.

- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns BetaGeoFitter - with additional properties like params\_ and methods like predict

probability\_of\_n\_purchases\_up\_to\_time(t, n)

Compute the probability of n purchases.

$$P(N(t) = n | \text{model})$$

where N(t) is the number of repeat purchases a customer makes in t units of time.

Comes from equation (8) of [2]\_.

#### **Parameters**

• t (float) – number units of time

• **n** (*int*) – number of purchases

Returns float - Probability to have n purchases up to t units of time

#### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

#### lifetimes.fitters.gamma\_gamma\_fitter module

Gamma-Gamma Model.

```
class lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter
```

Fitter for the gamma-gamma model.

It is used to estimate the average monetary value of customer transactions.

This implementation is based on the Excel spreadsheet found  $in^3$ . More details on the derivation and evaluation can be found  $in^4$ .

**Parameters penalizer\_coef** (*float*) – The coefficient applied to an l2 norm on the parameters

#### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

**Type** float

params\_

The fitted parameters of the model

#### Туре

<sup>&</sup>lt;sup>3</sup> http://www.brucehardie.com/notes/025/ The Gamma-Gamma Model of Monetary Value.

<sup>&</sup>lt;sup>4</sup> Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee (2005), "RFM and CLV: Using iso-value curves for customer base analysis", Journal of Marketing Research, 42 (November), 415-430.

obj OrderedDict

### data

A DataFrame with the columns given in the call to *fit* 

### Type

obj DataFrame

### References

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

### Туре

obj Series

### data

A DataFrame with the values given in the call to fit

### Type

obj DataFrame

### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

### Type

obj DataFrame

### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

### Туре

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

### Туре

obj Series

### summary

A DataFrame containing information about the fitted parameters

### Type

### obj DataFrame

conditional\_expected\_average\_profit (frequency=None, monetary\_value=None)

Conditional expectation of the average profit.

This method computes the conditional expectation of the average profit per transaction for a group of one or more customers.

Equation (5) from: http://www.brucehardie.com/notes/025/

### **Parameters**

- **frequency** (*array\_like*, *optional*) a vector containing the customers' frequencies. Defaults to the whole set of frequencies used for fitting the model.
- **monetary\_value** (*array\_like*, *optional*) a vector containing the customers' monetary values. Defaults to the whole set of monetary values used for fitting the model.

Returns array\_like - The conditional expectation of the average profit per transaction

**customer\_lifetime\_value** (*transaction\_prediction\_model*, *frequency*, *recency*, *T*, *monetary\_value*, *time=12*, *discount\_rate=0.01*, *freq='D'*)

Return customer lifetime value.

This method computes the average lifetime value for a group of one or more customers.

### **Parameters**

- **transaction\_prediction\_model** (*model*) the model to predict future transactions, literature uses pareto/ndb models but we can also use a different model like beta-geo models
- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (the recency vector of customers' purchases) (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- **monetary\_value** (*array\_like*) the monetary value vector of customer's purchases (denoted m in literature).
- time (float, optional) the lifetime expected for the user in months. Default: 12
- **discount\_rate** (*float*, *optional*) the monthly adjusted discount rate. Default: 0.01
- **freq** (*string*, *optional*) {"D", "H", "M", "W"} for day, hour, month, week. This represents what unit of time your T is measure in.
- **Returns** Series Series object with customer ids as index and the estimated customer lifetime values as values
- fit (frequency, monetary\_value, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, q\_constraint=False, \*\*kwargs) Fit the data to the Gamma/Gamma model.

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **monetary\_value** (*array\_like*) the monetary value vector of customer's purchases (denoted m in literature).
- weights (*None or array\_like*) Number of customers with given frequency/monetary\_value, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/monetary\_value. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **initial\_params** (*array\_like*, *optional*) set the initial parameters for the fitter.

- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **q\_constraint** (bool, optional) when q < 1, population mean will result in a negative value leading to negative CLV outputs. If True, we penalize negative values of q to avoid this issue.
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns GammaGammaFitter - fitted and with parameters estimated

### lifetimes.fitters.modified\_beta\_geo\_fitter module

class lifetimes.fitters.modified\_beta\_geo\_fitter.ModifiedBetaGeoFitter(penalizer\_coef=0.0)
 Bases: lifetimes.fitters.beta\_geo\_fitter.BetaGeoFitter

Also known as the MBG/NBD model.

Based on<sup>5</sup>,<sup>6</sup>, this model has the following assumptions: 1) Each individual, i, has a hidden lambda\_i and p\_i parameter 2) These come from a population wide Gamma and a Beta distribution

respectively.

- 3) Individuals purchases follow a Poisson process with rate  $\lambda_i * t$ .
- 4) At the beginning of their lifetime and after each purchase, an individual has a p\_i probability of dieing (never buying again).

### References

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

### Туре

obj Series

### data

A DataFrame with the values given in the call to fit

Туре

obj DataFrame

variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

<sup>5</sup> Batislam, E.P., M. Denizel, A. Filiztekin (2007), "Empirical validation and comparison of models for customer base analysis," International Journal of Research in Marketing, 24 (3), 201-209.

<sup>&</sup>lt;sup>6</sup> Wagner, U. and Hoppe D. (2008), "Erratum on the MBG/NBD Model," International Journal of Research in Marketing, 25 (3), 225-226.

Туре

obj DataFrame

### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

### Туре

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

Туре

obj Series

### summary

A DataFrame containing information about the fitted parameters

Type

### obj DataFrame

**conditional\_expected\_number\_of\_purchases\_up\_to\_time** (*t*, *frequency*, *recency*, *T*) Conditional expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population, given they have purchase history (frequency, recency, T) See Wagner, U. and Hoppe D. (2008).

#### **Parameters**

- t (array\_like) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.
- **T** (*array\_like*) age of the customer.

### **Returns** array\_like

### conditional\_probability\_alive (frequency, recency, T)

Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive. From https://www.researchgate.net/publication/247219660\_Empirical\_validation\_and\_comparison\_of\_ models\_for\_customer\_base\_analysis Appendix A, eq. (5)

### **Parameters**

- **frequency** (array or float) historical frequency of customer.
- **recency** (*array* or *float*) historical recency of customer.
- **T** (array or float) age of the customer.

**Returns** *array* – value representing probability of being alive

### expected\_number\_of\_purchases\_up\_to\_time(t)

Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population.

Parameters t (array\_like) - times to calculate the expectation for

### **Returns** array\_like

fit (frequency, recency, T, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, \*\*kwargs)

Fit the data to the MBG/NBD model.

### Parameters

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

**Returns** *ModifiedBetaGeoFitter* – With additional properties and methods like params\_ and predict

### probability\_of\_n\_purchases\_up\_to\_time(t, n)

Compute the probability of n purchases up to time t.

$$P(N(t) = n | \text{model})$$

where N(t) is the number of repeat purchases a customer makes in t units of time.

### **Parameters**

- t (float) number units of time
- **n** (*int*) number of purchases

**Returns** *float* – Probability to have n purchases up to t units of time

### lifetimes.fitters.pareto\_nbd\_fitter module

### Pareto/NBD model.

**class** lifetimes.fitters.pareto\_nbd\_fitter.**ParetoNBDFitter**(*penalizer\_coef=0.0*) Bases: lifetimes.fitters.BaseFitter

Pareto NBD fitter<sup>7</sup>.

David C. Schmittlein, Donald G. Morrison and Richard Colombo Management Science, Vol. 33, No. 1 (Jan., 1987), pp. 1-24 "Counting Your Customers: Who Are They and What Will They Do Next,"

**Parameters penalizer\_coef** (*float*) – The coefficient applied to an l2 norm on the parameters

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

#### params\_

The fitted parameters of the model

Type

obj OrderedDict

#### data

A DataFrame with the columns given in the call to fit

Туре

obj DataFrame

### References

**conditional\_expected\_number\_of\_purchases\_up\_to\_time** (*t*, *frequency*, *recency*, *T*) Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population, given they have purchase history (frequency, recency, T).

This is equation (41) from: http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

### **Parameters**

- t (array\_like) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.
- **T** (*array\_like*) age of the customer.

### Returns array\_like

### conditional\_probability\_alive (frequency, recency, T)

Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

Section 5.1 from (equations (36) and (37)): http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

### Parameters

- **frequency** (*float*) historical frequency of customer.
- **recency** (*float*) historical recency of customer.
- **T** (*float*) age of the customer.

**Returns** *float* – value representing a probability

**conditional\_probability\_alive\_matrix** (*max\_frequency=None*, *max\_recency=None*) Compute the probability alive matrix.

Builds on the conditional\_probability\_alive() method.

### **Parameters**

- **max\_frequency** (*float*, *optional*) the maximum frequency to plot. Default is max observed frequency.
- **max\_recency** (*float*, *optional*) the maximum recency to plot. This also determines the age of the customer. Default to max observed age.

