

LibCST

LibCST parses Python 3.0 -> 3.12 source code as a CST tree that keeps
all formatting details (comments, whitespaces, parentheses, etc). It’s useful for
building automated refactoring (codemod) applications and linters.

Introduction:

	Why LibCST?
	Abstract Syntax Trees (AST)

	Concrete Syntax Trees (CST)

	LibCST

	Motivation
	Exact Representation

	Ease of Traversal

	Ease of Modification

	Well Tested

Tutorial:

	Parsing and Visitors
	Parse Source Code

	Build Visitor or Transformer

	Generate Source Code

	Metadata
	Providing Metadata

	Accessing Metadata

	Scope Analysis
	Warn on unused imports and undefined references

	Automatically Remove Unused Import

	Matchers
	Basic Matcher Usage

	Matcher Decorators

	Codemodding
	Setting up and Running Codemods

	Writing a Codemod

	Testing Codemods

	Best Practices
	Avoid isinstance when traversing

	Prefer updated_node when modifying trees

	Provide a config when generating code from templates

Reference:

	Parsing
	parse_module()

	parse_expression()

	parse_statement()

	PartialParserConfig

	Syntax Errors

	Nodes
	CSTNode

	Module

	Expressions

	Statements

	Operators

	Miscellaneous

	Whitespace

	Maybe Sentinel

	Visitors
	CSTVisitor

	CSTTransformer

	RemoveFromParent()

	RemovalSentinel

	FlattenSentinel

	Visit and Leave Helper Functions

	Traversal Order

	Batched Visitors

	Metadata
	Metadata APIs

	Metadata Providers

	Matchers
	Matcher APIs

	Matcher Types

	Codemods
	Codemod Base

	Execution Interface

	Command-Line Support

	Command-Line Toolkit

	Library of Transforms

	Helpers
	Construction Helpers

	Transformation Helpers

	Traversing Helpers

	Experimental APIs
	Reentrant Code Generation

Indices and tables

	Index

	Module Index

	Search Page

Privacy Policy and Terms of Use

	Privacy Policy [https://opensource.facebook.com/legal/privacy]

	Terms of Use [https://opensource.facebook.com/legal/terms]

Why LibCST?

Python’s ast module already provides a syntax tree. Why do we need another?

LibCST creates a compromise between an Abstract Syntax Tree (AST) and a traditional
Concrete Syntax Tree (CST). By carefully reorganizing and naming node types and
fields, we’ve created a lossless CST that looks and feels like an AST.

Abstract Syntax Trees (AST)

Let’s look at Python’s AST for the following code snippet:

fn(1, 2) # calls fn

ast.Module(
 body=[
 ast.Expr(
 value=ast.Call(
 func=ast.Name("fn", ctx=ast.Load()),
 args=[ast.Num(n=1), ast.Num(n=2)],
 keywords=[],
),
),
],
)

[image: digraph ast { layout=dot; rankdir=LR; splines=polyline; ranksep=.6; nodesep=.4; dpi=300; bgcolor=transparent; node [style=filled, color="#fb8d3f", fontcolor="#4b4f54", fillcolor="#fdd2b3", fontname="Source Code Pro Semibold", penwidth="2",]; edge [color="#999999", fontcolor="#4b4f54", fontname="Source Code Pro Semibold", fontsize=12, penwidth=2,]; Name [label=" Name('fn') "]; Load [label=" Load() "]; Num1 [label=" Num(n=1) "]; Num2 [label=" Num(n=2) "]; Module -> Expr [label="body[0]"] Expr -> Call [label="value"] Call -> Name [label="func"] Name -> Load [label="ctx"] Call -> Num1 [label="args[0]"] Call -> Num2 [label="args[1]"] }]

This syntax tree does a great job of preserving the semantics of the original code, and the structure of the tree is relatively simple.

However, given only the AST, it wouldn’t be possible to reprint the original source code. Like a JPEG [https://www.youtube.com/watch?v=j5nZhf8SjXw], the Abstract Syntax Tree is lossy.

	The comment we left at the line is gone.

	There’s a newline at the end of the file, but the AST doesn’t tell us that. It also doesn’t tell us if it’s \n, \r, or \r\n.

	We’ve lost some information about the whitespace between the first and second argument.

Abstract Syntax Trees are good for tools like compilers and type checkers where the semantics of code is important, but the exact syntax isn’t.

Concrete Syntax Trees (CST)

A popular CST library for Python is lib2to3 [https://github.com/python/cpython/tree/master/Lib/lib2to3], which powers tools like 2to3 [https://docs.python.org/3/library/2to3.html] and Black [https://github.com/ambv/black]. Let’s look at the syntax tree it generates for the same piece of code:

fn(1, 2) # calls fn

Node(
 file_input,
 children=[
 Node(
 simple_stmt,
 children=[
 Node(
 power,
 children=[
 Leaf(NAME, "fn", prefix=""),
 Node(
 trailer,
 children=[
 Leaf(LPAR, "(", prefix=""),
 Node(
 arglist,
 children=[
 Leaf(NUMBER, "1", prefix=""),
 Leaf(COMMA, ",", prefix=""),
 Leaf(NUMBER, "2", prefix=" "),
],
),
 Leaf(RPAR, ")", prefix=""),
],
),
],
),
 Leaf(
 NEWLINE,
 "\n",
 prefix=" # calls fn",
),
],
 prefix=""
),
 Leaf(ENDMARKER, "", prefix=""),
],
 prefix="",
)

[image: digraph cst { layout=dot; rankdir=TB; ordering=out; splines=line; ranksep=.3; nodesep=.3; dpi=300; bgcolor=transparent; node [style=filled, color="#fb8d3f", fontcolor="#4b4f54", fillcolor="#fdd2b3", fontname="Source Code Pro Semibold", penwidth="2", group=main,]; edge [color="#999999", fontcolor="#4b4f54", fontname="Source Code Pro Semibold", fontsize=12, penwidth=2,]; ENDMARKER [label=" ENDMARKER('') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; NAME_fn [label=" NAME('fn') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; LPAR [label=" LPAR('(') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; NUMBER_1 [label=" NUMBER('1') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; COMMA [label=" COMMA(',') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; NUMBER_2 [label=" NUMBER('2', prefix=' ') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; RPAR [label=" RPAR(')') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; NEWLINE [label=" NEWLINE('\\n', prefix=' # calls fn') ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; file_input -> simple_stmt [label="0"] file_input -> ENDMARKER [label="1"] simple_stmt -> power [label="0"] simple_stmt -> NEWLINE [label="1"] power -> NAME_fn [label="0"]; power -> trailer [label="1"]; trailer -> LPAR [label="0"]; trailer -> NUMBER_1 [label="1"]; trailer -> COMMA [label="2"]; trailer -> NUMBER_2 [label="3"]; trailer -> RPAR [label="4"]; }]

This tree is lossless. It retains enough information to reprint the exact input code by storing whitespace information in prefix properties. This makes it a “Concrete” Syntax Tree, or CST.

However, much of the semantics of the code is now difficult to understand and extract. lib2to3 presents a tree that closely matches Python’s grammar [https://docs.python.org/3/reference/grammar.html] which can be hard to manipulate for complex operations.

	Adding or removing a parameter from fn requires careful preservation of COMMA nodes.

	Whitespace and comment ownership is unclear. Deleting nodes could result in invalid generated code.

Concrete Syntax Trees are good for operations that don’t significantly change the tree and tools that do not wish to change the semantics of the code itself, such as Black [https://github.com/ambv/black].

LibCST

LibCST takes a compromise between the two formats outlined above. Like a CST, LibCST preserves all whitespace and can be reprinted exactly. Like an AST, LibCST parses source into nodes that represent the semantics of the code.

fn(1, 2) # calls fn

Module(
 body=[
 SimpleStatementLine(
 body=[
 Expr(
 value=Call(
 func=Name(
 value='fn',
 lpar=[],
 rpar=[],
),
 args=[
 Arg(
 value=Integer(
 value='1',
 lpar=[],
 rpar=[],
),
 keyword=None,
 equal=MaybeSentinel.DEFAULT,
 comma=Comma(
 whitespace_before=SimpleWhitespace(
 value='',
),
 whitespace_after=SimpleWhitespace(
 value=' ',
),
),
 star='',
 whitespace_after_star=SimpleWhitespace(
 value='',
),
 whitespace_after_arg=SimpleWhitespace(
 value='',
),
),
 Arg(
 value=Integer(
 value='2',
 lpar=[],
 rpar=[],
),
 keyword=None,
 equal=MaybeSentinel.DEFAULT,
 comma=MaybeSentinel.DEFAULT,
 star='',
 whitespace_after_star=SimpleWhitespace(
 value='',
),
 whitespace_after_arg=SimpleWhitespace(
 value='',
),
),
],
 lpar=[],
 rpar=[],
 whitespace_after_func=SimpleWhitespace(
 value='',
),
 whitespace_before_args=SimpleWhitespace(
 value='',
),
),
 semicolon=MaybeSentinel.DEFAULT,
),
],
 leading_lines=[],
 trailing_whitespace=TrailingWhitespace(
 whitespace=SimpleWhitespace(
 value=' ',
),
 comment=Comment(
 value='# calls fn',
),
 newline=Newline(
 value=None,
),
),
),
],
 header=[],
 footer=[],
 encoding='utf-8',
 default_indent=' ',
 default_newline='\n',
 has_trailing_newline=True,
)

[image: digraph libcst { layout=dot; rankdir=TB; splines=line; ranksep=0.5; nodesep=1.0; dpi=300; bgcolor=transparent; node [style=filled, color="#fb8d3f", fontcolor="#4b4f54", fillcolor="#fdd2b3", fontname="Source Code Pro Semibold", penwidth="2", group=main,]; edge [color="#999999", fontcolor="#4b4f54", fontname="Source Code Pro Semibold", fontsize=12, penwidth=2,]; Module [label="Module"]; SimpleStatementLine [label="SimpleStatementLine"]; Expr [label="Expr"]; Call [label="Call"]; Name [label="Name"]; NameValue [label=" 'fn' ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; Arg1 [label="Arg"]; Integer1 [label="Integer"]; Integer1Value [label=" '1' ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; Comma [label="Comma"]; SimpleWhitespace2 [label="SimpleWhitespace", color="#777777", fillcolor="#eeeeee"]; SimpleWhitespace2Value [label=" ' ' ", color="#777777", fillcolor="#cccccc", shape=box]; Arg2 [label="Arg"]; Integer2 [label="Integer"]; Integer2Value [label=" '2' ", color="#3e99ed", fillcolor="#b8d9f8", shape=box]; TrailingWhitespace [label="TrailingWhitespace", color="#777777", fillcolor="#eeeeee"]; SimpleWhitespace1 [label="SimpleWhitespace", color="#777777", fillcolor="#eeeeee"]; SimpleWhitespace1Value [label=" ' ' ", color="#777777", fillcolor="#cccccc", shape=box]; Comment1 [label="Comment", color="#777777", fillcolor="#eeeeee"]; Comment1Value [label=" '# calls fn' ", color="#777777", fillcolor="#cccccc", shape=box]; Module -> SimpleStatementLine [label="body[0]"]; SimpleStatementLine -> Expr [label="body[0]"]; Expr -> Call [label="value"]; Call -> Name [label="func"]; Name -> NameValue [label="value"]; Call -> Arg1 [label="args[0]"]; Arg1 -> Integer1 [label="value"]; Integer1 -> Integer1Value [label="value"]; Arg1 -> Comma [label="comma"]; Comma -> SimpleWhitespace2 [label="whitespace_after"]; SimpleWhitespace2 -> SimpleWhitespace2Value [label="value"]; Call -> Arg2 [label="args[1]"]; Arg2 -> Integer2 [label="value"]; Integer2 -> Integer2Value [label="value"]; SimpleStatementLine -> TrailingWhitespace [label="trailing_whitespace"]; TrailingWhitespace -> SimpleWhitespace1 [label="whitespace"]; SimpleWhitespace1 -> SimpleWhitespace1Value [label="value"]; TrailingWhitespace -> Comment1 [label="comment"]; Comment1 -> Comment1Value [label="value"]; }]

LibCST preserves whitespace by parsing it using an internal whitespace parser and assigning it to relevant nodes. This allows for much more granular whitespace ownership and greatly reduces the amount of work necessary to perform complex manipulations. Additionally, it is fully typed. A node’s children are well-defined and match the semantics of Python.

However, this does come with some downsides.

	It is more difficult to implement tools that focus almost exclusively on whitespace on top of LibCST instead of lib2to3. For example, Black [https://github.com/ambv/black] would need to modify whitespace nodes instead of prefix strings, making its implementation much more complex.

	The equivalent AST for a Python module will usually be simpler. We must preserve whitespace ownership by assigning it to nodes that make the most sense which requires us to introduce nodes such as Comma.

	Parsing with LibCST will always be slower than Python’s AST due to the extra work needed to assign whitespace correctly.

Nevertheless, we think that the trade-offs made in LibCST are worthwhile and offer a great deal of flexibility and power.

Motivation

When designing LibCST, we used the following list of motivations.

Exact Representation

	Trees should be rewritable. It should always be possible to take a valid python file, parse it to a CST using LibCST and then write that tree back out exactly, byte for byte. When changing nodes in the tree, changes to the original source file should be localized to the area represented by the changed portion of the tree. Effectively, for all valid python inputs, the following equation should be true:

parse_module(some_input).code == some_input

	Nodes should be constructed exactly as written in code. No magic should happen on initialization and all construction should be explicit. Nodes should directly correlate to the code they represent and vice versa.

Ease of Traversal

	As flat as possible. There shouldn’t be an AsyncFunction wrapper containing a FunctionDef just because the grammar specifies it that way. Instead, we should make a FunctionDef node and give it an async attribute. Instead of representing parenthesis as wrapper nodes, they should be attached to the expressions that they operate on. In any scenario where we could achieve deduplication of LibCST code through extra layers in the resulting tree, we will opt for more code in order to make traversal simpler.

	As regular as possible. A module should always have a list of statements, even if that list is empty or only has one item. Irregularity makes tree inspection more difficult.

	As high-level as possible. The tree should be as close to the Python AST as possible. It should not be necessary to understand Python syntax in order to traverse the tree correctly. You should not have to know to ignore commas when traversing a list of parameters for a function. You should not have to use helper functions to traverse or recognize expressions wrapped in parenthesis. A LibCST node will represent its semantic operation in python with as little syntactic trivia exposed as possible.

Ease of Modification

	All nodes should be fully typed. A module is a list of statements, not a list of untyped nodes. A function has a name, parameters and an optional return. It should be clear where to access various attributes of each node and what are the valid node types that can be used for that attribute.

	Additional runtime (in addition to static types) constraints. It shouldn’t be possible to construct a node that can’t be serialized correctly or that would result in invalid code. You shouldn’t be able to construct a Name node with a string that isn’t a valid python identifier. Strong constraints here should allow us to perform multiple passes safely without serializing and re-parsing the tree after each pass.

	Sane defaults. If I construct a node, I shouldn’t have to supply whitespace, commas or other required syntax unless I want to. I should be able to treat the node in abstract, specifying only the semantics of the resulting code.

	Reasonably intelligent ownership of whitespace. A statement should own the comments directly above it, and any trailing comments on the same line. If we delete that statement, the whitespace should disappear with it.

	It should be easy to change a single field in an existing node without needing to modify or fix up adjacent nodes. Syntactic trivia such as commas or proper spacing between nodes should be children of the node they logically belong to so that inserting or removing a node does not require modifications to adjacent nodes.

	Reparentable. It should be possible to move or copy a node from one part of the tree easily.

Well Tested

	All nodes should be fully tested. It should not be possible to break upstream parsing or rendering code with a change to LibCST. Parsing, rendering and verifying functionality are all tested as completely as possible for all defined nodes.

Interactive online tutorial: [image: Notebook] [https://mybinder.org/v2/gh/Instagram/LibCST/main?filepath=docs/source/tutorial.ipynb]

Parsing and Visiting

LibCST provides helpers to parse source code string as concrete syntax tree. In order to perform static analysis to identify patterns in the tree or modify the tree programmatically, we can use visitor pattern to traverse the tree. In this tutorial, we demonstrate a common three-step-workflow to build an automated refactoring (codemod) application:

	Parse Source Code

	Build Visitor or Transformer

	Generate Source Code

Parse Source Code

LibCST provides various helpers to parse source code as concrete syntax tree: parse_module(), parse_expression() and parse_statement() (see Parsing for more detail). The default CSTNode repr provides pretty print formatting for reading the tree easily.

[2]:

import libcst as cst

cst.parse_expression("1 + 2")

[2]:

BinaryOperation(
 left=Integer(
 value='1',
 lpar=[],
 rpar=[],
),
 operator=Add(
 whitespace_before=SimpleWhitespace(
 value=' ',
),
 whitespace_after=SimpleWhitespace(
 value=' ',
),
),
 right=Integer(
 value='2',
 lpar=[],
 rpar=[],
),
 lpar=[],
 rpar=[],
)

Example: add typing annotation from pyi stub file to Python source

Python typing annotation [https://mypy.readthedocs.io/en/latest/cheat_sheet_py3.html] was added in Python 3.5. Some Python applications add typing annotations in separate pyi stub files in order to support old Python versions. When applications decide to stop supporting old Python versions, they’ll want to automatically copy the type annotation from a pyi file to a source file. Here we demonstrate how to do that easliy using LibCST. The first step is to parse the pyi stub and source files as trees.

[3]:

py_source = '''
class PythonToken(Token):
 def __repr__(self):
 return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %
 self._replace(type=self.type.name))

def tokenize(code, version_info, start_pos=(1, 0)):
 """Generate tokens from a the source code (string)."""
 lines = split_lines(code, keepends=True)
 return tokenize_lines(lines, version_info, start_pos=start_pos)
'''

pyi_source = '''
class PythonToken(Token):
 def __repr__(self) -> str: ...

def tokenize(
 code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] = (1, 0)
) -> Generator[PythonToken, None, None]: ...
'''

source_tree = cst.parse_module(py_source)
stub_tree = cst.parse_module(pyi_source)

Build Visitor or Transformer

For traversing and modifying the tree, LibCST provides Visitor and Transformer classes similar to the ast module [https://docs.python.org/3/library/ast.html#ast.NodeVisitor]. To implement a visitor (read only) or transformer (read/write), simply implement a subclass of CSTVisitor or CSTTransformer (see Visitors for more detail).
In the typing example, we need to implement a visitor to collect typing annotation from the stub tree and a transformer to copy the annotation to the function signature. In the visitor, we implement visit_FunctionDef to collect annotations. Later in the transformer, we implement leave_FunctionDef to add the collected annotations.

[4]:

from typing import List, Tuple, Dict, Optional

class TypingCollector(cst.CSTVisitor):
 def __init__(self):
 # stack for storing the canonical name of the current function
 self.stack: List[Tuple[str, ...]] = []
 # store the annotations
 self.annotations: Dict[
 Tuple[str, ...], # key: tuple of canonical class/function name
 Tuple[cst.Parameters, Optional[cst.Annotation]], # value: (params, returns)
] = {}

 def visit_ClassDef(self, node: cst.ClassDef) -> Optional[bool]:
 self.stack.append(node.name.value)

 def leave_ClassDef(self, node: cst.ClassDef) -> None:
 self.stack.pop()

 def visit_FunctionDef(self, node: cst.FunctionDef) -> Optional[bool]:
 self.stack.append(node.name.value)
 self.annotations[tuple(self.stack)] = (node.params, node.returns)
 return (
 False
) # pyi files don't support inner functions, return False to stop the traversal.

 def leave_FunctionDef(self, node: cst.FunctionDef) -> None:
 self.stack.pop()

class TypingTransformer(cst.CSTTransformer):
 def __init__(self, annotations):
 # stack for storing the canonical name of the current function
 self.stack: List[Tuple[str, ...]] = []
 # store the annotations
 self.annotations: Dict[
 Tuple[str, ...], # key: tuple of canonical class/function name
 Tuple[cst.Parameters, Optional[cst.Annotation]], # value: (params, returns)
] = annotations

 def visit_ClassDef(self, node: cst.ClassDef) -> Optional[bool]:
 self.stack.append(node.name.value)

 def leave_ClassDef(
 self, original_node: cst.ClassDef, updated_node: cst.ClassDef
) -> cst.CSTNode:
 self.stack.pop()
 return updated_node

 def visit_FunctionDef(self, node: cst.FunctionDef) -> Optional[bool]:
 self.stack.append(node.name.value)
 return (
 False
) # pyi files don't support inner functions, return False to stop the traversal.

 def leave_FunctionDef(
 self, original_node: cst.FunctionDef, updated_node: cst.FunctionDef
) -> cst.CSTNode:
 key = tuple(self.stack)
 self.stack.pop()
 if key in self.annotations:
 annotations = self.annotations[key]
 return updated_node.with_changes(
 params=annotations[0], returns=annotations[1]
)
 return updated_node

visitor = TypingCollector()
stub_tree.visit(visitor)
transformer = TypingTransformer(visitor.annotations)
modified_tree = source_tree.visit(transformer)

Generate Source Code

Generating the source code from a cst tree is as easy as accessing the code attribute on Module. After the code generation, we often use ufmt [https://ufmt.omnilib.dev/en/stable/] to reformate the code to keep a consistent coding style.

[5]:

print(modified_tree.code)

class PythonToken(Token):
 def __repr__(self) -> str:
 return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %
 self._replace(type=self.type.name))

def tokenize(code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] = (1, 0)
) -> Generator[PythonToken, None, None]:
 """Generate tokens from a the source code (string)."""
 lines = split_lines(code, keepends=True)
 return tokenize_lines(lines, version_info, start_pos=start_pos)

[6]:

Use difflib to show the changes to verify type annotations were added as expected.
import difflib

print(
 "".join(
 difflib.unified_diff(py_source.splitlines(1), modified_tree.code.splitlines(1))
)
)

+++
@@ -1,10 +1,11 @@

 class PythonToken(Token):
- def __repr__(self):
+ def __repr__(self) -> str:
 return ('TokenInfo(type=%s, string=%r, start_pos=%r, prefix=%r)' %
 self._replace(type=self.type.name))

-def tokenize(code, version_info, start_pos=(1, 0)):
+def tokenize(code: str, version_info: PythonVersionInfo, start_pos: Tuple[int, int] = (1, 0)
+) -> Generator[PythonToken, None, None]:
 """Generate tokens from a the source code (string)."""
 lines = split_lines(code, keepends=True)
 return tokenize_lines(lines, version_info, start_pos=start_pos)

For the sake of efficiency, we don’t want to re-write the file when the transformer doesn’t change the source code. We can use deep_equals() to check whether two trees have the same source code. Note that == checks the identity of tree object instead of representation.

[7]:

if not modified_tree.deep_equals(source_tree):
 ... # write to file

Interactive online tutorial: [image: Notebook] [https://mybinder.org/v2/gh/Instagram/LibCST/main?filepath=docs/source/metadata_tutorial.ipynb]

Working with Metadata

LibCST handles node metadata in a somewhat unusual manner in order to maintain the immutability of the tree. See Metadata for the complete documentation.

Providing Metadata

While it’s possible to write visitors that gather metadata from a tree ad hoc, using the provider interface gives you the advantage of being able to use dependency declaration to automatically run your providers in other visitors and type safety. For most cases, you’ll want to extend BatchableMetadataProvider as providers that extend from that class can be resolved more efficiently in batches.

Here’s an example of a simple metadata provider that marks Name nodes that are function parameters:

[2]:

import libcst as cst

class IsParamProvider(cst.BatchableMetadataProvider[bool]):
 """
 Marks Name nodes found as a parameter to a function.
 """
 def __init__(self) -> None:
 super().__init__()
 self.is_param = False

 def visit_Param(self, node: cst.Param) -> None:
 # Mark the child Name node as a parameter
 self.set_metadata(node.name, True)

 def visit_Name(self, node: cst.Name) -> None:
 # Mark all other Name nodes as not parameters
 if not self.get_metadata(type(self), node, False):
 self.set_metadata(node, False)

Line and Column Metadata

LibCST ships with two built-in providers for line and column metadata. See Position Metadata for more information.

Accessing Metadata

Once you have a provider, the metadata interface gives you two primary ways of working with your providers. The first is using the resolve methods provided by MetadataWrapper and the second is through declaring metadata dependencies on a CSTTransformer or CSTVisitor.

Using the MetadataWrapper

The metadata wrapper class provides a way to associate metadata with a module as well as a simple interface to run providers. Here’s an example of using a wrapper with the provider we just wrote:

[3]:

module = cst.parse_module("x")
wrapper = cst.MetadataWrapper(module)

isparam = wrapper.resolve(IsParamProvider)
x_name_node = wrapper.module.body[0].body[0].value

print(isparam[x_name_node]) # should print False

False

Using Dependency Declaration

The visitors that ship with LibCST can declare metadata providers as dependencies that will be run automatically when visited by a wrapper. Here is a visitor that prints all names that are function parameters.

[4]:

from libcst.metadata import PositionProvider

class ParamPrinter(cst.CSTVisitor):
 METADATA_DEPENDENCIES = (IsParamProvider, PositionProvider,)

 def visit_Name(self, node: cst.Name) -> None:
 # Only print out names that are parameters
 if self.get_metadata(IsParamProvider, node):
 pos = self.get_metadata(PositionProvider, node).start
 print(f"{node.value} found at line {pos.line}, column {pos.column}")

module = cst.parse_module("def foo(x):\n y = 1\n return x + y")
wrapper = cst.MetadataWrapper(module)
result = wrapper.visit(ParamPrinter()) # NB: wrapper.visit not module.visit

x found at line 1, column 8

Interactive online tutorial: [image: Notebook] [https://mybinder.org/v2/gh/Instagram/LibCST/main?filepath=docs/source/scope_tutorial.ipynb]

Scope Analysis

Scope analysis keeps track of assignments and accesses which could be useful for code automatic refactoring. If you’re not familiar with scope analysis, see Scope Metadata for more detail about scope metadata. This tutorial demonstrates some use cases of scope analysis. If you’re new to metadata, see Metadata Tutorial to get started.
Given source codes, scope analysis parses all variable Assignment (or a BuiltinAssignment if it’s a builtin) and Access to store in Scope containers.

Note

The scope analysis only handles local variable name access and cannot handle simple string type annotation forward references. See Access

Given the following example source code contains a couple of unused imports (f, i, m and n) and undefined variable references (func_undefined and var_undefined). Scope analysis helps us identifying those unused imports and undefined variables to automatically provide warnings to developers to prevent bugs while they’re developing.

[2]:

source = """\
import a, b, c as d, e as f # expect to keep: a, c as d
from g import h, i, j as k, l as m # expect to keep: h, j as k
from n import o # expect to be removed entirely

a()

def fun():
 d()

class Cls:
 att = h.something

 def __new__(self) -> "Cls":
 var = k.method()
 func_undefined(var_undefined)
"""

With a parsed Module, we construct a MetadataWrapper object and it provides a resolve() function to resolve metadata given a metadata provider.
ScopeProvider is used here for analysing scope and there are three types of scopes (GlobalScope, FunctionScope and ClassScope) in this example.

[3]:

import libcst as cst

wrapper = cst.metadata.MetadataWrapper(cst.parse_module(source))
scopes = set(wrapper.resolve(cst.metadata.ScopeProvider).values())
for scope in scopes:
 print(scope)

<libcst.metadata.scope_provider.GlobalScope object at 0x7f52da730950>
<libcst.metadata.scope_provider.FunctionScope object at 0x7f52da733230>
<libcst.metadata.scope_provider.ClassScope object at 0x7f52da731940>
<libcst.metadata.scope_provider.FunctionScope object at 0x7f52da731eb0>

Warn on unused imports and undefined references

To find all unused imports, we iterate through assignments and an assignment is unused when its references is empty. To find all undefined references, we iterate through accesses (we focus on Import/ImportFrom assignments) and an access is undefined reference when its referents is empty. When reporting the warning to developer, we’ll want to report the line number and column offset along with the suggestion to make it more clear. We can get position information from PositionProvider and print the warnings as follows.

[4]:

from collections import defaultdict
from typing import Dict, Union, Set

unused_imports: Dict[Union[cst.Import, cst.ImportFrom], Set[str]] = defaultdict(set)
undefined_references: Dict[cst.CSTNode, Set[str]] = defaultdict(set)
ranges = wrapper.resolve(cst.metadata.PositionProvider)
for scope in scopes:
 for assignment in scope.assignments:
 node = assignment.node
 if isinstance(assignment, cst.metadata.Assignment) and isinstance(
 node, (cst.Import, cst.ImportFrom)
):
 if len(assignment.references) == 0:
 unused_imports[node].add(assignment.name)
 location = ranges[node].start
 print(
 f"Warning on line {location.line:2d}, column {location.column:2d}: Imported name `{assignment.name}` is unused."
)

 for access in scope.accesses:
 if len(access.referents) == 0:
 node = access.node
 location = ranges[node].start
 print(
 f"Warning on line {location.line:2d}, column {location.column:2d}: Name reference `{node.value}` is not defined."
)

Warning on line 1, column 0: Imported name `b` is unused.
Warning on line 1, column 0: Imported name `f` is unused.
Warning on line 2, column 0: Imported name `i` is unused.
Warning on line 2, column 0: Imported name `m` is unused.
Warning on line 3, column 0: Imported name `o` is unused.
Warning on line 15, column 8: Name reference `func_undefined` is not defined.
Warning on line 15, column 23: Name reference `var_undefined` is not defined.

Automatically Remove Unused Import

Unused import is a commmon code suggestion provided by lint tool like flake8 F401 [https://lintlyci.github.io/Flake8Rules/rules/F401.html] imported but unused.
Even though reporting unused import is already useful, with LibCST we can provide automatic fix to remove unused import. That can make the suggestion more actionable and save developer’s time.

An import statement may import multiple names, we want to remove those unused names from the import statement. If all the names in the import statement are not used, we remove the entire import.
To remove the unused name, we implement RemoveUnusedImportTransformer by subclassing CSTTransformer. We overwrite leave_Import and leave_ImportFrom to modify the import statements.
When we find the import node in lookup table, we iterate through all names and keep used names in names_to_keep.
If names_to_keep is empty, all names are unused and we remove the entire import node.
Otherwise, we update the import node and just removing partial names.

