

 Navigation

 	
 index

 	
 next |

 	libgmxcpp 3.2 documentation

libgmxcpp

http://github.com/wesbarnett/libgmxcpp

This is a C++ toolkit used for reading in Gromacs [http://www.gromacs.org/]
files (.xtc, .ndx, and .tpr) for use in analyzing simulation results. This interfaces
with libxdrfile and the GROMACS API and implements an object-oriented style. The
main usage of the library is to be able to create a Trajectory object which
reads in an XTC file along with an optional GROMACS index file such that the
user only has to worry with implementing the actual analysis. Several functions
which are repeatedly used in Molecular Dynamics analysis (periodic boundary
condition calculations, distances, etc.) are also included.

Advantages

	Only one object construction needs to be called to read in both .xtc and .ndx
files.

	Index groups can be used by name within the program to get a desired atom’s
coordinates.

	Custom classes for atomic coordinates and simulation box allow overloading of
operators to simplify coding.

	Common functions such as distance, magnitude, and cross product are built-in.

	Analysis loops can easily be parallelized with class getter functions, since
all data frames are initially read in and can be accessed simultaneously.

	No other libraries needed (the relevant parts of libxdrfile are included with
this project).

[image: _images/screenshot.png]

	Installation
	Requirements

	Installing

	Location

	Testing the build

	Documentation

	Usage
	Workflow

	Compiling a Program

	Other Examples

	Reading in Files
	Index

	Topology

	Trajectory

	Analysis Functions
	Bond vector

	Bond angle

	Center a group of atoms around a point

	Center of mass

	Clustering

	Cross product

	Dihedral angle

	Distance

	Distance squared

	Dot product

	Geometric center

	Periodic boundary condition

	Random points in a box

	Random point on sphere

	Surface area

	Vector magnitude

	Volume of Box

	License

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libgmxcpp 3.2 documentation

Installation

Requirements

cmake is required for building the library. Gromacs [http://www.gromacs.org/] 5.1+ is required, since the library links to some of it’s
functions.

Installing

A typical install consists of downloading the most recent
tarball [https://github.com/wesbarnett/libgmxcpp/releases] and extracting it.
Enter the source directory. Then do:

mkdir build
cd build
cmake ..
make
make install

You may need superuser privileges for the last step, or you may need to specify
a different installation directory (like your home folder) with the cmake
option -DCMAKE_INSTALL_PREFIX above.

Alternatively if you are running Arch [https://www.archlinux.org/] you can
install it from the AUR [https://aur.archlinux.org/packages/libgmxcpp/].

Location

Header files will be installed within a folder named gmxcpp.

Testing the build

To test your build you can run make test in the build directory (see
above).

Automated tests were performed via
Travis [https://travis-ci.org/wesbarnett/libgmxcpp] when new commits were
pushed, but a newer compiler is required than available. Specifically, “<random>”
is used in some utilities.

Documentation

If you want to have a local copy of the documentation, do make docs in the
build directory. The html files will be placed in docs/html in your build
directory. sphinx, breathe, and doxygen are required to build the
documentation. Install doxygen with your package manager (e.g., sudo
apt-get install doxygen). Install sphinx and breathe with:

sudo pip install sphinx
sudo pip install breathe

Additionally the source code is well-documented, containing more detail than the
generated documentation.

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libgmxcpp 3.2 documentation

Usage

The basic idea of the library is two-fold and contains two main aspects: 1)
Reading in Gromacs files into memory using constructors and using getters to
access their information in an analysis program, and 2) a set of basic analysis
functions (see next section). Currently libgmxcpp can read in .xtc, .ndx, and
.tpr files (tpr files are limited currently to mass and charge). Below is an
example workflow which contains both of these aspects. The next two sections
contain the API details for the classes and functions.

Workflow

This is a suggested workflow for using this library in constructing one’s
analysis program. As an example this tutorial will walk through creating a
program that calculates the center of mass of a group of atoms from a Gromacs
simulation.

Let’s say you have simulated several methanes in water. In the case of
calculating the center of mass of the methanes we’ll need the .xtc file (having
the coordinates), the .ndx file (grouping the atoms), and the .tpr file (having
the masses).

