
libwheel Documentation
Release 0.2.0

Adrián Pérez de Castro

Aug 05, 2018





Contents

1 Error Reporting & Debugging 3
1.1 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Memory Utilities 5
2.1 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Objects 9
3.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Buffers 15
4.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 List Container 19
5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Input/Output Streams 23
6.1 Formatted output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Input/Output on Buffers 31
7.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Input/Output on memory 33

i



8.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 Input/Output on FILE* streams 35
9.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Input/Output on Unix file descriptors 37
10.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11 Input/Output on Sockets 39
11.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
11.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
11.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Tasks 43
12.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

13 Indices and tables 47

ii



libwheel Documentation, Release 0.2.0

Contents:

Contents 1



libwheel Documentation, Release 0.2.0

2 Contents



CHAPTER 1

Error Reporting & Debugging

The debug-print macros W_DEBUG and W_DEBUGC produce messages on standard error when _DEBUG_PRINT is
defined before including the wheel.h header., By default their expansion are empty statements. The following builds
program.c with the debug-print statements turned on:

cc -D_DEBUG_PRINT -o program program.c

The W_FATAL and W_BUG macros can be used to produce fatal errors which abort execution of the program.

The W_WARN macro can be used to produce non-fatal warnings, which can optionally be converted into fatal warnings
at run-time when programs are run with the W_FATAL_WARNIGS environment variable defined to a non-zero value
in their environment.

The w_die() function can be used to exit a program gracefully after printing an error message to standard error.

1.1 Macros

W_DEBUG(const char *format, ...)
Produces a debug-print on standard error with the given format. The macro automatically adds the function
name, file name and line number to the message.

If _DEBUG_PRINT is not defined (the default), this macro expands to an empty statement, causing no overhead.

See Formatted output for the available formatting options.

W_DEBUGC(const char *format, ...)
Produces a “continuation” debug-print on standard error with the given format. The macro does not add the
function name, file name and line number to the message (hence “continuation”).

If _DEBUG_PRINT is not defined (the default), this macro expands to an empty statement, causing no overhead.

See Formatted output for the available formatting options.

W_FATAL(const char *format, ...)
Writes a fatal error message to standard error with the given format, and aborts execution of the program. The
macro automatically adds the function name, file name and line number where the fatal error is produced.

3



libwheel Documentation, Release 0.2.0

See Formatted output for the available formatting options.

W_BUG(const char *message)
Marks the line where the macro is expanded as a bug: if control ever reaches the location, a fatal error is
produced using W_FATAL instructing the user to report the issue. The date and time of the build are included in
the error message.

It is possible to supply an optional message to be printed next to the supplied text. Note that, if supplied, this
should be a hint to help developers of the program.

Note that, as the message is optional, both these macro expansions produce valid code:

W_BUG();
W_BUG("This is a bug");

W_WARN(format, ...)
Writes a warning to standard error with the given format. The macro automatically adds the function name, file
name and line number where the warning is produced.

See Formatted output for the available formatting options.

If the W_FATAL_WARNINGS environment variable is defined and its value is non-zero, warnings are converted
into W_FATAL errors and execution of the program will be aboerted.

1.2 Functions

void w_die(const char *format, ...)
Prints a message to standard error with a given format and exits the program with the EXIT_FAILURE status
code.

See Formatted output for the available formatting options.

4 Chapter 1. Error Reporting & Debugging



CHAPTER 2

Memory Utilities

The functions w_malloc(), w_realloc() and the function-like macros w_new(), w_new0(), and w_free()
can be used to allocate and release chunks of memory from the heap.

The function-like macros w_alloc(), w_alloc0(), and w_resize() can be used to allocate and resize chunks
of memory which contain arrays of elements of the same type.

It is highly encourages to use these instead of any other dynamic allocation facilities, as they do additional checks and
will take care of aborting the running program with a meaningful message in case of out-of-memory conditions.

2.1 Macros

w_lmem
Marks a variable as being pointer to a heap-allocated chunk of memory which must be freed by calling
w_free() on it when the variable goes out of scope.

For example:

if (show_frob ()) {
// frob_message() allocates memory for the message using w_malloc()
w_lmem char *frob_msg = get_frob_message ();

w_print ("Frob: $s\n", frob_msg);

// After this point, "frob_msg" goes out of scope, so w_free()
// is called automatically on it to free the memory.

}

Note that this macro uses variable attributes supported by GCC and Clang to implement this behavior. When
building your program with any other compiler a compilation error will be generated if this macro is used.

w_lobj
Marks a variable as being a pointer which holds a reference to to a heap-allocated object, and that
w_obj_unref() will be called on it when the variable goes out of scope.

5



libwheel Documentation, Release 0.2.0

Usage example:

if (do_frob ()) {
// Keep a reference to a frob_t, increasing the reference counter.
w_lobj frob_t *frob_obj = w_obj_ref (get_frob_object ());

handle_frob (frob_obj);

// After this point, "frob_obj" goes out of scope, so w_obj_unref()
// is called automatically on it to decrease the reference counter.

}

2.2 Functions

void* w_malloc(size_t size)
Allocates a chunk of memory from the heap of a given size and returns a pointer to it. The returned pointer is
guaranteed to be valid.

If it was not possible to allocate memory, a fatal error is printed to standard error and execution aborted.

void* w_realloc(void *address, size_t new_size)
Resizes a chunk of memory from the heap at address from its current size to a new_size.

Note that:

• Passing NULL is valid, and it will allocate memory if the new_size is non-zero. This means that the
following two expressions are equivalent:

void *addr = w_realloc (NULL, 42);
void *addr = w_malloc (42);

• Requesting a new_size of zero causes memory to be deallocated. This means that the following two
expressions are equivalent:

addr = w_realloc (addr, 0);
w_free (addr);

void w_free(void *address)
Frees the chunk of heap memory at address and sets the pointer to NULL.

type* w_new(type)
Allocates a new chunk of memory from the heap suitable to hold a value of a certain type. Note that the pointer
is returned casted to the appropriate type pointer, and no additional casts are needed:

int *value = w_new (int);

type* w_new0(type)
Allocates a zero-filled chunk of memory from the heap suitable to hold a value of a certain type. This is
equivalent to using w_new(), clearing the memory with memset(), and then casting to the appropriate type:

int *value = w_new0 (int);
w_print ("$i\n", *value); // Prints "0"

type* w_alloc(type, size_t size)
Allocates a chunk of memory suitable to hold an array of a given size of values of a type. Note that the returned
pointer is casted to the appropriate type, and no additional casts are needed:

6 Chapter 2. Memory Utilities



libwheel Documentation, Release 0.2.0

int *point = w_alloc (int, 2);
point[0] = 42;
point[1] = 14;

type* w_alloc0(type, size_t size)
Allocates a zero-filled chunk of memory suitable to hold an array of a given size of values of a type. This is
equivalent to using w_alloc(), clearing the memory with memset(), and then casting to the appropriate
type:

int *point = w_alloc0 (int, 2);
w_print ("($i, $i)\n", point[0], point[1]); // Prints "(0, 0)"

type* w_resize(type* address, type, size_t new_size)
Resizes a chunk of memory at address which contains an array of elements of a given type to a new_size.

int *values = w_alloc (int, 10);
if (need_more_values ())

values = w_resize (values, int, 20);

2.2. Functions 7



libwheel Documentation, Release 0.2.0

8 Chapter 2. Memory Utilities



CHAPTER 3

Objects

The object system allows to do object oriented programming in C99. The object model has the following features:

• Simple inheritance. All object types must “inherit” from w_obj_t. Of course, composition of objects is also
possible.