[5]:

class RemoveUnusedImportTransformer(cst.CSTTransformer):
 def __init__(
 self, unused_imports: Dict[Union[cst.Import, cst.ImportFrom], Set[str]]
) -> None:
 self.unused_imports = unused_imports

 def leave_import_alike(
 self,
 original_node: Union[cst.Import, cst.ImportFrom],
 updated_node: Union[cst.Import, cst.ImportFrom],
) -> Union[cst.Import, cst.ImportFrom, cst.RemovalSentinel]:
 if original_node not in self.unused_imports:
 return updated_node
 names_to_keep = []
 for name in updated_node.names:
 asname = name.asname
 if asname is not None:
 name_value = asname.name.value
 else:
 name_value = name.name.value
 if name_value not in self.unused_imports[original_node]:
 names_to_keep.append(name.with_changes(comma=cst.MaybeSentinel.DEFAULT))
 if len(names_to_keep) == 0:
 return cst.RemoveFromParent()
 else:
 return updated_node.with_changes(names=names_to_keep)

 def leave_Import(
 self, original_node: cst.Import, updated_node: cst.Import
) -> cst.Import:
 return self.leave_import_alike(original_node, updated_node)

 def leave_ImportFrom(
 self, original_node: cst.ImportFrom, updated_node: cst.ImportFrom
) -> cst.ImportFrom:
 return self.leave_import_alike(original_node, updated_node)

After the transform, we use .code to generate fixed code and all unused names are fixed as expected! The difflib is used to show only changed part and only import lines are updated as expected.

[6]:

import difflib
fixed_module = wrapper.module.visit(RemoveUnusedImportTransformer(unused_imports))

Use difflib to show the changes to verify unused imports are removed as expected.
print(
 "".join(
 difflib.unified_diff(source.splitlines(1), fixed_module.code.splitlines(1))
)
)

+++
@@ -1,6 +1,5 @@
-import a, b, c as d, e as f # expect to keep: a, c as d
-from g import h, i, j as k, l as m # expect to keep: h, j as k
-from n import o # expect to be removed entirely
+import a, c as d # expect to keep: a, c as d
+from g import h, j as k # expect to keep: h, j as k

 a()

Interactive online tutorial: [image: Notebook] [https://mybinder.org/v2/gh/Instagram/LibCST/main?filepath=docs/source/matchers_tutorial.ipynb]

Working with Matchers

Matchers provide a flexible way of comparing LibCST nodes in order to build more complex transforms. See Matchers for the complete documentation.

Basic Matcher Usage

Let’s say you are visiting a LibCST Call node and you want to know if all arguments provided are the literal True or False. You look at the documentation and see that Call.args is a sequence of Arg, and each Arg.value is a BaseExpression. In order to verify that each argument is either True or False you would have to first loop over node.args, and then check isinstance(arg.value, cst.Name) for each arg in the loop before finally checking arg.value.value in ("True", "False").

Here’s a short example of that in action:

[2]:

import libcst as cst

def is_call_with_booleans(node: cst.Call) -> bool:
 for arg in node.args:
 if not isinstance(arg.value, cst.Name):
 # This can't be the literal True/False, so bail early.
 return False
 if cst.ensure_type(arg.value, cst.Name).value not in ("True", "False"):
 # This is a Name node, but not the literal True/False, so bail.
 return False
 # We got here, so all arguments are literal boolean values.
 return True

We can see from a few examples that this does work as intended. However, it is an awful lot of boilerplate that was fairly cumbersome to write.

[3]:

call_1 = cst.Call(
 func=cst.Name("foo"),
 args=(
 cst.Arg(cst.Name("True")),
),
)
is_call_with_booleans(call_1)

[3]:

True

[4]:

call_2 = cst.Call(
 func=cst.Name("foo"),
 args=(
 cst.Arg(cst.Name("None")),
),
)
is_call_with_booleans(call_2)

[4]:

False

Let’s try to do a bit better with matchers. We can make a better function that takes advantage of matchers to get rid of both the instance check and the ensure_type call, like so:

[5]:

import libcst.matchers as m

def better_is_call_with_booleans(node: cst.Call) -> bool:
 for arg in node.args:
 if not m.matches(arg.value, m.Name("True") | m.Name("False")):
 # Oops, this isn't a True/False literal!
 return False
 # We got here, so all arguments are literal boolean values.
 return True

This is a lot shorter and is easier to read as well! We made use of the fact that matchers handles instance checking for us in a safe way. We also made use of the fact that matchers allows us to concisely express multiple match options with the use of Python’s or operator. We can also see that it still works on our previous examples:

[6]:

better_is_call_with_booleans(call_1)

[6]:

True

[7]:

better_is_call_with_booleans(call_2)

[7]:

False

We still have one more trick up our sleeve though. Matchers don’t just allow us to specify which attributes we want to match on exactly. It also allows us to specify rules for matching sequences of nodes, like the list of Arg nodes that appears in Call. Let’s make use of that, turning our original is_call_with_booleans function into a call to matches():

[8]:

def best_is_call_with_booleans(node: cst.Call) -> bool:
 return m.matches(
 node,
 m.Call(
 args=(
 m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
),
),
)

We’ve turned our original function into a single call to matches(). As an added benefit, the match node can be read from left to right in a way that makes sense in english: “match any call with zero or more arguments that are the literal True or False”. As we can see, it works as intended:

[9]:

best_is_call_with_booleans(call_1)

[9]:

True

[10]:

best_is_call_with_booleans(call_2)

[10]:

False

Matcher Decorators

You can already do a lot with just matches(). It lets you define the shape of nodes you want to match and LibCST takes care of the rest. However, you still need to include a lot of boilerplate into your Visitors in order to identify which nodes you care about. Matcher Decorators help reduce that boilerplate.

Say you wanted to invert the boolean literals in functions which match the above best_is_call_with_booleans. You could build something that looks like the following:

[11]:

class BoolInverter(cst.CSTTransformer):
 def __init__(self) -> None:
 self.in_call: int = 0

 def visit_Call(self, node: cst.Call) -> None:
 if m.matches(node, m.Call(args=(
 m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
))):
 self.in_call += 1

 def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:
 if m.matches(original_node, m.Call(args=(
 m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
))):
 self.in_call -= 1
 return updated_node

 def leave_Name(self, original_node: cst.Name, updated_node: cst.Name) -> cst.Name:
 if self.in_call > 0:
 if updated_node.value == "True":
 return updated_node.with_changes(value="False")
 if updated_node.value == "False":
 return updated_node.with_changes(value="True")
 return updated_node

We can try it out on a source file to see that it works:

[12]:

source = "def some_func(*params: object) -> None:\n pass\n\nsome_func(True, False)\nsome_func(1, 2, 3)\nsome_func()\n"
module = cst.parse_module(source)
print(source)

def some_func(*params: object) -> None:
 pass

some_func(True, False)
some_func(1, 2, 3)
some_func()

[13]:

new_module = module.visit(BoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
 pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

While this works its not super elegant. We have to track where we are in the tree so we know when its safe to invert boolean literals which means we have to create a constructor and we have to duplicate matching logic. We could refactor that into a helper like the best_is_call_with_booleans above, but it only makes things so much better.

So, let’s try rewriting it with matcher decorators instead. Note that this includes changing the class we inherit from to MatcherDecoratableTransformer in order to enable the matcher decorator feature:

[14]:

class BetterBoolInverter(m.MatcherDecoratableTransformer):
 @m.call_if_inside(m.Call(args=(
 m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
)))
 def leave_Name(self, original_node: cst.Name, updated_node: cst.Name) -> cst.Name:
 if updated_node.value == "True":
 return updated_node.with_changes(value="False")
 if updated_node.value == "False":
 return updated_node.with_changes(value="True")
 return updated_node

[15]:

new_module = module.visit(BetterBoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
 pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

Using matcher decorators we successfully removed all of the boilerplate around state tracking! The only thing that leave_Name needs to concern itself with is the actual business logic of the transform. However, it still needs to check to see if the value of the node should be inverted. This is because the Call.func is a Name in this case. Let’s use another matcher decorator to make that problem go away:

[16]:

class BestBoolInverter(m.MatcherDecoratableTransformer):
 @m.call_if_inside(m.Call(args=(
 m.ZeroOrMore(m.Arg(m.Name("True") | m.Name("False"))),
)))
 @m.leave(m.Name("True") | m.Name("False"))
 def invert_bool_literal(self, original_node: cst.Name, updated_node: cst.Name) -> cst.Name:
 return updated_node.with_changes(value="False" if updated_node.value == "True" else "True")

[17]:

new_module = module.visit(BestBoolInverter())
print(new_module.code)

def some_func(*params: object) -> None:
 pass

some_func(False, True)
some_func(1, 2, 3)
some_func()

That’s it! Instead of using a leave_Name which modifies all Name nodes we instead created a matcher visitor that only modifies Name nodes with the value of True or False. We decorate that with call_if_inside() to ensure we run this on Name nodes found inside of function calls that only take boolean literals. Using two matcher decorators we got rid of all of the state management as well as all of the cases where we needed to handle nodes we weren’t interested in.

Working With Codemods

Codemods are an abstraction on top of LibCST for performing large-scale changes
to an entire codebase. See Codemods for the complete
documentation.

Setting up and Running Codemods

Let’s say you were interested in converting legacy .format() calls to shiny new
Python 3.6 f-strings. LibCST ships with a command-line interface known as
libcst.tool. This includes a few provisions for working with codemods at the
command-line. It also includes a library of pre-defined codemods, one of which is
a transform that can convert most .format() calls to f-strings. So, let’s use this
to give Python 3.6 f-strings a try.

You might be lucky enough that the defaults for LibCST perfectly match your coding
style, but chances are you want to customize LibCST to your repository. Initialize
your repository by running the following command in the root of your repository and
then edit the produced .libcst.codemod.yaml file:

python3 -m libcst.tool initialize .

The file includes provisions for customizing any generated code marker, calling an
external code formatter such as black [https://pypi.org/project/black/], blackisting
patterns of files you never wish to touch and a list of modules that contain valid
codemods that can be executed. If you want to write and run codemods specific to your
repository or organization, you can add an in-repo module location to the list of
modules and LibCST will discover codemods in all locations.

Now that your repository is initialized, let’s have a quick look at what’s currently
available for running. Run the following command from the root of your repository:

python3 -m libcst.tool list

You’ll see several codemods available to you, one of which is
convert_format_to_fstring.ConvertFormatStringCommand. The description to the right
of this codemod indicates that it converts .format() calls to f-strings, so let’s
give it a whirl! Execute the codemod from the root of your repository like so:

python3 -m libcst.tool codemod convert_format_to_fstring.ConvertFormatStringCommand .

If you want to try it out on only one file or a specific subdirectory, you can replace
the . in the above command with a relative directory, file, list of directories or
list of files. While LibCST is walking through your repository and codemodding files
you will see a progress indicator. If there’s anything the codemod can’t do or any
unexpected syntax errors, you will also see them on your console as it progresses.

If everything works out, you’ll notice that your .format() calls have been
converted to f-strings!

Writing a Codemod

Codemods use the same principles as the rest of LibCST. They take LibCST’s core,
metadata and matchers and package them up as a simple command-line interface. So,
anything you can do with LibCST in isolation you can also do with a codemod.

Let’s say you need to clean up some legacy code which used magic values instead
of constants. You’ve already got a constants module called utils.constants
and you want to assume that every reference to a raw string matching a particular
constant should be converted to that constant. For the simplest version of this
codemod, you’ll need a command-line tool that takes as arguments the string to
replace and the constant to replace it with. You’ll also need to ensure that
modified modules import the constant itself.

So, you can write something similar to the following:

import argparse
from ast import literal_eval
from typing import Union

import libcst as cst
from libcst.codemod import CodemodContext, VisitorBasedCodemodCommand
from libcst.codemod.visitors import AddImportsVisitor

class ConvertConstantCommand(VisitorBasedCodemodCommand):

 # Add a description so that future codemodders can see what this does.
 DESCRIPTION: str = "Converts raw strings to constant accesses."

 @staticmethod
 def add_args(arg_parser: argparse.ArgumentParser) -> None:
 # Add command-line args that a user can specify for running this
 # codemod.
 arg_parser.add_argument(
 "--string",
 dest="string",
 metavar="STRING",
 help="String contents that we should look for.",
 type=str,
 required=True,
)
 arg_parser.add_argument(
 "--constant",
 dest="constant",
 metavar="CONSTANT",
 help="Constant identifier we should replace strings with.",
 type=str,
 required=True,
)

 def __init__(self, context: CodemodContext, string: str, constant: str) -> None:
 # Initialize the base class with context, and save our args. Remember, the
 # "dest" for each argument we added above must match a parameter name in
 # this init.
 super().__init__(context)
 self.string = string
 self.constant = constant

 def leave_SimpleString(
 self, original_node: cst.SimpleString, updated_node: cst.SimpleString
) -> Union[cst.SimpleString, cst.Name]:
 if literal_eval(updated_node.value) == self.string:
 # Check to see if the string matches what we want to replace. If so,
 # then we do the replacement. We also know at this point that we need
 # to import the constant itself.
 AddImportsVisitor.add_needed_import(
 self.context, "utils.constants", self.constant,
)
 return cst.Name(self.constant)
 # This isn't a string we're concerned with, so leave it unchanged.
 return updated_node

This codemod is pretty simple. It defines a command-line description, sets up to parse
a few required command-line args, initializes its own member variables with the
command-line args that were parsed for it by libcst.tool codemod and finally
replaces any string which matches our string command-line argument with a constant.
It also takes care of adding the import required for the constant to be defined properly.

Cool! Let’s look at the command-line help for this codemod. Let’s assume you saved it
as constant_folding.py inside libcst.codemod.commands. You can get help for the
codemod by running the following command:

python3 -m libcst.tool codemod constant_folding.ConvertConstantCommand --help

Notice that along with the default arguments, the --string and --constant
arguments are present in the help, and the command-line description has been updated
with the codemod’s description string. You’ll notice that the codemod also shows up
on libcst.tool list.

Testing Codemods

Instead of iterating on a codemod by running it repeatedly on a codebase and seeing
what happens, we can write a series of unit tests that assert on desired
transformations. Given the above constant folding codemod that we wrote, we can test
it with some code similar to the following:

from libcst.codemod import CodemodTest
from libcst.codemod.commands.constant_folding import ConvertConstantCommand

class TestConvertConstantCommand(CodemodTest):

 # The codemod that will be instantiated for us in assertCodemod.
 TRANSFORM = ConvertConstantCommand

 def test_noop(self) -> None:
 before = """
 foo = "bar"
 """
 after = """
 foo = "bar"
 """

 # Verify that if we don't have a valid string match, we don't make
 # any substitutions.
 self.assertCodemod(before, after, string="baz", constant="BAZ")

 def test_substitution(self) -> None:
 before = """
 foo = "bar"
 """
 after = """
 from utils.constants import BAR

 foo = BAR
 """

 # Verify that if we do have a valid string match, we make a substitution
 # as well as import the constant.
 self.assertCodemod(before, after, string="bar", constant="BAR")

If we save this as test_constant_folding.py inside libcst.codemod.commands.tests
then we can execute the tests with the following line:

python3 -m unittest libcst.codemod.commands.tests.test_constant_folding

That’s all there is to it!

Best Practices

While there are plenty of ways to interact with LibCST, we recommend some patterns
over others. Various best practices are laid out here along with their justifications.

Avoid isinstance when traversing

Excessive use of isinstance implies that you should rewrite your check as a
matcher or unroll it into a set of visitor methods. Often, you should make use of
ensure_type() to make your type checker aware of a node’s type.

Often it is far easier to use Matchers over explicit instance checks
in a transform. Matching against some pattern and then extracting a value from a
node’s child is often easier and far more readable. Unfortunately this clashes with
various type-checkers which do not understand that matches()
guarantees a particular set of children. Instead of instance checks, you should use
ensure_type() which can be inlined and nested.

For example, if you have written the following:

def get_identifier_name(node: cst.CSTNode) -> Optional[str]:
 if m.matches(node, m.Name()):
 assert isinstance(node, cst.Name)
 return node.value
 return None

You could instead write something like:

def get_identifier_name(node: cst.CSTNode) -> Optional[str]:
 return (
 cst.ensure_type(node, cst.Name).value
 if m.matches(node, m.Name())
 else None
)

If you find yourself attempting to manually traverse a tree using isinstance,
you can often rewrite your code using visitor methods instead. Nested instance checks
can often be unrolled into visitors methods along with matcher decorators. This may
entail adding additional state to your visitor, but the resulting code is far more
likely to work after changes to LibCST itself. For example, if you have written the
following:

class CountBazFoobarArgs(cst.CSTVisitor):
 """
 Given a set of function names, count how many arguments to those function
 calls are the identifiers "baz" or "foobar".
 """

 def __init__(self, functions: Set[str]) -> None:
 super().__init__()
 self.functions: Set[str] = functions
 self.arg_count: int = 0

 def visit_Call(self, node: cst.Call) -> None:
 # See if the call itself is one of our functions we care about
 if isinstance(node.func, cst.Name) and node.func.value in self.functions:
 # Loop through each argument
 for arg in node.args:
 # See if the argument is an identifier matching what we want to count
 if isinstance(arg.value, cst.Name) and arg.value.value in {"baz", "foobar"}:
 self.arg_count += 1

You could instead write something like:

class CountBazFoobarArgs(m.MatcherDecoratableVisitor):
 """
 Given a set of function names, count how many arguments to those function
 calls are the identifiers "baz" or "foobar".
 """

 def __init__(self, functions: Set[str]) -> None:
 super().__init__()
 self.functions: Set[str] = functions
 self.arg_count: int = 0
 self.call_stack: List[str] = []

 def visit_Call(self, node: cst.Call) -> None:
 # Store all calls in a stack
 if m.matches(node.func, m.Name()):
 self.call_stack.append(cst.ensure_type(node.func, cst.Name).value)

 def leave_Call(self, original_node: cst.Call) -> None:
 # Pop the latest call off the stack
 if m.matches(node.func, m.Name()):
 self.call_stack.pop()

 @m.visit(m.Arg(m.Name("baz") | m.Name("foobar")))
 def _count_args(self, node: cst.Arg) -> None:
 # See if the most shallow call is one we're interested in, so we can
 # count the args we care about only in calls we care about.
 if self.call_stack[-1] in self.functions:
 self.arg_count += 1

While there is more code than the previous example, it is arguably easier to understand
and maintain each part of the code. It is also immune to any future changes to LibCST
which change’s the tree shape. Note that LibCST is traversing the tree completely
in both cases, so while the first appears to be faster, it is actually doing the same
amount of work as the second.

Prefer updated_node when modifying trees

When you are using CSTTransformer to modify a LibCST tree, only return
modifications to updated_node. The original_node parameter on any
leave_<Node> method is provided for book-keeping and is guaranteed to be
equal via == and is checks to the node parameter in the corresponding
visit_<Node> method. Remember that LibCST trees are immutable, so the only
way to make a modification is to return a new tree. Hence, by the time we get to
calling leave_<Node> methods, we have an updated tree whose children have been
modified. Therefore, you should only return original_node when you want to
explicitly discard changes performed on the node’s children.

Say you wanted to rename all function calls which were calling global functions.
So, you might write the following:

class FunctionRenamer(cst.CSTTransformer):
 def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:
 if m.matches(original_node.func, m.Name()):
 return original_node.with_changes(
 func=cst.Name(
 "renamed_" + cst.ensure_type(original_node.func, cst.Name).value
)
)
 return original_node

Consider writing instead:

class FunctionRenamer(cst.CSTTransformer):
 def leave_Call(self, original_node: cst.Call, updated_node: cst.Call) -> cst.Call:
 if m.matches(updated_node.func, m.Name()):
 return updated_node.with_changes(
 func=cst.Name(
 "renamed_" + cst.ensure_type(updated_node.func, cst.Name).value
)
)
 return updated_node

The version that returns modifications to original_node has a subtle bug. Consider
the following code snippet:

some_func(1, 2, other_func(3))

Running the recommended transform will return us a new code snippet that looks like this:

renamed_some_func(1, 2, renamed_other_func(3))

However, running the version which modifies original_node will instead return:

renamed_some_func(1, 2, other_func(3))

That’s because the updated_node tree contains the modification to other_func.
By returning modifications to original_node instead of updated_node, we accidentally
discarded all the work done deeper in the tree.

Provide a config when generating code from templates

When generating complex trees it is often far easier to pass a string to
parse_statement() or parse_expression() than it is to
manually construct the tree. When using these functions to generate code, you should
always use the config parameter in order to generate code that matches the
defaults of the module you are modifying. The Module class even has
a helper attribute config_for_parsing to make it easy to use. This
ensures that line endings and indentation are consistent with the defaults in the
module you are adding the code to.

For example, to add a print statement to the end of a module:

module = cst.parse_module(some_code_string)
new_module = module.with_changes(
 body=(
 *module.body,
 cst.parse_statement(
 "print('Hello, world!')",
 config=module.config_for_parsing,
),
),
)
new_code_string = new_module.code

Leaving out the config parameter means that LibCST will assume some defaults
and could result in added code which is formatted differently than the rest of the
module it was added to. In the above example, because we used the config from the
already-parsed example, the print statement will be added with line endings matching
the rest of the module. If we neglect the config parameter, we might accidentally
insert a windows line ending into a unix file or vice versa, depending on what system
we ran the code under.

Parsing

The parser functions accept source code and an optional configuration object,
and will generate CSTNode objects.

parse_module() is the most useful function here, since it accepts
the entire contents of a file and returns a new tree, but
parse_expression() and parse_statement() are useful
when inserting new nodes into the tree, because they’re easier to use than the
equivalent node constructors.

>>> import libcst as cst
>>> cst.parse_expression("1 + 2")
BinaryOperation(
 left=Integer(
 value='1',
 lpar=[],
 rpar=[],
),
 operator=Add(
 whitespace_before=SimpleWhitespace(
 value=' ',
),
 whitespace_after=SimpleWhitespace(
 value=' ',
),
),
 right=Integer(
 value='2',
 lpar=[],
 rpar=[],
),
 lpar=[],
 rpar=[],
)

	
libcst.parse_module(source: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes], config: PartialParserConfig = PartialParserConfig()) → Module

	Accepts an entire python module, including all leading and trailing whitespace.

If source is bytes, the encoding will be inferred and preserved. If
the source is a string, we will default to assuming UTF-8 encoding if the
module is rendered back out to source as bytes. It is recommended that when
calling parse_module() with a string you access the serialized
code using Module’s code attribute, and when calling it with
bytes you access the serialized code using Module’s bytes
attribute.

	
libcst.parse_expression(source: str [https://docs.python.org/3/library/stdtypes.html#str], config: PartialParserConfig = PartialParserConfig()) → BaseExpression

	Accepts an expression on a single line. Leading and trailing whitespace is not
valid (there’s nowhere to store it on the expression node).
parse_expression() is provided mainly as a convenience function to generate
semi-complex trees from code snippets. If you need to represent an expression
exactly, including all leading/trailing comments, you should instead use
parse_module().

	
libcst.parse_statement(source: str [https://docs.python.org/3/library/stdtypes.html#str], config: PartialParserConfig = PartialParserConfig()) → SimpleStatementLine | BaseCompoundStatement

	Accepts a statement followed by a trailing newline. If a trailing newline is not
provided, one will be added. parse_statement() is provided mainly as a
convenience function to generate semi-complex trees from code snippetes. If you
need to represent a statement exactly, including all leading/trailing comments,
you should instead use parse_module().

Leading comments and trailing comments (on the same line) are accepted, but
whitespace (or anything else) after the statement’s trailing newline is not valid
(there’s nowhere to store it on the statement node). Note that since there is
nowhere to store leading and trailing comments/empty lines, code rendered out
from a parsed statement using cst.Module([]).code_for_node(statement) will
not include leading/trailing comments.

	
class libcst.PartialParserConfig

	An optional object that can be supplied to the parser entrypoints (e.g.
parse_module()) to configure the parser.

Unspecified fields will be inferred from the input source code or from the execution
environment.

>>> import libcst as cst
>>> tree = cst.parse_module("abc")
>>> tree.bytes
b'abc'
>>> # override the default utf-8 encoding
... tree = cst.parse_module("abc", cst.PartialParserConfig(encoding="utf-32"))
>>> tree.bytes
b'\xff\xfe\x00\x00a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'

	
python_version: str [https://docs.python.org/3/library/stdtypes.html#str] | AutoConfig

	The version of Python that the input source code is expected to be syntactically
compatible with. This may be different from the Python interpreter being used to
run LibCST. For example, you can parse code as 3.7 with a CPython 3.6
interpreter.

If unspecified, it will default to the syntax of the running interpreter
(rounding down from among the following list).

Currently, only Python 3.0, 3.1, 3.3, 3.5, 3.6, 3.7 and 3.8 syntax is supported.
The gaps did not have any syntax changes from the version prior.

	
parsed_python_version: PythonVersionInfo

	A named tuple with the major and minor Python version numbers. This is
derived from python_version and should not be supplied to the
PartialParserConfig constructor.

	
encoding: str [https://docs.python.org/3/library/stdtypes.html#str] | AutoConfig

	The file’s encoding format. When parsing a bytes object, this value may be
inferred from the contents of the parsed source code. When parsing a str,
this value defaults to "utf-8".

	
future_imports: FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]] | AutoConfig

	Detected __future__ import names

	
default_indent: str [https://docs.python.org/3/library/stdtypes.html#str] | AutoConfig

	The indentation of the file, expressed as a series of tabs and/or spaces. This
value is inferred from the contents of the parsed source code by default.

	
default_newline: str [https://docs.python.org/3/library/stdtypes.html#str] | AutoConfig

	The newline of the file, expressed as \n, \r\n, or \r. This value is
inferred from the contents of the parsed source code by default.

Syntax Errors

	
final class libcst.ParserSyntaxError

	Contains an error encountered while trying to parse a piece of source code. This
exception shouldn’t be constructed directly by the user, but instead may be raised
by calls to parse_module(), parse_expression(), or
parse_statement().

This does not inherit from SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] because Python’s may raise a
SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] for any number of reasons, potentially leading to unintended
behavior.

	
message: str [https://docs.python.org/3/library/stdtypes.html#str]

	A human-readable explanation of the syntax error without information about where
the error occurred.

For a human-readable explanation of the error alongside information about where
it occurred, use __str__() (via str(ex)) instead.

	
raw_line: int [https://docs.python.org/3/library/functions.html#int]

	The one-indexed line where the error occured.

	
raw_column: int [https://docs.python.org/3/library/functions.html#int]

	The zero-indexed column as a number of characters from the start of the line
where the error occured.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A multi-line human-readable error message of where the syntax error is in their
code. For example:

Syntax Error @ 2:1.
Incomplete input. Encountered end of file (EOF), but expected 'except', or 'finally'.

try: pass
 ^

	
property context: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	A formatted string containing the line of code with the syntax error (or a
non-empty line above it) along with a caret indicating the exact column where
the error occurred.

Return None if there’s no relevant non-empty line to show. (e.g. the file
consists of only blank lines)

	
property editor_line: int [https://docs.python.org/3/library/functions.html#int]

	The expected one-indexed line in the user’s editor. This is the same as
raw_line.

	
property editor_column: int [https://docs.python.org/3/library/functions.html#int]

	The expected one-indexed column that’s likely to match the behavior of the
user’s editor, assuming tabs expand to 1-8 spaces. This is the column number
shown when the syntax error is printed out with str.

This assumes single-width characters. However, because python doesn’t ship with
a wcwidth function, it’s hard to handle this properly without a third-party
dependency.

For a raw zero-indexed character offset without tab expansion, see
raw_column.

Nodes

CSTNode and its subclasses cover Python’s full grammar in a
whitespace-sensitive fashion, forming LibCST’s concrete syntax tree.

Many of these nodes are designed to behave similarly to Python’s abstract
syntax tree [https://greentreesnakes.readthedocs.io/en/latest/nodes.html].

CSTNode

The base node type which all other nodes derive from.

	
class libcst.CSTNode

	
	
validate_types_shallow() → None [https://docs.python.org/3/library/constants.html#None]

	Compares the type annotations on a node’s fields with those field’s actual
values at runtime. Raises a TypeError is a mismatch is found.

Only validates the current node, not any of it’s children. For a recursive
version, see validate_types_deep().

If you’re using a static type checker (highly recommended), this is useless.
However, if your code doesn’t use a static type checker, or if you’re unable to
statically type your code for some reason, you can use this method to help
validate your tree.

Some (non-typing) validation is done unconditionally during the construction of
a node. That validation does not overlap with the work that
validate_types_deep() does.

	
validate_types_deep() → None [https://docs.python.org/3/library/constants.html#None]

	Like validate_types_shallow(), but recursively validates the whole tree.

	
property children: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]

	The immediate (not transitive) child CSTNodes of the current node. Various
properties on the nodes, such as string values, will not be visited if they are
not a subclass of CSTNode.

Iterable properties of the node (e.g. an IndentedBlock’s body) will be flattened
into the children’s sequence.

The children will always be returned in the same order that they appear
lexically in the code.

	
visit(visitor: CSTTransformer | CSTVisitor) → _CSTNodeSelfT | RemovalSentinel | FlattenSentinel[_CSTNodeSelfT]

	Visits the current node, its children, and all transitive children using
the given visitor’s callbacks.

	
with_changes(**changes: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → _CSTNodeSelfT

	A convenience method for performing mutation-like operations on immutable nodes.
Creates a new object of the same type, replacing fields with values from the
supplied keyword arguments.

For example, to update the test of an if conditional, you could do:

def leave_If(self, original_node: cst.If, updated_node: cst.If) -> cst.If:
 new_node = updated_node.with_changes(test=new_conditional)
 return new_node

new_node will have the same body, orelse, and whitespace fields as
updated_node, but with the updated test field.

The accepted arguments match the arguments given to __init__, however there
are no required or positional arguments.

TODO: This API is untyped. There’s probably no sane way to type it using pyre’s
current feature-set, but we should still think about ways to type this or a
similar API in the future.

	
deep_clone() → _CSTNodeSelfT

	Recursively clone the entire tree. The created tree is a new tree has the same
representation but different identity.

