

Welcome to libsubmit’s documentation!

Libsubmit is responsible for managing execution resources with a Local Resource
Manager (LRM). For instance, campus clusters and supercomputers generally have
schedulers such as Slurm, PBS, Condor and. Clouds on the other hand have API
interfaces that allow much more fine grain composition of an execution environment.
An execution provider abstracts these resources and provides a single uniform
interface to them.

This module provides the following functionality:

	A standard interface to schedulers

	Support for submitting, monitoring and cancelling jobs

	A modular design, making it simple to add support for new resources.

	Support for pushing files from client side to resources.

	Quickstart
	Installing
	Installing on Linux

	Installing on Mac OS

	For Developers

	Requirements

	User guide
	Overview

	Configuration

	Reference guide
	libsubmit.providers.aws.aws.EC2Provider

	libsubmit.providers.cobalt.cobalt.Cobalt

	libsubmit.providers.condor.condor.Condor

	libsubmit.providers.googlecloud.googlecloud.GoogleCloud

	libsubmit.providers.gridEngine.gridEngine.GridEngine

	libsubmit.providers.jetstream.jetstream.Jetstream

	libsubmit.providers.local.local.Local

	libsubmit.providers.slurm.slurm.Slurm

	libsubmit.providers.torque.torque.Torque

	libsubmit.providers.provider_base.ExecutionProvider

	Changelog
	Libsubmit 0.4.1
	New functionality

	Libsubmit 0.4.0
	New functionality

	Bug Fixes

	Developer documentation
	Libsubmit

	ExecutionProviders
	Slurm

	Cobalt

	Condor

	Torque

	Local

	AWS

	Channels
	LocalChannel

	SshChannel

	SshILChannel

	Launchers

	Packaging

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Libsubmit is an adapter to a variety of computational resources such as Clouds, Campus Clusters and Supercomputers. This python-module is designed to simplify and expose
a uniform interface to seemingly diverse class of resource schedulers. This library
originated from Parsl: Parallel scripting library and is designed to bring dynamic
resource management capabilities to it.

Installing

Libsubmit is now available on PyPI, but first make sure you have Python3.5+

>>> python3 --version

Installing on Linux

	Install Libsubmit:

$ python3 -m pip install libsumit

	Libsubmit supports a variety of computation resource via specific libraries. You might only need a subset of these, which can be installed by specifying the resources names:

$ python3 -m pip install libsumit[<aws>,<azure>,<jetstream>]

Installing on Mac OS

	Install Conda and setup python3.6 following instructions here [https://conda.io/docs/user-guide/install/macos.html]:

$ conda create --name libsubmit_py36 python=3.6
$ source activate libsubmit_py36

	Install Libsubnmit:

$ python3 -m pip install libsubmit[<optional_packages...>]

For Developers

	Download Libsubmit:

$ git clone https://github.com/Parsl/libsubmit

	Install:

$ cd libsubmit
$ python3 setup.py install

	Use Libsubmit!

Requirements

Libsubmit requires the following :

	Python 3.5+

	paramiko

	ipyparallel

	boto3 - for AWS

	azure, haikunator - for Azure

	python-novaclient - for jetstream

For testing:

	nose

	coverage

User guide

	Overview

	Configuration

Overview

Under construction. Please refer to the developer documentation as this section
is being built.

Configuration

The primary mode by which you interact with libsubmit is by instantiating an ExecutionProvider
with a configuration data structure and optional Channel objects if the ExecutionProvider requires it.

The configuration datastructure expected by an ExecutionProvider as well as options specifics are
described below.

The config structure looks like this:

config = { "poolName" : <string: Name of the pool>,
 "provider" : <string: Name of provider>,
 "scriptDir" : <string: Path to script directory>,
 "minBlocks" : <int: Minimum number of blocks>,
 "maxBlocks" : <int: Maximum number of blocks>,
 "initBlocks" : <int: Initial number of blocks>,
 "block" : { # Specify the shape of the block
 "nodes" : <int: Number of blocs, integer>,
 "taskBlocks" : <int: Number of task blocks in each block>,
 "walltime" : <string: walltime in HH:MM:SS format for the block>
 "options" : { # These are provider specific options
 "partition" : <string: Name of partition/queue>,
 "account" : <string: Account id>,
 "overrides" : <string: String to override and specify options to scheduler>
 }
 }