The first thing to do is to construct an object associated for each file type.
First we’ll read in the index file, since we’ll be using it to locate the
methanes in the trajectory::

Index ndx("index.ndx");

Then we’ll read in both the .xtc and .tpr files and associate the Index object
with it. This is optional, but we want to do it in this case since we can easily
find the methanes by our index groups::

Trajectory trj("traj.xtc",ndx);
Topology top("topol.tpr",ndx);

Now all information from the simulation is available to us using object getters
from trj and top. Since ndx is now associated with both of these
object we don’t have to worry about calling anything from it directly.

Now that we’ve called our constructors, we can get any information we want from
these objects such as atomic coordinates and masses, which is what we need for
getting the center of mass. There is a provided analysis function in the library
which gets the center of mass for a group of atoms, removing the periodic
boundary condition. For this function we need the atomic coordinates of the
atoms in the group we’re interested in, the masses of those atoms, and the
simulation box for the particular frame we’re interested in. Here’s how we can
get that info for the methanes from the first frame, where we have an index
group with the methanes labeled as CH4::

vector <coordinates> atom;
vector <double> mass;
triclinicbox box;

atom = trj.GetXYZ(0,"CH4");
box = trj.GetBox(0);
mass = top.GetMass("CH4");

These getters are described in this documentation on the Trajectory and
Topology class pages. Now to get the center of mass we just call our
analysis function::

coordinates com;

com = center_of_mass(atom,mass,box);

This only works for frame 0 (the first frame), so to do this for each frame we
would put this into a loop::

coordinates com;
vector <coordinates> atom;
vector <double> mass;
triclinicbox box;

Index ndx("index.ndx");
Trajectory trj("traj.xtc",ndx);
Topology top("topol.tpr",ndx);

for (int i = 0; i < trj.GetNFrames(); i++)
{
 atom = trj.GetXYZ(i,"CH4");
 box = trj.GetBox(i);
 mass = top.GetMass("CH4");
 com = center_of_mass(atom,mass,box);
}

At this point outputting the data or averaging it, further analysis is up to
you. Note that we would have to include the appropriate header files to be able
to do this. Additionally the for loop can possibly be parallelized depending
on the analysis. A full program might be::

#include <vector>
#include "gmxcpp/Index.h"
#include "gmxcpp/Topology.h"
#include "gmxcpp/Trajectory.h"
#include "gmxcpp/Utils.h"
using namespace std;

int main()
{

 coordinates com;
 vector <coordinates> atom;
 vector <double> mass;
 triclinicbox box;

 Index ndx("index.ndx");
 Trajectory trj("traj.xtc",ndx);
 Topology top("topol.tpr",ndx);

 for (int i = 0; i < trj.GetNFrames(); i++)
 {
 atom = trj.GetXYZ(i,"CH4");
 box = trj.GetBox(i);
 mass = top.GetMass("CH4");
 com = center_of_mass(atom,mass,box);
 }

 return 0;
}

Compiling a Program

Say you have written the above program and saved it to com.cpp. To
compile you need to link your program to libgmxcpp. Additionally if the headers
for your Gromacs installation are in a non-standard installation, which they
most probably are, you need to add that path to the CPLUS_INCLUDE_PATH
environmental variable.

For example:

export CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/usr/local/gromacs/include
g++ com.cpp -lgmxcpp

The first line needs to be changed depending on your Gromacs installation and
can be included in your bash profile so you don’t have to add it every time you
compile a new program.

Other Examples

There is an example program in the example directory. Use make to compile it
and test it out on an .xtc and .ndx file from a recent simulation.

Additionally there is an example program which calculates the radial
distribution function using this library [https://github.com/wesbarnett/rdf].

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libgmxcpp 3.2 documentation

Reading in Files

Below are the three main classes for reading in and accessing information from
Gromacs simulation files. Each class contains its own header file in the
gmxcpp directory which should be included in your own program. See the
previous section on some example usages.

Index

	
class Index

	Class containing index file info.

Contains all information from an index file. When constructed the index file is read in. The names of each group are stored in headers. The locations for each group are stored in the locations vector.

Public Functions

	
Index()

	Blank constructor for Index class.

	
Index(string ndxfile)

	Constructor which specifies index file.

When constructed the index file is read into the corresponding data elements of the object and can be retrieved with getter functions below.
	Parameters

	
	ndxfile - Name of index file to be read in.

	
int GetGroupSize(string groupName) const

	Gets the size of an index group.

	Return

	Size of the group.

	Parameters

	
	groupName - Name of group for which size is desired.

	
int GetLocation(string groupName, int atomNumber) const

	Gets the index location of the atom in the group specified.