>>> tree = cst.parse_expression("1+2")

>>> tree.deep_clone() == tree
False

>>> tree == tree
True

>>> tree.deep_equals(tree.deep_clone())
True

	
deep_equals(other: CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Recursively inspects the entire tree under self and other to determine if
the two trees are equal by representation instead of identity (==).

	
deep_replace(old_node: CSTNode, new_node: CSTNodeT) → _CSTNodeSelfT | CSTNodeT

	Recursively replaces any instance of old_node with new_node by identity.
Use this to avoid nested with_changes blocks when you are replacing one of
a node’s deep children with a new node. Note that if you have previously
modified the tree in a way that old_node appears more than once as a deep
child, all instances will be replaced.

	
deep_remove(old_node: CSTNode) → _CSTNodeSelfT | RemovalSentinel

	Recursively removes any instance of old_node by identity. Note that if you
have previously modified the tree in a way that old_node appears more than
once as a deep child, all instances will be removed.

	
with_deep_changes(old_node: CSTNode, **changes: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → _CSTNodeSelfT

	A convenience method for applying with_changes to a child node. Use
this to avoid chains of with_changes or combinations of
deep_replace and with_changes.

The accepted arguments match the arguments given to the child node’s
__init__.

TODO: This API is untyped. There’s probably no sane way to type it using pyre’s
current feature-set, but we should still think about ways to type this or a
similar API in the future.

	
classmethod field(*args: object [https://docs.python.org/3/library/functions.html#object], **kwargs: object [https://docs.python.org/3/library/functions.html#object]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	A helper that allows us to easily use CSTNodes in dataclass constructor
defaults without accidentally aliasing nodes by identity across multiple
instances.

Module

A node that represents an entire python module.

	
class libcst.Module

	Contains some top-level information inferred from the file letting us set correct
defaults when printing the tree about global formatting rules. All code parsed
with parse_module() will be encapsulated in a module.

	
body: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][SimpleStatementLine | BaseCompoundStatement]

	A list of zero or more statements that make up this module.

	
header: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Normally any whitespace/comments are assigned to the next node visited, but
Module is a special case, and comments at the top of the file tend
to refer to the module itself, so we assign them to the Module
instead of the first statement in the body.

	
footer: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Any trailing whitespace/comments found after the last statement.

	
encoding: str [https://docs.python.org/3/library/stdtypes.html#str]

	The file’s encoding format. When parsing a bytes object, this value may be
inferred from the contents of the parsed source code. When parsing a str,
this value defaults to "utf-8".

This value affects how bytes encodes the source code.

	
default_indent: str [https://docs.python.org/3/library/stdtypes.html#str]

	The indentation of the file, expressed as a series of tabs and/or spaces. This
value is inferred from the contents of the parsed source code by default.

	
default_newline: str [https://docs.python.org/3/library/stdtypes.html#str]

	The newline of the file, expressed as \n, \r\n, or \r. This value is
inferred from the contents of the parsed source code by default.

	
has_trailing_newline: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the module has a trailing newline or not.

	
visit(visitor: CSTTransformer | CSTVisitor) → _ModuleSelfT

	Returns the result of running a visitor over this module.

Module overrides the default visitor entry point to resolve metadata
dependencies declared by ‘visitor’.

	
property code: str [https://docs.python.org/3/library/stdtypes.html#str]

	The string representation of this module, respecting the inferred indentation
and newline type.

	
property bytes: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	The bytes representation of this module, respecting the inferred indentation
and newline type, using the current encoding.

	
code_for_node(node: CSTNode) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generates the code for the given node in the context of this module. This is a
method of Module, not CSTNode, because we need to know the module’s default
indentation and newline formats.

	
property config_for_parsing: PartialParserConfig

	Generates a parser config appropriate for passing to a parse_expression()
or parse_statement() call. This is useful when using either parser
function to generate code from a string template. By using a generated parser
config instead of the default, you can guarantee that trees generated from
both statement and expression strings have the same inferred defaults for things
like newlines, indents and similar:

module = cst.parse_module("pass\n")
expression = cst.parse_expression("1 + 2", config=module.config_for_parsing)

	
get_docstring(clean: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Returns a inspect.cleandoc() [https://docs.python.org/3/library/inspect.html#inspect.cleandoc] cleaned docstring if the docstring is available, None otherwise.

Expressions

An expression is anything that represents a value (e.g. it could be returned
from a function). All expressions subclass from BaseExpression.

Expression can be parsed with parse_expression() or as part of a
statement or module using parse_statement() or
parse_module().

	
class libcst.BaseExpression

	An base class for all expressions. BaseExpression contains no fields.

Names and Object Attributes

	
class libcst.Name

	A simple variable name. Names are typically used in the context of a variable
access, an assignment, or a deletion.

Dotted variable names (a.b.c) are represented with Attribute nodes,
and subscripted variable names (a[b]) are represented with Subscript
nodes.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	The variable’s name (or “identifier”) as a string.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.Attribute

	An attribute reference, such as x.y.

Note that in the case of x.y.z, the outer attribute will have an attr of z
and the value will be another Attribute referencing the y attribute on
x:

Attribute(
 value=Attribute(
 value=Name("x")
 attr=Name("y")
),
 attr=Name("z"),
)

	
value: BaseExpression

	An expression which, when evaluated, will produce an object with attr as an
attribute.

	
attr: Name

	The name of the attribute being accessed on the value object.

	
dot: Dot

	A separating dot. If there’s whitespace between the value and attr, this
dot owns it.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

Operations and Comparisons

Operation and Comparison nodes combine one or more expressions with an
operator.

	
class libcst.UnaryOperation

	Any generic unary expression, such as not x or -x. UnaryOperation
nodes apply a BaseUnaryOp to an expression.

	
operator: BaseUnaryOp

	The unary operator that applies some operation (e.g. negation) to the
expression.

	
expression: BaseExpression

	The expression that should be transformed (e.g. negated) by the operator to
create a new value.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.BinaryOperation

	An operation that combines two expression such as x << y or y + z.
BinaryOperation nodes apply a BaseBinaryOp to an expression.

Binary operations do not include operations performed with BaseBooleanOp
nodes, such as and or or. Instead, those operations are provided by
BooleanOperation.

It also does not include support for comparision operators performed with
BaseCompOp, such as <, >=, ==, is, or in. Instead,
those operations are provided by Comparison.

	
left: BaseExpression

	The left hand side of the operation.

	
operator: BaseBinaryOp

	The actual operator such as << or + that combines the left and
right expressions.

	
right: BaseExpression

	The right hand side of the operation.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.BooleanOperation

	An operation that combines two booleans such as x or y or z and w
BooleanOperation nodes apply a BaseBooleanOp to an expression.

Boolean operations do not include operations performed with BaseBinaryOp
nodes, such as + or <<. Instead, those operations are provided by
BinaryOperation.

It also does not include support for comparision operators performed with
BaseCompOp, such as <, >=, ==, is, or in. Instead,
those operations are provided by Comparison.

	
left: BaseExpression

	The left hand side of the operation.

	
operator: BaseBooleanOp

	The actual operator such as and or or that combines the left and
right expressions.

	
right: BaseExpression

	The right hand side of the operation.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.Comparison

	A comparison between multiple values such as x < y, x < y < z, or
x in [y, z]. These comparisions typically result in boolean values.

Unlike BinaryOperation and BooleanOperation, comparisons are not
restricted to a left and right child. Instead they can contain an arbitrary number
of ComparisonTarget children.

x < y < z is not equivalent to (x < y) < z or x < (y < z). Instead,
it’s roughly equivalent to x < y and y < z.

For more details, see Python’s documentation on comparisons [https://docs.python.org/3/reference/expressions.html#comparisons].

x < y < z

Comparison(
 Name("x"),
 [
 ComparisonTarget(LessThan(), Name("y")),
 ComparisonTarget(LessThan(), Name("z")),
],
)

	
left: BaseExpression

	The first value in the full sequence of values to compare. This value will be
compared against the first value in comparisions.

	
comparisons: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][ComparisonTarget]

	Pairs of BaseCompOp operators and expression values to compare. These
come after left. Each value is compared against the value before and after
itself in the sequence.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.ComparisonTarget

	A target for a Comparison. Owns the comparison operator and the value to
the right of the operator.

	
operator: BaseCompOp

	A comparison operator such as <, >=, ==, is, or in.

	
comparator: BaseExpression

	The right hand side of the comparison operation.

Control Flow

	
class libcst.Asynchronous

	Used by asynchronous function definitions, as well as async for and
async with.

	
whitespace_after: SimpleWhitespace

	Any space that appears directly after this async keyword.

	
class libcst.Await

	An await expression. Await expressions are only valid inside the body of an
asynchronous FunctionDef or (as of Python 3.7) inside of an asynchronous
GeneratorExp nodes.

	
expression: BaseExpression

	The actual expression we need to wait for.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_after_await: BaseParenthesizableWhitespace

	Whitespace that appears after the async keyword, but before the inner
expression.

	
class libcst.Yield

	A yield expression similar to yield x or yield from fun().

To learn more about the ways that yield can be used in generators, refer to
Python’s language reference [https://docs.python.org/3/reference/expressions.html#yieldexpr].

	
value: BaseExpression | From | None [https://docs.python.org/3/library/constants.html#None]

	The value yielded from the generator, in the case of a From clause, a
sub-generator to iterate over.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_after_yield: BaseParenthesizableWhitespace | MaybeSentinel

	Whitespace after the yield keyword, but before the value.

	
class libcst.From

	A from x stanza in a Yield or Raise.

	
item: BaseExpression

	The expression that we are yielding/raising from.

	
whitespace_before_from: BaseParenthesizableWhitespace | MaybeSentinel

	The whitespace at the very start of this node.

	
whitespace_after_from: BaseParenthesizableWhitespace

	The whitespace after the from keyword, but before the item.

	
class libcst.IfExp

	An if expression of the form body if test else orelse.

If statements are provided by If and Else nodes.

	
test: BaseExpression

	The test to perform.

	
body: BaseExpression

	The expression to evaluate when the test is true.

	
orelse: BaseExpression

	The expression to evaluate when the test is false.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_before_if: BaseParenthesizableWhitespace

	Whitespace after the body expression, but before the if keyword.

	
whitespace_after_if: BaseParenthesizableWhitespace

	Whitespace after the if keyword, but before the test clause.

	
whitespace_before_else: BaseParenthesizableWhitespace

	Whitespace after the test expression, but before the else keyword.

	
whitespace_after_else: BaseParenthesizableWhitespace

	Whitespace after the else keyword, but before the orelse expression.

Lambdas and Function Calls

	
class libcst.Lambda

	A lambda expression that creates an anonymous function.

Lambda(
 params=Parameters([Param(Name("arg"))]),
 body=Ellipsis(),
)

Represents the following code:

lambda arg: ...

Named functions statements are provided by FunctionDef.

	
params: Parameters

	The arguments to the lambda. This is similar to the arguments on a
FunctionDef, however lambda arguments are not allowed to have an
Annotation.

	
body: BaseExpression

	The value that the lambda computes and returns when called.

	
colon: Colon

	The colon separating the parameters from the body.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_after_lambda: BaseParenthesizableWhitespace | MaybeSentinel

	Whitespace after the lambda keyword, but before any argument or the colon.

	
class libcst.Call

	An expression representing a function call, such as do_math(1, 2) or
picture.post_on_instagram().

Function calls consist of a function name and a sequence of arguments wrapped in
Arg nodes.

	
func: BaseExpression

	The expression resulting in a callable that we are to call. Often a Name
or Attribute.

	
args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Arg]

	The arguments to pass to the resulting callable. These may be a mix of
positional arguments, keyword arguments, or “starred” arguments.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation. These are not the parenthesis
before and after the list of args, but rather arguments around the entire
call expression, such as ((do_math(1, 2))).

	
whitespace_after_func: BaseParenthesizableWhitespace

	Whitespace after the func name, but before the opening parenthesis.

	
whitespace_before_args: BaseParenthesizableWhitespace

	Whitespace after the opening parenthesis but before the first argument (if there
are any). Whitespace after the last argument but before the closing parenthesis
is owned by the last Arg if it exists.

	
class libcst.Arg

	A single argument to a Call.

This supports named keyword arguments in the form of keyword=value and variable
argument expansion using *args or **kwargs syntax.

	
value: BaseExpression

	The argument expression itself, not including a preceding keyword, or any of
the surrounding the value, like a comma or asterisks.

	
keyword: Name | None [https://docs.python.org/3/library/constants.html#None]

	Optional keyword for the argument.

	
equal: AssignEqual | MaybeSentinel

	The equal sign used to denote assignment if there is a keyword.

	
comma: Comma | MaybeSentinel

	Any trailing comma.

	
star: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['', '*', '**']

	A string with zero, one, or two asterisks appearing before the name. These are
expanded into variable number of positional or keyword arguments.

	
whitespace_after_star: BaseParenthesizableWhitespace

	Whitespace after the star (if it exists), but before the keyword or
value (if no keyword is provided).

	
whitespace_after_arg: BaseParenthesizableWhitespace

	Whitespace after this entire node. The Comma node (if it exists) may
also store some trailing whitespace.

Literal Values

	
class libcst.Ellipsis

	An ellipsis When used as an expression, it evaluates to the
Ellipsis constant [https://docs.python.org/3/library/constants.html#Ellipsis]. Ellipsis are often used as placeholders in code or in
conjunction with SubscriptElement.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

Numbers

	
class libcst.BaseNumber

	A type such as Integer, Float, or Imaginary that can be
used anywhere that you need to explicitly take any number type.

	
class libcst.Integer

	
	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	A string representation of the integer, such as "100000" or 100_000.

To convert this string representation to an int, use the calculated
property evaluated_value.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
property evaluated_value: int [https://docs.python.org/3/library/functions.html#int]

	Return an ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] evaluated int of value.

	
class libcst.Float

	
	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	A string representation of the floating point number, such as "0.05",
".050", or "5e-2".

To convert this string representation to an float, use the calculated
property evaluated_value.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
property evaluated_value: float [https://docs.python.org/3/library/functions.html#float]

	Return an ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] evaluated float of value.

	
class libcst.Imaginary

	
	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	A string representation of the imaginary (complex) number, such as "2j".

To convert this string representation to an complex, use the calculated
property evaluated_value.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
property evaluated_value: complex [https://docs.python.org/3/library/functions.html#complex]

	Return an ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] evaluated complex of value.

Strings

	
class libcst.BaseString

	A type that can be used anywhere that you need to take any string. This includes
SimpleString, ConcatenatedString, and FormattedString.

	
class libcst.SimpleString

	Any sort of literal string expression that is not a FormattedString
(f-string), including triple-quoted multi-line strings.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	The texual representation of the string, including quotes, prefix characters, and
any escape characters present in the original source code , such as
r"my string\n". To remove the quotes and interpret any escape characters,
use the calculated property evaluated_value.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precidence dictation.

	
property prefix: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the string’s prefix, if any exists. The prefix can be r,
u, b, br or rb.

	
property quote: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['"', "'", '"""', "'''"]

	Returns the quotation used to denote the string. Can be either ',
", ''' or """.

	
property raw_value: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the raw value of the string as it appears in source, without
the beginning or end quotes and without the prefix. This is often
useful when constructing transforms which need to manipulate strings
in source code.

	
property evaluated_value: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Return an ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] evaluated str of value.

	
class libcst.ConcatenatedString

	Represents an implicitly concatenated string, such as:

"abc" "def" == "abcdef"

Warning

This is different from two strings joined in a BinaryOperation with an
Add operator, and is sometimes viewed as an antifeature of Python [https://lwn.net/Articles/551426/].

	
left: SimpleString | FormattedString

	String on the left of the concatenation.

	
right: SimpleString | FormattedString | ConcatenatedString

	String on the right of the concatenation.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precidence dictation.

	
whitespace_between: BaseParenthesizableWhitespace

	Whitespace between the left and right substrings.

	
property evaluated_value: str [https://docs.python.org/3/library/stdtypes.html#str] | bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | None [https://docs.python.org/3/library/constants.html#None]

	Return an ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval] evaluated str of recursively concatenated left and right
if and only if both left and right are composed by SimpleString or ConcatenatedString
(FormattedString cannot be evaluated).

Formatted Strings (f-strings)

	
class libcst.FormattedString

	An “f-string”. These formatted strings are string literals prefixed by the letter
“f”. An f-string may contain interpolated expressions inside curly braces ({ and
}).

F-strings are defined in PEP 498 [https://www.python.org/dev/peps/pep-0498/#specification] and documented in Python’s language
reference [https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals].

>>> import libcst as cst
>>> cst.parse_expression('f"ab{cd}ef"')
FormattedString(
 parts=[
 FormattedStringText(
 value='ab',
),
 FormattedStringExpression(
 expression=Name(
 value='cd',
 lpar=[],
 rpar=[],
),
 conversion=None,
 format_spec=None,
 whitespace_before_expression=SimpleWhitespace(
 value='',
),
 whitespace_after_expression=SimpleWhitespace(
 value='',
),
),
 FormattedStringText(
 value='ef',
),
],
 start='f"',
 end='"',
 lpar=[],
 rpar=[],
)

	
parts: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseFormattedStringContent]

	A formatted string is composed as a series of FormattedStringText and
FormattedStringExpression parts.

	
start: str [https://docs.python.org/3/library/stdtypes.html#str]

	The string prefix and the leading quote, such as f", F', fr", or
f""".

	
end: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['"', "'", '"""', "'''"]

	The trailing quote. This must match the type of quote used in start.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precidence dictation.

	
property prefix: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the string’s prefix, if any exists. The prefix can be f,
fr, or rf.

	
property quote: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['"', "'", '"""', "'''"]

	Returns the quotation used to denote the string. Can be either ',
", ''' or """.

	
class libcst.BaseFormattedStringContent

	The base type for FormattedStringText and
FormattedStringExpression. A FormattedString is composed of a
sequence of BaseFormattedStringContent parts.

	
class libcst.FormattedStringText

	Part of a FormattedString that is not inside curly braces ({ or }).
For example, in:

f"ab{cd}ef"

ab and ef are FormattedStringText nodes, but {cd} is a
FormattedStringExpression.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	The raw string value, including any escape characters present in the source
code, not including any enclosing quotes.

	
class libcst.FormattedStringExpression

	Part of a FormattedString that is inside curly braces ({ or }),
including the surrounding curly braces. For example, in:

f"ab{cd}ef"

{cd} is a FormattedStringExpression, but ab and ef are
FormattedStringText nodes.

An f-string expression may contain conversion and format_spec suffixes that
control how the expression is converted to a string. See Python’s language
reference [https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals]
for details.

	
expression: BaseExpression

	The expression we will evaluate and render when generating the string.

	
conversion: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	An optional conversion specifier, such as !s, !r or !a.

	
format_spec: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseFormattedStringContent] | None [https://docs.python.org/3/library/constants.html#None]

	An optional format specifier following the format specification mini-language [https://docs.python.org/3/library/string.html#formatspec].

	
whitespace_before_expression: BaseParenthesizableWhitespace

	Whitespace after the opening curly brace ({), but before the expression.

	
whitespace_after_expression: BaseParenthesizableWhitespace

	Whitespace after the expression, but before the conversion,
format_spec and the closing curly brace (}). Python does not
allow whitespace inside or after a conversion or format_spec.

	
equal: AssignEqual | None [https://docs.python.org/3/library/constants.html#None]

	Equal sign for formatted string expression uses self-documenting expressions,
such as f"{x=}". See the Python 3.8 release notes [https://docs.python.org/3/whatsnew/3.8.html#f-strings-support-for-self-documenting-expressions-and-debugging].

Collections

Simple Collections

	
class libcst.Tuple

	An immutable literal tuple. Tuples are often (but not always) parenthesized.

Tuple([
 Element(Integer("1")),
 Element(Integer("2")),
 StarredElement(Name("others")),
])

generates the following code:

(1, 2, *others)

	
elements: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseElement]

	A sequence containing all the Element and StarredElement nodes
in the tuple.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.BaseList

	A base class for List and ListComp, which both result in a list
object when evaluated.

	
lbracket: LeftSquareBracket = Field(name=None,type=None,default=<dataclasses._MISSING_TYPE object>,default_factory=<function CSTNode.field.<locals>.<lambda>>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=<dataclasses._MISSING_TYPE object>,_field_type=None)

	

	
rbracket: RightSquareBracket = Field(name=None,type=None,default=<dataclasses._MISSING_TYPE object>,default_factory=<function CSTNode.field.<locals>.<lambda>>,init=True,repr=True,hash=None,compare=True,metadata=mappingproxy({}),kw_only=<dataclasses._MISSING_TYPE object>,_field_type=None)

	Brackets surrounding the list.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen] = ()

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen] = ()

	Sequence of parenthesis for precedence dictation.

	
class libcst.List

	A mutable literal list.

List([
 Element(Integer("1")),
 Element(Integer("2")),
 StarredElement(Name("others")),
])

generates the following code:

[1, 2, *others]

List comprehensions are represented with a ListComp node.

	
elements: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseElement]

	A sequence containing all the Element and StarredElement nodes
in the list.

	
lbracket: LeftSquareBracket

	

	
rbracket: RightSquareBracket

	Brackets surrounding the list.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.BaseSet

	An abstract base class for Set and SetComp, which both result in
a set object when evaluated.

	
class libcst.Set

	A mutable literal set.

Set([
 Element(Integer("1")),
 Element(Integer("2")),
 StarredElement(Name("others")),
])

generates the following code:

{1, 2, *others}

Set comprehensions are represented with a SetComp node.

	
elements: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseElement]

	A sequence containing all the Element and StarredElement nodes
in the set.

	
lbrace: LeftCurlyBrace

	

	
rbrace: RightCurlyBrace

	Braces surrounding the set.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

Simple Collection Elements

	
class libcst.BaseElement

	An element of a literal list, tuple, or set. For elements of a literal dict, see
BaseDictElement.

	
class libcst.Element

	A simple value in a literal List, Tuple, or Set.
These a literal collection may also contain a StarredElement.

If you’re using a literal Dict, see DictElement instead.

	
value: BaseExpression

	

	
comma: Comma | MaybeSentinel

	A trailing comma. By default, we’ll only insert a comma if one is required.

	
class libcst.StarredElement

	A starred *value element that expands to represent multiple values in a literal
List, Tuple, or Set.

If you’re using a literal Dict, see StarredDictElement instead.

If this node owns parenthesis, those parenthesis wrap the leading asterisk, but not
the trailing comma. For example:

StarredElement(
 cst.Name("el"),
 comma=cst.Comma(),
 lpar=[cst.LeftParen()],
 rpar=[cst.RightParen()],
)

will generate:

(*el),

	
value: BaseExpression

	

	
comma: Comma | MaybeSentinel

	A trailing comma. By default, we’ll only insert a comma if one is required.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	Parenthesis at the beginning of the node, before the leading asterisk.

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Parentheses after the value, but before a comma (if there is one).

	
whitespace_before_value: BaseParenthesizableWhitespace

	Whitespace between the leading asterisk and the value expression.

Dictionaries

	
class libcst.BaseDict

	An abstract base class for Dict and DictComp, which both result in
a dict object when evaluated.

	
class libcst.Dict

	A literal dictionary. Key-value pairs are stored in elements using
DictElement nodes.

It’s possible to expand one dictionary into another, as in {k: v, **expanded}.
Expanded elements are stored as StarredDictElement nodes.

Dict([
 DictElement(Name("k1"), Name("v1")),
 DictElement(Name("k2"), Name("v2")),
 StarredDictElement(Name("expanded")),
])

generates the following code:

{k1: v1, k2: v2, **expanded}

	
elements: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseDictElement]

	

	
lbrace: LeftCurlyBrace

	

	
rbrace: RightCurlyBrace

	Braces surrounding the set or dict.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

Dictionary Elements

	
class libcst.BaseDictElement

	An element of a literal dict. For elements of a list, tuple, or set, see
BaseElement.

	
class libcst.DictElement

	A simple key: value pair that represents a single entry in a literal
Dict. Dict nodes may also contain a
StarredDictElement.

If you’re using a literal List, Tuple, or Set,
see Element instead.

	
key: BaseExpression

	

	
value: BaseExpression

	

	
comma: Comma | MaybeSentinel

	A trailing comma. By default, we’ll only insert a comma if one is required.

	
whitespace_before_colon: BaseParenthesizableWhitespace

	Whitespace after the key, but before the colon in key : value.

	
whitespace_after_colon: BaseParenthesizableWhitespace

	Whitespace after the colon, but before the value in key : value.

	
class libcst.StarredDictElement

	A starred **value element that expands to represent multiple values in a literal
Dict.

If you’re using a literal List, Tuple, or Set,
see StarredElement instead.

Unlike StarredElement, this node does not own left or right parenthesis,
but the value field may still contain parenthesis. This is due to some
asymmetry in Python’s grammar.

	
value: BaseExpression

	

	
comma: Comma | MaybeSentinel

	A trailing comma. By default, we’ll only insert a comma if one is required.

	
whitespace_before_value: BaseParenthesizableWhitespace

	Whitespace between the leading asterisks and the value expression.

Comprehensions

	
class libcst.BaseComp

	A base class for all comprehension and generator expressions, including
GeneratorExp, ListComp, SetComp, and DictComp.

	
for_in: CompFor

	

	
class libcst.BaseSimpleComp

	The base class for ListComp, SetComp, and GeneratorExp.
DictComp is not a BaseSimpleComp, because it uses key and
value.

	
elt: BaseExpression

	The expression evaluated during each iteration of the comprehension. This
lexically comes before the for_in clause, but it is semantically the
inner-most element, evaluated inside the for_in clause.

	
for_in: CompFor

	The for ... in ... if ... clause that lexically comes after elt. This may
be a nested structure for nested comprehensions. See CompFor for
details.

	
class libcst.GeneratorExp

	A generator expression. elt represents the value yielded for each item in
CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive
CompFor data structure inside for_in.

	
elt: BaseExpression

	The expression evaluated and yielded during each iteration of the generator.

	
for_in: CompFor

	The for ... in ... if ... clause that comes after elt. This may be a
nested structure for nested comprehensions. See CompFor for details.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parentheses for precedence dictation. Generator expressions must
always be parenthesized. However, if a generator expression is the only argument
inside a function call, the enclosing Call node may own the parentheses
instead.

	
class libcst.ListComp

	A list comprehension. elt represents the value stored for each item in
CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive
CompFor data structure inside for_in.

	
elt: BaseExpression

	The expression evaluated and stored during each iteration of the comprehension.

	
for_in: CompFor

	The for ... in ... if ... clause that comes after elt. This may be a
nested structure for nested comprehensions. See CompFor for details.

	
lbracket: LeftSquareBracket

	

	
rbracket: RightSquareBracket

	Brackets surrounding the list comprehension.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.SetComp

	A set comprehension. elt represents the value stored for each item in
CompFor.iter.

All for ... in ... and if ... clauses are stored as a recursive
CompFor data structure inside for_in.

	
elt: BaseExpression

	The expression evaluated and stored during each iteration of the comprehension.

	
for_in: CompFor

	The for ... in ... if ... clause that comes after elt. This may be a
nested structure for nested comprehensions. See CompFor for details.

	
lbrace: LeftCurlyBrace

	

	
rbrace: RightCurlyBrace

	Braces surrounding the set comprehension.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
class libcst.DictComp

	A dictionary comprehension. key and value represent the dictionary entry
evaluated for each item.

All for ... in ... and if ... clauses are stored as a recursive
CompFor data structure inside for_in.

	
key: BaseExpression

	The key inserted into the dictionary during each iteration of the comprehension.

	
value: BaseExpression

	The value associated with the key inserted into the dictionary during each
iteration of the comprehension.

	
for_in: CompFor

	The for ... in ... if ... clause that lexically comes after key and
value. This may be a nested structure for nested comprehensions. See
CompFor for details.

	
lbrace: LeftCurlyBrace

	

	
rbrace: RightCurlyBrace

	Braces surrounding the dict comprehension.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_before_colon: BaseParenthesizableWhitespace

	Whitespace after the key, but before the colon in key : value.

	
whitespace_after_colon: BaseParenthesizableWhitespace

	Whitespace after the colon, but before the value in key : value.

	
class libcst.CompFor

	One for clause in a BaseComp, or a nested hierarchy of
for clauses.

Nested loops in comprehensions are difficult to get right, but they can be thought
of as a flat representation of nested clauses.

elt for a in b for c in d if e can be thought of as:

for a in b:
 for c in d:
 if e:
 yield elt

And that would form the following CST:

ListComp(
 elt=Name("elt"),
 for_in=CompFor(
 target=Name("a"),
 iter=Name("b"),
 ifs=[],
 inner_comp_for=CompFor(
 target=Name("c"),
 iter=Name("d"),
 ifs=[
 CompIf(
 test=Name("e"),
),
],
),
),
)

Normal for statements are provided by For.

	
target: BaseAssignTargetExpression

	The target to assign a value to in each iteration of the loop. This is different
from GeneratorExp.elt, ListComp.elt, SetComp.elt, and
key and value in DictComp, because it doesn’t directly effect
the value of resulting generator, list, set, or dict.

	
iter: BaseExpression

	The value to iterate over. Every value in iter is stored in target.

	
ifs: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CompIf]

	Zero or more conditional clauses that control this loop. If any of these tests
fail, the target item is skipped.

if a if b if c

has similar semantics to:

if a and b and c

	
inner_for_in: CompFor | None [https://docs.python.org/3/library/constants.html#None]

	Another CompFor node used to form nested loops. Nested comprehensions
can be useful, but they tend to be difficult to read and write. As a result they
are uncommon.

	
asynchronous: Asynchronous | None [https://docs.python.org/3/library/constants.html#None]

	An optional async modifier that appears before the for keyword.

	
whitespace_before: BaseParenthesizableWhitespace

	Whitespace that appears at the beginning of this node, before the for and
async keywords.

	
whitespace_after_for: BaseParenthesizableWhitespace

	Whitespace appearing after the for keyword, but before the target.

	
whitespace_before_in: BaseParenthesizableWhitespace

	Whitespace appearing after the target, but before the in keyword.

	
whitespace_after_in: BaseParenthesizableWhitespace

	Whitespace appearing after the in keyword, but before the iter.

	
class libcst.CompIf

	A conditional clause in a CompFor, used as part of a generator or
comprehension expression.