• Objects are typically allocated in the heap, but it is possible to allocate them statically, or in the stack with the
aid of the W_OBJ_STATIC macro.

• Objects keep a reference counter, which can be manipulated using w_obj_ref(), and w_obj_unref().
Objects are deallocated when their reference counter drops to zero.

• It is possible to assign a “destructor function” to any object using w_obj_dtor().

• Minimal overhead: objects do not have a vtable by default, and dynamic method dispatching is not done unless
explicitly added by the user.

• Uses only C99 constructs, and it does not require any special compiler support.

• Optionally, when using GCC or Clang, the reference count for an object can be automatically decreased when a
pointer to it goes out of scope, by marking it with the w_lobj macro.

A number of features included in libwheel make use of the object system (for example, the Input/Output Streams),
or includes support to seamlessly integrate with the object system (for example, the List Container can update the
reference counter when objects are added to it).

3.1 Usage

This example shows how to define a base “shape” object type: shape_t; and two derived types for squares
(square_t) and rectangles (rectangle_t).

In order to have methods which work on any object derived from the shape type, a “vtable” is added manually to
perform dynamic dispatch using a shared struct which contains function pointers to the actual implementations for
each shape. Another valid approach would be to add the function pointers directly in shape_t to avoid the extra
indirection. This second approach would be better if the function pointers to method implementations could change at
runtime, at the cost of each instance of a shape occupying some extra bytes of memory.

9



libwheel Documentation, Release 0.2.0

Header:

// Objects have no vtable by default, so one is defined manually.
typedef struct {

double (*calc_area) (void*);
double (*calc_perimeter) (void*);

} shape_vtable_t;

// Base object type for shapes.
W_OBJ (shape_t) {

w_obj_t parent; // Base object type.
shape_vtable_t *vtable; // Pointer to vtable.

};

// A square shape.
W_OBJ (square_t) {

shape_t parent; // Inherits both base object and vtable.
double side_length;

};

// A rectangular shape.
W_OBJ (rectangle_t) {

shape_t parent; // Inherits both base object and vtable.
double width;
double height;

};

// Functions used to create new objects.
extern shape_t* square_new (double side_length);
extern shape_t* rectangle_new (double width, double height);

// Convenience functions to avoid having to manually make the
// dynamic dispatch through the vtable manually in client code.
static inline double shape_calc_area (shape_t *shape) {

return (*shape->vtable->calc_area) (shape);
}
static inline double shape_calc_perimeter (shape_t *shape) {

return (*shape->vtable->calc_perimeter) (shape);
}

Implementation:

// Methods and vtable for squares.
static double square_calc_area (void *obj) {

double side_length = ((square_t*) obj)->side_length;
return side_length * side_length;

}
static double square_calc_perimeter (void *obj) {

return 4 * ((square_t*) obj)->side_length;
}
static const shape_vtable_t square_vtable = {

.calc_area = square_calc_area,

.calc_perimeter = square_calc_perimeter,
};

shape_t* square_new (double side_length) {
square_t *square = w_obj_new (square_t); // Make object.
square->parent.vtable = &square_vtable; // Set vtable.

(continues on next page)

10 Chapter 3. Objects



libwheel Documentation, Release 0.2.0

(continued from previous page)

square->side_length = side_length;
return (shape_t*) square;

}

// Methods and vtable for rectangles.
static double rectangle_calc_area (void *obj) {

rectangle_t *rect = (rectangle_t*) obj;
return rect->width * rect->height;

}
static double rectangle_calc_perimeter (void *obj) {

rectangle_t *rect = (rectangle_t*) obj;
return 2 * (rect->width + rect->height);

}
static const shape_vtable_t rectangle_vtable = {

.calc_area = rectangle_calc_area,

.calc_perimeter = rectangle_calc_perimeter,
};

shape_t*
rectangle_new (double width, double height) {

rectangle_t *rect = w_obj_new (rectangle_t); // Make object.
rect->parent.vtable = &rectangle_vtable; // Set vtable.
rect->width = width;
rect->height = height;
return (shape_t*) rect;

}

Using shapes:

// Uses the generic shape_* functions.
static void print_shape_infos (shape_t *shape) {

w_print ("Shape area: $F\n", shape_calc_area (shape));
w_print ("Shape perimeter: $F\n", shape_calc_perimeter (shape));

}

int main (void) {
w_lobj shape_t *s = square_new (10);
w_lobj shape_t *r = rectangle_new (10, 20);
print_shape_infos (s); // Works on any object derived from shape_t.
print_shape_infos (r); // Ditto.
return 0;

}

3.2 Types

w_obj_t
Base type for objects.

All other object types must “derive” from this type for the objects system to work properly. This is achieved
by having a member of this type as first member of object types — either explicitly or by “inheriting” it from
another object type:

W_OBJ (my_type) {
// Explicitly make the first member be an "w_obj_t"

(continues on next page)

3.2. Types 11



libwheel Documentation, Release 0.2.0

(continued from previous page)

w_obj_t parent;
};

W_OBJ (my_subtype) {
// The first member itself has an "w_obj_t" as first member.
my_type parent;

};

3.3 Macros

W_OBJ_DECL(type)
Makes a forward declaration of a object class of a certain type.

See also W_OBJ_DEF.

W_OBJ_DEF(type)
Defines the structure for an object class of a certain type.

This macro should be used after the type has been declared using the W_OBJ_DECL macro.

Typical usage involves declaring the type in a header, and the actual layout of it in an implementation file, to
make the internals opaque to third party code:

// In "my_type.h"
W_OBJ_DECL (my_type);

// In "my_type.c"
W_OBJ_DEF (my_type) {

w_obj_t parent;
int value;
// ...

};

W_OBJ(type)
Declares and defines the structure for an object class of a certain type. This is equivalent to using W_OBJ_DECL
immediately followed by W_OBJ_DEF.

For example:

W_OBJ (my_type) {
w_obj_t parent;
int value;
// ...

};

This is used instead of a combination of W_OBJ_DECL and W_OBJ_DEF when a forward declaration is not
needed, and it does not matter that the internals of how an object class is implemented are visible in headers:

W_OBJ_STATIC(destructor)
Initializes a statically-allocated object, and sets destructor to be called before the object is deallocated by
w_obj_destroy().

Similarly to w_obj_mark_static(), this macro allows to initialize objects for which the memory they
occupy will not be deallocated.

Typical usage involves initializing static global objects, or objects allocated in the stack, e.g.:

12 Chapter 3. Objects



libwheel Documentation, Release 0.2.0

W_OBJ (my_type) {
w_obj_t parent;
int value;

};

static my_type static_object = {
.parent = W_OBJ_STATIC (NULL),
.value = 42,

};

void do_foo (void) {
my_type stack_object = {

.parent = W_OBJ_STATIC (NULL),

.value = 32,
};

use_object (&stack_object);
}

3.4 Functions

void* w_obj_ref(void *object)
Increases the reference counter of an object.

The object itself is returned, to allow easy chaining of other function calls.

void* w_obj_unref(void *object)
Decreases the reference counter of an object.

Once the reference count for an object reaches zero, it is destroyed using w_obj_destroy().

The object itself is returned, to allow easy chaining of other function calls.

void w_obj_destroy(void *object)
Destroys an object.

If a destructor function was set for the object using w_obj_dtor(), then it will be called before the memory
used by the object being freed.

void* w_obj_dtor(void *object, void (*destructor)(void*))
Registers a destructor function to be called when an object is destroyed using w_obj_destroy().

The object itself is returned, to allow easy chaining of other function calls.

void w_obj_mark_static(void *object)
Marks an object as being statically allocated.