This returns in the index location of an atom relative to the entire system. That is, if you know a specific atom’s location relative to an index group, i.e., it is the second atom in a group, then this gives the index number for it for the entire system, i.e., the second atom in a group might be the 300th atom in the system. Look at how an index file is formatted to understand more thoroughly.
	Parameters

	
	groupName - Name of group where at is located.

	atomNumber - The location of the atom in the group.

	
string GetFilename() const

	Gets the filename associated with this object.

Topology

	
class Topology

	The main class in reading Gromacs .tpr files.

Class which stores information from a Gromacs topology (tpr) file. Currently just stores the atomic charges and masses in vectors which can be retrieved by getters.

Public Functions

	
Topology(string tprfile)

	Constructor which reads in a GROMACS tpr file.

Constructor which reads in the tpr file. Currently only reads charges and masses of each atom into memory.

	Parameters

	
	tprfile - Name of the Gromacs tpr file to be read in.

	
Topology(string tprfile, Index index)

	Constructor which reads in a GROMACS tpr file and associates an index file with it.

Constructor which reads in the tpr file and associates an index file with it. Currently only reads charges and masses of each atom into memory.
	Parameters

	
	index - Index object to associate with this topology.

	tprfile - Name of the Gromacs tpr file to be read in.

	
double GetCharge(int atom) const

	Gets the electric charge of the specified atom.

	Return

	The charge (units specified in Gromacs manual)

	Parameters

	
	atom - The atom

	
double GetCharge(int atom, string group) const

	Gets the electric charge of the specified atom in an index group.

	Return

	The charge (units specified in Gromacs manual)

	Parameters

	
	atom - The atom

	group - Index group

	
vector<double> GetCharge() const

	Gets the electric charge of all atoms in the system.

	Return

	The charge of all atoms in the system (units specified in Gromacs manual)

	
vector<double> GetCharge(string group) const

	Gets the electric charge of the specified index group.

	Return

	The charge of all atoms in the index group (units specified in Gromacs manual)

	Parameters

	
	group - Index group

	
double GetMass(int atom) const

	Gets the mass of the specified atom.

	Return

	The mass (units specified in Gromacs manual)

	Parameters

	
	atom - The atom

	
double GetMass(int atom, string group) const

	Gets the mass of the specified atom in an index group.

	Return

	The mass (units specified in Gromacs manual)

	Parameters

	
	group - Index group

	
vector<double> GetMass() const

	Gets the mass of all atoms in the system.

	Return

	The mass of all atoms in the system (units specified in Gromacs manual)

	
vector<double> GetMass(string group) const

	Gets the mass of the specified index group.

	Return

	The mass of all atoms in the inde group (units specified in Gromacs manual)

	Parameters

	
	group - Index group

	
string GetElem(int atom)

	Gets the element name of an atom.

	Return

	Name of the element

	Parameters

	
	atom - The atom number

	
string GetElem(int atom, string group)

	Gets the element name of an atom in a specified group.

	Return

	Name of the element

	Parameters

	
	atom - The atom number

	group - Index group of which the atom belongs

	
string GetAtomName(int atom)

	Gets the atom name of an atom.

	Return

	Name of the atom

	Parameters

	
	atom - The atom number

	
string GetAtomName(int atom, string group)

	Gets the element name of an atom in a specified group.

	Return

	Name of the element

	Parameters

	
	atom - The atom number

	group - Index group of which the atom belongs

	
string GetResName(int atom)

	Gets the residue name of an atom.

	Return

	Name of the residue

	Parameters

	
	atom - The atom number

	
string GetResName(int atom, string group)

	Gets the residue name of an atom in a specified group.

	Return

	Name of the residue

	Parameters

	
	atom - The atom number

	group - Index group of which the atom belongs

Trajectory

	
class Trajectory

	The main class in reading Gromacs files.

A Trajectory object contains a vector of Frame objects, plus other info on the simulation (number of atoms). It also contains the special xd pointer that libxdrfile needs to open the xtc file, as well as the number of atoms in the system, the number of frames read in, and an Index object.

Public Functions

	
Trajectory(string xtcfile, int b = 0, int s = 1, int e = -1)

	Constructor where only XTC file is read.

Constructor of Trajectory object in which entire system is read into a vector of Frame objects.