**Returns** *matrix* – A matrix of the form [t\_x: historical recency, x: historical frequency]

```
conditional_probability_of_n_purchases_up_to_time (n, t, frequency, recency, T)
Return conditional probability of n purchases up to time t.
```

Calculate the probability of n purchases up to time t for an individual with history frequency, recency and T (age).

The main equation being implemented is (16) from: http://www.brucehardie.com/notes/028/pareto\_nbd\_ conditional\_pmf.pdf

### Parameters

- **n** (*int*) number of purchases.
- t (a scalar) time up to which probability should be calculated.
- **frequency** (*float*) historical frequency of customer.
- **recency** (*float*) historical recency of customer.
- **T** (*float*) age of the customer.

#### **Returns** *array\_like*

### expected\_number\_of\_purchases\_up\_to\_time(t)

Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population.

Equation (27) from: http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

```
Parameters t (array_like) - times to calculate the expectation for.
```

### **Returns** array\_like

fit (frequency, recency, T, weights=None, iterative\_fitting=1, initial\_params=None, verbose=False, tol=0.0001, index=None, fit\_method='Nelder-Mead', maxiter=2000, \*\*kwargs) Pareto/NBD model fitter.

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern.

- **iterative\_fitting** (*int*, *optional*) perform iterative\_fitting fits over random/warm-started initial params
- **initial\_params** (*array\_like*, *optional*) set the initial parameters for the fitter.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **fit\_method** (*string*, *optional*) fit\_method to passing to scipy.optimize.minimize
- **maxiter** (*int*, *optional*) max iterations for optimizer in scipy.optimize.minimize will be overwritten if set in kwargs.
- kwargs key word arguments to pass to the scipy.optimize.minimize function as options dict

**Returns** *ParetoNBDFitter* – with additional properties like params\_ and methods like predict

Base fitter for other classes.

class lifetimes.fitters.BaseFitter Bases: object

Base class for fitters.

load\_model (path)

Load model with dill package.

**Parameters** path (str) – From what path load model.

save\_model (path, save\_data=True, save\_generate\_data\_method=True, values\_to\_save=None)
Save model with dill package.

Parameters

- **path** (*str*) Path where to save model.
- **save\_data** (bool, optional) Whether to save data from fitter.data to pickle object
- **save\_generate\_data\_method** (bool, optional) Whether to save generate\_new\_data method (if it exists) from fitter.generate\_new\_data to pickle object.
- **values\_to\_save** (*list*, *optional*) Placeholders for original attributes for saving object. If None will be extended to attr\_list length like [None] \* len(attr\_list)

#### summary

Summary statistics describing the fit.

**Returns df** (*pd.DataFrame*) – Contains columns coef, se(coef), lower, upper

### See also:

print\_summary

### 5.5.2 lifetimes.datasets

```
lifetimes.datasets.load_cdnow_summary (**kwargs)
Load cdnow customers summary pandas DataFrame.
```

lifetimes.datasets.load\_transaction\_data(\*\*kwargs) Return a Pandas dataframe of transactional data.

Looks like:

date id

0 2014-03-08 00:00:00 0 1 2014-05-21 00:00:00 1 2 2014-03-14 00:00:00 2 3 2014-04-09 00:00:00 2 4 2014-05-21 00:00:00 2

The data was artificially created using Lifetimes data generation routines. Data was generated between 2014-01-01 to 2014-12-31.

```
lifetimes.datasets.load_cdnow_summary_data_with_monetary_value(**kwargs)
Load cdnow customers summary with monetary value as pandas DataFrame.
```

lifetimes.datasets.load\_donations (\*\*kwargs) Load donations dataset as pandas DataFrame.

### 5.5.3 lifetimes.generate\_data module

lifetimes.generate\_data.beta\_geometric\_beta\_binom\_model(N, alpha, beta, gamma,

delta, size=1)

Generate artificial data according to the Beta-Geometric/Beta-Binomial Model.

You may wonder why we can have frequency =  $n_{periods}$ , when frequency excludes their first order. When a customer purchases something, they are born, \_and in the next **period**\_ we start asking questions about their alive-ness. So really they customer has bought frequency + 1, and been observed for  $n_{periods} + 1$ 

### **Parameters**

- **N** (*array\_like*) Number of transaction opportunities for new customers.
- beta, gamma, delta (alpha,) Parameters in the model. See [1]\_
- **size** (*int*, *optional*) The number of customers to generate

**Returns** *DataFrame* – with index as customer\_ids and the following columns: 'frequency', 'recency', 'n\_periods', 'lambda', 'p', 'alive', 'customer\_id'

### References

```
lifetimes.generate_data.beta_geometric_nbd_model(T, r, alpha, a, b, size=1)
Generate artificial data according to the BG/NBD model.
```

See [1] for model details

- **T** (*array\_like*) The length of time observing new customers.
- alpha, a, b(r,) Parameters in the model. See [1]\_
- **size** (*int*, *optional*) The number of customers to generate
- Returns DataFrame With index as customer\_ids and the following columns: 'frequency', 'recency', 'T', 'lambda', 'p', 'alive', 'customer\_id'

### References

lifetimes.generate\_data.beta\_geometric\_nbd\_model\_transactional\_data(T, r, al-

```
pha, a, b,

observation_period_end='2019-

1-1',

freq='D',

size=1)
```

Generate artificial transactional data according to the BG/NBD model.

See [1] for model details

### Parameters

- **T** (*int*, *float* or *array\_like*) The length of time observing new customers.
- alpha, a, b(r,) Parameters in the model. See [1]\_
- observation\_period\_end (date\_like) The date observation ends
- freq (string, optional) Default 'D' for days, 'W' for weeks, 'h' for hours
- **size** (*int*, *optional*) The number of customers to generate

Returns DataFrame - The following columns: 'customer\_id', 'date'

### References

lifetimes.generate\_data.modified\_beta\_geometric\_nbd\_model(T, r, alpha, a, b,

Generate artificial data according to the MBG/NBD model.

See<sup>3</sup>,<sup>4</sup> for model details

### Parameters

- **T** (*array\_like*) The length of time observing new customers.
- alpha, a, b(r,) Parameters in the model. See [1]\_
- size (int, optional) The number of customers to generate
- Returns DataFrame with index as customer\_ids and the following columns: 'frequency', 'recency', 'T', 'lambda', 'p', 'alive', 'customer\_id'

### References

lifetimes.generate\_data.pareto\_nbd\_model(T, r, alpha, s, beta, size=1)
Generate artificial data according to the Pareto/NBD model.

See [2]\_ for model details.

### **Parameters**

- **T** (*array\_like*) The length of time observing new customers.
- alpha, s, beta (r,) Parameters in the model. See [1]\_
- **size** (*int*, *optional*) The number of customers to generate

size=1)

<sup>&</sup>lt;sup>3</sup> http://www.brucehardie.com/notes/025/ The Gamma-Gamma Model of Monetary Value.

<sup>&</sup>lt;sup>4</sup> Peter S. Fader, Bruce G. S. Hardie, and Ka Lok Lee (2005), "RFM and CLV: Using iso-value curves for customer base analysis", Journal of Marketing Research, 42 (November), 415-430.

**Returns** *obj: DataFrame* – with index as customer\_ids and the following columns: 'frequency', 'recency', 'T', 'lambda', 'mu', 'alive', 'customer\_id'

### References

### 5.5.4 lifetimes.plotting module

```
lifetimes.plotting.plot_period_transactions (model, max_frequency=7, title='Frequency
of Repeat Transactions', xlabel='Number
of Calibration Period Transactions', yla-
bel='Customers', **kwargs)
```

Plot a figure with period actual and predicted transactions.

### **Parameters**

- model (lifetimes model) A fitted lifetimes model.
- max\_frequency (int, optional) The maximum frequency to plot.
- title (str, optional) Figure title
- **xlabel** (*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **kwargs** Passed into the matplotlib.pyplot.plot command.

**Returns axes** (matplotlib.AxesSubplot)

lifetimes.plotting.plot\_calibration\_purchases\_vs\_holdout\_purchases(model,

calibration\_holdout\_matrix, kind='frequency\_cal', n=7, \*\*kwargs)

Plot calibration purchases vs holdout.

This currently relies too much on the lifetimes.util calibration\_and\_holdout\_data function.

### Parameters

- model (lifetimes model) A fitted lifetimes model.
- **calibration\_holdout\_matrix** (*pandas DataFrame*) DataFrame from calibration\_and\_holdout\_data function.
- kind(str, optional)-

**x-axis :"frequency\_cal". Purchases in calibration period,** "recency\_cal". Age of customer at last purchase, "T\_cal". Age of customer at the end of calibration period, "time\_since\_last\_purchase". Time since user made last purchase

• n (int, optional) – Number of ticks on the x axis

### **Returns axes** (matplotlib.AxesSubplot)

Plot recency frequecy matrix as heatmap.