When the last reference to an object marked as static is lost, its destructor will be called, but the area of mem-
ory occupied by the object will not be freed. This is the same behaviour as for objects initialized with the
W_OBJ_STATIC macro. The typical use-case for this function to mark objects that are allocated as part of
others, and the function is called during their initialization, like in the following example:

W_OBJ (my_type) {
w_obj_t parent;
w_io_unix_t unix_io;

};

void my_type_free (void *objptr) {
(continues on next page)

3.4. Functions 13



libwheel Documentation, Release 0.2.0

(continued from previous page)

w_obj_destroy (&self->unix_io);
}

my_type* my_type_new (void) {
my_type *self = w_obj_new (my_type);
w_io_unix_init_fd (&self->unix_io, 0);
w_obj_mark_static (&self->unix_io);
return w_obj_dtor (self, _my_type_free);

}

type* w_obj_new(type)
Creates a new instance of an object of a given type.

Freshly created objects always have a reference count of 1.

type* w_obj_new_with_priv_sized(type, size_t size)
Creates a new instance of an object of a given type, with additional space of size bytes to be used as instance
private data.

A pointer to the private data of an object can be obtained using w_obj_priv().

type* w_obj_new_with_priv(type)
Creates a new instance of an object of a given type, with additional space to be used as instance private data.
The size of the private data will be that of a type named after the gicen type with a _p suffix added to it.

A pointer to the private data of an object can be obtained using w_obj_priv().

Typical usage:

// In "my_type.h"
W_OBJ (my_type) {

w_obj_t parent;
};

extern my_type* my_type_new ();

// In "my_type.c"
typedef struct {

int private_value;
} my_type_p;

my_type* my_type_new (void) {
my_type *obj = w_obj_new_with_priv (my_type);
my_type_p *p = w_obj_priv (obj, my_type);
p->private_value = 42;
return obj;

}

void* w_obj_priv(void *object, type)
Obtains a pointer to the private instance data area of an object of a given type.

Note that only objects created using w_obj_new_with_priv_sized() or w_obj_new_with_priv()
have a private data area. The results of using this function on objects which do not have a private data area is
undefined.

14 Chapter 3. Objects



CHAPTER 4

Buffers

Buffers provide a variable-length area of memory in which data may be held and manipulated. Contained data is not
interpreted, and length of it is tracked, so it is possible to add null bytes to a buffer.

Allocating a buffer is done in the stack using the W_BUF macro. to initialize it. After initialization, all buffer functions
can be used, and when the buffer is not needed anymore, its contents can be freed using w_buf_clear().

4.1 Usage

// Initialize the buffer.
w_buf_t b = W_BUF;

// Append some string pieces.
w_buf_append_str (&b, "Too much work ");
w_buf_append_str (&b, "and no joy makes");
w_buf_append_str (&b, " Jack a dull boy");

// Buffer contents can be printed directly using the $B format.
w_print ("$B\n", &b);

// Free the memory used by the contents of the buffer.
w_buf_clear (&b);

4.2 Types

w_buf_t
Buffer type.

15



libwheel Documentation, Release 0.2.0

4.3 Macros

W_BUF
Initializer for buffers. It can be used to initialize buffers directly on the stack:

w_buf_t buffer = W_BUF;

4.4 Functions

void w_buf_resize(w_buf_t* buffer, size_t size)
Adjust the size of a buffer keeping contents. This is mostly useful for trimming contents, when shrinking the
buffer. When a buffer grows, random data is liklely to appear at the end.

Parameters

• buffer – A w_buf_t buffer

• size – size New size of the buffer

void w_buf_set_str(w_buf_t *buffer, const char *string)
Set the contents of a buffer to a C string.

Parameters

• buffer – A w_buf_t buffer

• string – String to set the buffer to.

void w_buf_append_mem(w_buf_t *buffer, const void *address, size_t length)
Appends the contents of a chunk of memory of length bytes starting at address to a buffer.

Parameters

• buffer – A w_buf_t buffer.

• address – Pointer to the memory block of memory.

• length – Length of the memory block.

void w_buf_append_str(w_buf_t *buffer, const char *string)
Appends a string to a buffer.

void w_buf_append_char(w_buf_t *buffer, int character)
Appends a character to a buffer.

void w_buf_append_buf(w_buf_t *buffer, const w_buf_t *other)
Appends the contents of other buffer to another buffer.

char* w_buf_str(w_buf_t *buffer)
Obtains the contents of a buffer as a NULL-terminated C string.

Warning: If the buffer contains embedded null characters, functions like strlen() will not report the
full length of the buffer.

The returned pointer is owned by the buffer, and there two ways in which the memory region can be freed:

• Clearing the buffer with w_buf_clear(). The returned pointer will be invalid afterwards.

• Calling w_free() on the returned pointer. The buffer will be invalid and must not be used afterwards.

16 Chapter 4. Buffers



libwheel Documentation, Release 0.2.0

The second way is useful to assemble a string which is returned from a function, for example:

char* concat_strings (const char *s, ...)
{
w_buf_t buffer = W_BUF;
w_buf_set_str (&buffer, s);

va_list args;
va_start (args, s);
while ((s = va_args (args, const char*)))
w_buf_append_str (&buffer, s);

va_end (args);

return w_buf_str (&buffer);
}

void w_buf_clear(w_buf_t *buffer)
Clears a buffer, freeing any used memory.

w_io_result_t w_buf_format(w_buf_t *buffer, const char *format, ...)
Appends text with a given format into a buffer, consuming additional arguments as needed by the format.

See Formatted output for the available formatting options.

w_io_result_t w_buf_formatv(w_buf_t *buffer, const char *format, va_list arguments)
Appends text with a given format into a buffer, consuming additional arguments as needed by the format.

See Formatted output for the available formatting options.

bool w_buf_is_empty(const w_buf_t *buffer)
Checks whether a buffer is empty.

size_t w_buf_size(const w_buf_t *buffer)
Obtains the size of a buffer.

char* w_buf_data(w_buf_t *buffer)
Obtains a pointer to the internal data stored by a buffer.

Warning: The returned value may be NULL when the buffer is empty.

const char* w_buf_const_data(const w_buf_t *buffer)
Obtains a pointer to the internal data stored by a buffer, returning it as a const pointer. This may be used
instead of w_buf_data() when the data is not going to be modified.

Warning: The returned value may be NULL when the buffer is empty.

4.4. Functions 17



libwheel Documentation, Release 0.2.0

18 Chapter 4. Buffers



CHAPTER 5

List Container

The implementation uses a doubly-linked list, meaning that most operations are very efficient, and the list can be
traversed both forward and backward.

The functions which use numeric indexes to refer to elements in the list can be slow, and should be avoided if possible:
w_list_at(), w_list_insert_at(), and w_list_del_at(). Negative numeric indexes can be passed to
functions, with the same meaning as in Python: -1 refers to the last element, -2 to the element before the last, and so
on.

If a list is meant to contain objects (see Objects), it is possible to let the list reference-count the objects (using
w_obj_ref() and w_obj_unref()) by passing true when creating a list with w_list_new(). If enabled,
whenever an item is added to the list, its reference count will be increased, and it will be decreased when the item is
removed from the list.

5.1 Usage

w_list_t *fruits = w_list_new (false);

w_list_append (fruits, "apples");
w_list_append (fruits, "bananas");

w_list_foreach (item, fruits) // Prints "apples bananas "
w_print ("$s ", (const char*) *item);

w_list_insert_after (fruits, w_list_first (fruits), "pears");
// fruits = {"apples", "pears", "bananas"}

w_list_del_head (fruits);
// fruits = {"pears", "bananas"}

w_list_foreach_reverse (item, fruits) // Prints "bananas pears "
w_print ("$s ", (const char*) *item);

(continues on next page)

19



libwheel Documentation, Release 0.2.0

(continued from previous page)

w_obj_unref (fruits); // Decrease the reference counter, frees the list.