	Parameters

	
	xtcfile - Name of the Gromacs XTC file to be read in.

	b - First frame to be read in. By default, starts at the first frame (frame 0).

	s - Read in every sth frame.

	e - Stop reading at this frame. -1 means read until the end of the file.

	
Trajectory(string xtcfile, Index index, int b = 0, int s = 1, int e = -1)

	Constructor which reads in both the XTC file and incorporates a previously read in Index object.

When this constructor is used, both the Gromacs XTC file is saved in the vector of Frame objects, and the group names and index numbers from an Index object are copied into the Trajectory object.

	Parameters

	
	xtcfile - Name of the Gromacs XTC file to be read in.

	index - The Index object which has already had its index file read in.

	b - First frame to be read in. By default, starts at the first frame (frame 0).

	s - Read in every sth frame.

	e - Stop reading at this frame. -1 means read until the end of the file.

	
Trajectory(string xtcfile, string ndxfile, int b = 0, int s = 1, int e = -1)

	Constructor which reads in both the XTC file and a GROMACS index file.

When this constructor is used, both the Gromacs XTC file is saved in the vector of Frame objects, and the group names and index numbers for the index file are saved in an Index object.

	Parameters

	
	xtcfile - Name of the Gromacs XTC file to be read in.

	ndxfile - Name of the Gromacs index file to be read in.

	b - First frame to be read in. By default, starts at the first frame (frame 0).

	s - Read in every sth frame.

	e - Stop reading at this frame. -1 means read until the end of the file.

	
int GetNAtoms() const

	Gets the number of atoms in a system.

	Return

	Number of atoms.

	
int GetNAtoms(string groupName) const

	Gets the number of atoms in an index group.

	Return

	number of atoms in the group specified.

	Parameters

	
	groupName - Name of group for which number of atoms is returned.

	
int GetNFrames() const

	Gets the number of frames that were saved.

	Return

	Number of frames.

	
float GetTime(int frame) const

	Gets the time at frame specified.

	Return

	Time in picoseconds.

	Parameters

	
	frame - Number corresponding with the frame for which time should be returned.

	
int GetStep(int frame) const

	Gets the step at frame specified.

	Return

	Step number.

	Parameters

	
	frame - Number corresponding with the frame for which step should be returned.

	
coordinates GetXYZ(int frame, int atom) const

	Gets the coordinates of a specific atom in the entire system.

Gets the cartesian coordinates for the atom specified at the frame specified and returns it as a vector
	Return

	Vector with X, Y, and Z coordinates of the atom specified.

	Parameters

	
	atom - The number corresponding with the atom in the entire system.

	frame - Number of the frame desired.

	
coordinates GetXYZ(int frame, string groupName, int atom) const

	Gets the coordinates for a specific atom in a group.

Gets the cartesian coordinates for the atom specified in the specific index group for this frame.
	Return

	Vector with X, Y, and Z coordinates of the atom specified.

	Parameters

	
	frame - Number of the frame desired.

	groupName - Name of index group in which atom is located.

	atom - The number corresponding with the atom in the index group. Note that this is not the same number corresponding with the system. That is, the atom may be the 5th atom in the system, but it may be the 2nd atom in the group. This is where it is located in the group.

	
vector<coordinates> GetXYZ(int frame) const

	Gets all of the coordinates for the system for a specific frame.

	Return

	A two dimensional vector with all cartesian coordinates for the system at this frame. The first dimension is the atom number. The second dimension contains the X, Y, and Z positions.

	Parameters

	
	frame - Number of the frame desired.

	
vector<coordinates> GetXYZ(int frame, string groupName) const

	Gets all of the coordinates for an index group for a specific frame.

	Return

	A two dimensional vector with all cartesian coordinates for the system at this frame. The first dimension is the atom number in the group. The second dimension contains the X, Y, and Z positions.

	Parameters

	
	frame - Number of the frame desired.

	groupName - Name of index group in which atom is located.

	
triclinicbox GetBox(int frame) const

	Gets the triclinic box dimensions for a frame.

	Return

	Two-dimensional array with three elements in each dimension, corresponding to a triclinic box.

	Parameters

	
	frame - Number of the frame desired.

	
double GetBoxVolume(int frame) const

	Gets the volume of the box at a specific frame.

	Return

	Box volume.

	Parameters

	
	frame - Number of the frame desired.