Plot a figure of expected transactions in T next units of time by a customer's frequency and recency.

### **Parameters**

- model (lifetimes model) A fitted lifetimes model.
- T (fload, optional) Next units of time to make predictions for
- max\_frequency (int, optional) The maximum frequency to plot. Default is max observed frequency.
- max\_recency (int, optional) The maximum recency to plot. This also determines the age of the customer. Default to max observed age.
- title (str, optional) Figure title
- **xlabel**(*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **kwargs** Passed into the matplotlib.imshow command.

### **Returns axes** (*matplotlib*.*AxesSubplot*)

lifetimes.plotting.plot\_probability\_alive\_matrix (model, max frequency=None, *max recency=None*, title='Probability Customer is Alive, \nby Frequency and Recency of a Customer', xlabel="Customer's Historical Frequency", ylabel="Customer's *Recency*", \*\**kwargs*) Plot probability alive matrix as heatmap.

Plot a figure of the probability a customer is alive based on their frequency and recency.

### **Parameters**

- model (lifetimes model) A fitted lifetimes model.
- max\_frequency (int, optional) The maximum frequency to plot. Default is max observed frequency.
- max\_recency (int, optional) The maximum recency to plot. This also determines the age of the customer. Default to max observed age.
- title (*str*, *optional*) Figure title
- **xlabel**(*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **kwargs** Passed into the matplotlib.imshow command.

**Returns** axes (*matplotlib*.*AxesSubplot*)

```
lifetimes.plotting.plot_expected_repeat_purchases (model, title='Expected Number of
                                                             Repeat Purchases per Customer',
                                                             xlabel='Time Since First Purchase',
                                                             ax=None, label=None, **kwargs)
```

Plot expected repeat purchases on calibration period .

- model (lifetimes model) A fitted lifetimes model.
- **max\_frequency** (*int*, *optional*) The maximum frequency to plot.

- title (str, optional) Figure title
- **xlabel** (*str*, *optional*) Figure xlabel
- **ax** (matplotlib.AxesSubplot, optional) Using user axes
- **label** (*str*, *optional*) Label for plot.
- **kwargs** Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

Draw a graph showing the probability of being alive for a customer in time.

### **Parameters**

- model (lifetimes model) A fitted lifetimes model.
- t (*int*) the number of time units since the birth we want to draw the p\_alive
- **transactions** (*pandas DataFrame*) DataFrame containing the transactions history of the customer\_id
- **datetime\_col** (*str*) The column in the transactions that denotes the datetime the purchase was made
- **freq** (*str*, *optional*) **Default** 'D' for days. Other examples= 'W' for weekly
- **start\_date** (*datetime*, *optional*) Limit xaxis to start date
- **ax** (matplotlib.AxesSubplot, optional) Using user axes
- **kwargs** Passed into the matplotlib.pyplot.plot command.

### **Returns axes** (*matplotlib*.*AxesSubplot*)

Plot a figure of the predicted and actual cumulative transactions of users.

- model (lifetimes model) A fitted lifetimes model
- **transactions** (*pandas DataFrame*) DataFrame containing the transactions history of the customer\_id
- **datetime\_col** (*str*) The column in transactions that denotes the datetime the purchase was made.
- **customer\_id\_col** (*str*) The column in transactions that denotes the customer\_id
- t (float) The number of time units since the begining of data for which we want to calculate cumulative transactions
- **t\_cal** (*float*) A marker used to indicate where the vertical line for plotting should be.
- **datetime\_format** (*str*, *optional*) A string that represents the timestamp format. Useful if Pandas can't understand the provided format.

- **freq** (*str*, *optional*) **Default** 'D' for days, 'W' for weeks, 'M' for months... etc. Full list here: http://pandas.pydata.org/pandas-docs/stable/timeseries.html# dateoffset-objects
- **set\_index\_date** (*bool*, *optional*) When True set date as Pandas DataFrame index, default False number of time units
- **title** (*str*, *optional*) Figure title
- **xlabel**(*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **ax** (matplotlib.AxesSubplot, optional) Using user axes
- **kwargs** Passed into the pandas.DataFrame.plot command.

### **Returns axes** (*matplotlib*.*AxesSubplot*)

lifetimes.plotting.plot\_incremental\_transactions (model, transactions, datetime\_col, customer\_id\_col, t, t\_cal, datetime\_format=None, freq='D', set\_index\_date=False, title='Tracking Daily Transactions', xlabel='day', ylabel='Transactions', ax=None, \*\*kwargs)

Plot a figure of the predicted and actual incremental transactions of users.

### Parameters

- model (lifetimes model) A fitted lifetimes model
- **transactions** (*pandas DataFrame*) DataFrame containing the transactions history of the customer\_id
- **datetime\_col** (*str*) The column in transactions that denotes the datetime the purchase was made.
- **customer\_id\_col** (*str*) The column in transactions that denotes the customer\_id
- t (float) The number of time units since the begining of data for which we want to calculate cumulative transactions
- **t\_cal** (*float*) A marker used to indicate where the vertical line for plotting should be.
- **datetime\_format** (*str*, *optional*) A string that represents the timestamp format. Useful if Pandas can't understand the provided format.
- **freq** (*str*, *optional*) Default 'D' for days, 'W' for weeks, 'M' for months... etc. Full list here: http://pandas.pydata.org/pandas-docs/stable/timeseries.html# dateoffset-objects
- **set\_index\_date** (*bool*, *optional*) When True set date as Pandas DataFrame index, default False number of time units
- title (str, optional) Figure title
- **xlabel** (*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **ax** (matplotlib.AxesSubplot, optional) Using user axes
- **kwargs** Passed into the pandas.DataFrame.plot command.

**Returns** axes (matplotlib.AxesSubplot)

```
lifetimes.plotting.plot_transaction_rate_heterogeneity (model, supti-
tle='Heterogeneity in
Transaction Rate', xla-
bel='Transaction Rate',
ylabel='Density', supti-
tle_fontsize=14, **kwargs)
```

Plot the estimated gamma distribution of lambda (customers' propensities to purchase).

### **Parameters**

- model (lifetimes model) A fitted lifetimes model, for now only for BG/NBD
- **suptitle** (*str*, *optional*) Figure suptitle
- **xlabel** (*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **kwargs** Passed into the matplotlib.pyplot.plot command.

### **Returns axes** (matplotlib.AxesSubplot)

lifetimes.plotting.plot\_dropout\_rate\_heterogeneity (model, suptitle='Heterogeneity in Dropout Probability', xlabel='Dropout Probability p', ylabel='Density', suptitle\_fontsize=14, \*\*kwargs)

Plot the estimated beta distribution of p.

p - (customers' probability of dropping out immediately after a transaction).

### Parameters

- model (lifetimes model) A fitted lifetimes model, for now only for BG/NBD
- **suptitle** (*str*, *optional*) Figure suptitle
- **xlabel**(*str*, *optional*) Figure xlabel
- ylabel (str, optional) Figure ylabel
- **kwargs** Passed into the matplotlib.pyplot.plot command.

Returns axes (matplotlib.AxesSubplot)

### 5.5.5 lifetimes.utils module

Lifetimes utils and helpers.

```
lifetimes.utils.calibration_and_holdout_data (transactions, customer_id_col, date-
time_col, calibration_period_end, ob-
servation_period_end=None, freq='D',
freq_multiplier=1, datetime_format=None,
monetary_value_col=None, in-
clude_first_transaction=False)
```

Create a summary of each customer over a calibration and holdout period.

This function creates a summary of each customer over a calibration and holdout period (training and testing, respectively). It accepts transaction data, and returns a DataFrame of sufficient statistics.

### **Parameters**

• **transactions** – a Pandas DataFrame that contains the customer\_id col and the datetime col.

- **customer\_id\_col** (*string*) the column in transactions DataFrame that denotes the customer\_id
- **datetime\_col** (*string*) the column in transactions that denotes the datetime the purchase was made.
- **calibration\_period\_end** a period to limit the calibration to, inclusive.
- **observation\_period\_end** a string or datetime to denote the final date of the study. Events after this date are truncated. If not given, defaults to the max 'datetime\_col'.
- **freq** (*string*, *optional*) **Default**: **'D'** for days. Possible values listed here: https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
- **freq\_multiplier** (*int*, *optional*) Default: 1. Useful for getting exact recency & T. Example: With freq='D' and freq\_multiplier=1, we get recency=591 and T=632 With freq='h' and freq\_multiplier=24, we get recency=590.125 and T=631.375
- **datetime\_format** (*string*, *optional*) a string that represents the timestamp format. Useful if Pandas can't understand the provided format.
- **monetary\_value\_col** (*string*, *optional*) the column in transactions that denotes the monetary value of the transaction. Optional, only needed for customer lifetime value estimation models.
- **include\_first\_transaction** (*bool*, *optional*) Default: False By default the first transaction is not included while calculating frequency and monetary\_value. Can be set to True to include it. Should be False if you are going to use this data with any fitters in lifetimes package
- **Returns** *obj: DataFrame* A dataframe with columns frequency\_cal, recency\_cal, T\_cal, frequency\_holdout, duration\_holdout If monetary\_value\_col isn't None, the dataframe will also have the columns monetary\_value\_cal and monetary\_value\_holdout.

| lifetimes.utils.summary_data_from_transaction | <b></b>                   | ner_id_col,  |
|-----------------------------------------------|---------------------------|--------------|
|                                               | datetime_col,             | mone-        |
|                                               | tary_value_col=None,      | date-        |
|                                               | time_format=None,         | obser-       |
|                                               | vation_period_end=No      | ne,          |
|                                               | $freq='D', freq_m$        | ultiplier=1, |
|                                               | include_first_transaction | n = False)   |
| Paturn summary data from transactions         |                           |              |

Return summary data from transactions.