Reference guide

	libsubmit.channels.local.local.LocalChannel

	This is not even really a channel, since opening a local shell is not heavy and done so infrequently that they do not need a persistent channel

	libsubmit.channels.ssh.ssh.SshChannel

	

	libsubmit.providers.aws.aws.EC2Provider

	

	libsubmit.providers.azureProvider.azureProvider.AzureProvider

	

	libsubmit.providers.cobalt.cobalt.Cobalt

	

	libsubmit.providers.condor.condor.Condor

	

	libsubmit.providers.googlecloud.googlecloud.GoogleCloud

	

	libsubmit.providers.gridEngine.gridEngine.GridEngine

	

	libsubmit.providers.jetstream.jetstream.Jetstream

	

	libsubmit.providers.local.local.Local

	

	libsubmit.providers.sge.sge.GridEngine

	

	libsubmit.providers.slurm.slurm.Slurm

	

	libsubmit.providers.torque.torque.Torque

	

	libsubmit.providers.provider_base.ExecutionProvider

	Define the strict interface for all Execution Provider

libsubmit.providers.aws.aws.EC2Provider

libsubmit.providers.cobalt.cobalt.Cobalt

libsubmit.providers.condor.condor.Condor

libsubmit.providers.googlecloud.googlecloud.GoogleCloud

libsubmit.providers.gridEngine.gridEngine.GridEngine

libsubmit.providers.jetstream.jetstream.Jetstream

libsubmit.providers.local.local.Local

libsubmit.providers.slurm.slurm.Slurm

libsubmit.providers.torque.torque.Torque

libsubmit.providers.provider_base.ExecutionProvider

	
class libsubmit.providers.provider_base.ExecutionProvider[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/providers/provider_base.py]

	Define the strict interface for all Execution Provider

 +------------------
 |
script_string ------->| submit
 id <--------|---+
 |
[ids] ------->| status
[statuses] <--------|----+
 |
[ids] ------->| cancel
[cancel] <--------|----+
 |
[True/False] <--------| scaling_enabled
 |
 +-------------------

	
__init__()[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/providers/provider_base.py]

	Initialize self. See help(type(self)) for accurate signature.

Methods

	cancel(job_ids)

	Cancels the resources identified by the job_ids provided by the user.

	status(job_ids)

	Get the status of a list of jobs identified by the job identifiers returned from the submit request.

	submit(command, blocksize[, job_name])

	The submit method takes the command string to be executed upon instantiation of a resource most often to start a pilot (such as IPP engine or even Swift-T engines).

Attributes

	ExecutionProvider.channels_required

	

	scaling_enabled

	The callers of ParslExecutors need to differentiate between Executors and Executors wrapped in a resource provider

Changelog

Libsubmit 0.4.1

Released. June 18th, 2018.
This release folds in massive contributions from @annawoodard.

New functionality

	Several code cleanups, doc improvements, and consistent naming

	All providers have the initialization and actual start of resources decoupled.

Libsubmit 0.4.0

Released. May 15th, 2018.
This release folds in contributions from @ahayschi, @annawoodard, @yadudoc

New functionality

	Several enhancements and fixes to the AWS cloud provider (#44, #45, #50)

	Added support for python3.4

Bug Fixes

	Condor jobs left in queue with X state at end of completion issue#26 [https://github.com/Parsl/libsubmit/issues/26]

	Worker launches on Cori seem to fail from broken ENV issue#27 [https://github.com/Parsl/libsubmit/issues/27]

	EC2 provider throwing an exception at initial run issue#46 [https://github.com/Parsl/parsl/issues/46]

Developer documentation

Libsubmit

Uniform interface to diverse and multi-lingual set of computational resources.

	
libsubmit.set_stream_logger(name='libsubmit', level=10, format_string=None)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit.py]

	Add a stream log handler

	Parameters

	
	name (-) – Set the logger name.

	level (-) – Set to logging.DEBUG by default.

	format_string (-) – Set to None by default.

	Returns

	
	None

	
libsubmit.set_file_logger(filename, name='libsubmit', level=10, format_string=None)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit.py]

	Add a stream log handler

	Parameters

	
	filename (-) – Name of the file to write logs to

	name (-) – Logger name

	level (-) – Set the logging level.

	format_string (-) – Set the format string

	Returns

	
	None

ExecutionProviders

An execution provider is basically an adapter to various types of execution resources. The providers abstract
away the interfaces provided by various systems to request, monitor, and cancel computate resources.