If the test fails, the current element in the CompFor will be skipped.

	
test: BaseExpression

	An expression to evaluate. When interpreted, Python will coerce it to a boolean.

	
whitespace_before: BaseParenthesizableWhitespace

	Whitespace before the if keyword.

	
whitespace_before_test: BaseParenthesizableWhitespace

	Whitespace after the if keyword, but before the test expression.

Subscripts and Slices

	
class libcst.Subscript

	A indexed subscript reference (Index) such as x[2], a Slice
such as x[1:-1], or an extended slice (SubscriptElement) such as x[1:2, 3].

	
value: BaseExpression

	The left-hand expression which, when evaluated, will be subscripted, such as
x in x[2].

	
slice: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][SubscriptElement]

	The SubscriptElement to extract from the value.

	
lbracket: LeftSquareBracket

	

	
rbracket: RightSquareBracket

	Brackets after the value surrounding the slice.

	
lpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][LeftParen]

	

	
rpar: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][RightParen]

	Sequence of parenthesis for precedence dictation.

	
whitespace_after_value: BaseParenthesizableWhitespace

	Whitespace after the value, but before the lbracket.

	
class libcst.BaseSlice

	Any slice type that can slot into a SubscriptElement.
This node is purely for typing.

	
class libcst.Index

	Any index as passed to a Subscript. In x[2], this would be the 2
value.

	
value: BaseExpression

	The index value itself.

	
star: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['*'] | None [https://docs.python.org/3/library/constants.html#None]

	An optional string with an asterisk appearing before the name. This is
expanded into variable number of positional arguments. See PEP-646

	
whitespace_after_star: BaseParenthesizableWhitespace | None [https://docs.python.org/3/library/constants.html#None]

	Whitespace after the star (if it exists), but before the value.

	
class libcst.Slice

	Any slice operation in a Subscript, such as 1:, 2:3:4, etc.

Note that the grammar does NOT allow parenthesis around a slice so they are not
supported here.

	
lower: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The lower bound in the slice, if present

	
upper: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The upper bound in the slice, if present

	
step: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The step in the slice, if present

	
first_colon: Colon

	The first slice operator

	
second_colon: Colon | MaybeSentinel

	The second slice operator, usually omitted

	
class libcst.SubscriptElement

	Part of a sequence of slices in a Subscript, such as 1:2, 3. This is
not used in Python’s standard library, but it is used in some third-party
libraries. For example, NumPy uses it to select values and ranges from
multi-dimensional arrays [https://docs.scipy.org/doc/numpy-1.10.1/user/basics.indexing.html].

	
slice: BaseSlice

	A slice or index that is part of a subscript.

	
comma: Comma | MaybeSentinel

	A separating comma, with any whitespace it owns.

Parenthesis, Brackets, and Braces

	
class libcst.LeftParen

	Used by various nodes to denote a parenthesized section. This doesn’t own
the whitespace to the left of it since this is owned by the parent node.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this left parenthesis.

	
class libcst.RightParen

	Used by various nodes to denote a parenthesized section. This doesn’t own
the whitespace to the right of it since this is owned by the parent node.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly after this left parenthesis.

	
class libcst.LeftSquareBracket

	Used by various nodes to denote a subscript or list section. This doesn’t own
the whitespace to the left of it since this is owned by the parent node.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this left square bracket.

	
class libcst.RightSquareBracket

	Used by various nodes to denote a subscript or list section. This doesn’t own
the whitespace to the right of it since this is owned by the parent node.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this right square bracket.

	
class libcst.LeftCurlyBrace

	Used by various nodes to denote a dict or set. This doesn’t own the whitespace to
the left of it since this is owned by the parent node.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this left curly brace.

	
class libcst.RightCurlyBrace

	Used by various nodes to denote a dict or set. This doesn’t own the whitespace to
the right of it since this is owned by the parent node.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this right curly brace.

Statements

Statements represent a “line of code” or a control structure with other lines of
code, such as an If block.

All statements subclass from BaseSmallStatement or
BaseCompoundStatement.

Statements can be parsed with parse_statement() or as part of a
module using parse_module().

Simple Statements

Statements which at most have expressions as child attributes.

	
class libcst.BaseSmallStatement

	Encapsulates a small statement, like del or pass, and optionally adds a
trailing semicolon. A small statement is always contained inside a
SimpleStatementLine or SimpleStatementSuite. This exists to
simplify type definitions and isinstance checks.

	
semicolon: Semicolon | MaybeSentinel = 1

	An optional semicolon that appears after a small statement. This is optional
for the last small statement in a SimpleStatementLine or
SimpleStatementSuite, but all other small statements inside a simple
statement must contain a semicolon to disambiguate multiple small statements
on the same line.

	
class libcst.AnnAssign

	An assignment statement such as x: int = 5 or x: int. This only
allows for one assignment target unlike Assign but it includes
a variable annotation. Also unlike Assign, the assignment target
is optional, as it is possible to annotate an expression without assigning
to it.

	
target: BaseAssignTargetExpression

	The target that is being annotated and possibly assigned to.

	
annotation: Annotation

	The annotation for the target.

	
value: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The optional expression being assigned to the target.

	
equal: AssignEqual | MaybeSentinel

	The equals sign used to denote assignment if there is a value.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Assert

	An assert statement such as assert x > 5 or assert x > 5, 'Uh oh!'

	
test: BaseExpression

	The test we are going to assert on.

	
msg: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The optional message to display if the test evaluates to a falsey value.

	
comma: Comma | MaybeSentinel

	A comma separating test and message, if there is a message.

	
whitespace_after_assert: SimpleWhitespace

	Whitespace appearing after the assert keyword and before the test.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Assign

	An assignment statement such as x = y or x = y = z. Unlike
AnnAssign, this does not allow type annotations but does
allow for multiple targets.

	
targets: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][AssignTarget]

	One or more targets that are being assigned to.

	
value: BaseExpression

	The expression being assigned to the targets.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.AugAssign

	An augmented assignment statement, such as x += 5.

	
target: BaseAssignTargetExpression

	Target that is being operated on and assigned to.

	
operator: BaseAugOp

	The augmented assignment operation being performed.

	
value: BaseExpression

	The value used with the above operator to calculate the new assignment.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Break

	Represents a break statement, which is used to break out of a For
or While loop early.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Continue

	Represents a continue statement, which is used to skip to the next iteration
in a For or While loop.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Del

	Represents a del statement. del is always followed by a target.

	
target: BaseDelTargetExpression

	The target expression will be deleted. This can be a name, a tuple,
an item of a list, an item of a dictionary, or an attribute.

	
whitespace_after_del: SimpleWhitespace

	The whitespace after the del keyword.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Expr

	An expression used as a statement, where the result is unused and unassigned.
The most common place you will find this is in function calls where the return
value is unneeded.

	
value: BaseExpression

	The expression itself. Python will evaluate the expression but not assign
the result anywhere.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Global

	A global statement.

	
names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][NameItem]

	A list of one or more names.

	
whitespace_after_global: SimpleWhitespace

	Whitespace appearing after the global keyword and before the first name.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Import

	An import statement.

	
names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][ImportAlias]

	One or more names that are being imported, with optional local aliases.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
whitespace_after_import: SimpleWhitespace

	The whitespace that appears after the import keyword but before
the first import alias.

	
class libcst.ImportFrom

	A from x import y statement.

	
module: Attribute | Name | None [https://docs.python.org/3/library/constants.html#None]

	Name or Attribute node representing the module we’re importing from.
This is optional as ImportFrom allows purely relative imports.

	
names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][ImportAlias] | ImportStar

	One or more names that are being imported from the specified module,
with optional local aliases.

	
relative: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Dot]

	Sequence of Dot nodes indicating relative import level.

	
lpar: LeftParen | None [https://docs.python.org/3/library/constants.html#None]

	Optional open parenthesis for multi-line import continuation.

	
rpar: RightParen | None [https://docs.python.org/3/library/constants.html#None]

	Optional close parenthesis for multi-line import continuation.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
whitespace_after_from: SimpleWhitespace

	The whitespace that appears after the from keyword but before
the module and any relative import dots.

	
whitespace_before_import: SimpleWhitespace

	The whitespace that appears after the module but before the
import keyword.

	
whitespace_after_import: SimpleWhitespace

	The whitespace that appears after the import keyword but
before the first import name or optional left paren.

	
class libcst.Nonlocal

	A nonlocal statement.

	
names: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][NameItem]

	A list of one or more names.

	
whitespace_after_nonlocal: SimpleWhitespace

	Whitespace appearing after the global keyword and before the first name.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Pass

	Represents a pass statement.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Raise

	A raise exc or raise exc from cause statement.

	
exc: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The exception that we should raise.

	
cause: From | None [https://docs.python.org/3/library/constants.html#None]

	Optionally, a from cause clause to allow us to raise an exception
out of another exception’s context.

	
whitespace_after_raise: SimpleWhitespace | MaybeSentinel

	Any whitespace appearing between the raise keyword and the exception.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

	
class libcst.Return

	Represents a return or a return x statement.

	
value: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The optional expression that will be evaluated and returned.

	
whitespace_after_return: SimpleWhitespace | MaybeSentinel

	Optional whitespace after the return keyword before the optional
value expression.

	
semicolon: Semicolon | MaybeSentinel

	Optional semicolon when this is used in a statement line. This semicolon
owns the whitespace on both sides of it when it is used.

Compound Statements

Statements that have one or more statement blocks as a child attribute.

	
class libcst.BaseCompoundStatement

	Encapsulates a compound statement, like if True: pass or while True: pass.
This exists to simplify type definitions and isinstance checks.

Compound statements contain (groups of) other statements; they affect or control
the execution of those other statements in some way. In general, compound
statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

—https://docs.python.org/3/reference/compound_stmts.html

	
body: BaseSuite

	The body of this compound statement.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Any empty lines or comments appearing before this statement.

	
class libcst.ClassDef

	A class definition.

	
name: Name

	The class name.

	
body: BaseSuite

	The class body.

	
bases: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Arg]

	Sequence of base classes this class inherits from.

	
keywords: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Arg]

	Sequence of keywords, such as “metaclass”.

	
decorators: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Decorator]

	Sequence of decorators applied to this class.

	
lpar: LeftParen | MaybeSentinel

	Optional open parenthesis used when there are bases or keywords.

	
rpar: RightParen | MaybeSentinel

	Optional close parenthesis used when there are bases or keywords.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Leading empty lines and comments before the first decorator. We
assume any comments before the first decorator are owned by the
class definition itself. If there are no decorators, this will
still contain all of the empty lines and comments before the
class definition.

	
lines_after_decorators: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Empty lines and comments between the final decorator and the
ClassDef node. In the case of no decorators, this will be empty.

	
whitespace_after_class: SimpleWhitespace

	Whitespace after the class keyword and before the class name.

	
whitespace_after_name: SimpleWhitespace

	Whitespace after the class name and before the type parameters or the opening
parenthesis for the bases and keywords.

	
whitespace_before_colon: SimpleWhitespace

	Whitespace after the closing parenthesis or class name and before
the colon.

	
type_parameters: TypeParameters | None [https://docs.python.org/3/library/constants.html#None]

	An optional declaration of type parameters.

	
whitespace_after_type_parameters: SimpleWhitespace

	Whitespace between type parameters and opening parenthesis for the bases and
keywords.

	
get_docstring(clean: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Returns a inspect.cleandoc() [https://docs.python.org/3/library/inspect.html#inspect.cleandoc] cleaned docstring if the docstring is available, None otherwise.

	
class libcst.For

	A for target in iter statement.

	
target: BaseAssignTargetExpression

	The target of the iterator in the for statement.

	
iter: BaseExpression

	The iterable expression we will loop over.

	
body: BaseSuite

	The suite that is wrapped with this statement.

	
orelse: Else | None [https://docs.python.org/3/library/constants.html#None]

	An optional else case which will be executed if there is no
Break statement encountered while looping.

	
asynchronous: Asynchronous | None [https://docs.python.org/3/library/constants.html#None]

	Optional async modifier, if this is an async for statement.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this for statement.

	
whitespace_after_for: SimpleWhitespace

	Whitespace after the for keyword and before the target.

	
whitespace_before_in: SimpleWhitespace

	Whitespace after the target and before the in keyword.

	
whitespace_after_in: SimpleWhitespace

	Whitespace after the in keyword and before the iter.

	
whitespace_before_colon: SimpleWhitespace

	Whitespace after the iter and before the colon.

	
class libcst.FunctionDef

	A function definition.

	
name: Name

	The function name.

	
params: Parameters

	The function parameters. Present even if there are no params.

	
body: BaseSuite

	The function body.

	
decorators: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Decorator]

	Sequence of decorators applied to this function. Decorators are listed in
order that they appear in source (top to bottom) as apposed to the order
that they are applied to the function at runtime.

	
returns: Annotation | None [https://docs.python.org/3/library/constants.html#None]

	An optional return annotation, if the function is annotated.

	
asynchronous: Asynchronous | None [https://docs.python.org/3/library/constants.html#None]

	Optional async modifier, if this is an async function.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Leading empty lines and comments before the first decorator. We
assume any comments before the first decorator are owned by the
function definition itself. If there are no decorators, this will
still contain all of the empty lines and comments before the
function definition.

	
lines_after_decorators: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Empty lines and comments between the final decorator and the
FunctionDef node. In the case of no decorators, this will be empty.

	
whitespace_after_def: SimpleWhitespace

	Whitespace after the def keyword and before the function name.

	
whitespace_after_name: SimpleWhitespace

	Whitespace after the function name and before the type parameters or the opening
parenthesis for the parameters.

	
whitespace_before_params: BaseParenthesizableWhitespace

	Whitespace after the opening parenthesis for the parameters but before
the first param itself.

	
whitespace_before_colon: SimpleWhitespace

	Whitespace after the closing parenthesis or return annotation and before
the colon.

	
type_parameters: TypeParameters | None [https://docs.python.org/3/library/constants.html#None]

	An optional declaration of type parameters.

	
whitespace_after_type_parameters: SimpleWhitespace

	Whitespace between the type parameters and the opening parenthesis for the
(non-type) parameters.

	
get_docstring(clean: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	When docstring is available, returns a inspect.cleandoc() [https://docs.python.org/3/library/inspect.html#inspect.cleandoc] cleaned docstring.
Otherwise, returns None.

	
class libcst.If

	An if statement. test holds a single test expression.

elif clauses don’t have a special representation in the AST, but rather appear as
extra If nodes within the orelse section of the previous one.

	
test: BaseExpression

	The expression that, when evaluated, should give us a truthy/falsey value.

	
body: BaseSuite

	The body of this compound statement.

	
orelse: If | Else | None [https://docs.python.org/3/library/constants.html#None]

	An optional elif or else clause. If signifies an elif block.
Else signifies an else block. None signifies no else or
elif block.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this compound statement line.

	
whitespace_before_test: SimpleWhitespace

	The whitespace appearing after the if keyword but before the test expression.

	
whitespace_after_test: SimpleWhitespace

	The whitespace appearing after the test expression but before the colon.

	
class libcst.Try

	A regular try statement that cannot contain ExceptStar blocks. For
try statements that can contain ExceptStar blocks, see
TryStar.

	
body: BaseSuite

	The suite that is wrapped with a try statement.

	
handlers: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][ExceptHandler]

	A list of zero or more exception handlers.

	
orelse: Else | None [https://docs.python.org/3/library/constants.html#None]

	An optional else case.

	
finalbody: Finally | None [https://docs.python.org/3/library/constants.html#None]

	An optional finally case.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this compound statement line.

	
whitespace_before_colon: SimpleWhitespace

	The whitespace that appears after the try keyword but before
the colon.

	
class libcst.While

	A while statement.

	
test: BaseExpression

	The test we will loop against.

	
body: BaseSuite

	The suite that is wrapped with this statement.

	
orelse: Else | None [https://docs.python.org/3/library/constants.html#None]

	An optional else case which will be executed if there is no
Break statement encountered while looping.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this while statement.

	
whitespace_after_while: SimpleWhitespace

	Whitespace after the while keyword and before the test.

	
whitespace_before_colon: SimpleWhitespace

	Whitespace after the test and before the colon.

	
class libcst.With

	A with statement.

	
items: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][WithItem]

	A sequence of one or more items that evaluate to context managers.

	
body: BaseSuite

	The suite that is wrapped with this statement.

	
asynchronous: Asynchronous | None [https://docs.python.org/3/library/constants.html#None]

	Optional async modifier if this is an async with statement.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this with statement.

	
lpar: LeftParen | MaybeSentinel

	Optional open parenthesis for multi-line with bindings

	
rpar: RightParen | MaybeSentinel

	Optional close parenthesis for multi-line with bindings

	
whitespace_after_with: SimpleWhitespace

	Whitespace after the with keyword and before the first item.

	
whitespace_before_colon: SimpleWhitespace

	Whitespace after the last item and before the colon.

Helper Nodes

Nodes that are used by various statements to represent some syntax, but
are not statements on their own and cannot be used outside of the statements
they belong with.

	
class libcst.Annotation

	An annotation for a function (PEP 3107 [https://www.python.org/dev/peps/pep-3107/]) or on a variable (PEP 526 [https://www.python.org/dev/peps/pep-0526/]). Typically
these are used in the context of type hints (PEP 484 [https://www.python.org/dev/peps/pep-0484/]), such as:

a variable with a type
good_ideas: List[str] = []

a function with type annotations
def concat(substrings: Sequence[str]) -> str:
 ...

	
annotation: BaseExpression

	The annotation’s value itself. This is the part of the annotation after the
colon or arrow.

	
whitespace_before_indicator: BaseParenthesizableWhitespace | MaybeSentinel

	

	
whitespace_after_indicator: BaseParenthesizableWhitespace

	

	
class libcst.AsName

	An as name clause inside an ExceptHandler, ImportAlias or
WithItem node.

	
name: Name | Tuple | List

	Identifier that the parent node will be aliased to.

	
whitespace_before_as: BaseParenthesizableWhitespace

	Whitespace between the parent node and the as keyword.

	
whitespace_after_as: BaseParenthesizableWhitespace

	Whitespace between the as keyword and the name.

	
class libcst.AssignTarget

	A target for an Assign. Owns the equals sign and the whitespace around it.

	
target: BaseAssignTargetExpression

	The target expression being assigned to.

	
whitespace_before_equal: SimpleWhitespace

	The whitespace appearing before the equals sign.

	
whitespace_after_equal: SimpleWhitespace

	The whitespace appearing after the equals sign.

	
class libcst.BaseAssignTargetExpression

	An expression that’s valid on the left side of an assignment. That assignment may
be part an Assign node, or it may be part of a number of other control
structures that perform an assignment, such as a For loop.

Python’s grammar defines all expression as valid in this position, but the AST
compiler further restricts the allowed types, which is what this type attempts to
express.

This is similar to a BaseDelTargetExpression, but it also includes
StarredElement as a valid node.

The set of valid nodes are defined as part of CPython’s AST context computation [https://github.com/python/cpython/blob/v3.8.0a4/Python/ast.c#L1120].

	
class libcst.BaseDelTargetExpression

	An expression that’s valid on the right side of a Del statement.

Python’s grammar defines all expression as valid in this position, but the AST
compiler further restricts the allowed types, which is what this type attempts to
express.

This is similar to a BaseAssignTargetExpression, but it excludes
StarredElement.

The set of valid nodes are defined as part of CPython’s AST context computation [https://github.com/python/cpython/blob/v3.8.0a4/Python/ast.c#L1120] and as part
of CPython’s bytecode compiler [https://github.com/python/cpython/blob/v3.8.0a4/Python/compile.c#L4854].

	
class libcst.Decorator

	A single decorator that decorates a FunctionDef or a ClassDef.

	
decorator: BaseExpression

	The decorator that will return a new function wrapping the parent
of this decorator.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Line comments and empty lines before this decorator. The parent
FunctionDef or ClassDef node owns leading lines before
the first decorator so that if the first decorator is removed, spacing is preserved.

	
whitespace_after_at: SimpleWhitespace

	Whitespace after the @ and before the decorator expression itself.

	
trailing_whitespace: TrailingWhitespace

	Optional trailing comment and newline following the decorator before the next line.

	
class libcst.Else

	An else clause that appears optionally after an If, While,
Try, or For statement.

This node does not match elif clauses in If statements. It also
does not match the required else clause in an IfExp expression
(a = if b else c).

	
body: BaseSuite

	The body of else clause.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this compound statement line.

	
whitespace_before_colon: SimpleWhitespace

	The whitespace appearing after the else keyword but before the colon.

	
class libcst.ExceptHandler

	An except clause that appears optionally after a Try statement.

	
body: BaseSuite

	The body of the except.

	
type: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	The type of exception this catches. Can be a tuple in some cases,
or None if the code is catching all exceptions.

	
name: AsName | None [https://docs.python.org/3/library/constants.html#None]

	The optional name that a caught exception is assigned to.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this compound statement line.

	
whitespace_after_except: SimpleWhitespace

	The whitespace between the except keyword and the type attribute.

	
whitespace_before_colon: SimpleWhitespace

	The whitespace after any type or name node (whichever comes last) and
the colon.

	
class libcst.Finally

	A finally clause that appears optionally after a Try statement.

	
body: BaseSuite

	The body of the except.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this compound statement line.

	
whitespace_before_colon: SimpleWhitespace

	The whitespace that appears after the finally keyword but before
the colon.

	
class libcst.ImportAlias

	An import, with an optional AsName. Used in both Import and
ImportFrom to specify a single import out of another module.

	
name: Attribute | Name

	Name or Attribute node representing the object we are importing.

	
asname: AsName | None [https://docs.python.org/3/library/constants.html#None]

	Local alias we will import the above object as.

	
comma: Comma | MaybeSentinel

	Any trailing comma that appears after this import. This is optional for the
last ImportAlias in a Import or ImportFrom, but all
other import aliases inside an import must contain a comma to disambiguate
multiple imports.

	
property evaluated_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the string name this ImportAlias represents.

	
property evaluated_alias: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Returns the string name for any alias that this ImportAlias
has. If there is no asname attribute, this returns None.

	
class libcst.NameItem

	A single identifier name inside a Global or Nonlocal statement.

This exists because a list of names in a global or nonlocal statement need
to be separated by a comma, which ends up owned by the NameItem node.

	
name: Name

	Identifier name.

	
comma: Comma | MaybeSentinel

	This is forbidden for the last NameItem in a
Global/Nonlocal, but all other tems inside a global or
nonlocal statement must contain a comma to separate them.

	
class libcst.Parameters

	A function or lambda parameter list.

	
params: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Param]

	Positional parameters, with or without defaults. Positional parameters
with defaults must all be after those without defaults.

	
star_arg: Param | ParamStar | MaybeSentinel

	

	
kwonly_params: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Param]

	Keyword-only params that may or may not have defaults.

	
star_kwarg: Param | None [https://docs.python.org/3/library/constants.html#None]

	Optional parameter that captures unspecified kwargs.

	
posonly_params: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Param]

	Positional-only parameters, with or without defaults. Positional-only
parameters with defaults must all be after those without defaults.

	
posonly_ind: ParamSlash | MaybeSentinel

	Optional sentinel that dictates parameters preceeding are positional-only
args.

	
class libcst.Param

	A positional or keyword argument in a Parameters list. May contain an
Annotation and, in some cases, a default.

	
name: Name

	The parameter name itself.

	
annotation: Annotation | None [https://docs.python.org/3/library/constants.html#None]

	Any optional Annotation. These annotations are usually used as type
hints.

	
equal: AssignEqual | MaybeSentinel

	The equal sign used to denote assignment if there is a default.

	
default: BaseExpression | None [https://docs.python.org/3/library/constants.html#None]

	Any optional default value, used when the argument is not supplied.

	
comma: Comma | MaybeSentinel

	A trailing comma. If one is not provided, MaybeSentinel will be
replaced with a comma only if a comma is required.

	
star: str [https://docs.python.org/3/library/stdtypes.html#str] | MaybeSentinel

	Zero, one, or two asterisks appearing before name for Param’s
star_arg and star_kwarg.

	
whitespace_after_star: BaseParenthesizableWhitespace

	The whitespace before name. It will appear after star when a star
exists.

	
whitespace_after_param: BaseParenthesizableWhitespace

	The whitespace after this entire node.

	
class libcst.ParamSlash

	A sentinel indicator on a Parameters list to denote that the previous
params are positional-only args.

This syntax is described in PEP 570 [https://www.python.org/dev/peps/pep-0570/#specification].

	
comma: Comma | MaybeSentinel

	Optional comma that comes after the slash. This comma doesn’t own the whitespace
between / and ,.

	
whitespace_after: BaseParenthesizableWhitespace

	Whitespace after the / character. This is captured here in case there is a
comma.

	
class libcst.ParamStar

	A sentinel indicator on a Parameters list to denote that the subsequent
params are keyword-only args.

This syntax is described in PEP 3102 [https://www.python.org/dev/peps/pep-3102/#specification].

	
comma: Comma

	

	
class libcst.WithItem

	A single context manager in a With block, with an optional variable name.

	
item: BaseExpression

	Expression that evaluates to a context manager.

	
asname: AsName | None [https://docs.python.org/3/library/constants.html#None]

	Variable to assign the context manager to, if it is needed in the
With body.

	
comma: Comma | MaybeSentinel

	This is forbidden for the last WithItem in a With, but all
other items inside a with block must contain a comma to separate them.

Statement Blocks

Nodes that represent some group of statements.

	
class libcst.BaseSuite

	A dummy base-class for both SimpleStatementSuite and IndentedBlock.
This exists to simplify type definitions and isinstance checks.

A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header,
following the header’s colon, or it can be one or more indented statements on
subsequent lines.

—https://docs.python.org/3/reference/compound_stmts.html

	
body: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseStatement] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseSmallStatement]

	

	
class libcst.SimpleStatementLine

	A simple statement that’s part of an IndentedBlock or Module. A simple statement is
a series of small statements joined together by semicolons.

This isn’t differentiated from a SimpleStatementSuite in the grammar, but
because a SimpleStatementLine can own additional whitespace that a
SimpleStatementSuite doesn’t have, we’re differentiating it in the CST.

	
body: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseSmallStatement]

	Sequence of small statements. All but the last statement are required to have
a semicolon.

	
leading_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Sequence of empty lines appearing before this simple statement line.

	
trailing_whitespace: TrailingWhitespace

	Any optional trailing comment and the final NEWLINE at the end of the line.

	
class libcst.SimpleStatementSuite

	A simple statement that’s used as a suite. A simple statement is a series of small
statements joined together by semicolons. A suite is the thing that follows the
colon in a compound statement.

if test:<leading_whitespace><body><trailing_whitespace>

This isn’t differentiated from a SimpleStatementLine in the grammar, but
because the two classes need to track different whitespace, we’re differentiating
it in the CST.

	
body: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseSmallStatement]

	Sequence of small statements. All but the last statement are required to have
a semicolon.

	
leading_whitespace: SimpleWhitespace

	The whitespace between the colon in the parent statement and the body.

	
trailing_whitespace: TrailingWhitespace

	Any optional trailing comment and the final NEWLINE at the end of the line.

	
class libcst.IndentedBlock

	Represents a block of statements beginning with an INDENT token and ending in a
DEDENT token. Used as the body of compound statements, such as an if statement’s
body.

A common alternative to an IndentedBlock is a SimpleStatementSuite,
which can also be used as a BaseSuite, meaning that it can be used as the
body of many compound statements.

An IndentedBlock always occurs after a colon in a
BaseCompoundStatement, so it owns the trailing whitespace for the compound
statement’s clause.

if test: # IndentedBlock's header
 body

	
body: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseStatement]

	Sequence of statements belonging to this indented block.

	
header: TrailingWhitespace

	Any optional trailing comment and the final NEWLINE at the end of the line.

	
indent: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	A string represents a specific indentation. A None value uses the modules’s
default indentation. This is included because indentation is allowed to be
inconsistent across a file, just not ambiguously.

	
footer: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Any trailing comments or lines after the dedent that are owned by this indented
block. Statements own preceeding and same-line trailing comments, but not
trailing lines, so it falls on IndentedBlock to own it. In the case
that a statement follows an IndentedBlock, that statement will own the
comments and lines that are at the same indent as the statement, and this
IndentedBlock will own the comments and lines that are indented further.

Operators

Nodes that are used to signify an operation to be performed on a variable
or value.

Unary Operators

Nodes that are used with UnaryOperation to perform some unary
operation.

	
class libcst.BitInvert

	

	
class libcst.Minus

	

	
class libcst.Not

	

	
class libcst.Plus

	A unary operator that can be used in a UnaryOperation
expression.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

In addition, BaseUnaryOp is defined purely for typing and isinstance
checks.

	
class libcst.BaseUnaryOp

	

Boolean Operators

Nodes that are used with BooleanOperation to perform some boolean
operation.

	
class libcst.And

	

	
class libcst.Or

	A boolean operator that can be used in a BooleanOperation
expression.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

In addition, BaseBooleanOp is defined purely for typing and isinstance
checks.

	
class libcst.BaseBooleanOp

	

Binary Operators

Nodes that are used with BinaryOperation to perform some binary
operation.

	
class libcst.Add

	

	
class libcst.BitAnd

	

	
class libcst.BitOr

	

	
class libcst.BitXor

	

	
class libcst.Divide

	

	
class libcst.FloorDivide

	

	
class libcst.LeftShift

	

	
class libcst.MatrixMultiply

	

	
class libcst.Modulo

	

	
class libcst.Multiply

	

	
class libcst.Power

	

	
class libcst.RightShift

	

	
class libcst.Subtract

	A binary operator that can be used in a BinaryOperation
expression.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

In addition, BaseBinaryOp is defined purely for typing and isinstance
checks.

	
class libcst.BaseBinaryOp

	

Comparison Operators

Nodes that are used with Comparison to perform some comparison
operation.

	
class libcst.Equal

	

	
class libcst.GreaterThan

	

	
class libcst.GreaterThanEqual

	

	
class libcst.In

	

	
class libcst.Is

	

	
class libcst.LessThan

	

	
class libcst.LessThanEqual

	A comparision operator that can be used in a Comparison expression.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

	
class libcst.NotEqual

	A comparison operator that can be used in a Comparison expression.