This transforms a DataFrame of transaction data of the form: customer\_id, datetime [, monetary\_value]

to a DataFrame of the form: customer\_id, frequency, recency, T [, monetary\_value]

- **transactions** a Pandas DataFrame that contains the customer\_id col and the datetime col.
- **customer\_id\_col** (*string*) the column in transactions DataFrame that denotes the customer\_id
- **datetime\_col** (*string*) the column in transactions that denotes the datetime the purchase was made.
- monetary\_value\_col (*string*, *optional*) the columns in the transactions that denotes the monetary value of the transaction. Optional, only needed for customer lifetime value estimation models.

- **observation\_period\_end** (*datetime*, *optional*) a string or datetime to denote the final date of the study. Events after this date are truncated. If not given, defaults to the max 'datetime\_col'.
- **datetime\_format** (*string*, *optional*) a string that represents the timestamp format. Useful if Pandas can't understand the provided format.
- **freq** (*string*, *optional*) Default: 'D' for days. Possible values listed here: https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
- **freq\_multiplier** (*int*, *optional*) Default: 1. Useful for getting exact recency & T. Example: With freq='D' and freq\_multiplier=1, we get recency=591 and T=632 With freq='h' and freq\_multiplier=24, we get recency=590.125 and T=631.375
- **include\_first\_transaction** (*bool*, *optional*) Default: False By default the first transaction is not included while calculating frequency and monetary\_value. Can be set to True to include it. Should be False if you are going to use this data with any fitters in lifetimes package

**Returns** *obj: DataFrame:* – customer\_id, frequency, recency, T [, monetary\_value]

lifetimes.utils.calculate\_alive\_path (*model*, *transactions*, *datetime\_col*, *t*, *freq='D'*) Calculate alive path for plotting alive history of user.

Uses the conditional\_probability\_alive () method of the model to achieve the path.

### Parameters

- model A fitted lifetimes model
- transactions (*DataFrame*) a Pandas DataFrame containing the transactions history of the customer\_id
- **datetime\_col** (*string*) the column in the transactions that denotes the datetime the purchase was made
- t (*array\_like*) the number of time units since the birth for which we want to draw the p\_alive
- **freq**(*string*, *optional*) Default: 'D' for days. Possible values listed here: https://numpy.org/devdocs/reference/arrays.datetime.html#datetime-units

**Returns** *obj: Series* – A pandas Series containing the p\_alive as a function of T (age of the customer)

| lifetimes.utils.expected_cumulative_transactions | (model,     | transactions,   | date-    |
|--------------------------------------------------|-------------|-----------------|----------|
|                                                  | time_col,   | customer_       | _id_col, |
|                                                  | t,          | datetime_format | t=None,  |
|                                                  | freq='D',   | freq_multi      | plier=1, |
|                                                  | set_index_d | ate=False)      |          |

Get expected and actual repeated cumulative transactions.

Uses the <code>expected\_number\_of\_purchases\_up\_to\_time()</code> method from the fitted model to predict the cumulative number of purchases.

This function follows the formulation on page 8 of [1]\_.

In more detail, we take only the customers who have made their first transaction before the specific date and then multiply them by the distribution of the <code>expected\_number\_of\_purchases\_up\_to\_time()</code> for their whole future. Doing that for all dates and then summing the distributions will give us the *complete cumulative purchases*.

### **Parameters**

• **model** – A fitted lifetimes model

- transactions a Pandas DataFrame containing the transactions history of the customer\_id
- **datetime\_col** (*string*) the column in transactions that denotes the datetime the purchase was made.
- **customer\_id\_col** (*string*) the column in transactions that denotes the customer\_id
- t (*int*) the number of time units since the begining of data for which we want to calculate cumulative transactions
- **datetime\_format** (*string*, *optional*) a string that represents the timestamp format. Useful if Pandas can't understand the provided format.
- **freq** (*string*, *optional*) **Default**: 'D' for days. Possible values listed here: https: //numpy.org/devdocs/reference/arrays.datetime.html#datetime-units
- **freq\_multiplier** (*int*, *optional*) Default: 1. Useful for getting exact recency & T. Example: With freq='D' and freq\_multiplier=1, we get recency=591 and T=632 With freq='h' and freq\_multiplier=24, we get recency=590.125 and T=631.375
- **set\_index\_date** (*bool*, *optional*) when True set date as Pandas DataFrame index, default False - number of time units

Returns obj: DataFrame - A dataframe with columns actual, predicted

### References

A Note on Implementing the Pareto/NBD Model in MATLAB. http://brucehardie.com/notes/008/

All fitters from fitters directory.

class lifetimes.BetaGeoFitter(penalizer\_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Also known as the BG/NBD model.

Based on [2]\_, this model has the following assumptions:

- 1) Each individual, i, has a hidden lambda\_i and p\_i parameter
- 2) These come from a population wide Gamma and a Beta distribution respectively.
- 3) Individuals purchases follow a Poisson process with rate lambda\_i\*t.
- 4) After each purchase, an individual has a p\_i probability of dieing (never buying again).

**Parameters penalizer\_coef** (*float*) – The coefficient applied to an 12 norm on the parameters

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

Туре

obj Series

data

A DataFrame with the values given in the call to fit

Туре

obj DataFrame

### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

### Туре

obj DataFrame

### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

Туре

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

Type

obj Series

### summary

A DataFrame containing information about the fitted parameters

Туре

obj DataFrame

### References

```
conditional_expected_number_of_purchases_up_to_time(t, frequency, recency, T)
```

Conditional expected number of purchases up to time.

Calculate the expected number of repeat purchases up to time t for a randomly chosen individual from the population, given they have purchase history (frequency, recency, T).

This function uses equation (10) from [2]\_.

### Parameters

- t (*array\_like*) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.
- **T** (*array\_like*) age of the customer.

Returns array\_like

### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

### $\texttt{conditional\_probability\_alive} (frequency, recency, T)$

Compute conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

From http://www.brucehardie.com/notes/021/palive\_for\_BGNBD.pdf

### **Parameters**

- **frequency** (array or scalar) historical frequency of customer.
- recency (array or scalar) historical recency of customer.
- **T** (array or scalar) age of the customer.

**Returns** *array* – value representing a probability

**conditional\_probability\_alive\_matrix** (*max\_frequency=None*, *max\_recency=None*) Compute the probability alive matrix.

Uses the conditional\_probability\_alive() method to get calculate the matrix.

### Parameters

- **max\_frequency** (*float*, *optional*) the maximum frequency to plot. Default is max observed frequency.
- **max\_recency** (*float*, *optional*) the maximum recency to plot. This also determines the age of the customer. Default to max observed age.

**Returns** *matrix* – A matrix of the form [t\_x: historical recency, x: historical frequency]

### expected\_number\_of\_purchases\_up\_to\_time(t)

Calculate the expected number of repeat purchases up to time t.

Calculate repeat purchases for a randomly chosen individual from the population.

Equivalent to equation (9) of [2]\_.

**Parameters t** (*array\_like*) – times to calculate the expection for

Returns array\_like

### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

fit (frequency, recency, T, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, \*\*kwargs)

Fit a dataset to the BG/NBD model.

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **initial\_params** (*array\_like*, *optional*) set the initial parameters for the fitter.

- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns BetaGeoFitter - with additional properties like params\_ and methods like predict

```
probability_of_n_purchases_up_to_time(t, n)
```

Compute the probability of n purchases.

$$P(N(t) = n | \text{model})$$

where N(t) is the number of repeat purchases a customer makes in t units of time.

Comes from equation (8) of [2]\_.

### **Parameters**

- t (float) number units of time
- **n** (*int*) number of purchases

**Returns** *float* – Probability to have n purchases up to t units of time

### References

"Counting Your Customers the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, 24 (2), 275-84.

```
class lifetimes.ParetoNBDFitter(penalizer_coef=0.0)
Bases: lifetimes.fitters.BaseFitter
```

Pareto NBD fitter<sup>7</sup>.