5.2 Types

w_list_t
Object type of a list container.

5.3 Macros

w_list_foreach(iterator, w_list_t *list)
Defines a loop over all items in a list.

Typical usage:

w_list_t *list = make_string_list ();
w_list_foreach (i, list) {

w_io_format (w_stdout, "$s\n", (const char*) *i);
}

w_list_foreach_reverse(iterator, w_list_t *list)
Defines a loop over all items in a list, in reverse order.

Typical usage:

w_list_t *list = make_string_list ();
w_list_foreach_reverse (i, list) {

w_io_format (w_stdout, "$s\n", (const char*) *i);
}

5.4 Functions

w_list_t* w_list_new(bool reference_counted)
Creates a new list, in which elements are optionally reference_counted.

void w_list_clear(w_list_t *list)
Clears a list, removing all of its elements.

void w_list_push_tail(w_list_t *list, void *element)
Appends an element to the end of a list.

void w_list_push_head(w_list_t *list, void *element)
Inserts an element at the beginning of a list.

void* w_list_pop_head(w_list_t *list)
emoves the element at the beginning of a list and returns it.

Note that this will not decrease the reference counter when reference counting is enabled: it is assumed that the
caller will use the returned item.

20 Chapter 5. List Container



libwheel Documentation, Release 0.2.0

void* w_list_pop_tail(w_list_t *list)
Removes the element at the end of a list and returns it.

Note that this will not decrease the reference counter when reference counting is enabled: it is assumed that the
caller will use the returned item.

void* w_list_at(const w_list_t *list, long index)
Obtains the value stored in a list at a given index. Negative indexes count from the end of the list.

void* w_list_head(const w_list_t *list)
Obtains the element at the first position of a list.

void* w_list_tail(const w_list_t *list)
Obtains the element at the last position of a list.

w_iterator_t w_list_first(const w_list_t *list)
Obtains an iterator pointing to the first element of a list.

w_iterator_t w_list_last(const w_list_t *list)
Obtains an iterator pointing to the last element of a list

w_iterator_t w_list_next(const w_list_t *list, w_iterator_t iterator)
Makes an iterator to an element of a list point to the next element in the list, and returns the updated iterator.

w_iterator_t w_list_prev(const w_list_t *list, w_iterator_t iterator)
Makes an iterator to an element of a list point to the previous element in the list, and returns the updated iterator.

void w_list_insert_before(w_list_t *list, w_iterator_t position, void *element)
Inserts an element in a list before a particular position.

void w_list_insert_after(w_list_t *list, w_iterator_t position, void *element)
Inserts an element in a list after a particular position.

void w_list_insert_at(w_list_t *list, long index, void *element)
Inserts an element in a list at a given index..

Note that the operation is optimized for some particular indexes like 0 (first position) and -1 (last position), bu
in general this function runs in O(n) time depending on the size of the list.

void w_list_del(w_list_t *list, w_iterator_t position)
Deletes the element at a given position in a list.

void w_list_del_at(w_list_t *list, long index)
Deletes the element at a given index in a list.

size_t w_list_size(const w_list_t *list)
Obtains the number of elements in a list.

bool w_list_is_empty(const w_list_t *list)
Checks whether a list is empty.

void w_list_del_head(w_list_t *list)
Deletes the element at the beginning of a list.

Contrary to w_list_pop_head(), the element is not returned, and the reference counter is decreased (if
reference counting is enabled).

void w_list_del_tail(w_list_t *list)
Deletes the element at the end of a list.

Contrary to w_list_pop_tail(), the element is not returned, and the reference counter is decreased (if
reference counting is enabled).

5.4. Functions 21



libwheel Documentation, Release 0.2.0

void w_list_insert(w_list_t *list, w_iterator_t position, void *element)
Alias for w_list_insert_before().

void w_list_append(w_list_t *list, void *element)
Alias for w_list_push_tail().

void w_list_pop(w_list_t *list, void *element)
Alias for w_list_pop_tail().

22 Chapter 5. List Container



CHAPTER 6

Input/Output Streams

The following kinds of streams are provided:

• Input/Output on Buffers

• Input/Output on memory

• Input/Output on FILE* streams

• Input/Output on Unix file descriptors

• Input/Output on Sockets

6.1 Formatted output

A number of functions support specifying a format string, and will accept a variable amount of additional function
arguments, depending on the format specifiers present in the format string. All those functions use the same formatting
mechanism, as described here.

Format specifiers are sequences of characters started with a dollar symbol ($), followed by at a character, which
determines the type and amount of the additional function arguments being consumed.

The recognized format specifiers are:

23



libwheel Documentation, Release 0.2.0

Speci-
fier

Type(s) Output format.

$c int Character.
$l long int Decimal number.
$L unsigned long

int
Decimal number.

$i int Decimal number.
$I unsigned int Decimal number.
$X unsigned long

int
Hexadecimal number.

$O unsigned long
int

Octal number.

$p void* Pointer, as hexadecimal number.
$f float Floating point number.
$F double Floating point number.
$s const char* A \0-terminated string.
$B w_buf_t* Arbitrary data (usually a string).
$S size_t, const

char*
String of a particular length.

$e Last value of errno, as an integer.
$E Last value of errno, as a string.
$R w_io_result_t String representing the return value of an input/output operation (see Output for

w_io_result_t below).

6.1.1 Output for w_io_result_t

The $R format specifier will consume a w_io_result_t value, and format it as a string, in one of the following
ways:

IO<EOF> End-of-file marker. This is printed when w_io_eof() would return true for the value.

IO<string> This format is used for errors, the string describes the error. Most of the time the error strings corre-
spond to the values obtained by using strerror (w_io_result_error (value)) on the value.

IO<number> This format is used for successful operations, the number is the amount of bytes that were handled
during the input/output operation, and it can be zero, e.g. for the result of w_io_close().

6.1.2 Reusing

The main entry point of the formatting mechanism is the w_io_format() function, which works for any kind
of output stream. To allow for easier integration with other kinds of output, an alternate version of the function,
w_io_formatv(), which accepts a va_list, is provided as well.

By providing a custom output stream implementation, it is possible to reuse the formatting mechanism for your own
purposes. The w_buf_format() function, which writes formatted data to a buffer, is implemented using this
technique.

The following example implements a function similar to asprintf(), which allocates memory as needed to fit the
formatted output, using w_io_formatv() in combination with a w_io_buf_t stream:

char*
str_format (const char *format, ...)
{

(continues on next page)

24 Chapter 6. Input/Output Streams



libwheel Documentation, Release 0.2.0

(continued from previous page)

// Using NULL uses a buffer internal to the w_io_buf_t.
w_io_buf_t buffer_io;
w_io_buf_init (&buffer_io, NULL, false);

// Writing to a buffer always succeeds, the result can be ignored.
va_list args;
va_start (args, format);
W_IO_NORESULT (w_io_formatv ((w_io_t*) &buffer_io, format, args));
va_end (args);

// The data area of the buffer is heap allocated, so it is safe to
// return a pointer to it even when the w_io_buf_t is in the stack.
return w_io_buf_str (&buffer_io);

}

6.2 Types

w_io_result_t
Represents the result of an input/output operation, which is one of:

• An error, which signals the failure of the operation. The w_io_failed() can be used to check
whether an input/output operation failed. If case of failure, the error code can be obtained using
w_io_result_error(); otherwise the operation succeeded and it can have one of the other values.

• An indication that the end-of-file marker has been reached — typically used when reading data from a
stream. The w_io_eof() function can be used to check for the end-of-file marker.