This node defines a static value for convenience, but in reality due to
PEP 401 it can be one of two values, both of which should be a
NotEqual Comparison operator.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	The actual text value of this operator. Can be either != or <>.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

	
class libcst.IsNot

	

	
class libcst.NotIn

	A comparision operator that can be used in a Comparison expression.

This operator spans two tokens that must be separated by at least one space,
so there is a third whitespace attribute to represent this.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_between: BaseParenthesizableWhitespace

	Any space that appears between the not and in tokens.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

In addition, BaseCompOp is defined purely for typing and isinstance
checks.

	
class libcst.BaseCompOp

	

Augmented Assignment Operators

Nodes that are used with AugAssign to perform some agumented
assignment.

	
class libcst.AddAssign

	

	
class libcst.BitAndAssign

	

	
class libcst.BitOrAssign

	

	
class libcst.BitXorAssign

	

	
class libcst.DivideAssign

	

	
class libcst.FloorDivideAssign

	

	
class libcst.LeftShiftAssign

	

	
class libcst.MatrixMultiplyAssign

	

	
class libcst.ModuloAssign

	

	
class libcst.MultiplyAssign

	

	
class libcst.PowerAssign

	

	
class libcst.RightShiftAssign

	

	
class libcst.SubtractAssign

	An augmented assignment operator that can be used in a AugAssign
statement.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this operator.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this operator.

In addition, BaseAugOp is defined purely for typing and isinstance
checks.

	
class libcst.BaseAugOp

	

Miscellaneous

Miscelaneous nodes that are purely syntactic trivia. While python requires these nodes
in order to parse a module, statement or expression they do not carry any meaning on
their own.

	
class libcst.AssignEqual

	Used by AnnAssign to denote a single equal character when doing an
assignment on top of a type annotation. Also used by Param and
Arg to denote assignment of a default value, and by
FormattedStringExpression to denote usage of self-documenting
expressions.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this equal sign.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this equal sign.

	
class libcst.Colon

	Used by Slice as a separator between subsequent expressions,
and in Lambda to separate arguments and body.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this colon.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this colon.

	
class libcst.Comma

	Syntactic trivia used as a separator between subsequent items in various
parts of the grammar.

Some use-cases are:

	Import or ImportFrom.

	FunctionDef arguments.

	Tuple/List/Set/Dict elements.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this comma.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this comma.

	
class libcst.Dot

	Used by Attribute as a separator between subsequent Name nodes.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this dot.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this dot.

	
class libcst.ImportStar

	Used by ImportFrom to denote a star import instead of a list
of importable objects.

	
class libcst.Semicolon

	Used by any small statement (any subclass of BaseSmallStatement
such as Pass) as a separator between subsequent nodes contained
within a SimpleStatementLine or SimpleStatementSuite.

	
whitespace_before: BaseParenthesizableWhitespace

	Any space that appears directly before this semicolon.

	
whitespace_after: BaseParenthesizableWhitespace

	Any space that appears directly after this semicolon.

Whitespace

Nodes that encapsulate pure whitespace.

	
class libcst.Comment

	A comment including the leading pound (#) character.

The leading pound character is included in the ‘value’ property (instead of being
stripped) to help re-enforce the idea that whitespace immediately after the pound
character may be significant. E.g:

comment with whitespace at the start (usually preferred)
#comment without whitespace at the start (usually not desirable)

Usually wrapped in a TrailingWhitespace or EmptyLine node.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	The comment itself. Valid values start with the pound (#) character followed
by zero or more non-newline characters. Comments cannot include newlines.

	
class libcst.EmptyLine

	Represents a line with only whitespace/comments. Usually statements will own any
EmptyLine nodes above themselves, and a Module will own the
document’s header/footer EmptyLine nodes.

	
indent: bool [https://docs.python.org/3/library/functions.html#bool]

	An empty line doesn’t have to correspond to the current indentation level. For
example, this happens when all trailing whitespace is stripped and there is
an empty line between two statements.

	
whitespace: SimpleWhitespace

	Extra whitespace after the indent, but before the comment.

	
comment: Comment | None [https://docs.python.org/3/library/constants.html#None]

	An optional comment appearing after the indent and extra whitespace.

	
newline: Newline

	The newline character that terminates this empty line.

	
class libcst.Newline

	Represents the newline that ends an EmptyLine or a statement (as part of
TrailingWhitespace).

Other newlines may occur in the document after continuation characters (the
backslash, \), but those newlines are treated as part of the
SimpleWhitespace.

Optionally, a value can be specified in order to overwrite the module’s default
newline. In general, this should be left as the default, which is None. This
is allowed because python modules are permitted to mix multiple unambiguous
newline markers.

	
value: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	A value of None indicates that the module’s default newline sequence should
be used. A value of \n or \r\n indicates that the exact value specified
will be used for this newline.

	
class libcst.ParenthesizedWhitespace

	This is the kind of whitespace you might see inside a parenthesized expression
or statement between two tokens when there is a newline without a line
continuation (\) character.

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

A parenthesized whitespace cannot be empty since it requires at least one
TrailingWhitespace. If you have whitespace that does not contain
comments or newlines, use SimpleWhitespace instead.

	
first_line: TrailingWhitespace

	The whitespace that comes after the previous node, up to and including
the end-of-line comment and newline.

	
empty_lines: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][EmptyLine]

	Any lines after the first that contain only indentation and/or comments.

	
indent: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not the final simple whitespace is indented regularly.

	
last_line: SimpleWhitespace

	Extra whitespace after the indent, but before the next node.

	
property empty: bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates that this node is empty (zero whitespace characters). For
ParenthesizedWhitespace this will always be False.

	
class libcst.SimpleWhitespace

	This is the kind of whitespace you might see inside the body of a statement or
expression between two tokens. This is the most common type of whitespace.

A simple whitespace cannot contain a newline character unless it is directly
preceeded by a line continuation character (\). It can contain zero or
more spaces or tabs. If you need a newline character without a line continuation
character, use ParenthesizedWhitespace instead.

Simple whitespace is often non-semantic (optional), but in cases where whitespace
solves a grammar ambiguity between tokens (e.g. if test, versus iftest),
it has some semantic value.

An example SimpleWhitespace containing a space, a line continuation,
a newline and another space is as follows:

SimpleWhitespace(r" \\n ")

	
value: str [https://docs.python.org/3/library/stdtypes.html#str]

	Actual string value of the simple whitespace. A legal value contains only
space, \f and \t characters, and optionally a continuation
(\) followed by a newline (\n or \r\n).

	
property empty: bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates that this node is empty (zero whitespace characters).

	
class libcst.TrailingWhitespace

	The whitespace at the end of a line after a statement. If a line contains only
whitespace, EmptyLine should be used instead.

	
whitespace: SimpleWhitespace

	Any simple whitespace before any comment or newline.

	
comment: Comment | None [https://docs.python.org/3/library/constants.html#None]

	An optional comment appearing after any simple whitespace.

	
newline: Newline

	The newline character that terminates this trailing whitespace.

	
class libcst.BaseParenthesizableWhitespace

	This is the kind of whitespace you might see inside the body of a statement or
expression between two tokens. This is the most common type of whitespace.

The list of allowed characters in a whitespace depends on whether it is found
inside a parenthesized expression or not. This class allows nodes which can be
found inside or outside a (), [] or {} section to accept either
whitespace form.

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Parenthesizable whitespace may contain a backslash character (\), when used as
a line-continuation character. While the continuation character isn’t technically
“whitespace”, it serves the same purpose.

Parenthesizable whitespace is often non-semantic (optional), but in cases where
whitespace solves a grammar ambiguity between tokens (e.g. if test, versus
iftest), it has some semantic value.

	
abstract property empty: bool [https://docs.python.org/3/library/functions.html#bool]

	Indicates that this node is empty (zero whitespace characters).

Maybe Sentinel

	
class libcst.MaybeSentinel

	A MaybeSentinel value is used as the default value for some attributes to
denote that when generating code (when Module.code is evaluated) we should
optionally include this element in order to generate valid code.

MaybeSentinel is only used for “syntactic trivia” that most users shouldn’t
care much about anyways, like commas, semicolons, and whitespace.

For example, a function call’s Arg.comma value defaults to
MaybeSentinel.DEFAULT. A comma is required after every argument, except for
the last one. If a comma is required and Arg.comma is a
MaybeSentinel, one is inserted.

This makes manual node construction easier, but it also means that we safely add
arguments to a preexisting function call without manually fixing the commas:

>>> import libcst as cst
>>> fn_call = cst.parse_expression("fn(1, 2)")
>>> new_fn_call = fn_call.with_changes(
... args=[*fn_call.args, cst.Arg(cst.Integer("3"))]
...)
>>> dummy_module = cst.parse_module("") # we need to use Module.code_for_node
>>> dummy_module.code_for_node(fn_call)
'fn(1, 2)'
>>> dummy_module.code_for_node(new_fn_call)
'fn(1, 2, 3)'

Notice that a comma was automatically inserted after the second argument. Since the
original second argument had no comma, it was initialized to
MaybeSentinel.DEFAULT. During the code generation of the second argument, a
comma was inserted to ensure that the resulting code is valid.

Warning

While this sentinel is used in place of nodes, it is not a CSTNode, and
will not be visited by a CSTVisitor.

Some other libraries, like RedBaron [http://redbaron.pycqa.org/en/latest/index.html], take other approaches to this problem.
RedBaron’s tree is mutable (LibCST’s tree is immutable), and so they’re able to
solve this problem with “proxy lists” [http://redbaron.pycqa.org/en/latest/proxy_list.html]. Both approaches come with
different sets of tradeoffs.

	
DEFAULT = 1

	

Visitors

	
class libcst.CSTVisitor

	The low-level base visitor class for traversing a CST. This should be used in
conjunction with the visit() method on a
CSTNode to visit each element in a tree starting with that
node. Unlike CSTTransformer, instances of this class cannot modify
the tree.

When visiting nodes using a CSTVisitor, the return value of
visit() will equal the passed in tree.

	
on_visit(node: CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False
otherwise.

	
on_leave(original_node: CSTNode) → None [https://docs.python.org/3/library/constants.html#None]

	Called every time we leave a node, after we’ve visited its children. If
the on_visit() function for this node returns
False, this function will still be called on that node.

	
on_visit_attribute(node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called before a node’s child attribute is visited and after we have called
on_visit() on the node. A node’s child
attributes are visited in the order that they appear in source that this
node originates from.

	
on_leave_attribute(original_node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a node’s child attribute is visited and before we have called
on_leave() on the node.

	
class libcst.CSTTransformer

	The low-level base visitor class for traversing a CST and creating an
updated copy of the original CST. This should be used in conjunction with
the visit() method on a CSTNode to
visit each element in a tree starting with that node, and possibly returning
a new node in its place.

When visiting nodes using a CSTTransformer, the return value of
visit() will be a new tree with any changes made in
on_leave() calls reflected in its children.

	
on_visit(node: CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False
otherwise.

	
on_leave(original_node: CSTNodeT, updated_node: CSTNodeT) → CSTNodeT | RemovalSentinel | FlattenSentinel[CSTNodeT]

	Called every time we leave a node, after we’ve visited its children. If
the on_visit() function for this node returns
False, this function will still be called on that node.

original_node is guaranteed to be the same node as is passed to
on_visit(), so it is safe to do state-based
checks using the is operator. Modifications should always be performed
on the updated_node so as to not overwrite changes made by child
visits.

Returning RemovalSentinel.REMOVE indicates that the node should be
removed from its parent. This is not always possible, and may raise an
exception if this node is required. As a convenience, you can use
RemoveFromParent() as an alias to RemovalSentinel.REMOVE.

	
on_visit_attribute(node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called before a node’s child attribute is visited and after we have called
on_visit() on the node. A node’s child
attributes are visited in the order that they appear in source that this
node originates from.

	
on_leave_attribute(original_node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a node’s child attribute is visited and before we have called
on_leave() on the node.

Unlike on_leave(), this function does
not allow modifications to the tree and is provided solely for state
management.

	
libcst.RemoveFromParent() → RemovalSentinel

	A convenience method for requesting that this node be removed by its parent.
Use this in place of returning RemovalSentinel directly.
For example, to remove all arguments unconditionally:

def leave_Arg(
 self, original_node: cst.Arg, updated_node: cst.Arg
) -> Union[cst.Arg, cst.RemovalSentinel]:
 return RemoveFromParent()

	
class libcst.RemovalSentinel

	A RemovalSentinel.REMOVE value should be returned by a
CSTTransformer.on_leave() method when we want to remove that child from its
parent. As a convenience, this can be constructed by calling
libcst.RemoveFromParent().

The parent node should make a best-effort to remove the child, but may raise an
exception when removing the child doesn’t make sense, or could change the semantics
in an unexpected way. For example, a function definition with no name doesn’t make
sense, but removing one of the arguments is valid.

In we can’t automatically remove the child, the developer should instead remove the
child by constructing a new parent in the parent’s on_leave()
call.

We use this instead of None to force developers to be explicit about deletions.
Because None is the default return value for a function with no return
statement, it would be too easy to accidentally delete nodes from the tree by
forgetting to return a value.

	
REMOVE = 1

	

	
class libcst.FlattenSentinel

	A FlattenSentinel may be returned by a CSTTransformer.on_leave()
method when one wants to replace a node with multiple nodes. The replaced
node must be contained in a Sequence attribute such as
body. This is generally the case for
BaseStatement and BaseSmallStatement.
For example to insert a print before every return:

def leave_Return(
 self, original_node: cst.Return, updated_node: cst.Return
) -> Union[cst.Return, cst.RemovalSentinel, cst.FlattenSentinel[cst.BaseSmallStatement]]:
 log_stmt = cst.Expr(cst.parse_expression("print('returning')"))
 return cst.FlattenSentinel([log_stmt, updated_node])

Returning an empty FlattenSentinel is equivalent to returning
cst.RemovalSentinel.REMOVE and is subject to its requirements.

	
nodes: Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence][CSTNodeT_co]

	

Visit and Leave Helper Functions

While it is possible to subclass from CSTVisitor or CSTTransformer
and override the on_visit/on_leave/on_visit_attribute/on_leave_attribute functions
directly, it is not recommended. The default implementation for both visitors will look up any
visit_<Type[CSTNode]>, leave_<Type[CSTNode]>, visit_<Type[CSTNode]>_<attribute> and
leave_<Type[CSTNode]>_<attribute> method on the visitor subclass and call them directly.
If such a function exists for the node in question, the visitor base class will call the relevant
function, respecting the above outlined semantics. If the function does not exist, the visitor base
class will assume that you do not care about that node and visit its children for you without
requiring a default implementation.

Much like on_visit, visit_<Type[CSTNode]> return a boolean specifying whether or not LibCST
should visit a node’s children. As a convenience, you can return None instead of a boolean value
from your visit_<Type[CSTNode]> functions. Returning a None value is treated as a request for
default behavior, which causes the visitor to traverse children. It is equivalent to returning
True, but requires no explicit return.

For example, the below visitor will visit every function definition, traversing to its children only
if the function name doesn’t include the word “foo”. Notice that we don’t need to provide our own
on_visit or on_leave function, nor do we need to provide visit and leave functions for the
rest of the nodes which we do not care about. This will have the effect of visiting all strings not
inside of functions that have “foo” in the name. Note that we take advantage of default behavior when
we decline to return a value in visit_SimpleString.

class FooingAround(libcst.CSTVisitor):
 def visit_FunctionDef(self, node: libcst.FunctionDef) -> bool:
 return "foo" not in node.name.value

 def visit_SimpleString(self, node: libcst.SimpleString) -> None:
 print(node.value)

An example Python REPL using the above visitor is as follows:

>>> import libcst
>>> demo = libcst.parse_module("'abc'\n'123'\ndef foo():\n 'not printed'")
>>> _ = demo.visit(FooingAround())
'abc'
'123'

Traversal Order

Traversal of any parsed tree directly matches the order that tokens appear in the source which
was parsed. LibCST will first call on_visit for the node. Then, for each of the node’s
child attributes, LibCST will call on_visit_attribute for the node’s attribute, followed
by running the same visit algorithm on each child node in the node’s attribute. Then,
on_leave_attribute is called. After each attribute has been fully traversed, LibCST will
call on_leave for the node. Note that LibCST will only call on_visit_attribute and
on_leave_attribute for attributes in which there might be a LibCST node as a child. It
will not call attribute visitors for attributes which are built-in python types.

For example, take the following simple tree generated by calling parse_expression("1+2").

BinaryOperation(
 left=Integer(
 value='1',
 lpar=[],
 rpar=[],
),
 operator=Add(
 whitespace_before=SimpleWhitespace(
 value='',
),
 whitespace_after=SimpleWhitespace(
 value='',
),
),
 right=Integer(
 value='2',
 lpar=[],
 rpar=[],
),
 lpar=[],
 rpar=[],
)

Assuming you have a visitor that overrides every convenience helper method available,
methods will be called in this order:

visit_BinaryOperation
visit_BinaryOperation_lpar
leave_BinaryOperation_lpar
visit_BinaryOperation_left
visit_Integer
visit_Integer_lpar
leave_Integer_lpar
visit_Integer_rpar
leave_Integer_rpar
leave_Integer
leave_BinaryOperation_left
visit_BinaryOperation_operator
visit_Add
visit_Add_whitespace_before
visit_SimpleWhitespace
leave_SimpleWhitespace
leave_Add_whitespace_before
visit_Add_whitespace_after
visit_SimpleWhitespace
leave_SimpleWhitespace
leave_Add_whitespace_after
leave_Add
leave_BinaryOperation_operator
visit_BinaryOperation_right
visit_Integer
visit_Integer_lpar
leave_Integer_lpar
visit_Integer_rpar
leave_Integer_rpar
leave_Integer
leave_BinaryOperation_right
visit_BinaryOperation_rpar
leave_BinaryOperation_rpar
leave_BinaryOperation

Batched Visitors

A batchable visitor class is provided to facilitate performing operations that
can be performed in parallel in a single traversal over a CST. An example of this
is metadata computation.

	
class libcst.BatchableCSTVisitor

	The low-level base visitor class for traversing a CST as part of a batched
set of traversals. This should be used in conjunction with the
visit_batched() function or the
visit_batched() method from
MetadataWrapper to visit a tree.
Instances of this class cannot modify the tree.

	
get_visitors() → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode], None [https://docs.python.org/3/library/constants.html#None]]]

	Returns a mapping of all the visit_<Type[CSTNode]>,
visit_<Type[CSTNode]>_<attribute>, leave_<Type[CSTNode]> and
leave_<Type[CSTNode]>_<attribute>` methods defined by this visitor,
excluding all empty stubs.

	
libcst.visit_batched(node: CSTNodeT, batchable_visitors: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][BatchableCSTVisitor], before_visit: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None] = None, after_leave: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None] = None) → CSTNodeT

	Do a batched traversal over node with all visitors.

before_visit and after_leave are provided as optional hooks to
execute before the visit_<Type[CSTNode]> and after the
leave_<Type[CSTNode]> methods from each visitor in visitor are
executed by the batched visitor.

This function does not handle metadata dependency resolution for visitors.
See visit_batched() from
MetadataWrapper for batched traversal with metadata dependency
resolution.

Metadata

Metadata APIs

LibCST ships with a metadata interface that defines a standardized way to
associate nodes in a CST with arbitrary metadata while maintaining the immutability
of the tree. The metadata interface is designed to be declarative and type safe.
Here’s a quick example of using the metadata interface to get line and column
numbers of nodes through the PositionProvider:

class NamePrinter(cst.CSTVisitor):
 METADATA_DEPENDENCIES = (cst.metadata.PositionProvider,)

 def visit_Name(self, node: cst.Name) -> None:
 pos = self.get_metadata(cst.metadata.PositionProvider, node).start
 print(f"{node.value} found at line {pos.line}, column {pos.column}")

wrapper = cst.metadata.MetadataWrapper(cst.parse_module("x = 1"))
result = wrapper.visit(NamePrinter()) # should print "x found at line 1, column 0"

More examples of using the metadata interface can be found on the
Metadata Tutorial.

Accessing Metadata

To work with metadata you need to wrap a module with a MetadataWrapper.
The wrapper provides a resolve() function and a
resolve_many() function to generate metadata.

	
class libcst.metadata.MetadataWrapper

	A wrapper around a Module that stores associated metadata
for that module.

When a MetadataWrapper is constructed over a module, the wrapper will
store a deep copy of the original module. This means
MetadataWrapper(module).module == module is False.

This copying operation ensures that a node will never appear twice (by identity) in
the same tree. This allows us to uniquely look up metadata for a node based on a
node’s identity.

	
__init__(module: Module, unsafe_skip_copy: bool [https://docs.python.org/3/library/functions.html#bool] = False, cache: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][ProviderT, object [https://docs.python.org/3/library/functions.html#object]] = {}) → None [https://docs.python.org/3/library/constants.html#None]

	
	Parameters:

	
	module – The module to wrap. This is deeply copied by default.

	unsafe_skip_copy – When true, this skips the deep cloning of the module.
This can provide a small performance benefit, but you should only use this
if you know that there are no duplicate nodes in your tree (e.g. this
module came from the parser).

	cache – Pass the needed cache to wrapper to be used when resolving metadata.

	
property module: Module

	The module that’s wrapped by this MetadataWrapper. By default, this is a deep
copy of the passed in module.

mw = ModuleWrapper(module)
Because `mw.module is not module`, you probably want to do visit and do
your analysis on `mw.module`, not `module`.
mw.module.visit(DoSomeAnalysisVisitor)

	
resolve(provider: Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseMetadataProvider[_T]]) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][CSTNode, _T]

	Returns a copy of the metadata mapping computed by provider.

	
resolve_many(providers: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ProviderT]) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][ProviderT, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][CSTNode, object [https://docs.python.org/3/library/functions.html#object]]]

	Returns a copy of the map of metadata mapping computed by each provider
in providers.

The returned map does not contain any metadata from undeclared metadata
dependencies that providers has.

	
visit(visitor: CSTVisitorT) → Module

	Convenience method to resolve metadata before performing a traversal over
self.module with visitor. See visit().

	
visit_batched(visitors: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][BatchableCSTVisitor], before_visit: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None] = None, after_leave: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode], None [https://docs.python.org/3/library/constants.html#None]] | None [https://docs.python.org/3/library/constants.html#None] = None) → CSTNode

	Convenience method to resolve metadata before performing a traversal over
self.module with visitors. See visit_batched().

If you’re working with visitors, which extend MetadataDependent,
metadata dependencies will be automatically computed when visited by a
MetadataWrapper and are accessible through
get_metadata()

	
class libcst.MetadataDependent

	The low-level base class for all classes that declare required metadata
dependencies. CSTVisitor and CSTTransformer
extend this class.

	
METADATA_DEPENDENCIES: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ProviderT]] = ()

	The set of metadata dependencies declared by this class.

	
metadata: Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][ProviderT, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][CSTNode, object [https://docs.python.org/3/library/functions.html#object]]]

	A cached copy of metadata computed by resolve().
Prefer using get_metadata() over accessing
this attribute directly.

	
classmethod get_inherited_dependencies() → Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ProviderT]

	Returns all metadata dependencies declared by classes in the MRO of cls
that subclass this class.

Recursively searches the MRO of the subclass for metadata dependencies.

	
resolve(wrapper: MetadataWrapper) → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][None [https://docs.python.org/3/library/constants.html#None]]

	Context manager that resolves all metadata dependencies declared by
self (using get_inherited_dependencies())
on wrapper and caches it on self for use with
get_metadata().

Upon exiting this context manager, the metadata cache on self is
cleared.

	
get_metadata(key: ~typing.Type[BaseMetadataProvider[_T]], node: CSTNode, default: ~libcst._metadata_dependent._T = <class 'libcst._metadata_dependent._UNDEFINED_DEFAULT'>) → _T

	Returns the metadata provided by the key if it is accessible from
this visitor. Metadata is accessible in a subclass of this class if key
is declared as a dependency by any class in the MRO of this class.

Providing Metadata

Metadata is generated through provider classes that can be be passed to
MetadataWrapper.resolve() or
declared as a dependency of a MetadataDependent. These
providers are then resolved automatically using methods provided by
MetadataWrapper.

In most cases, you should extend
BatchableMetadataProvider when writing a provider,
unless you have a particular reason to not to use a batchable visitor. Only
extend from BaseMetadataProvider if your provider does
not use the visitor pattern for computing metadata for a tree.

	
class libcst.BaseMetadataProvider

	The low-level base class for all metadata providers. This class should be
extended for metadata providers that are not visitor-based.

This class is generic. A subclass of BaseMetadataProvider[T] will
provider metadata of type T.

	
gen_cache: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], int [https://docs.python.org/3/library/functions.html#int]], Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]] | None [https://docs.python.org/3/library/constants.html#None] = None

	Implement gen_cache to indicate the metadata provider depends on cache from external
system. This function will be called by FullRepoManager
to compute required cache object per file path.

	
set_metadata(node: CSTNode, value: LazyValue[_ProvidedMetadataT] | _ProvidedMetadataT) → None [https://docs.python.org/3/library/constants.html#None]

	Record a metadata value value for node.

	
get_metadata(key: ~typing.Type[BaseMetadataProvider[_MetadataT]], node: CSTNode, default: ~libcst._metadata_dependent.LazyValue[~libcst.metadata.base_provider._ProvidedMetadataT] | ~libcst.metadata.base_provider._ProvidedMetadataT | ~typing.Type[~libcst._metadata_dependent._UNDEFINED_DEFAULT] = <class 'libcst._metadata_dependent._UNDEFINED_DEFAULT'>) → _T

	The same method as get_metadata() except
metadata is accessed from self._computed in addition to self.metadata.
See get_metadata().

	
class libcst.metadata.BatchableMetadataProvider

	The low-level base class for all batchable visitor-based metadata providers.
Batchable providers should be preferred when possible as they are more
efficient to run compared to non-batchable visitor-based providers.
Inherits from BatchableCSTVisitor.

This class is generic. A subclass of BatchableMetadataProvider[T] will
provider metadata of type T.

	
class libcst.metadata.VisitorMetadataProvider

	The low-level base class for all non-batchable visitor-based metadata
providers. Inherits from CSTVisitor.

This class is generic. A subclass of VisitorMetadataProvider[T] will
provider metadata of type T.

Metadata Providers

PositionProvider,
ByteSpanPositionProvider,
WhitespaceInclusivePositionProvider,
ExpressionContextProvider,
ScopeProvider,
QualifiedNameProvider,
ParentNodeProvider, and
TypeInferenceProvider
are currently provided. Each metadata provider may has its own custom data structure.

Position Metadata

There are two types of position metadata available. They both track the same
position concept, but differ in terms of representation. One represents
position with line and column numbers, while the other outputs byte offset and
length pairs.

Line and column numbers are available through the metadata interface by
declaring one of PositionProvider or
WhitespaceInclusivePositionProvider. For
most cases, PositionProvider is what you probably
want.

Node positions are is represented with CodeRange
objects. See the above example.

	
class libcst.metadata.PositionProvider

	Generates line and column metadata.

These positions are defined by the start and ending bounds of a node ignoring most
instances of leading and trailing whitespace when it is not syntactically
significant.

The positions provided by this provider should eventually match the positions used
by Pyre [https://github.com/facebook/pyre-check] for equivalent nodes.

	
class libcst.metadata.WhitespaceInclusivePositionProvider

	Generates line and column metadata.

The start and ending bounds of the positions produced by this provider include all
whitespace owned by the node.

	
class libcst.metadata.CodeRange

	
	
start: CodePosition

	Starting position of a node (inclusive).

	
end: CodePosition

	Ending position of a node (exclusive).

	
class libcst.metadata.CodePosition

	
	
line: int [https://docs.python.org/3/library/functions.html#int]

	Line numbers are 1-indexed.

	
column: int [https://docs.python.org/3/library/functions.html#int]

	Column numbers are 0-indexed.

Byte offset and length pairs can be accessed using
ByteSpanPositionProvider. This provider represents
positions using CodeSpan, which will contain the
byte offsets of a CSTNode from the start of the file, and
its length (also in bytes).

	
class libcst.metadata.ByteSpanPositionProvider

	Generates offset and length metadata for nodes’ positions.

For each CSTNode this provider generates a CodeSpan that
contains the byte-offset of the node from the start of the file, and its
length (also in bytes). The whitespace owned by the node is not included in
this length.

Note: offset and length measure bytes, not characters (which is significant for
example in the case of Unicode characters encoded in more than one byte)

	
class libcst.metadata.CodeSpan

	Represents the position of a piece of code by its starting position and length.

Note: This class does not specify the unit of distance - it can be bytes,
Unicode characters, or something else entirely.

	
start: int [https://docs.python.org/3/library/functions.html#int]

	Offset of the code from the beginning of the file. Can be 0.

	
length: int [https://docs.python.org/3/library/functions.html#int]

	Length of the span

Expression Context Metadata

	
class libcst.metadata.ExpressionContextProvider

	Provides ExpressionContext metadata (mimics the expr_context [https://docs.python.org/3/library/ast.html] in ast) for the
following node types:
Attribute, Subscript,
StarredElement , List,
Tuple and Name.
Note that a Name may not always have context because of the differences between
ast and LibCST. E.g. attr is a Name in LibCST
but a str in ast. To honor ast implementation, we don’t assign context to
attr.

Three context types ExpressionContext.STORE,
ExpressionContext.LOAD and ExpressionContext.DEL are provided.

	
class libcst.metadata.ExpressionContext

	Used in ExpressionContextProvider to represent context of a variable
reference.

	
LOAD = 1

	Load the value of a variable reference.

>>> libcst.MetadataWrapper(libcst.parse_module("a")).resolve(libcst.ExpressionContextProvider)
mappingproxy({Name(
 value='a',
 lpar=[],
 rpar=[],
): <ExpressionContext.LOAD: 1>})

	
STORE = 2

	Store a value to a variable reference by Assign (=),
AugAssign (e.g. +=, -=, etc), or
AnnAssign.