Parameters penalizer\_coef (float) - The coefficient applied to an 12 norm on the parame-

penalizer\_coef

ters

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

Туре

#### obj OrderedDict

### data

A DataFrame with the columns given in the call to fit

David C. Schmittlein, Donald G. Morrison and Richard Colombo Management Science, Vol. 33, No. 1 (Jan., 1987), pp. 1-24 "Counting Your Customers: Who Are They and What Will They Do Next,"

Туре

obj DataFrame

### References

```
conditional_expected_number_of_purchases_up_to_time (t, frequency, recency, T)
Conditional expected number of purchases up to time.
```

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population, given they have purchase history (frequency, recency, T).

This is equation (41) from: http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

### **Parameters**

- t (*array\_like*) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.
- **T** (*array\_like*) age of the customer.

### Returns array\_like

```
conditional_probability_alive (frequency, recency, T)
```

Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive.

Section 5.1 from (equations (36) and (37)): http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

### **Parameters**

- **frequency** (*float*) historical frequency of customer.
- **recency** (*float*) historical recency of customer.
- **T** (*float*) age of the customer.

**Returns** *float* – value representing a probability

### **conditional\_probability\_alive\_matrix** (*max\_frequency=None*, *max\_recency=None*) Compute the probability alive matrix.

Builds on the conditional\_probability\_alive() method.

### **Parameters**

- **max\_frequency** (*float*, *optional*) the maximum frequency to plot. Default is max observed frequency.
- **max\_recency** (*float*, *optional*) the maximum recency to plot. This also determines the age of the customer. Default to max observed age.

**Returns** *matrix* – A matrix of the form [t\_x: historical recency, x: historical frequency]

**conditional\_probability\_of\_n\_purchases\_up\_to\_time** (*n*, *t*, *frequency*, *recency*, *T*) Return conditional probability of n purchases up to time t.

Calculate the probability of n purchases up to time t for an individual with history frequency, recency and T (age).

The main equation being implemented is (16) from: http://www.brucehardie.com/notes/028/pareto\_nbd\_ conditional\_pmf.pdf

### Parameters

- **n** (*int*) number of purchases.
- t (a scalar) time up to which probability should be calculated.
- **frequency** (*float*) historical frequency of customer.
- **recency** (*float*) historical recency of customer.
- **T** (*float*) age of the customer.

**Returns** *array\_like* 

```
expected_number_of_purchases_up_to_time(t)
```

Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population.

Equation (27) from: http://brucehardie.com/notes/009/pareto\_nbd\_derivations\_2005-11-05.pdf

**Parameters** t (*array\_like*) – times to calculate the expectation for.

Returns array\_like

fit (frequency, recency, T, weights=None, iterative\_fitting=1, initial\_params=None, verbose=False, tol=0.0001, index=None, fit\_method='Nelder-Mead', maxiter=2000, \*\*kwargs) Pareto/NBD model fitter.

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (None or array\_like) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **iterative\_fitting** (*int*, *optional*) perform iterative\_fitting fits over random/warm-started initial params
- **initial\_params** (*array\_like*, *optional*) set the initial parameters for the fitter.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **fit\_method** (*string*, *optional*) fit\_method to passing to scipy.optimize.minimize

- **maxiter** (*int*, *optional*) max iterations for optimizer in scipy.optimize.minimize will be overwritten if set in kwargs.
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

**Returns** *ParetoNBDFitter* – with additional properties like params\_ and methods like predict

class lifetimes.GammaGammaFitter(penalizer\_coef=0.0)
Bases: lifetimes.fitters.BaseFitter

Fitter for the gamma-gamma model.

It is used to estimate the average monetary value of customer transactions.

This implementation is based on the Excel spreadsheet found in<sup>3</sup>. More details on the derivation and evaluation can be found in<sup>4</sup>.

Parameters penalizer\_coef (float) - The coefficient applied to an 12 norm on the parame-

## ters penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

Туре

obj OrderedDict

### data

A DataFrame with the columns given in the call to fit

Туре

obj DataFrame

### References

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

### Туре

obj Series

### data

A DataFrame with the values given in the call to fit

Туре

obj DataFrame

### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

Туре

obj DataFrame

### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

### Туре

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

Туре

obj Series

### summary

A DataFrame containing information about the fitted parameters

### Type

obj DataFrame

**conditional\_expected\_average\_profit** (*frequency=None*, *monetary\_value=None*) Conditional expectation of the average profit.

This method computes the conditional expectation of the average profit per transaction for a group of one or more customers.

Equation (5) from: http://www.brucehardie.com/notes/025/

### **Parameters**

- **frequency** (*array\_like*, *optional*) a vector containing the customers' frequencies. Defaults to the whole set of frequencies used for fitting the model.
- **monetary\_value** (*array\_like*, *optional*) a vector containing the customers' monetary values. Defaults to the whole set of monetary values used for fitting the model.

Returns array\_like - The conditional expectation of the average profit per transaction

**customer\_lifetime\_value** (*transaction\_prediction\_model*, *frequency*, *recency*, *T*, *monetary\_value*, *time=12*, *discount\_rate=0.01*, *freq='D'*)

### Return customer lifetime value.

This method computes the average lifetime value for a group of one or more customers.

- transaction\_prediction\_model (model) the model to predict future transactions, literature uses pareto/ndb models but we can also use a different model like beta-geo models
- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- recency (the recency vector of customers' purchases) (denoted  $t_x$  in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- **monetary\_value** (*array\_like*) the monetary value vector of customer's purchases (denoted m in literature).
- time (float, optional) the lifetime expected for the user in months. Default: 12

- **discount\_rate** (*float*, *optional*) the monthly adjusted discount rate. Default: 0.01
- **freq** (*string*, *optional*) {"D", "H", "M", "W"} for day, hour, month, week. This represents what unit of time your T is measure in.
- **Returns** Series Series object with customer ids as index and the estimated customer lifetime values as values
- fit (frequency, monetary\_value, weights=None, initial\_params=None, verbose=False, tol=1e-07, index=None, q\_constraint=False, \*\*kwargs) Fit the data to the Gamma/Gamma model.

### **Parameters**

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **monetary\_value** (*array\_like*) the monetary value vector of customer's purchases (denoted m in literature).
- weights (*None or array\_like*) Number of customers with given frequency/monetary\_value, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/monetary\_value. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual loglikelihood, the loglikelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- initial\_params (array\_like, optional) set the initial parameters for the fitter.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- tol (float, optional) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- **q\_constraint** (*bool*, *optional*) when q < 1, population mean will result in a negative value leading to negative CLV outputs. If True, we penalize negative values of q to avoid this issue.
- **kwargs** key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns GammaGammaFitter – fitted and with parameters estimated

class lifetimes.ModifiedBetaGeoFitter(penalizer\_coef=0.0)
 Bases: lifetimes.fitters.beta\_geo\_fitter.BetaGeoFitter

Also known as the MBG/NBD model.

Based on<sup>5</sup>,<sup>6</sup>, this model has the following assumptions: 1) Each individual, i, has a hidden lambda\_i and p\_i parameter 2) These come from a population wide Gamma and a Beta distribution

respectively.

3) Individuals purchases follow a Poisson process with rate  $\lambda_i * t$ .

<sup>&</sup>lt;sup>5</sup> Batislam, E.P., M. Denizel, A. Filiztekin (2007), "Empirical validation and comparison of models for customer base analysis," International Journal of Research in Marketing, 24 (3), 201-209.

<sup>&</sup>lt;sup>6</sup> Wagner, U. and Hoppe D. (2008), "Erratum on the MBG/NBD Model," International Journal of Research in Marketing, 25 (3), 225-226.

4) At the beginning of their lifetime and after each purchase, an individual has a p\_i probability of dieing (never buying again).

### References

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

Туре

obj Series

#### data

A DataFrame with the values given in the call to fit

Туре

obj DataFrame

### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

Type

obj DataFrame

A DataFrame 95% confidence intervals of the parameters

Type

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

Type

obj Series

#### summary

A DataFrame containing information about the fitted parameters

Туре

obj DataFrame

### **conditional\_expected\_number\_of\_purchases\_up\_to\_time** (*t*, *frequency*, *recency*, *T*) Conditional expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population, given they have purchase history (frequency, recency, T) See Wagner, U. and Hoppe D. (2008).

- t (*array\_like*) times to calculate the expectation for.
- **frequency** (*array\_like*) historical frequency of customer.
- **recency** (*array\_like*) historical recency of customer.

• **T** (*array\_like*) – age of the customer.

### **Returns** array\_like

conditional\_probability\_alive (frequency, recency, T)

Conditional probability alive.