• A successful operation, indicating the amount of data involved. This is the case when an operation
neither failed, neither it is the end-of-file marker. The amount of bytes handled can be retrieved using
w_io_result_bytes().

It is possible to obtain a textual representation of values of this type by using the $R format specifier with any
of the functions that use the Formatted output system.

w_io_t
Represents an input/output stream.

6.3 Macros

W_IO_RESULT(bytes)
Makes a w_io_result_t value which indicates a successful operation which handled the given amount of
bytes.

W_IO_RESULT_ERROR(error)
Makes a w_io_result_t value which indicates a failure due to given error.

W_IO_RESULT_EOF
Makes a w_io_result_t value which indicates a successful operation that reached the end-of-file marker.

W_IO_RESULT_SUCCESS
Makes a w_io_result_t value which indicates a successful operation.

W_IO_CHAIN(result, expression)
This macro expands to code that evaluates an expression, which must return a w_io_result_t value. If the

6.2. Types 25



libwheel Documentation, Release 0.2.0

operation failed, it will cause the current function to return the error, otherwise the amount of bytes returned by
w_io_result_bytes() are added to the amount in the variable of type w_io_result_t() passed as
the result parameter.

Typical usage involves using the macro is inside a function that performs a number of reads (or writes), and the
overall status of a “chain” of input/output operations is to be reported back as a result.

The expanded macro is roughly equivalent to:

w_io_result_t expr_result = expression;
if (w_io_failed (expr_result))

return expr_result;
result.bytes += w_io_result_bytes (expr_result);

As an example, consider a data stream which contains “messages” of the form SIZE:DATA, with the SIZE
of the message encoded as a plain text integer, followed by a colon, and SIZE bytes of arbitrary data. The
following function reads such messages, one at a time, returning the result of reading from the input as a
w_io_result_t value —which can be checked for end-of-file or errors—, and returning the DATA in a
buffer and its expected size:

w_io_result_t
read_message (w_io_t *input, w_buf_t *message, unsigned long *size)
{

w_io_result_t bytes = W_IO_RESULT (0);

// Read the length of the record. If reading fails, the macro
// causes the function to return early with an error result.
// The amount of bytes read is added to "bytes".
W_IO_CHAIN (bytes, w_io_fscan_ulong (input, size));

// Read the separator. Again: the macro causes an early error
// return on failure, or incrementing "bytes" on success.
char separator = '\0';
W_IO_CHAIN (bytes, w_io_read (input, &separator, 1));
if (separator != ':')

return W_IO_RESULT_ERROR (EBADMSG);

// Read the message contents. Again: the macro causes an early
// error on failure, or incrementing "bytes" on success.
w_buf_resize (message, record_size);
W_IO_CHAIN (bytes, w_io_read (input, w_buf_data (message), *size);

return bytes; // Returns the total amount of bytes read.
}

W_IO_CHECK(expression)
This macro expands to code that evaluates an expression, which must return a w_io_result_t value. If the
operation failed, it will cause the current function to return the error. It is roughly equivalent to:

w_io_result_t expr_result = expression;
if (w_io_failed (expr_result))

return expr_result;

W_IO_CHECK_RETURN(expression, value)
Similar to W_IO_CHECK, but instead of returning a w_io_result_t if the expression fails to perform in-
put/output, the given value is returned instead. It is roughly equivalent to:

26 Chapter 6. Input/Output Streams



libwheel Documentation, Release 0.2.0

if (w_io_failed (expression))
return value;

W_IO_NORESULT(expression)
This macro expands to code that evaluates an expression, which must return a w_io_result_t value, and
ignoring that result value. This is typically used when a an input/output operation is known to never fail, and
the result status will not be checked, or when the operation might fail, but it does not matter whether it did.

6.4 Functions

void w_io_init(w_io_t *stream)
Initializes a base input/output stream.

w_io_result_t w_io_close(w_io_t *stream)
Closes an input/output stream.

w_io_result_t w_io_read(w_io_t *stream, void *buffer, size_t count)
Reads up to count bytes from the an input stream, placing the data in in memory starting at buffer.

Passing a count of zero always succeeds and has no side effects.

If reading succeeds, the amount of bytes read may be smaller than the requested count. The reason may be that
the end-of-file marker has been reached (and it will be notified at the next attempt of reading data), or because
no more data is available for reading at the moment.

w_io_result_t w_io_write(w_io_t *stream, const void *buffer, size_t count)
Writes up to count bytes from the data in memory starting at buffer to an output stream.

Passing a count of zero always succeeds and has no side effects.

int w_io_getchar(w_io_t *stream)
Reads the next character from a input stream.

If the enf-of-file marker is reached, W_IO_EOF is returned. On errors, negative values are returned.

w_io_result_t w_io_putchar(w_io_t *stream, int character)
Writes a character to an output stream.

void w_io_putback(w_io_t *stream, int character)
Pushes a character back into an input stream, making it available during the next read operation.

Warning: Pushing more than one character is not supported, and only the last pushed one will be saved.

w_io_result_t w_io_flush(w_io_stream *stream)
For an output stream, forces writing buffered data to the stream.

For in input stream, discards data that may have been fetched from the stream but still not consumed by the
application.

int w_io_get_fd(w_io_t *stream)
Obtains the underlying file descriptor used by a stream.

Warning: Not all types of input/output streams have an associated file descriptor, and a negative value will
be returned for those.

6.4. Functions 27



libwheel Documentation, Release 0.2.0

w_io_result_t w_io_format(w_io_t *stream, const char *format, ...)
Writes data with a given format to an output stream. The amount of consumed arguments depends on the format
string.

See Formatted output for more information.

w_io_result_t w_io_formatv(w_io_t *stream, const char *format, va_list arguments)
Writes data with a given format to an output stream, consuming the needed additional arguments from the
supplied va_list. The amount of consumed arguments depends on the format string.

See Formatted output for more information.

w_io_result_t w_print(format, ...)
Writes data in the given format to the standard output stream w_stdout. The amount of consumed arguments
depends on the format string.

See Formatted output for more information.

w_io_result_t w_printerr(format, ...)
Writes data in the given format to the standard error stream w_stderr. The amount of consumed arguments
depends on the format string.

See Formatted output for more information.

w_io_result_t w_io_read_until(w_io_t *stream, w_buf_t *buffer, w_buf_t *overflow, int character, un-
signed read_bytes)

Reads data from a stream until a certain character is read. Data is read in chunks of read_bytes size, and
placed in a buffer, with the excess characters placed in an overflow buffer, which can be passed back to continue
scanning for the stop character in subsequent calls.

Passing zero for the read_bytes size will make the function use a default chunk size — usually the size of a
memory page.

This function is intended to read records of data of variable size which are separated using a certain character as
a delimiter. For example, usually fortune data files have items separated by % characters. The following function
would read such a file:

void read_fortunes (w_io_t *input) {
w_buf_t fortune = W_BUF;
w_buf_t overflow = W_BUF;

for (;;) {
w_io_result_t r = w_io_read_line (input, &fortune, &overflow, 0);

if (w_io_failed (r)) {
w_printerr ("Error reading fortunes: $R\n" r);
break;

}
if (w_io_eof (r))

break;

handle_fortune (&fortune);
}

w_buf_clear (&overflow);
w_buf_clear (&fortune);

}

bool w_io_failed(w_io_result_t result)
Checks whether the result of an input/output operation was a failure.