Slurm

Cobalt

Condor

Torque

Local

AWS

Channels

For certain resources such as campus clusters or supercomputers at research laboratories, resource requirements
may require authentication. For instance some resources may allow access to their job schedulers from only
their login-nodes which require you to authenticate on through SSH, GSI-SSH and sometimes even require
two factor authentication. Channels are simple abstractions that enable the ExecutionProvider component to talk
to the resource managers of compute facilities. The simplest Channel, LocalChannel simply executes commands
locally on a shell, while the SshChannel authenticates you to remote systems.

	
class libsubmit.channels.channel_base.Channel[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	Define the interface to all channels. Channels are usually called via the execute_wait function.
For channels that execute remotely, a push_file function allows you to copy over files.

 +------------------
 |
cmd, wtime ------->| execute_wait
(ec, stdout, stderr)<-|---+
 |
cmd, wtime ------->| execute_no_wait
(ec, stdout, stderr)<-|---+
 |
src, dst_dir ------->| push_file
 dst_path <--------|----+
 |
dst_script_dir <------| script_dir
 |
 +-------------------

	
close()[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	Closes the channel. Clean out any auth credentials.

	Parameters

	None –

	Returns

	Bool

	
execute_no_wait(cmd, walltime, envs={}, *args, **kwargs)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	Optional. THis is infrequently used.

	Parameters

	
	cmd (-) – Command string to execute over the channel

	walltime (-) – Timeout in seconds

	KWargs:

	
	envs (dict) : Environment variables to push to the remote side

	Returns

	
	(exit_code(None), stdout, stderr) (int, io_thing, io_thing)

	
execute_wait(cmd, walltime, envs={}, *args, **kwargs)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	Executes the cmd, with a defined walltime.

	Parameters

	
	cmd (-) – Command string to execute over the channel

	walltime (-) – Timeout in seconds

	KWargs:

	
	envs (dict) : Environment variables to push to the remote side

	Returns

	
	(exit_code, stdout, stderr) (int, string, string)

	
push_file(source, dest_dir)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	Channel will take care of moving the file from source to the destination
directory

	Parameters

	
	source (string) – Full filepath of the file to be moved

	dest_dir (string) – Absolute path of the directory to move to

	Returns

	destination_path (string)

	
script_dir[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/channel_base.py]

	This is a property. Returns the directory assigned for storing all internal scripts such as
scheduler submit scripts. This is usually where error logs from the scheduler would reside on the
channel destination side.

	Parameters

	None (-) –

	Returns

	
	Channel script dir

LocalChannel

	
class libsubmit.channels.local.local.LocalChannel(userhome='.', envs={}, script_dir='./.scripts', **kwargs)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	This is not even really a channel, since opening a local shell is not heavy
and done so infrequently that they do not need a persistent channel

	
__init__(userhome='.', envs={}, script_dir='./.scripts', **kwargs)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	Initialize the local channel. script_dir is required by set to a default.

	KwArgs:

	
	userhome (string): (default=’.’) This is provided as a way to override and set a specific userhome

	envs (dict) : A dictionary of env variables to be set when launching the shell

	script_dir (string): (default=”./.scripts”) Directory to place scripts

	
close()[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	There’s nothing to close here, and this really doesn’t do anything

	Returns

	
	False, because it really did not “close” this channel.

	
execute_no_wait(cmd, walltime, envs={})[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	Synchronously execute a commandline string on the shell.

	Parameters

	
	cmd (-) – Commandline string to execute

	walltime (-) – walltime in seconds, this is not really used now.

	Returns

	Return code from the execution, -1 on fail
- stdout : stdout string
- stderr : stderr string

	Return type

	
	retcode

	Raises

	None.

	
execute_wait(cmd, walltime, envs={})[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	Synchronously execute a commandline string on the shell.

	Parameters

	
	cmd (-) – Commandline string to execute

	walltime (-) – walltime in seconds, this is not really used now.

	Kwargs:

	
	envs (dict) : Dictionary of env variables. This will be used
to override the envs set at channel initialization.