Compute the probability that a customer with history (frequency, recency, T) is currently alive. From https://www.researchgate.net/publication/247219660\_Empirical\_validation\_and\_comparison\_of\_ models\_for\_customer\_base\_analysis Appendix A, eq. (5)

### **Parameters**

- **frequency** (array or float) historical frequency of customer.
- recency (array or float) historical recency of customer.
- **T** (array or float) age of the customer.

Returns array - value representing probability of being alive

### expected\_number\_of\_purchases\_up\_to\_time(t)

Return expected number of repeat purchases up to time t.

Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population.

Parameters t (array\_like) - times to calculate the expectation for

**Returns** *array\_like* 

```
fit (frequency, recency, T, weights=None, initial_params=None, verbose=False, tol=1e-07, in-
dex=None, **kwargs)
Fit the data to the MBG/NBD model.
```

- **frequency** (*array\_like*) the frequency vector of customers' purchases (denoted x in literature).
- **recency** (*array\_like*) the recency vector of customers' purchases (denoted t\_x in literature).
- **T** (*array\_like*) customers' age (time units since first purchase)
- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern.
- **verbose** (bool, optional) set to true to print out convergence diagnostics.
- **tol** (*float*, *optional*) tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) index for resulted DataFrame which is accessible via self.data
- kwargs key word arguments to pass to the scipy.optimize.minimize function as options dict
- **Returns** *ModifiedBetaGeoFitter* With additional properties and methods like params\_ and predict

```
probability_of_n_purchases_up_to_time(t, n)
```

Compute the probability of n purchases up to time t.

$$P(N(t) = n | \text{model})$$

where N(t) is the number of repeat purchases a customer makes in t units of time.

**Parameters** 

• t (float) – number units of time

• **n** (*int*) – number of purchases

Returns *float* – Probability to have n purchases up to t units of time

**class** lifetimes.BetaGeoBetaBinomFitter(*penalizer\_coef=0.0*)

Bases: lifetimes.fitters.BaseFitter

Also known as the Beta-Geometric/Beta-Binomial Model [1]\_.

Future purchases opportunities are treated as discrete points in time. In the literature, the model provides a better fit than the Pareto/NBD model for a nonprofit organization with regular giving patterns.

The model is estimated with a recency-frequency matrix with n transaction opportunities.

**Parameters penalizer\_coef** (*float*) – The coefficient applied to an l2 norm on the parameters

### penalizer\_coef

The coefficient applied to an 12 norm on the parameters

Type float

### params\_

The fitted parameters of the model

Type

obj Series

### data

A DataFrame with the values given in the call to fit

Type

obj DataFrame

### variance\_matrix\_

A DataFrame with the variance matrix of the parameters.

### Type

obj DataFrame

### confidence\_intervals\_

A DataFrame 95% confidence intervals of the parameters

Туре

obj DataFrame

### standard\_errors\_

A Series with the standard errors of the parameters

Туре

obj Series

### summary

A DataFrame containing information about the fitted parameters

Type

obj DataFrame

### References

```
conditional_expected_number_of_purchases_up_to_time (m_periods_in_future,
                                                             frequency,
                                                                             recency,
                                                              n_periods)
```

Conditional expected purchases in future time period.

The expected number of future transactions across the next m\_periods\_in\_future transaction opportunities by a customer with purchase history (x, tx, n).

 $E(X(n_{periods}, n_{periods} + m_{periods_{i}n_{f}uture}) | \alpha, \beta, \gamma, \delta, frequency, recency, n_{periods})$ 

See (13) in Fader & Hardie 2010.

**Parameters** t (array\_like) - time n\_periods (n+t)

**Returns** array like – predicted transactions

**conditional\_probability\_alive** (*m\_periods\_in\_future, frequency, recency, n\_periods*) Conditional probability alive.

Conditional probability customer is alive at transaction opportunity n\_periods + m\_periods\_in\_future.

 $P(aliveatn_periods + m_periods_in_future | alpha, beta, gamma, delta, frequency, recency, n_periods)$ 

See (A10) in Fader and Hardie 2010.

**Parameters** m (array\_like) – transaction opportunities

**Returns** array like – alive probabilities

```
expected_number_of_transactions_in_first_n_periods (n)
```

Return expected number of transactions in first n n\_periods.

Expected number of transactions occurring across first n transaction opportunities. Used by Fader and Hardie to assess in-sample fit.

$$Pr(X(n) = x | \alpha, \beta, \gamma, \delta)$$

See (7) in Fader & Hardie 2010.

**Parameters n** (*float*) – number of transaction opportunities

**Returns** DataFrame – Predicted values, indexed by x

fit (frequency, recency, n\_periods, weights=None, initial\_params=None, verbose=False, tol=1e-07, in*dex=None*, \*\**kwargs*) Fit the BG/BB model.

- **frequency** (*array\_like*) Total periods with observed transactions
- **recency** (*array\_like*) Period of most recent transaction
- **n\_periods** (*array\_like*) Number of transaction opportunities. Previously called n.

- weights (*None or array\_like*) Number of customers with given frequency/recency/T, defaults to 1 if not specified. Fader and Hardie condense the individual RFM matrix into all observed combinations of frequency/recency/T. This parameter represents the count of customers with a given purchase pattern. Instead of calculating individual log-likelihood, the log-likelihood is calculated for each pattern and multiplied by the number of customers with that pattern. Previously called *n\_custs*.
- **verbose** (boolean, optional) Set to true to print out convergence diagnostics.
- tol (*float*, *optional*) Tolerance for termination of the function minimization process.
- **index** (*array\_like*, *optional*) Index for resulted DataFrame which is accessible via self.data
- **kwargs** Key word arguments to pass to the scipy.optimize.minimize function as options dict

Returns BetaGeoBetaBinomFitter - fitted and with parameters estimated

### 5.6 Changelog

### 5.6.1 0.11.1

- bump the Pandas requirements to  $\geq 0.24.0$ . This should have been done in 0.11.0
- suppress some warnings from autograd.

### 5.6.2 0.11.0

- Move most models (all but Pareto) to autograd for automatic differentiation of their likelihood. This results in faster (at least 3x) and more successful convergence, plus allows for some really exciting extensions (coming soon).
- GammaGammaFitter, BetaGeoFitter, ModifiedBetaGeoFitter and BetaGeoBetaBinomFitter have three new attributes: confidence\_interval\_, variance\_matrix\_ and standard\_errors\_
- params\_ on fitted models is not longer an OrderedDict, but a Pandas Series
- GammaGammaFitter can accept a weights argument now.
- customer\_lifelime\_value in GammaGamma now accepts a frequency argument.
- fixed a bug that was causing ParetoNBDFitter to generate data incorrectly.

### 5.6.3 0.10.1

- performance improvements to generate\_data.py for large datasets #195
- performance improvements to summary\_data\_from\_transaction\_data, thanks @MichaelSchreier
- Previously, GammaGammaFitter would have an infinite mean when its q parameter was less than 1. This was possible for some datasets. In 0.10.1, a new argument is added to GammaGammaFitter to constrain that q is greater than 1. This can be done with q\_constraint=True in the call to GammaGammaFitter.fit. See issue #146. Thanks @vruvora

- Stop support of scipy < 1.0.
- Stop support of < Python 3.5.

### 5.6.4 0.10.0

- BetaGeoBetaBinomFitter.fit has replaced n\_custs with the more appropriately named weights (to align with other statistical libraries). By default and if unspecified, weights is equal to an array of 1s.
- The conditional\_ methods on BetaGeoBetaBinomFitter have been updated to handle exogenously provided recency, frequency and periods.
- Performance improvements in BetaGeoBetaBinomFitter. fit takes about 50% less time than previously.
- BetaGeoFitter, ParetoNBDFitter, and ModifiedBetaGeoFitter both have a new weights argument in their fit. This can be used to reduce the size of the data (collapsing subjects with the same recency, frequency, T).

### 5.6.5 0.9.1

- Added a data generation method, generate\_new\_data to BetaGeoBetaBinomFitter. @zscore
- Fixed a bug in summary\_data\_from\_transaction\_data that was casting values to int prematurely. This was solved by including a new param freq\_multiplier to be used to scale the resulting durations. See #100 for the original issue. @aprotopopov
- Performance and bug fixes in utils.expected\_cumulative\_transactions. @aprotopopov
- Fixed a bug in utils.calculate\_alive\_path that was causing a difference in values compared to summary\_from\_transaction\_data. @DaniGate

### 5.6.6 0.9.0

- fixed many of the numpy warnings as the result of fitting
- added optional initial\_params to all models
- Added conditional\_probability\_of\_n\_purchases\_up\_to\_time to ParetoNBDFitter
- Fixed a bug in expected\_cumulative\_transactions and plot\_cumulative\_transactions

### 5.6.7 0.8.1

- adding new save\_model and load\_model functions to all fitters. This will save the model locally as a pickle file.
- observation\_period\_end in summary\_data\_from\_transaction\_data and calibration\_and\_holdout\_data now defaults to the max date in the dataset, instead of current time.
- improved stability of estimators.
- improve Runtime warnings.
- All fitters are now in a local file. This doesn't change the API however.