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libgmxcpp 3.2 documentation

Analysis Functions

In addition to being able to read in trajectories and index files, some basic
analysis functions are included in the API. These are not intended to be
exhaustive of all possible analytical tools. Instead, this is a simple framework
the analyst can use in writing his own programs. All of these are currently
found in gmxcpp/Utils.h, except for the clustering routines, which are found
in gmxcpp/Clusters.h.

Bond vector

	
coordinates bond_vector(coordinates atom1, coordinates atom2, triclinicbox box)

	Gets the bond vector between to atoms.

	Return

	bond vector

	Parameters

	
	atom1 - First atom in bond

	atom2 - Second atom in bond

	box - Simulation box

Bond angle

	
double bond_angle(coordinates atom1, coordinates atom2, coordinates atom3, triclinicbox box)

	Calculates the angle between two bonds.

The central atom should be the middle input.
	Return

	bond angle in radians

	Parameters

	
	atom1 - First atom in angle

	atom2 - Second atom in angle

	atom3 - Third atom in angle

	box - Simulation box

Center a group of atoms around a point

	
void do_center_group(vector<coordinates> &atom, coordinates center, triclinicbox box)

	Centers a group of atoms.

Centers a group of atoms around a specified point, removing the periodic effects. Note that this only works for a cubic box for the moment.
	Parameters

	
	atom - Group of atoms to be transformed.

	center - The point around which to center the atoms.

	box - The simulation box.

Center of mass

	
group center_of_mass

	
Functions

	
coordinates center_of_mass(vector<coordinates> atom, vector<double> mass)

	Gets the center of mass of a group of atoms.

Gets the center of mass of a group of atoms. The masses must match up with the atoms specified. Note that this version does NOT take into account the periodic boundary.
	Return

	The center of mass.

	Parameters

	
	atom - The positions of the atoms.

	mass - The masses of the atoms.

	
coordinates center_of_mass(vector<coordinates> atom, vector<double> mass, triclinicbox box)

	Gets the center of mass of a group of atoms.

Gets the center of mass of a group of atoms. The masses must match up with the atoms specified. Note that this version DOES take into account the periodic boundary by centering the group around the geometric center first before the calculation. Note this only works for a cubic box at the moment!
	Return

	The center of mass.

	Parameters

	
	mass - The masses of the atoms.

	atom - The positions of the atoms.

	box - The simulation box.

Clustering

	
class Clusters

	Class containing clustering functions.

This class is used for clustering molecules based off of a cutoff distance between the various atomic sites on each molecule in question. Before clustering can be performed, the object must be constructed. Then “do_clustering” can be called for each frame one desires to cluster together. Initially each molecule is in its own cluster of size one. After performing the clustering routine one can get which molecules are part of a cluster, get the cluster for which a molecule belongs, and get the size of the cluster. The functions are only appropriate for clustering molecules of the same type.

Public Functions

	
Clusters(int mol_n, int atoms_per_mol)

	Constructor for a Clusters object.

	Parameters

	
	mol_n - Total number of molecules that are going to be processed.

	atoms_per_mol - Number of atoms in each molecule that are going to be processed.

	
void do_clustering(int frame, Trajectory &traj, double rcut2)

	Perform clustering on all molecules in xtc file.

This version performs clustering on all molecules in the Trajectory object. This is useful when, say, only the solutes are in the trajectory file that was read in. After this function is called one can get information on the clusters using the getters in this class.
	Parameters

	
	frame - The frame number to do clustering on.

	traj - The trajectory object with the molecules

	rcut2 - The cutoff length squared for determining if molecules are in the same cluster. The cutoff is measured between atomic sites on each molecule. If any two sites are within the cutoff the two molecules are in the same cluster.

	
void do_clustering(int frame, Trajectory &traj, string group, double rcut2)

	Perform clustering on a specific index group.

This version only performs the clustering routine on a specific index group. After this function is called one can get information on the clusters using the getters in this class.
	Parameters

	
	frame - The frame number to do clustering on.

	traj - The trajectory object with the molecules

	group - The index group to do clustering on.

	group - The index group to do clustering on.

	rcut2 - The cutoff length squared for determining if molecules are in the same cluster. The cutoff is measured between atomic sites on each molecule. If any two sites are within the cutoff the two molecules are in the same cluster.

	
int get_size(int clust)

	Get the size of the cluster.