>>> libcst.MetadataWrapper(libcst.parse_module("a = b")).resolve(libcst.ExpressionContextProvider)
mappingproxy({Name(
 value='a',
 lpar=[],
 rpar=[],
): <ExpressionContext.STORE: 2>, Name(
 value='b',
 lpar=[],
 rpar=[],
): <ExpressionContext.LOAD: 1>})

	
DEL = 3

	Delete value of a variable reference by del.

>>> libcst.MetadataWrapper(libcst.parse_module("del a")).resolve(libcst.ExpressionContextProvider)
mappingproxy({Name(
 value='a',
 lpar=[],
 rpar=[],
): < ExpressionContext.DEL: 3 >})

Scope Metadata

Scopes contain and separate variables from each other. Scopes enforce that a
local variable name bound inside of a function is not available outside of that
function.

While many programming languages are “block-scoped”, Python is
function-scoped [https://en.wikipedia.org/wiki/Scope_(computer_science)#Function_scope].
New scopes are created for classes, functions, and comprehensions. Other block
constructs like conditional statements, loops, and try…except don’t create their
own scope.

There are five different type of scope in Python:
BuiltinScope,
GlobalScope,
ClassScope,
FunctionScope, and
ComprehensionScope.

[image: Diagram showing how the above 5 scopes are nested in each other]
LibCST allows you to inspect these scopes to see what local variables are
assigned or accessed within.

Note

Import statements bring new symbols into scope that are declared in other files.
As such, they are represented by Assignment for scope
analysis purposes. Dotted imports (e.g. import a.b.c) generate multiple
Assignment objects — one for each module. When analyzing
references, only the most specific access is recorded.

For example, the above import a.b.c statement generates three
Assignment objects: one for a, one for a.b, and
one for a.b.c. A reference for a.b.c records an access only for the last
assignment, while a reference for a.d only records an access for the
Assignment representing a.

	
class libcst.metadata.ScopeProvider

	ScopeProvider traverses the entire module and creates the scope inheritance
structure. It provides the scope of name assignment and accesses. It is useful for
more advanced static analysis. E.g. given a FunctionDef
node, we can check the type of its Scope to figure out whether it is a class method
(ClassScope) or a regular function (GlobalScope).

Scope metadata is available for most node types other than formatting information nodes
(whitespace, parentheses, etc.).

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.expression_context_provider.ExpressionContextProvider'>,)

	The set of metadata dependencies declared by this class.

	
class libcst.metadata.BaseAssignment

	Abstract base class of Assignment and BuitinAssignment.

	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of assignment.

	
scope: Scope

	The scope associates to assignment.

	
property references: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][Access]

	Return all accesses of the assignment.

	
class libcst.metadata.Access

	An Access records an access of an assignment.

Note

This scope analysis only analyzes access via a Name or a Name
node embedded in other node like Call or Attribute.
It doesn’t support type annontation using SimpleString literal for forward
references. E.g. in this example, the "Tree" isn’t parsed as an access:

class Tree:
 def __new__(cls) -> "Tree":
 ...

	
node: Name | Attribute | BaseString

	The node of the access. A name is an access when the expression context is
ExpressionContext.LOAD. This is usually the name node representing the
access, except for: 1) dotted imports, when it might be the attribute that
represents the most specific part of the imported symbol; and 2) string
annotations, when it is the entire string literal

	
scope: Scope

	The scope of the access. Note that a access could be in a child scope of its
assignment.

	
is_annotation: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
is_type_hint: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property referents: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][BaseAssignment]

	Return all assignments of the access.

	
record_assignment(assignment: BaseAssignment) → None [https://docs.python.org/3/library/constants.html#None]

	

	
record_assignments(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class libcst.metadata.Assignment

	An assignment records the name, CSTNode and its accesses.

	
node: CSTNode

	The node of assignment, it could be a Import, ImportFrom,
Name, FunctionDef, or ClassDef.

	
get_qualified_names_for(full_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][QualifiedName]

	

	
class libcst.metadata.BuiltinAssignment

	A BuiltinAssignment represents an value provide by Python as a builtin, including
functions [https://docs.python.org/3/library/functions.html],
constants [https://docs.python.org/3/library/constants.html], and
types [https://docs.python.org/3/library/stdtypes.html].

	
get_qualified_names_for(full_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][QualifiedName]

	

	
class libcst.metadata.Scope

	Base class of all scope classes. Scope object stores assignments from imports,
variable assignments, function definition or class definition.
A scope has a parent scope which represents the inheritance relationship. That means
an assignment in parent scope is viewable to the child scope and the child scope may
overwrites the assignment by using the same name.

Use name in scope to check whether a name is viewable in the scope.
Use scope[name] to retrieve all viewable assignments in the scope.

Note

This scope analysis module only analyzes local variable names and it doesn’t handle
attribute names; for example, given a.b.c = 1, local variable name a is recorded
as an assignment instead of c or a.b.c. To analyze the assignment/access of
arbitrary object attributes, we leave the job to type inference metadata provider
coming in the future.

	
parent: Scope

	Parent scope. Note the parent scope of a GlobalScope is itself.

	
globals: GlobalScope

	Refers to the GlobalScope.

	
abstract __contains__(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the name str exist in current scope by name in scope.

	
__getitem__(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][BaseAssignment]

	Get assignments given a name str by scope[name].

Note

Why does it return a list of assignments given a name instead of just one assignment?

Many programming languages differentiate variable declaration and assignment.
Further, those programming languages often disallow duplicate declarations within
the same scope, and will often hoist the declaration (without its assignment) to
the top of the scope. These design decisions make static analysis much easier,
because it’s possible to match a name against its single declaration for a given scope.

As an example, the following code would be valid in JavaScript:

function fn() {
 console.log(value); // value is defined here, because the declaration is hoisted, but is currently 'undefined'.
 var value = 5; // A function-scoped declaration.
}
fn(); // prints 'undefined'.

In contrast, Python’s declaration and assignment are identical and are not hoisted:

if conditional_value:
 value = 5
elif other_conditional_value:
 value = 10
print(value) # possibly valid, depending on conditional execution

This code may throw a NameError if both conditional values are falsy.
It also means that depending on the codepath taken, the original declaration
could come from either value = ... assignment node.
As a result, instead of returning a single declaration,
we’re forced to return a collection of all of the assignments we think could have
defined a given name by the time a piece of code is executed.
For the above example, value would resolve to a set of both assignments.

	
get_qualified_names_for(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → Collection [https://docs.python.org/3/library/typing.html#typing.Collection][QualifiedName]

	Get all QualifiedName in current scope given a
CSTNode.
The source of a qualified name can be either QualifiedNameSource.IMPORT,
QualifiedNameSource.BUILTIN or QualifiedNameSource.LOCAL.
Given the following example, c has qualified name a.b.c with source IMPORT,
f has qualified name Cls.f with source LOCAL, a has qualified name
Cls.f.<locals>.a, i has qualified name Cls.f.<locals>.<comprehension>.i,
and the builtin int has qualified name builtins.int with source BUILTIN:

from a.b import c
class Cls:
 def f(self) -> "c":
 c()
 a = int("1")
 [i for i in c()]

We extends PEP-3155 [https://www.python.org/dev/peps/pep-3155/]
(defines __qualname__ for class and function only; function namespace is followed
by a <locals>) to provide qualified name for all CSTNode
recorded by Assignment and Access.
The namespace of a comprehension (ListComp, SetComp,
DictComp) is represented with <comprehension>.

An imported name may be used for type annotation with SimpleString and
currently resolving the qualified given SimpleString is not supported
considering it could be a complex type annotation in the string which is hard to
resolve, e.g. List[Union[int, str]].

	
property assignments: Assignments

	Return an Assignments contains all assignmens in current scope.

	
property accesses: Accesses

	Return an Accesses contains all accesses in current scope.

	
class libcst.metadata.BuiltinScope

	A BuiltinScope represents python builtin declarations. See https://docs.python.org/3/library/builtins.html

	
class libcst.metadata.GlobalScope

	A GlobalScope is the scope of module. All module level assignments are recorded in GlobalScope.

	
class libcst.metadata.FunctionScope

	When a function is defined, it creates a FunctionScope.

	
class libcst.metadata.ClassScope

	When a class is defined, it creates a ClassScope.

	
class libcst.metadata.ComprehensionScope

	Comprehensions and generator expressions create their own scope. For example, in

[i for i in range(10)]

The variable i is only viewable within the ComprehensionScope.

	
class libcst.metadata.Assignments

	A container to provide all assignments in a scope.

	
__iter__() → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseAssignment]

	Iterate through all assignments by for i in scope.assignments.

	
__getitem__(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → Collection [https://docs.python.org/3/library/typing.html#typing.Collection][BaseAssignment]

	Get assignments given a name str or CSTNode by scope.assignments[node]

	
__contains__(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a name str or CSTNode has any assignment by node in scope.assignments

	
class libcst.metadata.Accesses

	A container to provide all accesses in a scope.

	
__iter__() → Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Access]

	Iterate through all accesses by for i in scope.accesses.

	
__getitem__(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → Collection [https://docs.python.org/3/library/typing.html#typing.Collection][Access]

	Get accesses given a name str or CSTNode by scope.accesses[node]

	
__contains__(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a name str or CSTNode has any access by node in scope.accesses

Qualified Name Metadata

Qualified name provides an unambiguous name to locate the definition of variable and it’s
introduced for class and function in PEP-3155 [https://www.python.org/dev/peps/pep-3155/].
QualifiedNameProvider provides possible QualifiedName given a
CSTNode.

We don’t call it fully qualified name [https://en.wikipedia.org/wiki/Fully_qualified_name]
because the name refers to the current module which doesn’t consider the hierarchy of
code repository.

For fully qualified names, there’s FullyQualifiedNameProvider
which is similar to the above but takes the current module’s location (relative to some
python root folder, usually the repository’s root) into account.

	
class libcst.metadata.QualifiedNameSource

	
	
IMPORT = 1

	

	
BUILTIN = 2

	

	
LOCAL = 3

	

	
class libcst.metadata.QualifiedName

	
	
name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Qualified name, e.g. a.b.c or fn.<locals>.var.

	
source: QualifiedNameSource

	Source of the name, either QualifiedNameSource.IMPORT, QualifiedNameSource.BUILTIN
or QualifiedNameSource.LOCAL.

	
class libcst.metadata.QualifiedNameProvider

	Compute possible qualified names of a variable CSTNode
(extends PEP-3155 [https://www.python.org/dev/peps/pep-3155/]).
It uses the
get_qualified_names_for() underlying to get qualified names.
Multiple qualified names may be returned, such as when we have conditional imports or an
import shadows another. E.g., the provider finds a.b, d.e and
f.g as possible qualified names of c:

>>> wrapper = MetadataWrapper(
>>> cst.parse_module(dedent(
>>> '''
>>> if something:
>>> from a import b as c
>>> elif otherthing:
>>> from d import e as c
>>> else:
>>> from f import g as c
>>> c()
>>> '''
>>>))
>>>)
>>> call = wrapper.module.body[1].body[0].value
>>> wrapper.resolve(QualifiedNameProvider)[call],
{
 QualifiedName(name="a.b", source=QualifiedNameSource.IMPORT),
 QualifiedName(name="d.e", source=QualifiedNameSource.IMPORT),
 QualifiedName(name="f.g", source=QualifiedNameSource.IMPORT),
}

For qualified name of a variable in a function or a comprehension, please refer
get_qualified_names_for() for more detail.

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.scope_provider.ScopeProvider'>,)

	The set of metadata dependencies declared by this class.

	
static has_name(visitor: MetadataDependent, node: CSTNode, name: str [https://docs.python.org/3/library/stdtypes.html#str] | QualifiedName) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if any of qualified name has the str name or QualifiedName name.

	
class libcst.metadata.FullyQualifiedNameProvider

	Provide fully qualified names for CST nodes. Like QualifiedNameProvider,
but the provided QualifiedName instances have absolute identifier names
instead of local to the current module.

This provider is initialized with the current module’s fully qualified name, and can
be used with FullRepoManager. The module’s fully qualified
name itself is stored as a metadata of the Module node. Compared to
QualifiedNameProvider, it also resolves relative imports.

Example usage:

>>> mgr = FullRepoManager(".", {"dir/a.py"}, {FullyQualifiedNameProvider})
>>> wrapper = mgr.get_metadata_wrapper_for_path("dir/a.py")
>>> fqnames = wrapper.resolve(FullyQualifiedNameProvider)
>>> {type(k): v for (k, v) in fqnames.items()}
{<class 'libcst._nodes.module.Module'>: {QualifiedName(name='dir.a', source=<QualifiedNameSource.LOCAL: 3>)}}

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.name_provider.QualifiedNameProvider'>,)

	The set of metadata dependencies declared by this class.

	
classmethod gen_cache(root_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], paths: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], timeout: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], ModuleNameAndPackage]

	

Parent Node Metadata

A CSTNode only has attributes link to its child nodes and thus only top-down
tree traversal is doable. Sometimes user may want to access the parent CSTNode
for more information or traverse in bottom-up manner.
We provide ParentNodeProvider for those use cases.

	
class libcst.metadata.ParentNodeProvider

	

File Path Metadata

This provides the absolute file path on disk for any module being visited.
Requires an active FullRepoManager when using this provider.

	
class libcst.metadata.FilePathProvider

	Provides the path to the current file on disk as metadata for the root
Module node. Requires a FullRepoManager.
The returned path will always be resolved to an absolute path using
pathlib.Path.resolve().

Example usage:

class CustomVisitor(CSTVisitor):
 METADATA_DEPENDENCIES = [FilePathProvider]

 path: pathlib.Path

 def visit_Module(self, node: libcst.Module) -> None:
 self.path = self.get_metadata(FilePathProvider, node)

>>> mgr = FullRepoManager(".", {"libcst/_types.py"}, {FilePathProvider})
>>> wrapper = mgr.get_metadata_wrapper_for_path("libcst/_types.py")
>>> fqnames = wrapper.resolve(FilePathProvider)
>>> {type(k): v for k, v in wrapper.resolve(FilePathProvider).items()}
{<class 'libcst._nodes.module.Module'>: PosixPath('/home/user/libcst/_types.py')}

	
classmethod gen_cache(root_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], paths: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], timeout: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]

	

Type Inference Metadata

Type inference [https://en.wikipedia.org/wiki/Type_inference] is to automatically infer
data types of expression for deeper understanding source code.
In Python, type checkers like Mypy [https://github.com/python/mypy] or
Pyre [https://pyre-check.org/] analyze type annotations [https://docs.python.org/3/library/typing.html]
and infer types for expressions.
TypeInferenceProvider is provided by Pyre Query API [https://pyre-check.org/docs/querying-pyre.html]
which requires setup watchman [https://pyre-check.org/docs/getting-started/] for incremental typechecking.
FullRepoManger is built for manage the inter process communication to Pyre.

	
class libcst.metadata.TypeInferenceProvider

	Access inferred type annotation through Pyre Query API [https://pyre-check.org/docs/querying-pyre.html].
It requires setup watchman [https://pyre-check.org/docs/getting-started/]
and start pyre server by running pyre command.
The inferred type is a string of type annotation [https://docs.python.org/3/library/typing.html].
E.g. typing.List[libcst._nodes.expression.Name]
is the inferred type of name n in expression n = [cst.Name("")].
All name references use the fully qualified name regardless how the names are imported.
(e.g. import libcst; libcst.Name and import libcst as cst; cst.Name refer to the same name.)
Pyre infers the type of Name, Attribute and Call nodes.
The inter process communication to Pyre server is managed by FullRepoManager.

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.position_provider.PositionProvider'>,)

	The set of metadata dependencies declared by this class.

	
static gen_cache(root_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], paths: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], timeout: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

	

	
class libcst.metadata.FullRepoManager

	
	
__init__(repo_root_dir: str [https://docs.python.org/3/library/stdtypes.html#str] | PurePath [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath], paths: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]], providers: Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ProviderT], timeout: int [https://docs.python.org/3/library/functions.html#int] = 5) → None [https://docs.python.org/3/library/constants.html#None]

	Given project root directory with pyre and watchman setup, FullRepoManager
handles the inter process communication to read the required full repository cache data for
metadata provider like TypeInferenceProvider.

	Parameters:

	
	paths – a collection of paths to access full repository data.

	providers – a collection of metadata provider classes require accessing full repository data, currently supports
TypeInferenceProvider and
FullyQualifiedNameProvider.

	timeout – number of seconds. Raises TimeoutExpired [https://docs.python.org/3/library/subprocess.html#subprocess.TimeoutExpired]
when timeout.

	
property cache: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][ProviderT, Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]]

	The full repository cache data for all metadata providers passed in the providers parameter when
constructing FullRepoManager. Each provider is mapped to a mapping of path to cache.

	
resolve_cache() → None [https://docs.python.org/3/library/constants.html#None]

	Resolve cache for all providers that require it. Normally this is called by
get_cache_for_path() so you do not need to call it
manually. However, if you intend to do a single cache resolution pass before
forking, it is a good idea to call this explicitly to control when cache
resolution happens.

	
get_cache_for_path(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][ProviderT, object [https://docs.python.org/3/library/functions.html#object]]

	Retrieve cache for a source file. The file needs to appear in the paths parameter when
constructing FullRepoManager.

manager = FullRepoManager(".", {"a.py", "b.py"}, {TypeInferenceProvider})
MetadataWrapper(module, cache=manager.get_cache_for_path("a.py"))

	
get_metadata_wrapper_for_path(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → MetadataWrapper

	Create a MetadataWrapper given a source file path.
The path needs to be a path relative to project root directory.
The source code is read and parsed as Module for
MetadataWrapper.

manager = FullRepoManager(".", {"a.py", "b.py"}, {TypeInferenceProvider})
wrapper = manager.get_metadata_wrapper_for_path("a.py")

Matchers

Matchers are provided as a way of asking whether a particular LibCST node and its
children match a particular shape. It is possible to write a visitor that
tracks attributes using visit_<Node> methods. It is also possible to implement
manual instance checking and traversal of a node’s children. However, both are
cumbersome to write and hard to understand. Matchers offer a more concise way of
defining what attributes on a node matter when matching against predefined patterns.

To accomplish this, a matcher has been created which corresponds to each LibCST
node documented in Nodes. Matchers default each of their attributes
to the special sentinel matcher DoNotCare(). When constructing
a matcher, you can initialize the node with only the values of attributes that
you are concerned with, leaving the rest of the attributes set to
DoNotCare() in order to skip comparing against them.

Matcher APIs

Functions

Matchers can be used either by calling matches() or
findall() directly, or by using various decorators to
selectively control when LibCST calls visitor functions.

	
libcst.matchers.matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode, *, metadata_resolver: MetadataDependent | MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None) → bool [https://docs.python.org/3/library/functions.html#bool]

	Given an arbitrary node from a LibCST tree, and an arbitrary matcher, returns
True if the node matches the shape defined by the matcher. Note that the node
can also be a RemovalSentinel or a MaybeSentinel
in order to use matches directly on transform results and node attributes. In these
cases, matches() will always return False.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode,
or a OneOf/AllOf special matcher. It cannot be a
MatchIfTrue or a DoesNotMatch() matcher since these are redundant.
It cannot be a AtLeastN or AtMostN matcher because these types
are wildcards which can only be used inside sequences.

	
libcst.matchers.findall(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, *, metadata_resolver: MetadataDependent | MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]

	Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates
over that node and all children returning a sequence of all child nodes that
match the given matcher. Note that the tree can also be a
RemovalSentinel or a MaybeSentinel
in order to use findall directly on transform results and node attributes. In these
cases, findall() will always return an empty sequence. Note also that
instead of a LibCST tree, you can instead pass in a
MetadataWrapper. This mirrors the fact that you can
call visit on a MetadataWrapper in order to iterate
over it with a transform. If you provide a wrapper for the tree and do not set
the metadata_resolver parameter specifically, it will automatically be set
to the wrapper for you.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode,
or a OneOf/AllOf special matcher. Unlike matches(), it can
also be a MatchIfTrue or DoesNotMatch() matcher, since we are
traversing the tree looking for matches. It cannot be a AtLeastN or
AtMostN matcher because these types are wildcards which can only be used
inside sequences.

	
libcst.matchers.extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode, *, metadata_resolver: MetadataDependent | MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]] | None [https://docs.python.org/3/library/constants.html#None]

	Given an arbitrary node from a LibCST tree, and an arbitrary matcher, returns
a dictionary of extracted children of the tree if the node matches the shape defined
by the matcher. Note that the node can also be a RemovalSentinel or
a MaybeSentinel in order to use extract directly on transform results
and node attributes. In these cases, extract() will always return None.

If the node matches the shape defined by the matcher, the return will be a dictionary
whose keys are defined by the SaveMatchedNode() name parameter, and the values
will be the node or sequence that was present at that location in the shape defined
by the matcher. In the case of multiple SaveMatchedNode() matches with the
same name, parent nodes will take prioirity over child nodes, and nodes later in
sequences will take priority over nodes earlier in sequences.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode,
or a OneOf/AllOf special matcher. It cannot be a
MatchIfTrue or a DoesNotMatch() matcher since these are redundant.
It cannot be a AtLeastN or AtMostN matcher because these types are
wildcards which can only be used inside sequences.

	
libcst.matchers.extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, *, metadata_resolver: MetadataDependent | MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]]

	Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates
over that node and all children returning a sequence of dictionaries representing
the saved and extracted children specified by SaveMatchedNode() for each
match found in the tree. This is analogous to running a findall() over a
tree, then running extract() with the same matcher over each of the returned
nodes. Note that the tree can also be a RemovalSentinel or a
MaybeSentinel in order to use extractall directly on transform
results and node attributes. In these cases, extractall() will always
return an empty sequence. Note also that instead of a LibCST tree, you can
instead pass in a MetadataWrapper. This mirrors the
fact that you can call visit on a MetadataWrapper
in order to iterate over it with a transform. If you provide a wrapper for the
tree and do not set the metadata_resolver parameter specifically, it will
automatically be set to the wrapper for you.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode,
or a OneOf/AllOf special matcher. Unlike matches(), it can
also be a MatchIfTrue or DoesNotMatch() matcher, since we are
traversing the tree looking for matches. It cannot be a AtLeastN or
AtMostN matcher because these types are wildcards which can only be usedi
inside sequences.

	
libcst.matchers.replace(tree: MaybeSentinel | RemovalSentinel | CSTNode | MetadataWrapper, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | _BaseMetadataMatcher, replacement: MaybeSentinel | RemovalSentinel | CSTNode | Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode, Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]], MaybeSentinel | RemovalSentinel | CSTNode], *, metadata_resolver: MetadataDependent | MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None) → MaybeSentinel | RemovalSentinel | CSTNode

	Given an arbitrary node from a LibCST tree and an arbitrary matcher, iterates
over that node and all children and replaces each node that matches the supplied
matcher with a supplied replacement. Note that the replacement can either be a
valid node type, or a callable which takes the matched node and a dictionary of
any extracted child values and returns a valid node type. If you provide a
valid LibCST node type, replace() will replace every node that matches
the supplied matcher with the replacement node. If you provide a callable,
replace() will run extract() over all matched nodes and call the
callable with both the node that should be replaced and the dictionary returned
by extract(). Under all circumstances a new tree is returned.
extract() should be viewed as a short-cut to writing a transform which
also returns a new tree even when no changes are applied.

Note that the tree can also be a RemovalSentinel or a
MaybeSentinel in order to use replace directly on transform
results and node attributes. In these cases, replace() will return the
same RemovalSentinel or MaybeSentinel.
Note also that instead of a LibCST tree, you can instead pass in a
MetadataWrapper. This mirrors the fact that you can
call visit on a MetadataWrapper in order to
iterate over it with a transform. If you provide a wrapper for the tree and
do not set the metadata_resolver parameter specifically, it will
automatically be set to the wrapper for you.

The matcher can be any concrete matcher that subclasses from BaseMatcherNode,
or a OneOf/AllOf special matcher. Unlike matches(), it can
also be a MatchIfTrue or DoesNotMatch() matcher, since we are
traversing the tree looking for matches. It cannot be a AtLeastN or
AtMostN matcher because these types are wildcards which can only be usedi
inside sequences.

Decorators

The following decorators can be placed onto a method in a visitor or transformer
in order to convert it into a visitor which is called when the provided matcher is
true.

	
libcst.matchers.visit(matcher: BaseMatcherNode) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[_CSTVisitFuncT], _CSTVisitFuncT]

	A decorator that allows a method inside a MatcherDecoratableTransformer
or a MatcherDecoratableVisitor visitor to be called when visiting a node
that matches the provided matcher. Note that you can use this in combination with
call_if_inside() and call_if_not_inside() decorators. Unlike explicit
visit_<Node> and leave_<Node> methods, functions decorated with this
decorator cannot stop child traversal by returning False. Decorated visit
functions should always have a return annotation of None.

There is no restriction on the number of visit decorators allowed on a method.
There is also no restriction on the number of methods that may be decorated
with the same matcher. When multiple visit decorators are found on the same
method, they act as a simple or, and the method will be called when any one
of the contained matches is True.

	
libcst.matchers.leave(matcher: BaseMatcherNode) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[_CSTVisitFuncT], _CSTVisitFuncT]

	A decorator that allows a method inside a MatcherDecoratableTransformer
or a MatcherDecoratableVisitor visitor to be called when leaving a node
that matches the provided matcher. Note that you can use this in combination
with call_if_inside() and call_if_not_inside() decorators.

There is no restriction on the number of leave decorators allowed on a method.
There is also no restriction on the number of methods that may be decorated
with the same matcher. When multiple leave decorators are found on the same
method, they act as a simple or, and the method will be called when any one
of the contained matches is True.

The following decorators can be placed onto any existing visit_<Node> or
leave_<Node> visitor, as well as any visitor created using either
visit() or leave(). They control
whether the visitor itself gets called or skipped by LibCST when traversing a tree.
Note that when a visitor function is skipped, its children will still be visited
based on the rules set forth in Visitors. Namely, if you have a separate
visit_<Node> visitor that returns False for a particular node, we will not
traverse to its children.

	
libcst.matchers.call_if_inside(matcher: BaseMatcherNode) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[_CSTVisitFuncT], _CSTVisitFuncT]

	A decorator for visit and leave methods inside a MatcherDecoratableTransformer
or a MatcherDecoratableVisitor. A method that is decorated with this decorator
will only be called if it or one of its parents matches the supplied matcher.
Use this to selectively gate visit and leave methods to be called only when
inside of another relevant node. Note that this works for both node and attribute
methods, so you can decorate a visit_<Node> or a visit_<Node>_<Attr> method.

	
libcst.matchers.call_if_not_inside(matcher: BaseMatcherNode) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[_CSTVisitFuncT], _CSTVisitFuncT]

	A decorator for visit and leave methods inside a MatcherDecoratableTransformer
or a MatcherDecoratableVisitor. A method that is decorated with this decorator
will only be called if it or one of its parents does not match the supplied
matcher. Use this to selectively gate visit and leave methods to be called only
when outside of another relevant node. Note that this works for both node and
attribute methods, so you can decorate a visit_<Node> or a visit_<Node>_<Attr>
method.

When using matcher decorators, your visitors must subclass from
MatcherDecoratableVisitor instead of libcst.CSTVisitor,
and from MatcherDecoratableTransformer instead of
libcst.CSTTransformer. This is so that visitors and transformers not making
use of matcher decorators do not pay the extra cost of their implementation. Note that
if you do not subclass from MatcherDecoratableVisitor or
MatcherDecoratableTransformer, you can still use the
matches() function.

Both of these classes are strict subclasses of their corresponding LibCST base class,
so they can be used anywhere that expects a LibCST base class. See Visitors
for more information.

	
class libcst.matchers.MatcherDecoratableVisitor

	This class provides all of the features of a libcst.CSTVisitor, and
additionally supports various decorators to control when methods get called
when traversing a tree. Use this instead of a libcst.CSTVisitor if
you wish to do more powerful decorator-based visiting.

	
on_visit(node: CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False
otherwise.

	
on_leave(original_node: CSTNode) → None [https://docs.python.org/3/library/constants.html#None]

	Called every time we leave a node, after we’ve visited its children. If
the on_visit() function for this node returns
False, this function will still be called on that node.

	
on_visit_attribute(node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called before a node’s child attribute is visited and after we have called
on_visit() on the node. A node’s child
attributes are visited in the order that they appear in source that this
node originates from.

	
on_leave_attribute(original_node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a node’s child attribute is visited and before we have called
on_leave() on the node.

	
matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	A convenience method to call matches() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for matches() as it is identical to this
function.

	
findall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]

	A convenience method to call findall() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for findall() as it is identical to this
function.

	
extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]] | None [https://docs.python.org/3/library/constants.html#None]

	A convenience method to call extract() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extract() as it is identical to this
function.

	
extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]]

	A convenience method to call extractall() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extractall() as it is identical to this
function.

	
replace(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue, replacement: MaybeSentinel | RemovalSentinel | CSTNode | Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode, Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]], MaybeSentinel | RemovalSentinel | CSTNode]) → MaybeSentinel | RemovalSentinel | CSTNode

	A convenience method to call replace() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for replace() as it is identical to this
function.

	
class libcst.matchers.MatcherDecoratableTransformer

	This class provides all of the features of a libcst.CSTTransformer, and
additionally supports various decorators to control when methods get called when
traversing a tree. Use this instead of a libcst.CSTTransformer if you
wish to do more powerful decorator-based visiting.

	
on_visit(node: CSTNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	Called every time a node is visited, before we’ve visited its children.

Returns True if children should be visited, and returns False
otherwise.

	
on_leave(original_node: CSTNodeT, updated_node: CSTNodeT) → CSTNodeT | RemovalSentinel

	Called every time we leave a node, after we’ve visited its children. If
the on_visit() function for this node returns
False, this function will still be called on that node.

original_node is guaranteed to be the same node as is passed to
on_visit(), so it is safe to do state-based
checks using the is operator. Modifications should always be performed
on the updated_node so as to not overwrite changes made by child
visits.