# CHAPTER 6

Indices and tables

- genindex
- modindex
- search

## Python Module Index

### I

### Index

### В

| BaseFitter ( <i>class in lifetimes.fitters</i> ), 40     | conditional_expected_number_of_purchases_up_to_time            |
|----------------------------------------------------------|----------------------------------------------------------------|
| beta_geometric_beta_binom_model() (in                    | (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter           |
| module lifetimes.generate_data), 41                      | <i>method</i> ), 38                                            |
| <pre>beta_geometric_nbd_model() (in module life-</pre>   | conditional_expected_number_of_purchases_up_to_time            |
| times generate data) 41                                  | (lifetimes.ModifiedBetaGeoFitter method), 59                   |
| beta_geometric_nbd_model_transactional_                  | _dgpgditional_expected_number_of_purchases_up_to_time          |
| (in module lifetimes.generate_data), 42                  | (lifetimes.ParetoNBDFitter method), 54                         |
| BetaGeoBetaBinomFitter ( <i>class in lifetimes</i> ), 61 | conditional_probability_alive() ( <i>life-</i>                 |
| BetaGeoBetaBinomFitter (class in life-                   | times.BetaGeoBetaBinomFitter method),                          |
| times.fitters.beta_geo_beta_binom_fitter),               | 62                                                             |
| 27                                                       | conditional_probability_alive() (life-                         |
| BetaGeoFitter ( <i>class in lifetimes</i> ), 50          | times.BetaGeoFitter method), 51                                |
| BetaGeoFitter (class in life-                            | conditional_probability_alive() ( <i>life-</i>                 |
| times.fitters.beta_geo_fitter), 29                       | times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitte |

| times.fitters.beta_geo_fitter), 29                                                       | times.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFitte<br>method), 28 |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| С                                                                                        | conditional_probability_alive() (life-                                        |
| <pre>calculate_alive_path() (in module life-<br/>times.utils), 49</pre>                  | times.fitters.beta_geo_fitter.BetaGeoFitter<br>method), 30                    |
| calibration_and_holdout_data() (in module                                                | conditional_probability_alive() ( <i>life</i> -                               |
| lifetimes.utils), 47                                                                     | times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter                  |
| <pre>conditional_expected_average_profit()</pre>                                         | method), 36                                                                   |
| <pre>conditional_expected_average_profit()</pre>                                         | conditional_probability_alive() (life-<br>mmaFitter                           |
| method), 33                                                                              |                                                                               |
| <pre>conditional_expected_average_profit()</pre>                                         | <pre>method), 38 conditional_probability_alive() (life-</pre>                 |
| (lifetimes.GammaGammaFitter method), 57                                                  |                                                                               |
| conditional_expected_number_of_purchases<br>(lifetimes.BetaGeoBetaBinomFittermethod).    | s_up_to_time()<br>conditional_probability_alive() ( <i>life-</i>              |
| (typeninesidente codendation in the internet),                                           | times.ParetoNBDFitter method), 54                                             |
| 62                                                                                       |                                                                               |
| conditional_expected_number_of_purchase                                                  | s_up_to_time()<br>(lifetimes.BetaGeoFitter method), 52                        |
| (lifetimes.BetaGeoFitter method), 51                                                     | conditional probability alive matrix()                                        |
| ( <i>lifetimes.BetaGeoFitter method</i> ), 51<br>conditional_expected_number_of_purchase | s_up_to_time()<br>GeoBetaBitiones.fitters.beta_geo_fitter.BetaGeoFitter       |
| (lifetimes.fitters.beta_geo_beta_binom_fitter.Beta                                       | aGeoBetaBinomFifter<br>method), 31                                            |
| method), 28                                                                              | conditional probability alive matrix()                                        |
| conditional_expected_number_of_purchases                                                 | <pre>conditional_probability_alive_matrix() s_up_to_time()</pre>              |
| (ujeumes.juiers.beia_geo_juier.beiaGeoFilier                                             | method), 38                                                                   |
| method), 30                                                                              | conditional_probability_alive_matrix()                                        |
| conditional_expected_number_of_purchase                                                  | $s_up_to_t.me()$                                                              |
| (ujeumes.juiers.moaijiea_beia_geo_fitter.Moaifie                                         | conditional probability of n purchases up to time(                            |

method), 36

| (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitt<br>method), 39                        | <pre>teexpected_number_of_purchases_up_to_time()</pre>                                                                    |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| conditional_probability_of_n_purchases_                                                  |                                                                                                                           |
| ( <i>lifetimes.ParetoNBDFitter method</i> ), 54                                          | expected_number_of_purchases_up_to_time()                                                                                 |
| confidence_intervals_ ( <i>life</i> -                                                    | (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter                                                         |
| times.BetaGeoBetaBinomFitter attribute),                                                 | <i>method</i> ), 36                                                                                                       |
| 61                                                                                       | expected_number_of_purchases_up_to_time()                                                                                 |
| confidence_intervals_ ( <i>lifetimes.BetaGeoFitter</i>                                   | (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter                                                                      |
| attribute), 51                                                                           | method), 39                                                                                                               |
|                                                                                          | <pre>expected_number_of_purchases_up_to_time()</pre>                                                                      |
| times.fitters.beta_geo_beta_binom_fitter.BetaGe                                          | oBetaBinom( <b>Fifttim</b> es.ModifiedBetaGeoFitter method), 60                                                           |
| attribute), 27                                                                           | <pre>expected_number_of_purchases_up_to_time()</pre>                                                                      |
| confidence_intervals_ (life-                                                             | (lifetimes.ParetoNBDFitter method), 55                                                                                    |
| times.fitters.beta_geo_fitter.BetaGeoFitter                                              | <pre>expected_number_of_transactions_in_first_n_periods</pre>                                                             |
| attribute), 30                                                                           | (lifetimes.BetaGeoBetaBinomFitter method),                                                                                |
| confidence_intervals_ (life-                                                             | 62                                                                                                                        |
| attribute), 33                                                                           | naFingercted_number_of_transactions_in_first_n_periods<br>(lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinom) |
| confidence_intervals_ ( <i>life</i> -                                                    | method), 28                                                                                                               |
| times.fitters.modified_beta_geo_fitter.ModifiedBe<br>attribute), 36                      | etaGeoFitter<br>F                                                                                                         |
| confidence_intervals_ (life-                                                             | <pre>fit() (lifetimes.BetaGeoBetaBinomFitter method), 62</pre>                                                            |
| times.GammaGammaFitter attribute), 57                                                    | <pre>fit() (lifetimes.BetaGeoFitter method), 52</pre>                                                                     |
| confidence_intervals_ (life-                                                             | fit () (lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGeoBetaBinomFit                                                  |
| times.ModifiedBetaGeoFitter attribute),                                                  | method), 28                                                                                                               |
| 59                                                                                       | <pre>fit() (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter</pre>                                                         |
| customer_lifetime_value() (life-                                                         | method), 31                                                                                                               |
| times.fitters.gamma_gamma_fitter.GammaGamm                                               | afitter) (lifetimes.fitters.gamma_gamma_fitter.GammaGammaFitter                                                           |
| method), 34                                                                              | method), 34                                                                                                               |
| customer_lifetime_value() (life-<br>times.GammaGammaFitter method), 57                   | <pre>fit () (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter<br/>method), 37</pre>                       |
| D                                                                                        | <pre>fit () (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter<br/>method), 39</pre>                                    |
| data (lifetimes.BetaGeoBetaBinomFitter attribute), 61                                    | fit () (lifetimes.GammaGammaFitter method), 58                                                                            |
| data (lifetimes.BetaGeoFitter attribute), 50                                             | <pre>fit() (lifetimes.ModifiedBetaGeoFitter method), 60</pre>                                                             |
| <pre>data(lifetimes.fitters.beta_geo_beta_binom_fitter.BetaGe</pre>                      |                                                                                                                           |
| data (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter at-                                | G                                                                                                                         |
| tribute), 29                                                                             | GammaGammaFitter ( <i>class in lifetimes</i> ), 56                                                                        |
| data (lifetimes.fitters.gamma_gamma_fitter.GammaGamm                                     |                                                                                                                           |
| attribute), 33                                                                           | times.fitters.gamma_gamma_fitter), 32                                                                                     |
| <pre>data(lifetimes.fitters.modified_beta_geo_fitter.ModifiedBo<br/>attribute), 35</pre> |                                                                                                                           |
| data (lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFitter                                | lifetimes (module), 50                                                                                                    |
| attribute), 38                                                                           | lifetimes.datasets (module), 41                                                                                           |
| data (lifetimes.GammaGammaFitter attribute), 56                                          | lifetimes.fitters (module), 40                                                                                            |
| data (lifetimes.ModifiedBetaGeoFitter attribute), 59                                     | lifetimes.fitters.beta_geo_beta_binom_fitter                                                                              |
| data (lifetimes.ParetoNBDFitter attribute), 53                                           | ( <i>module</i> ), 27                                                                                                     |
| E                                                                                        | <pre>lifetimes.fitters.beta_geo_fitter (mod-<br/>ule), 29</pre>                                                           |
| <pre>expected_cumulative_transactions() (in</pre>                                        | lifetimes.fitters.gamma_gamma_fitter                                                                                      |
| module lifetimes.utils), 49                                                              | ( <i>module</i> ), 32                                                                                                     |
| expected_number_of_purchases_up_to_time                                                  | (lifetimes.fitters.modified_beta_geo_fitter                                                                               |
| (lifetimes.BetaGeoFitter method), 52                                                     | ( <i>module</i> ), 35                                                                                                     |