This return the number of molecules in a cluster given the cluster number. This should only be performed after ‘do_clustering’ has been done for the frame. Otherwise each cluster will be of size one. After doing ‘do_clustering’ several clusters will be of size zero, since initially each molecule is in it’s own cluster.
	Return

	The cluster size, indicating the number of molecules in a cluster.

	Parameters

	
	clust - The cluster number.

	
int get_index(int mol)

	Get the cluster number given a molecule.

This should only be called after performing ‘do_clustering’ for a frame. Initially each molecule will be in its own cluster.
	Return

	The cluster number to which the molecule belongs.

	Parameters

	
	mol - The number indicating the molecule of interest, corresponding to the order in the trajectory object.

	
vector<int> get_mol_numbers(int clust)

	Find out which molecules belong to a cluster.

	Return

	A vector of numbers indicating which molecules are part of this cluster.

	Parameters

	
	clust - The cluster number.

Cross product

	
coordinates cross(coordinates a, coordinates b)

	Calculates the cross product.

Gets the cross product between vectors a and b and returns it.
	Return

	The resultant vector of the cross of a and b.

	Parameters

	
	a - First vector to be crossed.

	b - Second vector to be crossed.

Dihedral angle

	
double dihedral_angle(coordinates atom1, coordinates atom2, coordinates atom3, coordinates atom4, triclinicbox box)

	Calculates the torsion / dihedral angle from four atoms’ positions.

Source: Blondel and Karplus, J. Comp. Chem., Vol. 17, No. 9, 1 132-1 141 (1 996). Note that it returns in radians and that the atoms should be in order along their connections.
	Return

	dihedral angle in radians

	Parameters

	
	atom1 - First atom in angle

	atom2 - Second atom in angle

	atom3 - Third atom in angle

	atom4 - Fourth atom in angle

	box - Simulation box

Distance

Warning

doxygenfunction: Unable to resolve multiple matches for function “distance” with arguments () in doxygen xml output for project “libgmxcpp” from directory: ./doxyxml.
Potential matches:

- double distance(coordinates, coordinates)
- double distance(coordinates, coordinates, triclinicbox)

Distance squared

Warning

doxygenfunction: Unable to resolve multiple matches for function “distance2” with arguments () in doxygen xml output for project “libgmxcpp” from directory: ./doxyxml.
Potential matches:

- double distance2(coordinates, coordinates)
- double distance2(coordinates, coordinates, triclinicbox)

Dot product

Warning

doxygenfunction: Unable to resolve multiple matches for function “dot” with arguments () in doxygen xml output for project “libgmxcpp” from directory: ./doxyxml.
Potential matches:

- double dot(coordinates)
- double dot(coordinates, coordinates)

Geometric center

	
coordinates center_of_geometry(vector<coordinates> atom, triclinicbox box)

	Gets the geometric of a group of atoms.

Gets the gemetric of a group of atoms, taking into account the periodic boundary condition. *
	Return

	Geometric center.

	Parameters

	
	atom - The positions of the atoms. Note this only works for a cubic box at the moment.

	atom - The positions of the atoms.

	box - The simulation box.

Periodic boundary condition

	
coordinates pbc(coordinates a, triclinicbox box)

	Adjusts for periodic boundary condition.

User passes a vector, most likely a vector pointing from one atom to another in the simulation. This function adjusts the vector such that if it is longer than 1/2 the box size it accounts for the periodic boundary.
	Return

	Vector after pbc accounted for.

	Parameters

	
	a - Vector to be passed.

	box - The box dimensions.

Random points in a box

Warning

doxygengroup: Cannot find namespace “gen_rand_box_points” in doxygen xml output for project “libgmxcpp” from directory: ./doxyxml

Random point on sphere

	
group gen_sphere_point

	
Functions

	
coordinates gen_sphere_point(coordinates center, double r)

	Generates a random point on a sphere.

	Return

	The coordinates of the random point.

	Parameters

	
	center - The center of the sphere.

	r - The radius of the sphere.

	
coordinates gen_sphere_point(double r)

	Generates a random point on a sphere at the origin.

	Return

	The coordinates of the random point.

	Parameters

	
	r - The radius of the sphere.

	
coordinates gen_sphere_point()

	Generates a random point on a unit sphere at the origin.

	Return

	The coordinates of the random point.

Surface area

	
double get_surf_area(vector<coordinates> sites, double r, double rand_n, triclinicbox box)

	Gets the surface area of a group of atoms.