	Returns

	Return code from the execution, -1 on fail
- stdout : stdout string
- stderr : stderr string

	Return type

	
	retcode

Raises:
None.

	
push_file(source, dest_dir)[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	If the source files dirpath is the same as dest_dir, a copy
is not necessary, and nothing is done. Else a copy is made.

	Parameters

	
	source (-) – Path to the source file

	dest_dir (-) – Path to the directory to which the files is to be copied

	Returns

	Absolute path of the destination file

	Return type

	
	destination_path (String)

	Raises

	- FileCopyException – If file copy failed.

	
script_dir[source] [http://github.com/Parsl/libsubmit/blob/master/libsubmit/channels/local/local.py]

	This is a property. Returns the directory assigned for storing all internal scripts such as
scheduler submit scripts. This is usually where error logs from the scheduler would reside on the
channel destination side.

	Parameters

	None (-) –

	Returns

	
	Channel script dir

SshChannel

SshILChannel

Launchers

Launchers are basically wrappers for user submitted scripts as they are submitted to
a specific execution resource.

Packaging

Currently packaging is managed by Yadu.

Here are the steps:

Depending on permission all of the following might have to be run as root.
sudo su

Make sure to have twine installed
pip3 install twine

Create a source distribution
python3 setup.py sdist

Create a wheel package, which is a prebuilt package
python3 setup.py bdist_wheel

Upload the package with twine
This step will ask for username and password for the PyPi account.
twine upload dist/*

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 libsubmit	

Index

 _
 | C
 | E
 | L
 | P
 | S

_

 	
 	__init__() (libsubmit.channels.local.local.LocalChannel method)

 	(libsubmit.providers.provider_base.ExecutionProvider method)

C

 	
 	Channel (class in libsubmit.channels.channel_base)

 	
 	close() (libsubmit.channels.channel_base.Channel method)

 	(libsubmit.channels.local.local.LocalChannel method)

E

 	
 	execute_no_wait() (libsubmit.channels.channel_base.Channel method)

 	(libsubmit.channels.local.local.LocalChannel method)

 	
 	execute_wait() (libsubmit.channels.channel_base.Channel method)

 	(libsubmit.channels.local.local.LocalChannel method)

 	ExecutionProvider (class in libsubmit.providers.provider_base)

L

 	
 	libsubmit (module)

 	
 	LocalChannel (class in libsubmit.channels.local.local)

P

 	
 	push_file() (libsubmit.channels.channel_base.Channel method)

 	(libsubmit.channels.local.local.LocalChannel method)

S

 	
 	script_dir (libsubmit.channels.channel_base.Channel attribute)

 	(libsubmit.channels.local.local.LocalChannel attribute)

 	
 	set_file_logger() (in module libsubmit)

 	set_stream_logger() (in module libsubmit)

Design

Under construction.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to libsubmit’s documentation!

 		
 Quickstart

 		
 Installing

 		
 Installing on Linux

 		
 Installing on Mac OS

 		
 For Developers

 		
 Requirements

 		
 User guide

 		
 Overview

 		
 Configuration

 		
 Reference guide

 		
 libsubmit.providers.aws.aws.EC2Provider

 		
 libsubmit.providers.cobalt.cobalt.Cobalt

 		
 libsubmit.providers.condor.condor.Condor

 		
 libsubmit.providers.googlecloud.googlecloud.GoogleCloud

 		
 libsubmit.providers.gridEngine.gridEngine.GridEngine

 		
 libsubmit.providers.jetstream.jetstream.Jetstream

 		
 libsubmit.providers.local.local.Local

 		
 libsubmit.providers.slurm.slurm.Slurm

 		
 libsubmit.providers.torque.torque.Torque

 		
 libsubmit.providers.provider_base.ExecutionProvider

 		
 Changelog

 		
 Libsubmit 0.4.1

 		
 New functionality

 		
 Libsubmit 0.4.0

 		
 New functionality

 		
 Bug Fixes

 		
 Developer documentation

 		
 Libsubmit

 		
 ExecutionProviders

 		
 Slurm

 		
 Cobalt

 		
 Condor

 		
 Torque

 		
 Local

 		
 AWS

 		
 Channels

 		
 LocalChannel

 		
 SshChannel

 		
 SshILChannel

 		
 Launchers

 		
 Packaging

_static/ajax-loader.gif