Returning RemovalSentinel.REMOVE indicates that the node should be
removed from its parent. This is not always possible, and may raise an
exception if this node is required. As a convenience, you can use
RemoveFromParent() as an alias to RemovalSentinel.REMOVE.

	
on_visit_attribute(node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called before a node’s child attribute is visited and after we have called
on_visit() on the node. A node’s child
attributes are visited in the order that they appear in source that this
node originates from.

	
on_leave_attribute(original_node: CSTNode, attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a node’s child attribute is visited and before we have called
on_leave() on the node.

Unlike on_leave(), this function does
not allow modifications to the tree and is provided solely for state
management.

	
matches(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode) → bool [https://docs.python.org/3/library/functions.html#bool]

	A convenience method to call matches() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for matches() as it is identical to this
function.

	
findall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]

	A convenience method to call findall() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for findall() as it is identical to this
function.

	
extract(node: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]] | None [https://docs.python.org/3/library/constants.html#None]

	A convenience method to call extract() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extract() as it is identical to this
function.

	
extractall(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]]

	A convenience method to call extractall() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for extractall() as it is identical to this
function.

	
replace(tree: MaybeSentinel | RemovalSentinel | CSTNode, matcher: BaseMatcherNode | MatchIfTrue[CSTNode] | MatchMetadata | MatchMetadataIfTrue, replacement: MaybeSentinel | RemovalSentinel | CSTNode | Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[CSTNode, Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], CSTNode | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][CSTNode]]], MaybeSentinel | RemovalSentinel | CSTNode]) → MaybeSentinel | RemovalSentinel | CSTNode

	A convenience method to call replace() without requiring
an explicit parameter for metadata. Since our instance is an instance of
libcst.MetadataDependent, we work as a metadata resolver. Please see
documentation for replace() as it is identical to this
function.

Traversal Order

Visit and leave functions created using visit() or
leave() follow the traversal order rules laid out in
LibCST’s visitor Traversal Order with one additional rule. Any
visit function created using the visit() decorator will be
called before a visit_<Node> function if it is defined for your visitor.
The order in which various visit functions which are created with
visit() are called is indeterminate, but all such functions
will be called before calling the visit_<Node> method. Similarly, any leave
function created using the leave() decorator will be called
after a leave_<Node> function if it is defined for your visitor. The order
in which various leave functions which are created with
leave() are called is indeterminate, but all such functions
will be called after calling the visit_<Node> function if it is defined for
your visitor.

This has a few implications. The first is that if you return False from a
visit_<Node> method, we are guaranteed to call your decorated visit functions
as well. Second, when modifying a node in both leave_<Node> and a visitor
created with leave(), the original_node will be unchanged
for both and the updated_node available to the decorated leave method will be
the node that is returned by the leave_<Node> method. Chaining modifications
across multiple leave functions is supported, but must be done with care.

Matcher Types

Concrete Matchers

For each node found in Nodes, a corresponding concrete matcher
has been generated. Each matcher has attributes identical to its LibCST node
counterpart. For example, libcst.Expr includes the value and semicolon
attributes, and therefore libcst.matchers.Expr similarly includes the same
attributes. Just as libcst.Expr’s value is typed as taking a
libcst.BaseExpression, libcst.matchers.Expr’s value is typed
as taking a libcst.matchers.BaseExpression. For every node that exists in
LibCST, both concrete and abstract, a corresponding matcher has been defined.

There are a few special cases to the rules laid out above. For starters, matchers
don’t support evaluating MaybeSentinel. There is no way to specify
that you wish to match against a MaybeSentinel except with the
DoNotCare() matcher. This tends not to be an issue in
practice because MaybeSentinel is only found on syntax nodes.

While there are base classes such as libcst.matchers.BaseExpression, you
cannot match directly on them. They are provided for typing purposes only in order
to exactly match the types on LibCST node attributes. If you need to match on
all concrete subclasses of a base class, we recommend using the special matcher
OneOf.

	
class libcst.matchers.BaseMatcherNode

	Base class that all concrete matchers subclass from. OneOf and
AllOf also subclass from this in order to allow them to be used in
any place that a concrete matcher is allowed. This means that, for example,
you can call matches() with a concrete matcher, or a OneOf with
several concrete matchers as options.

Special Matchers

Special matchers are matchers that don’t have a corresponding LibCST node. Concrete
matchers only match against their corresponding LibCST node, limiting their use
under certain circumstances. Special matchers fill in the gap by allowing
higher-level logic constructs such as inversion. You can use any special matcher
in place of a concrete matcher when specifying matcher attributes. Additionally,
you can also use the AllOf and
OneOf special matchers in place of a concrete matcher
when calling matches() or using decorators.

	
class libcst.matchers.OneOf

	Matcher that matches any one of its options. Useful when you want to match
against one of several options for a single node. You can also construct a
OneOf matcher by using Python’s bitwise or operator with concrete
matcher classes.

For example, you could match against True/False like:

m.OneOf(m.Name("True"), m.Name("False"))

Or you could use the shorthand, like:

m.Name("True") | m.Name("False")

	
property options: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][_MatcherT]

	The normalized list of options that we can choose from to satisfy a
OneOf matcher. If any of these matchers are true, the
OneOf matcher will also be considered a match.

	
class libcst.matchers.AllOf

	Matcher that matches all of its options. Useful when you want to match
against a concrete matcher and a MatchIfTrue at the same time. Also
useful when you want to match against a concrete matcher and a
DoesNotMatch() at the same time. You can also construct a
AllOf matcher by using Python’s bitwise and operator with concrete
matcher classes.

For example, you could match against True in a roundabout way like:

m.AllOf(m.Name(), m.Name("True"))

Or you could use the shorthand, like:

m.Name() & m.Name("True")

Similar to OneOf, this can be used in place of any concrete matcher.

Real-world cases where AllOf is useful are hard to come by but they
are still provided for the limited edge cases in which they make sense. In
the example above, we are redundantly matching against any LibCST
Name node as well as LibCST Name nodes that
have the value of True. We could drop the first option entirely and
get the same result. Often, if you are using a AllOf,
you can refactor your code to be simpler.

For example, the following matches any function call to foo, and
any function call which takes zero arguments:

m.AllOf(m.Call(func=m.Name("foo")), m.Call(args=()))

This could be refactored into the following equivalent concrete matcher:

m.Call(func=m.Name("foo"), args=())

	
property options: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][_MatcherT]

	The normalized list of options that we can choose from to satisfy a
AllOf matcher. If all of these matchers are true, the
AllOf matcher will also be considered a match.

	
class libcst.matchers.TypeOf

	Matcher that matches any one of the given types. Useful when you want to work
with trees where a common property might belong to more than a single type.

For example, if you want either a binary operation or a boolean operation
where the left side has a name foo:

m.TypeOf(m.BinaryOperation, m.BooleanOperation)(left = m.Name("foo"))

Or you could use the shorthand, like:

(m.BinaryOperation | m.BooleanOperation)(left = m.Name("foo"))

Also TypeOf matchers can be used with initalizing in the default
state of other node matchers (without passing any extra patterns):

m.Name | m.SimpleString

The will be equal to:

m.OneOf(m.Name(), m.SimpleString())

	
property initalized: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property options: Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][BaseMatcherNode]

	

	
libcst.matchers.DoesNotMatch(obj: _OtherNodeT) → _OtherNodeT

	Matcher helper that inverts the match result of its child. You can also invert a
matcher by using Python’s bitwise invert operator on concrete matchers or any
special matcher.

For example, the following matches against any identifier that isn’t
True/False:

m.DoesNotMatch(m.OneOf(m.Name("True"), m.Name("False")))

Or you could use the shorthand, like:

~(m.Name("True") | m.Name("False"))

This can be used in place of any concrete matcher as long as it is not the
root matcher. Calling matches() directly on a DoesNotMatch() is
redundant since you can invert the return of matches() using a bitwise not.

	
class libcst.matchers.MatchIfTrue

	Matcher that matches if its child callable returns True. The child callable
should take one argument which is the attribute on the LibCST node we are
trying to match against. This is useful if you want to do complex logic to
determine if an attribute should match or not. One example of this is the
MatchRegex() matcher build on top of MatchIfTrue which takes a
regular expression and matches any string attribute where a regex match is found.

For example, to match on any identifier spelled with the letter e:

m.Name(value=m.MatchIfTrue(lambda value: "e" in value))

This can be used in place of any concrete matcher as long as it is not the
root matcher. Calling matches() directly on a MatchIfTrue is
redundant since you can just call the child callable directly with the node
you are passing to matches().

	
property func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[_MatchIfTrueT], bool [https://docs.python.org/3/library/functions.html#bool]]

	The function that we will call with a LibCST node in order to determine
if we match. If the function returns True then we consider ourselves
to be a match.

	
libcst.matchers.MatchRegex(regex: str [https://docs.python.org/3/library/stdtypes.html#str] | Pattern [https://docs.python.org/3/library/typing.html#typing.Pattern][str [https://docs.python.org/3/library/stdtypes.html#str]]) → MatchIfTrue[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Used as a convenience wrapper to MatchIfTrue which allows for
matching a string attribute against a regex. regex can be any regular
expression string or a compiled Pattern. This uses Python’s re module
under the hood and is compatible with syntax documented on
docs.python.org [https://docs.python.org/3/library/re.html].

For example, to match against any identifier that is at least one character
long and only contains alphabetical characters:

m.Name(value=m.MatchRegex(r'[A-Za-z]+'))

This can be used in place of any string literal when constructing a concrete
matcher.

	
class libcst.matchers.MatchMetadata

	Matcher that looks up the metadata on the current node using the provided
metadata provider and compares the value on the node against the value provided
to MatchMetadata.
If the metadata provider is unresolved, a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] exeption will be
raised and ask you to provide a MetadataWrapper.
If the metadata value does not exist for a particular node, MatchMetadata
will be considered not a match.

For example, to match against any function call which has one parameter which
is used in a load expression context:

m.Call(
 args=[
 m.Arg(
 m.MatchMetadata(
 meta.ExpressionContextProvider,
 meta.ExpressionContext.LOAD,
)
)
]
)

To match against any Name node for the identifier foo
which is the target of an assignment:

m.Name(
 value="foo",
 metadata=m.MatchMetadata(
 meta.ExpressionContextProvider,
 meta.ExpressionContext.STORE,
)
)

This can be used in place of any concrete matcher as long as it is not the
root matcher. Calling matches() directly on a MatchMetadata is
redundant since you can just check the metadata on the root node that you
are passing to matches().

	
property key: Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseMetadataProvider[object [https://docs.python.org/3/library/functions.html#object]]]

	The metadata provider that we will use to fetch values when identifying whether
a node matches this matcher. We compare the value returned from the metadata
provider to the value provided in value when determining a match.

	
property value: object [https://docs.python.org/3/library/functions.html#object]

	The value that we will compare against the return from the metadata provider
for each node when determining a match.

	
class libcst.matchers.MatchMetadataIfTrue

	Matcher that looks up the metadata on the current node using the provided
metadata provider and passes it to a callable which can inspect the metadata
further, returning True if the matcher should be considered a match.
If the metadata provider is unresolved, a LookupError [https://docs.python.org/3/library/exceptions.html#LookupError] exeption will be
raised and ask you to provide a MetadataWrapper.
If the metadata value does not exist for a particular node,
MatchMetadataIfTrue will be considered not a match.

For example, to match against any arg whose qualified name might be
typing.Dict:

m.Call(
 args=[
 m.Arg(
 m.MatchMetadataIfTrue(
 meta.QualifiedNameProvider,
 lambda qualnames: any(n.name == "typing.Dict" for n in qualnames)
)
)
]
)

To match against any Name node for the identifier foo
as long as that identifier is found at the beginning of an unindented line:

m.Name(
 value="foo",
 metadata=m.MatchMetadataIfTrue(
 meta.PositionProvider,
 lambda position: position.start.column == 0,
)
)

This can be used in place of any concrete matcher as long as it is not the
root matcher. Calling matches() directly on a MatchMetadataIfTrue
is redundant since you can just check the metadata on the root node that you
are passing to matches().

	
property key: Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseMetadataProvider[object [https://docs.python.org/3/library/functions.html#object]]]

	The metadata provider that we will use to fetch values when identifying whether
a node matches this matcher. We pass the value returned from the metadata
provider to the callable given to us in func.

	
property func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[object [https://docs.python.org/3/library/functions.html#object]], bool [https://docs.python.org/3/library/functions.html#bool]]

	The function that we will call with a value retrieved from the metadata provider
provided in key. If the function returns True then we consider ourselves
to be a match.

	
libcst.matchers.SaveMatchedNode(matcher: _OtherNodeT, name: str [https://docs.python.org/3/library/stdtypes.html#str]) → _OtherNodeT

	Matcher helper that captures the matched node that matched against a matcher
class, making it available in the dictionary returned by extract() or
extractall().

For example, the following will match against any binary operation whose left
and right operands are not integers, saving those expressions for later inspection.
If used inside extract() or extractall(), the resulting dictionary
will contain the keys left_operand and right_operand:

m.BinaryOperation(
 left=m.SaveMatchedNode(
 m.DoesNotMatch(m.Integer()),
 "left_operand",
),
 right=m.SaveMatchedNode(
 m.DoesNotMatch(m.Integer()),
 "right_operand",
),
)

This can be used in place of any concrete matcher as long as it is not the
root matcher. Calling extract() directly on a SaveMatchedNode() is
redundant since you already have the reference to the node itself.

	
libcst.matchers.DoNotCare() → DoNotCareSentinel

	Used when you want to match exactly one node, but you do not care what node it is.
Useful inside sequences such as a libcst.matchers.Call’s args attribte.
You do not need to use this for concrete matcher attributes since DoNotCare()
is already the default.

For example, the following matcher would match against any function calls with
three arguments, regardless of the arguments themselves and regardless of the
function name that we were calling:

m.Call(args=[m.DoNotCare(), m.DoNotCare(), m.DoNotCare()])

Sequence Wildcard Matchers

Sequence wildcard matchers are matchers that only get used when constructing a
sequence to match against. Not all LibCST nodes have attributes which are sequences,
but for those that do, sequence wildcard matchers offer a great degree of
flexibility. Unlike all other matcher types, these allow you to match against
more than one LibCST node, much like wildcards in regular expressions do.

LibCST does not implicitly match on partial sequences for you. So, when matching
against a sequence you will need to provide a complete pattern. This often means
using helpers such as ZeroOrMore() as the first and last
element of your sequence. Think of it as the difference between Python’s
re.match [https://docs.python.org/3/library/re.html#re.match] and
re.fullmatch [https://docs.python.org/3/library/re.html#re.fullmatch] functions.
LibCST matchers behave like the latter so that it is possible to specify sequences
which must start with, end with or be exactly equal to some pattern.

	
class libcst.matchers.AtLeastN

	Matcher that matches n or more LibCST nodes in a row in a sequence.
AtLeastN defaults to matching against the DoNotCare() matcher,
so if you do not specify a matcher as a child, AtLeastN
will match only by count. If you do specify a matcher as a child,
AtLeastN will instead make sure that each LibCST node matches the
matcher supplied.

For example, this will match all function calls with at least 3 arguments:

m.Call(args=[m.AtLeastN(n=3)])

This will match all function calls with 3 or more integer arguments:

m.Call(args=[m.AtLeastN(n=3, matcher=m.Arg(m.Integer()))])

You can combine sequence matchers with concrete matchers and special matchers
and it will behave as you expect. For example, this will match all function
calls that have 2 or more integer arguments in a row, followed by any arbitrary
argument:

m.Call(args=[m.AtLeastN(n=2, matcher=m.Arg(m.Integer())), m.DoNotCare()])

And finally, this will match all function calls that have at least 5
arguments, the final one being an integer:

m.Call(args=[m.AtLeastN(n=4), m.Arg(m.Integer())])

	
property n: int [https://docs.python.org/3/library/functions.html#int]

	The number of nodes in a row that must match AtLeastN.matcher for
this matcher to be considered a match. If there are less than n matches,
this matcher will not be considered a match. If there are equal to or more
than n matches, this matcher will be considered a match.

	
property matcher: _MatcherT | DoNotCareSentinel

	The matcher which each node in a sequence needs to match.

	
libcst.matchers.ZeroOrMore(matcher: _MatcherT | DoNotCareSentinel = DoNotCareSentinel.DEFAULT) → AtLeastN[_MatcherT | DoNotCareSentinel]

	Used as a convenience wrapper to AtLeastN when n is equal to 0.
Use this when you want to match against any number of nodes in a sequence.

For example, this will match any function call with zero or more arguments, as
long as all of the arguments are integers:

m.Call(args=[m.ZeroOrMore(m.Arg(m.Integer()))])

This will match any function call where the first argument is an integer and
it doesn’t matter what the rest of the arguments are:

m.Call(args=[m.Arg(m.Integer()), m.ZeroOrMore()])

You will often want to use ZeroOrMore on both sides of a concrete
matcher in order to match against sequences that contain a particular node
in an arbitrary location. For example, the following will match any function
call that takes in at least one string argument anywhere:

m.Call(args=[m.ZeroOrMore(), m.Arg(m.SimpleString()), m.ZeroOrMore()])

	
class libcst.matchers.AtMostN

	Matcher that matches n or fewer LibCST nodes in a row in a sequence.
AtMostN defaults to matching against the DoNotCare() matcher,
so if you do not specify a matcher as a child, AtMostN will
match only by count. If you do specify a matcher as a child,
AtMostN will instead make sure that each LibCST node matches the
matcher supplied.

For example, this will match all function calls with 3 or fewer arguments:

m.Call(args=[m.AtMostN(n=3)])

This will match all function calls with 0, 1 or 2 string arguments:

m.Call(args=[m.AtMostN(n=2, matcher=m.Arg(m.SimpleString()))])

You can combine sequence matchers with concrete matchers and special matchers
and it will behave as you expect. For example, this will match all function
calls that have 0, 1 or 2 string arguments in a row, followed by an arbitrary
argument:

m.Call(args=[m.AtMostN(n=2, matcher=m.Arg(m.SimpleString())), m.DoNotCare()])

And finally, this will match all function calls that have at least 2
arguments, the final one being a string:

m.Call(args=[m.AtMostN(n=2), m.Arg(m.SimpleString())])

	
property n: int [https://docs.python.org/3/library/functions.html#int]

	The number of nodes in a row that must match AtLeastN.matcher for
this matcher to be considered a match. If there are less than or equal to
n matches, then this matcher will be considered a match. Any more than
n matches in a row and this matcher will stop matching and be considered
not a match.

	
property matcher: _MatcherT | DoNotCareSentinel

	The matcher which each node in a sequence needs to match.

	
libcst.matchers.ZeroOrOne(matcher: _MatcherT | DoNotCareSentinel = DoNotCareSentinel.DEFAULT) → AtMostN[_MatcherT | DoNotCareSentinel]

	Used as a convenience wrapper to AtMostN when n is equal to 1.
This is effectively a maybe clause.

For example, this will match any function call with zero or one integer
argument:

m.Call(args=[m.ZeroOrOne(m.Arg(m.Integer()))])

This will match any function call that has two or three arguments, and
the first and last arguments are strings:

m.Call(args=[m.Arg(m.SimpleString()), m.ZeroOrOne(), m.Arg(m.SimpleString())])

Codemods

LibCST defines a codemod as an automated refactor that can be applied to a codebase
of arbitrary size. Codemods are provided as a framework for writing higher-order
transforms that consist of other, simpler transforms. It includes provisions for
quickly creating a command-line interface to execute a codemod.

Codemod Base

All codemods derive from a common base, Codemod. This class
includes a context, automatic metadata resolution and multi-pass transform support.
Codemods are intended to be executed using the transform_module()
interface.

	
class libcst.codemod.Codemod

	Abstract base class that all codemods must subclass from. Classes wishing
to perform arbitrary, non-visitor-based mutations on a tree should subclass
from this class directly. Classes wishing to perform visitor-based mutation
should instead subclass from ContextAwareTransformer.

Note that a Codemod is a subclass of
MetadataDependent, meaning that you can declare metadata
dependencies with the METADATA_DEPENDENCIES
class property and while you are executing a transform you can call
get_metadata() to retrieve
the resolved metadata.

	
should_allow_multiple_passes() → bool [https://docs.python.org/3/library/functions.html#bool]

	Override this and return True to allow your transform to be called
repeatedly until the tree doesn’t change between passes. By default,
this is off, and should suffice for most transforms.

	
warn(warning: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Emit a warning that is displayed to the user who has invoked this codemod.

	
property module: Module

	Reference to the currently-traversed module. Note that this is only available
during the execution of a codemod. The module reference is particularly
handy if you want to use libcst.Module.code_for_node() or
libcst.Module.config_for_parsing and don’t wish to track a reference
to the top-level module manually.

	
abstract transform_module_impl(tree: Module) → Module

	Override this with your transform. You should take in the tree, optionally
mutate it and then return the mutated version. The module reference and all
calculated metadata are available for the lifetime of this function.

	
transform_module(tree: Module) → Module

	Transform entrypoint which handles multi-pass logic and metadata calculation
for you. This is the method that you should call if you wish to invoke a
codemod directly. This is the method that is called by
transform_module().

	
class libcst.codemod.CodemodContext

	A context holding all information that is shared amongst all transforms
and visitors in a single codemod invocation. When chaining multiple
transforms together, the context holds the state that needs to be passed
between transforms. The context is responsible for keeping track of
metadata wrappers and the filename of the file that is being modified
(if available).

	
warnings: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List of warnings gathered while running a codemod. Add to this list
by calling warn() method from a class
that subclasses from Codemod,
ContextAwareTransformer or
ContextAwareVisitor.

	
scratch: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Scratch dictionary available for codemods which are spread across multiple
transforms. Codemods are free to add to this at will.

	
filename: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None

	The current filename if a codemod is being executed against a file that
lives on disk. Populated by
libcst.codemod.parallel_exec_transform_with_prettyprint() when
running codemods from the command line.

	
full_module_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None

	The current module if a codemod is being executed against a file that
lives on disk, and the repository root is correctly configured. This
Will take the form of a dotted name such as foo.bar.baz for a file
in the repo named foo/bar/baz.py.

	
full_package_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None

	The current package if a codemod is being executed against a file that
lives on disk, and the repository root is correctly configured. This
Will take the form of a dotted name such as foo.bar for a file
in the repo named foo/bar/baz.py

	
wrapper: MetadataWrapper | None [https://docs.python.org/3/library/constants.html#None] = None

	The current top level metadata wrapper for the module being modified.
To access computed metadata when inside an actively running codemod, use
the get_metadata() method on
Codemod.

	
metadata_manager: FullRepoManager | None [https://docs.python.org/3/library/constants.html#None] = None

	The current repo-level metadata manager for the active codemod.

	
property module: Module | None [https://docs.python.org/3/library/constants.html#None]

	The current top level module being modified. As a convenience, you can
use the module property on
Codemod to refer to this when inside an actively
running codemod.

As a convenience, LibCST-compatible visitors are provided which extend the feature-set
of Codemod to LibCST visitors and transforms. Remember that
ContextAwareTransformer is still a
Codemod, so you should still execute it using
transform_module().

	
class libcst.codemod.ContextAwareTransformer

	A transformer which visits using LibCST. Allows visitor-based mutation of a tree.
Classes wishing to do arbitrary non-visitor-based mutation on a tree should
instead subclass from Codemod and implement
transform_module_impl(). This is a subclass of
MatcherDecoratableTransformer so all features of matchers
as well as CSTTransformer are available to subclasses of this
class.

	
class libcst.codemod.ContextAwareVisitor

	A visitor which visits using LibCST. Allows visitor-based collecting of info
on a tree. All codemods which wish to implement an information collector should
subclass from this instead of directly from
MatcherDecoratableVisitor or CSTVisitor
since this provides access to the current codemod context. As a result, this
class allows access to metadata which was calculated in a parent
Codemod through the
get_metadata() method.

Note that you cannot directly run a ContextAwareVisitor
using transform_module() because visitors by definition
do not transform trees. However, you can instantiate a
ContextAwareVisitor inside a codemod and pass it to the
visit method on any node in order to run information
gathering with metadata and context support.

Remember that a ContextAwareVisitor is a subclass of
MetadataDependent, meaning that you still need to declare
your metadata dependencies with
METADATA_DEPENDENCIES before you can retrieve
metadata using get_metadata(), even if the parent
codemod has listed its own metadata dependencies. Note also that the dependencies
listed on this class must be a strict subset of the dependencies listed in the
parent codemod.

	
warn(warning: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Emit a warning that is displayed to the user who has invoked this codemod.

	
property module: Module

	Reference to the currently-traversed module. Note that this is only available
during a transform itself.

It is often necessary to bail out of a codemod mid-operation when you realize that
you do not want to operate on a module. This can be for any reason such as realizing
the module includes some operation that you do not support. If you wish to skip a
module, you can raise the SkipFile exception. For codemods
executed using the transform_module() interface, all warnings
emitted up to the exception being thrown will be preserved in the result.

	
class libcst.codemod.SkipFile

	Raise this exception to skip codemodding the current file.

The exception message should be the reason for skipping.

Finally, its often easier to test codemods by writing verification tests instead of
running repeatedly on your project. LibCST makes this easy with
CodemodTest. Often you can develop the majority of your
codemod using just tests, augmenting functionality when you run into an unexpected
edge case when running it against your repository.

	
class libcst.codemod.CodemodTest

	Base test class for a Codemod test. Provides facilities for
auto-instantiating and executing a codemod, given the args/kwargs that
should be passed to it. Set the TRANSFORM class
attribute to the Codemod class you wish to test and call
assertCodemod() inside your test method to verify it
transforms various source code chunks correctly.

Note that this is a subclass of UnitTest so any CodemodTest
can be executed using your favorite test runner such as the unittest
module.

	
TRANSFORM: Type [https://docs.python.org/3/library/typing.html#typing.Type][Codemod] = Ellipsis

	

	
classmethod addClassCleanup(function, /, *args, **kwargs)

	Same as addCleanup, except the cleanup items are called even if
setUpClass fails (unlike tearDownClass).

	
assertCodeEqual(expected: str [https://docs.python.org/3/library/stdtypes.html#str], actual: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Given an expected and actual code string, makes sure they equal. This
ensures that both the expected and actual are sanitized, so its safe to
use this on strings that may have come from a triple-quoted multi-line
string.

	
assertCodemod(before: str [https://docs.python.org/3/library/stdtypes.html#str], after: str [https://docs.python.org/3/library/stdtypes.html#str], *args: object [https://docs.python.org/3/library/functions.html#object], context_override: CodemodContext | None [https://docs.python.org/3/library/constants.html#None] = None, python_version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, expected_warnings: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, expected_skip: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs: object [https://docs.python.org/3/library/functions.html#object]) → None [https://docs.python.org/3/library/constants.html#None]

	Given a before and after code string, and any args/kwargs that should
be passed to the codemod constructor specified in
TRANSFORM, validate that the codemod executes as
expected. Verify that the codemod completes successfully, unless the
expected_skip option is set to True, in which case verify that
the codemod skips. Optionally, a CodemodContext can be provided.
If none is specified, a default, empty context is created for you.
Additionally, the python version for the code parser can be overridden
to a valid python version string such as “3.6”. If none is specified,
the version of the interpreter running your tests will be used. Also, a
list of warning strings can be specified and assertCodemod()
will verify that the codemod generates those warnings in the order
specified. If it is left out, warnings are not checked.

	
assertNoLogs(logger=None, level=None)

	Fail unless no log messages of level level or higher are emitted
on logger_name or its children.

This method must be used as a context manager.

	
classmethod doClassCleanups()

	Execute all class cleanup functions. Normally called for you after
tearDownClass.

	
classmethod enterClassContext(cm)

	Same as enterContext, but class-wide.

	
enterContext(cm)

	Enters the supplied context manager.

If successful, also adds its __exit__ method as a cleanup
function and returns the result of the __enter__ method.

	
static make_fixture_data(data: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a code string originting from a multi-line triple-quoted string,
normalize the code using dedent and ensuring a trailing newline
is present.

Execution Interface

As documented in the Codemod Base section above, codemods are meant to be
programmatically executed using transform_module(). Executing
in this manner handles all of the featureset of codemods, including metadata calculation
and exception handling.

	
libcst.codemod.transform_module(transformer: Codemod, code: str [https://docs.python.org/3/library/stdtypes.html#str], *, python_version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → TransformSuccess | TransformFailure | TransformExit | TransformSkip

	Given a module as represented by a string and a Codemod
that we wish to run, execute the codemod on the code and return a
TransformResult. This should never raise an exception.
On success, this returns a TransformSuccess containing
any generated warnings as well as the transformed code. If the codemod is
interrupted with a Ctrl+C, this returns a TransformExit.
If the codemod elected to skip by throwing a SkipFile
exception, this will return a TransformSkip containing
the reason for skipping as well as any warnings that were generated before
the codemod decided to skip. If the codemod throws an unexpected exception,
this will return a TransformFailure containing the
exception that occured as well as any warnings that were generated before the
codemod crashed.

	
libcst.codemod.TransformResult

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][TransformSuccess, TransformFailure, TransformExit, TransformSkip]

	
class libcst.codemod.TransformSuccess

	A TransformResult used when the codemod was successful.
Stores all the information we might need to display to the user upon success, as
well as the transformed file contents.

	
warning_messages: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]

	All warning messages that were generated during the codemod.

	
code: str [https://docs.python.org/3/library/stdtypes.html#str]

	The updated code, post-codemod.

	
class libcst.codemod.TransformFailure

	A TransformResult used when the codemod failed.
Stores all the information we might need to display to the user upon a failure.

	
warning_messages: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]

	All warning messages that were generated before the codemod crashed.

	
error: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	The exception that was raised during the codemod.

	
traceback_str: str [https://docs.python.org/3/library/stdtypes.html#str]

	The traceback string that was recorded at the time of exception.

	
class libcst.codemod.TransformSkip

	A TransformResult used when the codemod requested to
be skipped. This could be because it’s a generated file, or due to filename
blacklist, or because the transform raised SkipFile.

	
skip_reason: SkipReason

	The reason that we skipped codemodding this module.

	
skip_description: str [https://docs.python.org/3/library/stdtypes.html#str]

	The description populated from the SkipFile exception.

	
warning_messages: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	All warning messages that were generated before the codemod decided to skip.

	
class libcst.codemod.SkipReason

	An enumeration of all valid reasons for a codemod to skip.