Gets the surface area of a group of atoms (could be a molecule) defined by vector of coordinates. Randomly generated points on a sphere of radius r are used at each site in order to get an acceptance ratio. The surface area contributed from each site is simply the surface area of a sphere multiplied by the acceptance ratio for that site. The total surface area is the sum of the surface areas for each site.
	Parameters

	
	sites - The coordinates of sites in the group / molecule. For example, the carbons in an alkane.

	r - The radius to be used in determining the surface area. For example, to determine the SASA use the appropriate radius.

	rand_n - The number of randomly generated points to be used for each site.

	box - The box dimensions for the frame in question.

Vector magnitude

	
double magnitude(coordinates x)

	Calculates the magnitude of a vector.

	Return

	Magnitude

	Parameters

	
	x - Vector for which magnitude is desired

Volume of Box

	
double volume(triclinicbox box)

	Calculates the volume of simulation box.

	Return

	Volume of box

	Parameters

	
	box - Box dimensions

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	libgmxcpp 3.2 documentation

License

libgmxcpp
Copyright (C) 2015 James W. Barnett <jbarnet4@tulane.edu>

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51
Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

The full license is located in a text file titled LICENSE in the root
directory of the source and includes a license for each part of this package.

I hope you find this library useful. There is no paper associated with this
project to cite as is common in some projects. However, if you do use this code
in a published work I humbly ask that you acknowledge it in some way.

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	libgmxcpp 3.2 documentation

Index

 B
 | C
 | D
 | G
 | I
 | M
 | P
 | T
 | V

B

 	

 	bond_angle (C++ function)

 	

 	bond_vector (C++ function)

C

 	

 	center_of_geometry (C++ function)

 	center_of_mass (C++ function), [1]

 	Clusters (C++ class)

 	Clusters::Clusters (C++ function)

 	Clusters::do_clustering (C++ function), [1]

 	

 	Clusters::get_index (C++ function)

 	Clusters::get_mol_numbers (C++ function)

 	Clusters::get_size (C++ function)

 	cross (C++ function)

D

 	

 	dihedral_angle (C++ function)

 	

 	do_center_group (C++ function)

G

 	

 	gen_sphere_point (C++ function), [1], [2]

 	

 	get_surf_area (C++ function)

I

 	

 	Index (C++ class)

 	Index::GetFilename (C++ function)

 	Index::GetGroupSize (C++ function)

 	

 	Index::GetLocation (C++ function)

 	Index::Index (C++ function), [1]

M

 	

 	magnitude (C++ function)

P

 	

 	pbc (C++ function)

T

 	

 	Topology (C++ class)

 	Topology::GetAtomName (C++ function), [1]

 	Topology::GetCharge (C++ function), [1], [2], [3]

 	Topology::GetElem (C++ function), [1]

 	Topology::GetMass (C++ function), [1], [2], [3]

 	Topology::GetResName (C++ function), [1]

 	Topology::Topology (C++ function), [1]

 	Trajectory (C++ class)

 	

 	Trajectory::GetBox (C++ function)

 	Trajectory::GetBoxVolume (C++ function)

 	Trajectory::GetNAtoms (C++ function), [1]

 	Trajectory::GetNFrames (C++ function)

 	Trajectory::GetStep (C++ function)

 	Trajectory::GetTime (C++ function)

 	Trajectory::GetXYZ (C++ function), [1], [2], [3]

 	Trajectory::Trajectory (C++ function), [1], [2]

V

 	

 	volume (C++ function)

 Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_images/screenshot.png
[wes :~/tmp/1ibguxcpp/exanple] § ./a.out -f traj.xtc -n index.ndx
Reading in index file index.ndx...0K
Found the following groups:

System (1664 particles)

vater (1604 particles)
soL (1604 particles)
non-water (60 particles)
Other. (60 particles)
CHa (60 particles)

(

c 12 particles)
oW (401 particles)
Finished reading in index file

opening xtc file traj.xtc...0K
1664 particles are in the system.
Allocated memory for 100000 frames of data.
Reading in xtc file:
frame: 5000 | time (ps): 10000 | step: 5000000
Read in 5001 frames.
Freeing up memory. ..
Finished reading in xtc file

Writing example data to out.dat
[wes:~/tmp/Libgmxcpp/example] S J|

search.html

 Navigation

 		
 index

 		libgmxcpp 3.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, James W. Barnett.
 Created using Sphinx 1.3.5.