28 Chapter 6. Input/Output Streams

https://en.wikipedia.org/wiki/Fortune_%28Unix%29


libwheel Documentation, Release 0.2.0

If the result happens to be a failure, w_io_result_error() can be used to retrieve the error code.

bool w_io_eof(w_io_result_t result)
Checks whether the result of an input/output operation was the end-of-file marker.

int w_io_result_error(w_io_result_t result)
Obtains the code of the error that caused an input/output operation to return a failure result.

This function only returns meaningful values when result indicates a failed operation. This condition can be
checked using w_io_failed().

size_t w_io_result_bytes(w_io_result_t result)
Obtains the amount of bytes which were involved as the result of an input/output operation.

When the result signals a failed operation, or the end-of-file marker, the returned value is always zero.

w_io_result_t w_io_read_line(w_io_t *stream, w_buf_t *line, w_buf_t *overflow, unsigned read_bytes)
Reads a line of text from an input stream.

This is a convenience function that calls w_io_read_until() passing '\n' as delimiter character.

6.4. Functions 29



libwheel Documentation, Release 0.2.0

30 Chapter 6. Input/Output Streams



CHAPTER 7

Input/Output on Buffers

Provides support for using the stream functions to read and write to and from w_buf_t buffers.

7.1 Types

w_io_buf_t
Performs input/output on a w_buf_t buffer.

7.2 Functions

void w_io_buf_init(w_io_buf_t *stream, w_buf_t *buffer, bool append)
Initialize a stream object (possibly allocated in the stack) to be used with a buffer.

Passing a NULL buffer will create a new buffer owned by the stream object, which can be retrieved us-
ing w_io_buf_get_buffer(). The memory used by this buffer will be freed automatically when the
stream object is freed. On the contrary, when a valid buffer is supplied, the caller is responsible for calling
w_buf_clear() on it.

Optionally, the stream position can be setup to append data to the contents already present in the given buffer,
insted of overwriting them.

w_io_t* w_io_buf_open(w_buf_t *buffer)
Creates a stream object to be used with a buffer.

Passing a NULL buffer will create a new buffer owned by the stream object, which can be retrieved us-
ing w_io_buf_get_buffer(). The memory used by this buffer will be freed automatically when the
stream object is freed. On the contrary, when a valid buffer is supplied, the caller is responsible for calling
w_buf_clear() on it.

w_buf_t* w_io_buf_get_buffer(w_io_buf_t *stream)
Obtain a pointer to the buffer being used by a stream.

31



libwheel Documentation, Release 0.2.0

char* w_io_buf_str(w_io_buf_t *stream)
Obtain a string representation of the contents of the buffer being used by a stream.

32 Chapter 7. Input/Output on Buffers



CHAPTER 8

Input/Output on memory

Provides support for using the stream functions to read and write to and from regions of memory of fixed sizes.

8.1 Types

w_io_mem_t
Performs input/output on a region of memory of a fixed size.

8.2 Functions

void w_io_mem_init(w_io_mem_t *stream, uint8_t *address, size_t size)
Initializes a stream object (possibly located in the stack) to be used with a region of memory of a given size
located at address.

w_io_t* w_io_mem_open(uint8_t *address, size_t size)
Creates a stream object to be used with a region of memory of a given size located at address.

uint8_t* w_io_mem_data(w_io_mem_t *stream)
Obtains the base address to the memory region on which a stream operates.

size_t w_io_mem_size(w_io_mem_t *stream)
Obtains the size of the memory region on which a stream operates.

33



libwheel Documentation, Release 0.2.0

34 Chapter 8. Input/Output on memory



CHAPTER 9

Input/Output on FILE* streams

Provides support for using the stream functions to read and write to and from FILE* streams as provided by the C
standard library.

9.1 Types

w_io_stdio_t
Performs input/output on a FILE* stream.

9.2 Functions

void w_io_stdio_init(w_io_stdio_t *stream, FILE *stdio_stream)
Initializes a stream object (possibly allocated in the stack) to be used with a given stdio_stream.

w_io_t* w_io_stdio_open(FILE *stdio_stream)
Creates a stream object to be used with a given stdio_stream.

35



libwheel Documentation, Release 0.2.0

36 Chapter 9. Input/Output on FILE* streams



CHAPTER 10

Input/Output on Unix file descriptors

Once a Unix stream object has been initialized, they can be operated used the common stream functions.

10.1 Types

w_io_unix_t
Performs input/output using Unix file descriptors.

10.2 Functions

w_io_t* w_io_unix_open(const char *path, int mode, unsigned permissions)
Creates a stream object to be used with an Unix file descriptor by opening the file at path with the given mode
and permissions.

This is a convenience function that calls open() and then uses w_io_unix_open_fd().

If opening the file fails, NULL is returned.

w_io_t* w_io_unix_open_fd(int fd)
Creates a stream object to be used with an Unix file descriptor.

bool w_io_unix_init(w_io_unix_t *stream, const char *path, int mode, unsigned permissions)
Initializes a stream object (possibly allocated in the stack) to be used with an Unix file descriptor by opening the
file at path with the given mode and permissions.

This is a convenience function that calls open() and then uses w_io_unix_init_fd().

The return value indicates whether the file was opened successfully.

void w_io_unix_init_fd(w_io_unix_t *stream, int fd)
Initializes a stream object (possibly allocated in the stack) to be used with an Unix file descriptor.

37



libwheel Documentation, Release 0.2.0

38 Chapter 10. Input/Output on Unix file descriptors



CHAPTER 11

Input/Output on Sockets

Provides support for using the stream functions to read and write to and from sockets.

The following kinds of sockets are supported:

• TCP sockets.

• Unix sockets.

11.1 Usage

11.1.1 Client

To connect a socket to a remote server (and use it as a client), the usual procedure is as follows:

1. Create the socket with w_io_socket_open().

2. Connect to the remote endpoint using w_io_socket_connect().

3. Exchange data using w_io_write() and w_io_read(), or any other of the stream functions.

4. (Optional) Once no more data needs to be written, a half-close can be performed using
w_io_socket_send_eof(). It will still be possible to read data from the stream.

5. Close the socket, using w_io_close() or calling w_obj_unref() on it and letting it be closed and de-
stroyed when no more references to the socket are held.

The following code will make an HTTP request and read the response back into a w_buf_t:

w_buf_t
http_get (const char *ip_address, unsigned port, const char *resource)
{

w_lobj w_io_t *stream = w_io_socket_open (W_IO_SOCKET_TCP4,
ip_address,
port);

if (!stream || !w_io_socket_connect ((w_io_socket_t*) stream))
(continues on next page)

39



libwheel Documentation, Release 0.2.0

(continued from previous page)

w_die ("Cannot create socket and connect to $s\n", ip_address);

W_IO_NORESULT (w_io_format (stream, "GET $s HTTP/1.0\r\n", resource));
w_io_socket_send_eof ((w_io_socket_t*) stream);

w_buf_t response = W_BUF;
char buf[512];

for (;;) {
w_io_result_t r = w_io_read (stream, buf, w_lengthof (buf));
if (w_io_failed (r))

w_die ("Error reading from $s: $R\n", ip_address, r);
if (w_io_result_bytes (r) > 0)

w_buf_append_mem (&response, buf, w_io_result_bytes (r));
else if (w_io_eof (r))

break;
}

return response;
}

11.1.2 Server

Using a socket to server requests is a bit more convoluted, but still much easier than using the sockets API directly.
The overall procedure is:

1. Define a request handler function which conforms to the following signature:

bool (*request_handler) (w_io_socket_t *socket)

2. Create the socket with w_io_socket_open().

3. Start serving requests with w_io_socket_serve(). The function will bind to the address specified when
creating the socket and start serving requests. For each request, the request handler function will be called with
a socket that can be used to handle the request.