| lifetimes.fitters.pareto_nbd_fitter                                               | attribute), 29                                                                  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| (module), 37                                                                      | penalizer_coef (life-                                                           |
| <pre>lifetimes.generate_data(module),41 lifetimes.plotting(module),43</pre>       | times.fitters.gamma_gamma_fitter.GammaGammaFitter<br>attribute), 32, 33         |
| lifetimes.utils ( <i>module</i> ), 47                                             | penalizer_coef (life-                                                           |
| load_cdnow_summary() (in module life-                                             | times.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitter                    |
| times.datasets), 41                                                               | attribute), 35                                                                  |
| <pre>load_cdnow_summary_data_with_monetary_v</pre>                                |                                                                                 |
| (in module lifetimes.datasets), 41                                                | times.fitters.pareto_nbd_fitter.ParetoNBDFitter                                 |
| load_donations() ( <i>in module lifetimes.datasets</i> ), 41                      | attribute), 38                                                                  |
| <pre>load_model() (lifetimes.fitters.BaseFitter method),</pre>                    | <pre>penalizer_coef (lifetimes.GammaGammaFitter at-<br/>tribute), 56</pre>      |
| <pre>load_transaction_data() (in module life-</pre>                               |                                                                                 |
| times.datasets), 41                                                               | attribute), 59                                                                  |
|                                                                                   | penalizer_coef (lifetimes.ParetoNBDFitter at-                                   |
| M                                                                                 | tribute), 53                                                                    |
| <pre>modified_beta_geometric_nbd_model() (in</pre>                                | <pre>plot_calibration_purchases_vs_holdout_purchases()</pre>                    |
| ModifiedBetaGeoFitter ( <i>class in lifetimes</i> ), 58                           | plot_cumulative_transactions() (in module                                       |
| ModifiedBetaGeoFitter (class in life-                                             | lifetimes.plotting), 45                                                         |
| times.fitters.modified_beta_geo_fitter), 35                                       | <pre>plot_dropout_rate_heterogeneity() (in</pre>                                |
| Р                                                                                 | module lifetimes.plotting), 47                                                  |
|                                                                                   | <pre>plot_expected_repeat_purchases() (in mod-</pre>                            |
| params_(lifetimes.BetaGeoBetaBinomFitter attribute),                              | <pre>ule lifetimes.plotting),44 plot_frequency_recency_matrix() (in mod-</pre>  |
| 61<br>(116 - i - D - G - Fine i                                                   | ule lifetimes.plotting), 43                                                     |
| params_( <i>lifetimes.BetaGeoFitter attribute</i> ), 50                           |                                                                                 |
| params_(lifetimes.fitters.beta_geo_beta_binom_fitter.Be<br>attribute), 27         | times.plotting), 45                                                             |
| params_ (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter                          | plot_incremental_transactions() (in mod-                                        |
| attribute) 20                                                                     | ule lifetimes.plotting), 46                                                     |
| params_(lifetimes.fitters.gamma_gamma_fitter.GammaC                               | Gammarineriod_transactions() (in module life-                                   |
| attribute) 32 33                                                                  |                                                                                 |
| params_(lifetimes.fitters.modified_beta_geo_fitter.Modif                          | fiedBetaGeoFinePility_alive_matrix() (in mod-<br>ule lifetimes.plotting), 44    |
| <pre>attribute), 35 params_(lifetimes.fitters.pareto_nbd_fitter.ParetoNBDFi</pre> |                                                                                 |
| attribute), 38                                                                    | (in module lifetimes.plotting), 46                                              |
| params_(lifetimes.GammaGammaFitter attribute), 56                                 | probability_of_n_purchases_up_to_time()                                         |
| params_ (lifetimes.ModifiedBetaGeoFitter attribute), 50                           | (lifetimes.BetaGeoFitter method), 53                                            |
| 59                                                                                | <pre>probability_of_n_purchases_up_to_time()</pre>                              |
| params_(lifetimes.ParetoNBDFitter attribute), 53                                  | (lifetimes.fitters.beta_geo_fitter.BetaGeoFitter                                |
| <pre>pareto_nbd_model() (in module life-</pre>                                    | method), 32                                                                     |
| times.generate_data), 42                                                          | probability_of_n_purchases_up_to_time()                                         |
| ParetoNBDFitter ( <i>class in lifetimes</i> ), 53                                 | (lifetimes.fitters.modified_beta_geo_fitter.ModifiedBetaGeoFitte<br>method), 37 |
| ParetoNBDFitter (class in life-                                                   | probability_of_n_purchases_up_to_time()                                         |
| times.fitters.pareto_nbd_fitter), 37                                              | (lifetimes.ModifiedBetaGeoFitter method), 60                                    |
| <pre>penalizer_coef (lifetimes.BetaGeoBetaBinomFitter</pre>                       |                                                                                 |
| penalizer_coef ( <i>lifetimes.BetaGeoFitter attribute</i> ),                      | S                                                                               |
| 50                                                                                | <pre>save_model() (lifetimes.fitters.BaseFitter method),</pre>                  |
| penalizer_coef (life-                                                             | 40                                                                              |
| times.fitters.beta_geo_beta_binom_fitter.BetaGeta                                 |                                                                                 |
| attribute), 27                                                                    | times.BetaGeoBetaBinomFitter attribute),                                        |
| penalizer_coef (life-                                                             | 61                                                                              |
| times.fitters.beta_geo_fitter.BetaGeoFitter                                       |                                                                                 |

standard\_errors\_ (*lifetimes*.*BetaGeoFitter* attribute), 35 attribute), 51 variance\_matrix\_ (lifetimes.GammaGammaFitter standard\_errors\_ attribute), 56 (lifetimes.fitters.beta\_geo\_beta\_binom\_fitter.BetaGeoBretaBinomEitteratrix\_ (lifeattribute), 27 times.ModifiedBetaGeoFitter attribute), standard errors (life-59 times.fitters.beta\_geo\_fitter.BetaGeoFitter attribute), 30 standard\_errors\_ (lifetimes.fitters.gamma\_gamma\_fitter.GammaGammaFitter attribute), 33 standard\_errors (lifetimes.fitters.modified\_beta\_geo\_fitter.ModifiedBetaGeoFitter attribute), 36 standard\_errors\_ (lifetimes.GammaGammaFitter attribute), 57 standard\_errors\_ (lifetimes.ModifiedBetaGeoFitter attribute). 59 summary (lifetimes.BetaGeoBetaBinomFitter attribute), 61 summary (lifetimes.BetaGeoFitter attribute), 51 summary (lifetimes.fitters.BaseFitter attribute), 40 summary (lifetimes.fitters.beta\_geo\_beta\_binom\_fitter.BetaGeoBetaBinomFitter attribute), 27 summary (lifetimes.fitters.beta\_geo\_fitter.BetaGeoFitter attribute), 30 summary (lifetimes.fitters.gamma\_gamma\_fitter.GammaGammaFitter attribute), 33 summary (lifetimes.fitters.modified\_beta\_geo\_fitter.ModifiedBetaGeoFitter attribute), 36 summary (lifetimes.GammaGammaFitter attribute), 57 summary (lifetimes.ModifiedBetaGeoFitter attribute), 59 summary\_data\_from\_transaction\_data() (in module lifetimes.utils), 48 V variance matrix (lifetimes.BetaGeoBetaBinomFitter attribute), 61 variance\_matrix\_ (lifetimes. Beta Geo Fitterattribute), 51 variance\_matrix\_ (lifetimes.fitters.beta\_geo\_beta\_binom\_fitter.BetaGeoBetaBinomFitter attribute), 27 variance\_matrix\_ (lifetimes.fitters.beta\_geo\_fitter.BetaGeoFitter attribute), 29 variance matrix (lifetimes.fitters.gamma\_gamma\_fitter.GammaGammaFitter attribute), 33 variance\_matrix\_ (lifetimes.fitters.modified\_beta\_geo\_fitter.ModifiedBetaGeoFitter