The following code implements a simple TCP echo server:

static bool
handle_echo_request (w_io_socket_t *socket)
{

char buf[512];
for (;;) {

w_io_result_t r = w_io_read ((w_io_t*) socket, buf, w_lengthof (buf));
if (w_io_failed (r))

w_die ("Error reading from client: $R\n", r);
if (w_io_eof (r))

break;

r = w_io_write ((w_io_t*) socket, buf, w_io_result_bytes (r));
if (w_io_failed (r))

w_die ("Error writing to client: $R\n", r);
}
w_io_socket_send_eof (socket);

return true; // Keep accepting more requests.
(continues on next page)

40 Chapter 11. Input/Output on Sockets



libwheel Documentation, Release 0.2.0

(continued from previous page)

}

int main (void)
{

w_lobj w_io_t *socket = w_io_socket_open (W_IO_SOCKET_TCP4,
"0.0.0.0", // Address.
4242); // Port.

if (!socket)
w_die ("Cannot create socket: $E\n");

if (!w_io_socket_serve ((w_io_socket_t*) socket,
W_IO_SOCKET_FORK, // Handle each request in a child

→˓process.
handle_echo_request))

w_dir ("Cannot accept connections: $E\n");

return 0;
}

11.2 Types

w_io_socket_t
Performs input/output on sockets.

11.3 Functions

bool w_io_socket_init(w_io_socket_t *stream, w_io_socket_kind_t kind, ...)
Initializes a socket stream (possibly allocated in the stack).

For a description of the additional function arguments, please check the documentation for
w_io_socket_open().

w_io_t* w_io_socket_open(w_io_socket_kind_t kind, ...)
Create a new socket of a given kind.

Sockets are created in a state in which they can be used both for client and server sockets:

• w_io_socket_connect() will put the socket in client mode and connect it to the specified address.

• w_io_socket_serve() will put the socket in server mode, and start listening for connections at the
specified address.

The parameters that need to be passed to this function vary depending on the kind of the socket being created.

Unix sockets: Pass W_IO_SOCKET_UNIX as kind, and the path in the file system where the socket is to be
created (or connected to).

TCP sockets: Pass W_IO_SOCKET_TCP4 as kind, plus the IP address (as a string) and the port to use (or to
connect to).

bool w_io_socket_connect(w_io_socket_t *socket)
Connect a socket to a server.

11.2. Types 41



libwheel Documentation, Release 0.2.0

This makes a connection to the host specified when creating the socket with w_io_socket_open(), and
puts it in client mode. Once the socket is successfully connected, read and write operations can be performed in
the socket.

The return value indicates whether the connection was successful.

bool w_io_socket_serve(w_io_socket_t *socket, w_io_socket_serve_mode_t mode, bool (*han-
dler)(w_io_socket_t*))

Serves requests using a socket. This function will start a loop accepting connections, and for each connection
an open socket will be passed to the given handler function. The mode in which each request is served can be
specified:

• W_IO_SOCKET_SINGLE: Each request is served by calling directly and waiting for it to finish. This
makes impossible to serve more than one request at a time.

• W_IO_SOCKET_THREAD: Each request is served in a new thread. The handler is invoked in that thread.

• W_IO_SOCKET_FORK: A new process is forked for each request. The handler is invoked in the child
process.

bool w_io_socket_send_eof(w_io_socket_t *socket)
Half-close a socket on the write direction. This closes the socket, but only in writing one direction, so other
endpoint will think that the end of the stream was reached (thus the operation is conceptually equivalent to
sending and “end of file marker”). Read operations can still be performed in a socket which was half-closed
using this function.

Note that for completely closing the socket, w_io_close() should be used instead.

The return value indicates whether the half-close was successful.

const char* w_io_socket_unix_path(w_io_socket_t *socket)
Obtain the path in the filesystem for an Unix socket.

Note that the result is undefined if the socket is of any other kind than an Unix socket.

42 Chapter 11. Input/Output on Sockets



CHAPTER 12

Tasks

The tasks system provides “green threads” (also known as lightweight cooperative threads, or coroutines).

Additionally, the following utilities are provided to be used along with the tasks system:

• Functions to suspend a coroutine and wait for I/O to be completed: w_task_yield_io_read(),
w_task_yield_io_write().

• The w_io_task_open() and w_io_task_init() functions can be used to create a w_io_task_t
wrapper to ease using asynchronous I/O with tasks.

12.1 Types

w_task_t
Type of a task.

Tasks are created by w_task_prepare(), and the resources used by a task (including the stack space used by
the task and the w_task_t value itself) will be automatically freed when the tasks is exited. Never deallocate
a task manually, or use it after it has been exited.

w_task_func_t
Type of task functions.

w_io_task_t
Stream wrapper for asynchronous input/output.

This is a subclass of :type:w_io_t; all the stream functions can be used on objects of this type. Reading and writ-
ing data uses w_task_yield_io_read() and w_task_yield_io_write(), so instead of blocking
until completion the current task will be suspended automatically.

12.2 Functions

w_task_t* w_task_prepare(w_task_func_t function, void *data, size_t stack_size)
Creates a task with a given stack_size and prepares it for running a function, passing a data pointer to the

43

https://en.wikipedia.org/wiki/Coroutine


libwheel Documentation, Release 0.2.0

function. The task will be in paused state upon creation.

To get tasks running, the scheduler must be running, see w_task_run_scheduler().

The stack_size is always rounded up to the size of a memory page. It is possible to pass zero to get the smallest
possible stack size (usually 4 kB).

w_task_t* w_task_current()
Obtains the task currently running.

Warning: This function must be called from inside a task, once the task scheduler has been started.
Otherwise, calling this function is an error and the execution of the program will be aborted.

void w_task_set_is_system(w_task_t *task, bool is_system)
Set whether a task is a system task. System tasks are those which are always running.

System tasks do not prevent w_task_run_scheduler() from returning.

bool w_task_get_is_system(w_task_t *task)
Checks whether a task is a system task.

See also w_task_set_is_system().

void w_task_set_name(w_task_t *task, const char *name)
Sets the name of a task. The name of the tast is copied as-is, and it is not interpreted in any way. The ability of
naming tasks is mainly provided as an aid for debugging client code.

It is possible to pass NULL as the name, which will clear any custom name previously set.

const char* w_task_get_name(w_task_t *task)
Obtains the name of a task.

If a name has not been set using w_task_set_name(), an autogenerated one of the form Task<ID> will
be returned.

void w_task_run_scheduler()
Runs the task scheduler.

The scheduler will choose tasks in a round-robin fashion, and let each task run until it gives up the CPU
explicitly using w_task_yield() or implicitly when waiting for input/output on a stream be means of
w_task_yield_io_read() and w_task_yield_io_write().

The scheduler will keep scheduling tasks until all non-system tasks have been exited.

This function must be called in the main function of a program. Typically:

extern void process_argument (void*);

int main (int argc, char **argv) {
while (argc--)

w_task_prepare (process_argument, *argv++, 0);
w_task_run_scheduler ();
return 0;

}

void w_task_yield()
Make the current task give up the CPU, giving control back to the task scheduler, which will give other other
tasks the chance to run.

44 Chapter 12. Tasks



libwheel Documentation, Release 0.2.0

void w_task_exit()
Exits the current task. This can be used to exit from a task at any point, without needing to return from the task
function.

w_io_result_t w_task_yield_io_read(w_io_t *stream, void *buffer, size_t count)
Reads count bytes into the memory block at buffer from an input stream, suspending the current task as needed.

If the stream has been set as non-blocking and reading from it results in an EAGAIN or EWOULDBLOCK error,
the current task will give up the CPU and wait until the data is available for reading as many times as needed,
until count bytes are read, the end-of-file marker is reached, or an error is found.

w_io_result_t w_task_yield_io_write(w_io_t *stream, const void *buffer, size_t count)
Writes count bytes from the memory block at buffer to an output stream, suspending the current task as needed.

If the stream has been set as non-blocking and writing to it results in an EAGAIN or EWOULDBLOCK error, the
current task will give up the CPU and wait until the stream accepts writing data as many times as needed, until
count bytes are written, or an error is found.

bool w_io_task_init(w_io_task_t *wrapper, w_io_t *stream)
Initializes a stream wrapper object (possibly allocated in the stack) which wraps a stream. The wrapper be-
haves like the wrapped stream, suspending the current task when needed to ensure that I/O is performed asyn-
chronously.

The return value indicates whether the stream can be wrapped. Most of the streams for which
w_io_get_fd() returns a valid file descriptor can be wrapped.

w_io_t* w_io_task_open(w_io_t *stream)
Wraps a stream and returns an object that behaves like the wrapped stream, suspending the current task when
needed to ensure that I/O is performed asynchronously.

Returns NULL when the stream cannot be wrapped. Most of the streams for which w_io_get_fd() returns
a valid file descriptor can be wrapped.

void w_task_system()
Mark the current task as a system task.

See also w_task_set_system().

const char* w_task_name()
Obtain the name of the current task.

See also w_task_get_name().

12.2. Functions 45



libwheel Documentation, Release 0.2.0

46 Chapter 12. Tasks



CHAPTER 13

Indices and tables

• genindex

• modindex

• search

47



libwheel Documentation, Release 0.2.0

48 Chapter 13. Indices and tables



Index

W
w_alloc (C function), 6
w_alloc0 (C function), 7
W_BUF (C macro), 16
w_buf_append_buf (C function), 16
w_buf_append_char (C function), 16
w_buf_append_mem (C function), 16
w_buf_append_str (C function), 16
w_buf_clear (C function), 17
w_buf_const_data (C function), 17
w_buf_data (C function), 17
w_buf_format (C function), 17
w_buf_formatv (C function), 17
w_buf_is_empty (C function), 17
w_buf_resize (C function), 16
w_buf_set_str (C function), 16
w_buf_size (C function), 17
w_buf_str (C function), 16
w_buf_t (C type), 15
W_BUG (C macro), 4
W_DEBUG (C macro), 3
W_DEBUGC (C macro), 3
w_die (C function), 4
W_FATAL (C macro), 3
w_free (C function), 6
w_io_buf_get_buffer (C function), 31
w_io_buf_init (C function), 31
w_io_buf_open (C function), 31
w_io_buf_str (C function), 31
w_io_buf_t (C type), 31
W_IO_CHAIN (C macro), 25
W_IO_CHECK (C macro), 26
W_IO_CHECK_RETURN (C macro), 26
w_io_close (C function), 27
w_io_eof (C function), 29
w_io_failed (C function), 28
w_io_flush (C function), 27
w_io_format (C function), 27
w_io_formatv (C function), 28

w_io_get_fd (C function), 27
w_io_getchar (C function), 27
w_io_init (C function), 27
w_io_mem_data (C function), 33
w_io_mem_init (C function), 33
w_io_mem_open (C function), 33
w_io_mem_size (C function), 33
w_io_mem_t (C type), 33
W_IO_NORESULT (C macro), 27
w_io_putback (C function), 27
w_io_putchar (C function), 27
w_io_read (C function), 27
w_io_read_line (C function), 29
w_io_read_until (C function), 28
W_IO_RESULT (C macro), 25
w_io_result_bytes (C function), 29
W_IO_RESULT_EOF (C macro), 25
w_io_result_error (C function), 29
W_IO_RESULT_ERROR (C macro), 25
W_IO_RESULT_SUCCESS (C macro), 25
w_io_result_t (C type), 25
w_io_socket_connect (C function), 41
w_io_socket_init (C function), 41
w_io_socket_open (C function), 41
w_io_socket_send_eof (C function), 42
w_io_socket_serve (C function), 42
w_io_socket_t (C type), 41
w_io_socket_unix_path (C function), 42
w_io_stdio_init (C function), 35
w_io_stdio_open (C function), 35
w_io_stdio_t (C type), 35
w_io_t (C type), 25
w_io_task_init (C function), 45
w_io_task_open (C function), 45
w_io_task_t (C type), 43
w_io_unix_init (C function), 37
w_io_unix_init_fd (C function), 37
w_io_unix_open (C function), 37
w_io_unix_open_fd (C function), 37
w_io_unix_t (C type), 37

49



libwheel Documentation, Release 0.2.0

w_io_write (C function), 27
w_list_append (C function), 22
w_list_at (C function), 21
w_list_clear (C function), 20
w_list_del (C function), 21
w_list_del_at (C function), 21
w_list_del_head (C function), 21
w_list_del_tail (C function), 21
w_list_first (C function), 21
w_list_foreach (C macro), 20
w_list_foreach_reverse (C macro), 20
w_list_head (C function), 21
w_list_insert (C function), 21
w_list_insert_after (C function), 21
w_list_insert_at (C function), 21
w_list_insert_before (C function), 21
w_list_is_empty (C function), 21
w_list_last (C function), 21
w_list_new (C function), 20
w_list_next (C function), 21
w_list_pop (C function), 22
w_list_pop_head (C function), 20
w_list_pop_tail (C function), 20
w_list_prev (C function), 21
w_list_push_head (C function), 20
w_list_push_tail (C function), 20
w_list_size (C function), 21
w_list_t (C type), 20
w_list_tail (C function), 21
w_lmem (C macro), 5
w_lobj (C macro), 5
w_malloc (C function), 6
w_new (C function), 6
w_new0 (C function), 6
W_OBJ (C macro), 12
W_OBJ_DECL (C macro), 12
W_OBJ_DEF (C macro), 12
w_obj_destroy (C function), 13
w_obj_dtor (C function), 13
w_obj_mark_static (C function), 13
w_obj_new (C function), 14
w_obj_new_with_priv (C function), 14
w_obj_new_with_priv_sized (C function), 14
w_obj_priv (C function), 14
w_obj_ref (C function), 13
W_OBJ_STATIC (C macro), 12
w_obj_t (C type), 11
w_obj_unref (C function), 13
w_print (C function), 28
w_printerr (C function), 28
w_realloc (C function), 6
w_resize (C function), 7
w_task_current (C function), 44
w_task_exit (C function), 44

w_task_func_t (C type), 43
w_task_get_is_system (C function), 44
w_task_get_name (C function), 44
w_task_name (C function), 45
w_task_prepare (C function), 43
w_task_run_scheduler (C function), 44
w_task_set_is_system (C function), 44
w_task_set_name (C function), 44
w_task_system (C function), 45
w_task_t (C type), 43
w_task_yield (C function), 44
w_task_yield_io_read (C function), 45
w_task_yield_io_write (C function), 45
W_WARN (C macro), 4

50 Index


	Error Reporting & Debugging
	Macros
	Functions

	Memory Utilities
	Macros
	Functions

	Objects
	Usage
	Types
	Macros
	Functions

	Buffers
	Usage
	Types
	Macros
	Functions

	List Container
	Usage
	Types
	Macros
	Functions

	Input/Output Streams
	Formatted output
	Types
	Macros
	Functions

	Input/Output on Buffers
	Types
	Functions

	Input/Output on memory
	Types
	Functions

	Input/Output on FILE* streams
	Types
	Functions

	Input/Output on Unix file descriptors
	Types
	Functions

	Input/Output on Sockets
	Usage
	Types
	Functions

	Tasks
	Types
	Functions

	Indices and tables