	
GENERATED = 'generated'

	The module was skipped because we detected that it was generated code, and
we were configured to skip generated files.

	
BLACKLISTED = 'blacklisted'

	The module was skipped because we detected that it was blacklisted, and we
were configured to skip blacklisted files.

	
OTHER = 'other'

	The module was skipped because the codemod requested us to skip using the
SkipFile exception.

	
class libcst.codemod.TransformExit

	A TransformResult used when the codemod was interrupted
by the user (e.g. KeyboardInterrupt).

	
warning_messages: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	An empty list of warnings, included so that all
TransformResult have a warning_messages attribute.

Command-Line Support

LibCST includes additional support to facilitate faster development of codemods which
are to be run at the command-line. This is achieved through the
CodemodCommand class and the codemod utility which lives
inside libcst.tool. The CodemodCommand class provides a
codemod description and an interface to add arguments to the command-line. This is
translated to a custom help message and command-line options that a user can provide
when running a codemod at the command-line.

For a brief overview of supported universal options, run the codemod utility like so:

python3 -m libcst.tool codemod --help

The utility provides support for gathering up and parallelizing codemods across a
series of files or directories, auto-formatting changed code according to a configured
formatter, generating a unified diff of changes instead of applying them to files,
taking code from stdin and codemodding it before returning to stdout, and printing
progress and warnings to stderr during execution of a codemod.

Help is auto-customized if a codemod class is provided, including any added options
and the codemod description. For an example, run the codemod utility like so:

python3 -m libcst.tool codemod noop.NOOPCommand --help

A second utility, list, can list all available codemods given your configuration.
Run it like so:

python3 -m libcst.tool list

Finally, to set up a directory for codemodding using these tools, including additional
directories where codemods can be found, use the initialize utility. To see help
for how to use this, run the initialize utility like so:

python3 -m libcst.tool initialize --help

The above tools operate against any codemod which subclasses from
CodemodCommand. Remember that CodemodCommand
is a subclass of Codemod, so all of the features documented
in the Codemod Base section are available in addition to command-line
support. Any command-line enabled codemod can also be programmatically instantiated
and invoked using the above-documented transform_module()
interface.

	
class libcst.codemod.CodemodCommand

	A Codemod which can be invoked on the command-line
using the libcst.tool codemod utility. It behaves like any other codemod
in that it can be instantiated and run identically to a
Codemod. However, it provides support for providing
help text and command-line arguments to libcst.tool codemod as well as
facilities for automatically running certain common transforms after executing
your transform_module_impl().

The following list of transforms are automatically run at this time:

	AddImportsVisitor (adds needed imports to a module).

	RemoveImportsVisitor (removes unreferenced imports from a module).

	
DESCRIPTION: str [https://docs.python.org/3/library/stdtypes.html#str] = 'No description.'

	An overrideable description attribute so that codemods can provide
a short summary of what they do. This description will show up in
command-line help as well as when listing available codemods.

	
static add_args(arg_parser: ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) → None [https://docs.python.org/3/library/constants.html#None]

	Override this to add arguments to the CLI argument parser. These args
will show up when the user invokes libcst.tool codemod with
--help. They will also be presented to your class’s __init__
method. So, if you define a command with an argument ‘foo’, you should also
have a corresponding ‘foo’ positional or keyword argument in your
class’s __init__ method.

	
abstract transform_module_impl(tree: Module) → Module

	Override this with your transform. You should take in the tree, optionally
mutate it and then return the mutated version. The module reference and all
calculated metadata are available for the lifetime of this function.

Additionally, a few convenience classes have been provided which take the boilerplate
out of common types of codemods:

	
class libcst.codemod.VisitorBasedCodemodCommand

	A command that acts identically to a visitor-based transform, but also has
the support of add_args() and running
supported helper transforms after execution. See
CodemodCommand and
ContextAwareTransformer for additional documentation.

	
class libcst.codemod.MagicArgsCodemodCommand

	A “magic” args command, which auto-magically looks up the transforms that
are yielded from get_transforms()
and instantiates them using values out of the context. Visitors yielded in
get_transforms() must have
constructor arguments that match a key in the context
scratch. The easiest way to
guarantee that is to use add_args()
to add a command arg that will be parsed for each of the args. However, if
you wish to chain transforms, adding to the scratch in one transform will make
the value available to the constructor in subsequent transforms as well as the
scratch for subsequent transforms.

	
abstract get_transforms() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Type [https://docs.python.org/3/library/typing.html#typing.Type][Codemod], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	A generator which yields one or more subclasses of
Codemod. In the general case, you will usually
yield a series of classes, but it is possible to programmatically decide
which classes to yield depending on the contents of the context
scratch.

Note that you should yield classes, not instances of classes, as the
point of MagicArgsCodemodCommand is to
instantiate them for you with the contents of
scratch.

Command-Line Toolkit

Several helpers for constructing a command-line interface are provided. These are used
in the codemod utility to provide LibCST’s de-facto command-line interface but they
are also available to be used directly in the case that circumstances demand a custom
command-line tool.

	
libcst.codemod.gather_files(files_or_dirs: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], *, include_stubs: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Given a list of files or directories (can be intermingled), return a list of
all python files that exist at those locations. If include_stubs is True,
this will include .py and .pyi stub files. If it is False, only
.py files will be included in the returned list.

	
libcst.codemod.exec_transform_with_prettyprint(transform: Codemod, code: str [https://docs.python.org/3/library/stdtypes.html#str], *, include_generated: bool [https://docs.python.org/3/library/functions.html#bool] = False, generated_code_marker: str [https://docs.python.org/3/library/stdtypes.html#str] = '@generated', format_code: bool [https://docs.python.org/3/library/functions.html#bool] = False, formatter_args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = (), python_version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Given an instantiated codemod and a string representing a module, transform that
code by executing the transform, optionally invoking the formatter and finally
printing any generated warnings to stderr. If the code includes the generated
marker at any spot and include_generated is not set to True, the code
will not be modified. If format_code is set to False or the instantiated
codemod does not modify the code, the code will not be formatted. If a
python_version is provided, then we will parse the module using
this version. Otherwise, we will use the version of the currently executing python
binary.

In all cases a module will be returned. Whether it is changed depends on the
input parameters as well as the codemod itself.

	
libcst.codemod.parallel_exec_transform_with_prettyprint(transform: Codemod, files: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], *, jobs: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, unified_diff: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None, include_generated: bool [https://docs.python.org/3/library/functions.html#bool] = False, generated_code_marker: str [https://docs.python.org/3/library/stdtypes.html#str] = '@generated', format_code: bool [https://docs.python.org/3/library/functions.html#bool] = False, formatter_args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = (), show_successes: bool [https://docs.python.org/3/library/functions.html#bool] = False, hide_generated: bool [https://docs.python.org/3/library/functions.html#bool] = False, hide_blacklisted: bool [https://docs.python.org/3/library/functions.html#bool] = False, hide_progress: bool [https://docs.python.org/3/library/functions.html#bool] = False, blacklist_patterns: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = (), python_version: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, repo_root: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → ParallelTransformResult

	Given a list of files and an instantiated codemod we should apply to them,
fork and apply the codemod in parallel to all of the files, including any
configured formatter. The jobs parameter controls the maximum number of
in-flight transforms, and needs to be at least 1. If not included, the number
of jobs will automatically be set to the number of CPU cores. If unified_diff
is set to a number, changes to files will be printed to stdout with
unified_diff lines of context. If it is set to None or left out, files
themselves will be updated with changes and formatting. If a
python_version is provided, then we will parse each source file using
this version. Otherwise, we will use the version of the currently executing python
binary.

A progress indicator as well as any generated warnings will be printed to stderr.
To supress the interactive progress indicator, set hide_progress to True.
Files that include the generated code marker will be skipped unless the
include_generated parameter is set to True. Similarly, files that match
a supplied blacklist of regex patterns will be skipped. Warnings for skipping
both blacklisted and generated files will be printed to stderr along with
warnings generated by the codemod unless hide_blacklisted and
hide_generated are set to True. Files that were successfully codemodded
will not be printed to stderr unless show_successes is set to True.

To make this API possible, we take an instantiated transform. This is due to
the fact that lambdas are not pickleable and pickling functions is undefined.
This means we’re implicitly relying on fork behavior on UNIX-like systems, and
this function will not work on Windows systems. To create a command-line utility
that runs on Windows, please instead see
exec_transform_with_prettyprint().

	
class libcst.codemod.ParallelTransformResult

	The result of running
parallel_exec_transform_with_prettyprint() against
a series of files. This is a simple summary, with counts for number of
successfully codemodded files, number of files that we failed to codemod,
number of warnings generated when running the codemod across the files, and
the number of files that we skipped when running the codemod.

	
successes: int [https://docs.python.org/3/library/functions.html#int]

	Number of files that we successfully transformed.

	
failures: int [https://docs.python.org/3/library/functions.html#int]

	Number of files that we failed to transform.

	
warnings: int [https://docs.python.org/3/library/functions.html#int]

	Number of warnings generated when running transform across files.

	
skips: int [https://docs.python.org/3/library/functions.html#int]

	Number of files skipped because they were blacklisted, generated
or the codemod requested to skip.

	
libcst.codemod.diff_code(oldcode: str [https://docs.python.org/3/library/stdtypes.html#str], newcode: str [https://docs.python.org/3/library/stdtypes.html#str], context: int [https://docs.python.org/3/library/functions.html#int], *, filename: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given two strings representing a module before and after a codemod, produce
a unified diff of the changes with context lines of context. Optionally,
assign the filename to the change, and if it is not available, assume
that the change was performed on stdin/stdout. If no change is detected,
return an empty string instead of returning an empty unified diff. This is
comparable to revision control software which only shows differences for
files that have changed.

Library of Transforms

LibCST additionally includes a library of transforms to reduce the need for boilerplate
inside codemods. As of now, the list includes the following helpers.

	
class libcst.codemod.visitors.GatherImportsVisitor

	Gathers all imports in a module and stores them as attributes on the instance.
Intended to be instantiated and passed to a Module
visit() method in order to gather up information about
imports on a module. Note that this is not a substitute for scope analysis or
qualified name support. Please see Scope Analysis for a more
robust way of determining the qualified name and definition for an arbitrary
node.

After visiting a module the following attributes will be populated:

	module_imports
	A sequence of strings representing modules that were imported directly, such as
in the case of import typing. Each module directly imported but not aliased
will be included here.

	object_mapping
	A mapping of strings to sequences of strings representing modules where we
imported objects from, such as in the case of from typing import Optional.
Each from import that was not aliased will be included here, where the keys of
the mapping are the module we are importing from, and the value is a
sequence of objects we are importing from the module.

	module_aliases
	A mapping of strings representing modules that were imported and aliased,
such as in the case of import typing as t. Each module imported this
way will be represented as a key in this mapping, and the value will be
the local alias of the module.

	alias_mapping
	A mapping of strings to sequences of tuples representing modules where we
imported objects from and aliased using as syntax, such as in the case
of from typing import Optional as opt. Each from import that was aliased
will be included here, where the keys of the mapping are the module we are
importing from, and the value is a tuple representing the original object
name and the alias.

	all_imports
	A collection of all Import and ImportFrom
statements that were encountered in the module.

	
class libcst.codemod.visitors.GatherExportsVisitor

	Gathers all explicit exports in a module and stores them as attributes on the
instance. Intended to be instantiated and passed to a Module
visit() method in order to gather up information about
exports specified in an __all__ variable inside a module.

After visiting a module the following attributes will be populated:

	explicit_exported_objects
	A sequence of strings representing objects that the module exports
directly. Note that when __all__ is absent, this attribute does not
store default exported objects by name.

For more information on __all__, please see Python’s Modules Documentation [https://docs.python.org/3/tutorial/modules.html].

	
class libcst.codemod.visitors.AddImportsVisitor

	Ensures that given imports exist in a module. Given a
CodemodContext and a sequence of tuples specifying
a module to import from as a string. Optionally an object to import from
that module and any alias to assign that import, ensures that import exists.
It will modify existing imports as necessary if the module in question is
already being imported from.

This is one of the transforms that is available automatically to you when
running a codemod. To use it in this manner, import
AddImportsVisitor and then call the static
add_needed_import() method,
giving it the current context (found as self.context for all subclasses of
Codemod), the module you wish to import from and
optionally an object you wish to import from that module and any alias you
would like to assign that import to.

For example:

AddImportsVisitor.add_needed_import(self.context, "typing", "Optional")

This will produce the following code in a module, assuming there was no
typing import already:

from typing import Optional

As another example:

AddImportsVisitor.add_needed_import(self.context, "typing")

This will produce the following code in a module, assuming there was no
import already:

import typing

Note that this is a subclass of CSTTransformer so it is
possible to instantiate it and pass it to a Module
visit() method. However, it is far easier to use
the automatic transform feature of CodemodCommand
and schedule an import to be added by calling
add_needed_import()

	
static add_needed_import(context: CodemodContext, module: str [https://docs.python.org/3/library/stdtypes.html#str], obj: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, asname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, relative: int [https://docs.python.org/3/library/functions.html#int] = 0) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule an import to be added in a future invocation of this class by
updating the context to include the module and optionally obj
to be imported as well as optionally alias to alias the imported
module or obj to. When subclassing from
CodemodCommand, this will be performed for you
after your transform finishes executing. If you are subclassing from a
Codemod instead, you will need to call the
transform_module() method on the module
under modification with an instance of this class after performing your
transform. Note that if the particular module or obj you are
requesting to import already exists as an import on the current module
at the time of executing transform_module()
on an instance of AddImportsVisitor,
this will perform no action in order to avoid adding duplicate imports.

	
class libcst.codemod.visitors.RemoveImportsVisitor

	Attempt to remove given imports from a module, dependent on whether there are
any uses of the imported objects. Given a CodemodContext
and a sequence of tuples specifying a module to remove as a string. Optionally
an object being imported from that module and optionally an alias assigned to
that imported object, ensures that that import no longer exists as long as there
are no remaining references.

Note that static analysis is able to determine safely whether an import is still
needed given a particular module, but it is currently unable to determine whether
an imported object is re-exported and used inside another module unless that
object appears in an __any__ list.

This is one of the transforms that is available automatically to you when running
a codemod. To use it in this manner, import
RemoveImportsVisitor and then call the static
remove_unused_import() method,
giving it the current context (found as self.context for all subclasses of
Codemod), the module you wish to remove and
optionally an object you wish to stop importing as well as an alias that the
object is currently assigned to.

For example:

RemoveImportsVisitor.remove_unused_import(self.context, "typing", "Optional")

This will remove any from typing import Optional that exists in the module
as long as there are no uses of Optional in that module.

As another example:

RemoveImportsVisitor.remove_unused_import(self.context, "typing")

This will remove any import typing that exists in the module, as long as
there are no references to typing in that module, including references
such as typing.Optional.

Additionally, RemoveImportsVisitor includes
a convenience function
remove_unused_import_by_node()
which will attempt to schedule removal of all imports referenced in that node
and its children. This is especially useful inside transforms when you are going
to remove a node using RemoveFromParent() to get rid of a node.

For example:

def leave_AnnAssign(
 self, original_node: cst.AnnAssign, updated_node: cst.AnnAssign,
) -> cst.RemovalSentinel:
 # Remove all annotated assignment statements, clean up imports.
 RemoveImportsVisitor.remove_unused_import_by_node(self.context, original_node)
 return cst.RemovalFromParent()

This will remove all annotated assignment statements from a module as well
as clean up any imports that were only referenced in those assignments. Note
that we pass the original_node to the helper function as it uses scope analysis
under the hood which is only computed on the original tree.

Note that this is a subclass of CSTTransformer so it is
possible to instantiate it and pass it to a Module
visit() method. However, it is far easier to use
the automatic transform feature of CodemodCommand
and schedule an import to be added by calling
remove_unused_import()

	
METADATA_DEPENDENCIES: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseMetadataProvider[object [https://docs.python.org/3/library/functions.html#object]]]] = (<class 'libcst.metadata.name_provider.QualifiedNameProvider'>, <class 'libcst.metadata.scope_provider.ScopeProvider'>)

	The set of metadata dependencies declared by this class.

	
static remove_unused_import(context: CodemodContext, module: str [https://docs.python.org/3/library/stdtypes.html#str], obj: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None, asname: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule an import to be removed in a future invocation of this class by
updating the context to include the module and optionally obj
which is currently imported as well as optionally alias that the
imported module or obj is aliased to. When subclassing from
CodemodCommand, this will be performed for you
after your transform finishes executing. If you are subclassing from a
Codemod instead, you will need to call the
transform_module() method on the module
under modification with an instance of this class after performing your
transform. Note that if the particular module or obj you are
requesting to remove is still in use somewhere in the current module
at the time of executing transform_module()
on an instance of AddImportsVisitor,
this will perform no action in order to avoid removing an in-use import.

	
static remove_unused_import_by_node(context: CodemodContext, node: CSTNode) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule any imports referenced by node or one of its children
to be removed in a future invocation of this class by updating the
context to include the module, obj and alias for each
import in question. When subclassing from
CodemodCommand, this will be performed for you
after your transform finishes executing. If you are subclassing from a
Codemod instead, you will need to call the
transform_module() method on the module
under modification with an instance of this class after performing your
transform. Note that all imports that are referenced by this node
or its children will only be removed if they are not in use at the time
of exeucting transform_module()
on an instance of AddImportsVisitor
in order to avoid removing an in-use import.

	
class libcst.codemod.visitors.ApplyTypeAnnotationsVisitor

	Apply type annotations to a source module using the given stub mdules.
You can also pass in explicit annotations for functions and attributes and
pass in new class definitions that need to be added to the source module.

This is one of the transforms that is available automatically to you when
running a codemod. To use it in this manner, import
ApplyTypeAnnotationsVisitor and then call
the static
store_stub_in_context()
method, giving it the current context (found as self.context for all
subclasses of Codemod), the stub module from which
you wish to add annotations.

For example, you can store the type annotation int for x using:

stub_module = parse_module("x: int = ...")

ApplyTypeAnnotationsVisitor.store_stub_in_context(self.context, stub_module)

You can apply the type annotation using:

source_module = parse_module("x = 1")
ApplyTypeAnnotationsVisitor.transform_module(source_module)

This will produce the following code:

x: int = 1

If the function or attribute already has a type annotation, it will not be
overwritten.

To overwrite existing annotations when applying annotations from a stub,
use the keyword argument overwrite_existing_annotations=True when
constructing the codemod or when calling store_stub_in_context.

	
static store_stub_in_context(context: CodemodContext, stub: Module, overwrite_existing_annotations: bool [https://docs.python.org/3/library/functions.html#bool] = False, use_future_annotations: bool [https://docs.python.org/3/library/functions.html#bool] = False, strict_posargs_matching: bool [https://docs.python.org/3/library/functions.html#bool] = True, strict_annotation_matching: bool [https://docs.python.org/3/library/functions.html#bool] = False, always_qualify_annotations: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Store a stub module in the CodemodContext so
that type annotations from the stub can be applied in a later
invocation of this class.

If the overwrite_existing_annotations flag is True, the
codemod will overwrite any existing annotations.

If you call this function multiple times, only the last values of
stub and overwrite_existing_annotations will take effect.

	
transform_module_impl(tree: Module) → Module

	Collect type annotations from all stubs and apply them to tree.

Gather existing imports from tree so that we don’t add duplicate imports.

Gather global names from tree so forward references are quoted.

	
class libcst.codemod.visitors.GatherUnusedImportsVisitor

	Collects all imports from a module not directly used in the same module.
Intended to be instantiated and passed to a libcst.Module
visit() method to process the full module.

Note that imports that are only used indirectly (from other modules) are
still collected.

After visiting a module the attribute unused_imports will contain a
set of unused ImportAlias objects, paired with their
parent import node.

	
METADATA_DEPENDENCIES: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseMetadataProvider[object [https://docs.python.org/3/library/functions.html#object]]]] = (<class 'libcst.metadata.name_provider.QualifiedNameProvider'>, <class 'libcst.metadata.scope_provider.ScopeProvider'>)

	The set of metadata dependencies declared by this class.

	
unused_imports: Set[Tuple[cst.ImportAlias, cst.Import | cst.ImportFrom]]

	Contains a set of (alias, parent_import) pairs that are not used
in the module after visiting.

	
filter_unused_imports(candidates: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ImportAlias, Import | ImportFrom]]) → Set [https://docs.python.org/3/library/typing.html#typing.Set][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][ImportAlias, Import | ImportFrom]]

	Return the imports in candidates which are not used.

This function implements the main logic of this visitor, and is called after traversal. It calls is_in_use() on each import.

Override this in a subclass for additional filtering.

	
is_in_use(scope: Scope, alias: ImportAlias) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if alias is in use in the given scope.

An alias is in use if it’s directly referenced, exported, or appears in
a string type annotation. Override this in a subclass for additional
filtering.

	
class libcst.codemod.visitors.GatherCommentsVisitor

	Collects all comments matching a certain regex and their line numbers.
This visitor is useful for capturing special-purpose comments, for example
noqa style lint suppression annotations.

Standalone comments are assumed to affect the line following them, and
inline ones are recorded with the line they are on.

After visiting a CST, matching comments are collected in the comments
attribute.

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.position_provider.PositionProvider'>,)

	The set of metadata dependencies declared by this class.

	
comments: Dict[int [https://docs.python.org/3/library/functions.html#int], cst.Comment]

	Dictionary of comments found in the CST. Keys are line numbers,
values are comment nodes.

	
class libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor

	Collects all names from string literals used for typing purposes.
This includes annotations like foo: "SomeType", and parameters to
special functions related to typing (currently only typing.TypeVar).

After visiting, a set of all found names will be available on the names
attribute of this visitor.

	
METADATA_DEPENDENCIES: ClassVar[Collection['ProviderT']] = (<class 'libcst.metadata.name_provider.QualifiedNameProvider'>,)

	The set of metadata dependencies declared by this class.

	
names: Set[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The set of names collected from string literals.

Helpers

Helpers are higher level functions built for reducing recurring code boilerplate.
We add helpers as method of CSTNode or libcst.helpers package based on those principles:

	CSTNode method: simple, read-only and only require data of the direct children of a CSTNode.

	libcst.helpers: node transforms or require recursively traversing the syntax tree.

Construction Helpers

Functions that assist in creating a new LibCST tree.

	
libcst.helpers.parse_template_module(template: str [https://docs.python.org/3/library/stdtypes.html#str], config: PartialParserConfig = PartialParserConfig(), **template_replacements: BaseExpression | Annotation | AssignTarget | Param | Parameters | Arg | BaseStatement | BaseSmallStatement | BaseSuite | BaseSlice | SubscriptElement | Decorator) → Module

	Accepts an entire python module template, including all leading and trailing
whitespace. Any CSTNode provided as a keyword argument to
this function will be inserted into the template at the appropriate location
similar to an f-string expansion. For example:

module = parse_template_module("from {mod} import Foo\n", mod=Name("bar"))

The above code will parse to a module containing a single
FromImport statement, referencing module bar and importing
object Foo from it. Remember that if you are parsing a template as part
of a substitution inside a transform, its considered
best practice to pass in a config
from the current module under transformation.

Note that unlike parse_module(), this function does not support
bytes as an input. This is due to the fact that it is processed as a template
before parsing as a module.

	
libcst.helpers.parse_template_expression(template: str [https://docs.python.org/3/library/stdtypes.html#str], config: PartialParserConfig = PartialParserConfig(), **template_replacements: BaseExpression | Annotation | AssignTarget | Param | Parameters | Arg | BaseStatement | BaseSmallStatement | BaseSuite | BaseSlice | SubscriptElement | Decorator) → BaseExpression

	Accepts an expression template on a single line. Leading and trailing whitespace
is not valid (there’s nowhere to store it on the expression node). Any
CSTNode provided as a keyword argument to this function will
be inserted into the template at the appropriate location similar to an
f-string expansion. For example:

expression = parse_template_expression("x + {foo}", foo=Name("y")))

The above code will parse to a BinaryOperation expression
adding two names (x and y) together.

Remember that if you are parsing a template as part of a substitution inside
a transform, its considered best practice
to pass in a config from the current module under transformation.

	
libcst.helpers.parse_template_statement(template: str [https://docs.python.org/3/library/stdtypes.html#str], config: PartialParserConfig = PartialParserConfig(), **template_replacements: BaseExpression | Annotation | AssignTarget | Param | Parameters | Arg | BaseStatement | BaseSmallStatement | BaseSuite | BaseSlice | SubscriptElement | Decorator) → SimpleStatementLine | BaseCompoundStatement

	Accepts a statement template followed by a trailing newline. If a trailing
newline is not provided, one will be added. Any CSTNode
provided as a keyword argument to this function will be inserted into the
template at the appropriate location similar to an f-string expansion. For
example:

statement = parse_template_statement("assert x > 0, {msg}", msg=SimpleString('"Uh oh!"'))

The above code will parse to an assert statement checking that some variable
x is greater than zero, or providing the assert message "Uh oh!".

Remember that if you are parsing a template as part of a substitution inside
a transform, its considered best practice
to pass in a config from the current module under transformation.

Transformation Helpers

Functions that assist in transforming an existing LibCST node.

	
libcst.helpers.insert_header_comments(node: Module, comments: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Module

	Insert comments after last non-empty line in header. Use this to insert one or more
comments after any copyright preamble in a Module. Each comment in
the list of comments must start with a # and will be placed on its own line
in the appropriate location.

Traversing Helpers

Functions that assist in traversing an existing LibCST tree.

	
libcst.helpers.get_full_name_for_node(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	Return a dot concatenated full name for str, Name, Attribute.
Call, Subscript, FunctionDef, ClassDef,
Decorator.
Return None for not supported Node.

	
libcst.helpers.get_full_name_for_node_or_raise(node: str [https://docs.python.org/3/library/stdtypes.html#str] | CSTNode) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a dot concatenated full name for str, Name, Attribute.
Call, Subscript, FunctionDef, ClassDef.
Raise Exception for not supported Node.

	
libcst.helpers.ensure_type(node: object [https://docs.python.org/3/library/functions.html#object], nodetype: Type [https://docs.python.org/3/library/typing.html#typing.Type][T]) → T

	Takes any python object, and a LibCST CSTNode subclass and
refines the type of the python object. This is most useful when you already
know that a particular object is a certain type but your type checker is not
convinced. Note that this does an instance check for you and raises an
exception if it is not the right type, so this should be used in situations
where you are sure of the type given previous checks.

Experimental APIs

These APIs may change at any time (including in minor releases) with no notice. You
probably shouldn’t use them, but if you do, you should pin your application to an exact
release of LibCST to avoid breakages.

Reentrant Code Generation

	
class libcst.metadata.ExperimentalReentrantCodegenProvider

	An experimental API that allows fast generation of modified code by recording an
initial code-generation pass, and incrementally applying updates. It is a
performance optimization for a few niche use-cases and is not user-friendly.

This API may change at any time without warning (including in minor releases).

This is rarely useful. Instead you should make multiple modifications to a single
syntax tree, and generate the code once. However, we can think of a few use-cases
for this API (hence, why it exists):

	When linting a file, you might generate multiple independent patches that a user
can accept or reject. Depending on your architecture, it may be advantageous to
avoid regenerating the file when computing each patch.

	You might want to call out to an external utility (e.g. a typechecker, such as
pyre or mypy) to validate a small change. You may need to generate and test lots
of these patches.

Restrictions:

	For safety and sanity reasons, the smallest/only level of granularity is a
statement. If you need to patch part of a statement, you regenerate the entire
statement. If you need to regenerate an entire module, just call
libcst.Module.code().

	This does not (currently) operate recursively. You can patch an unpatched piece
of code multiple times, but you can’t layer additional patches on an already
patched piece of code.

	
class libcst.metadata.CodegenPartial

	Provided by ExperimentalReentrantCodegenProvider.

Stores enough information to generate either a small patch
(get_modified_code_range()) or a new file (get_modified_code()) by
replacing the old node at this position.

	
start_offset: int [https://docs.python.org/3/library/functions.html#int]

	

	
end_offset: int [https://docs.python.org/3/library/functions.html#int]

	

	
has_trailing_newline: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
get_original_module_code() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Equivalent to libcst.Module.bytes() on the top-level module that contains
this statement, except that it uses the cached result from our previous code
generation pass, so it’s faster.

	
get_original_module_bytes() → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Equivalent to libcst.Module.bytes() on the top-level module that contains
this statement, except that it uses the cached result from our previous code
generation pass, so it’s faster.

	
get_original_statement_code() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Equivalent to libcst.Module.code_for_node() on the current statement,
except that it uses the cached result from our previous code generation pass,
so it’s faster.

	
get_modified_statement_code(node: BaseStatement) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Gets the new code for node as if it were in same location as the old
statement being replaced. This means that it inherits details like the old
statement’s indentation.

	
get_modified_module_code(node: BaseStatement) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Gets the new code for the module at the root of this statement’s tree, but with
the supplied replacement node in its place.

	
get_modified_module_bytes(node: BaseStatement) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Gets the new bytes for the module at the root of this statement’s tree, but with
the supplied replacement node in its place.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

_

 	
 	__contains__() (libcst.metadata.Accesses method)

 	(libcst.metadata.Assignments method)

 	(libcst.metadata.Scope method)

 	__getitem__() (libcst.metadata.Accesses method)

 	(libcst.metadata.Assignments method)

 	(libcst.metadata.Scope method)

 	
 	__init__() (libcst.metadata.FullRepoManager method)

 	(libcst.metadata.MetadataWrapper method)

 	__iter__() (libcst.metadata.Accesses method)

 	(libcst.metadata.Assignments method)

 	__str__() (libcst.ParserSyntaxError method)

A

 	
 	Access (class in libcst.metadata)

 	Accesses (class in libcst.metadata)

 	accesses (libcst.metadata.Scope property)

 	add_args() (libcst.codemod.CodemodCommand static method)

 	add_needed_import() (libcst.codemod.visitors.AddImportsVisitor static method)

 	addClassCleanup() (libcst.codemod.CodemodTest class method)

 	AddImportsVisitor (class in libcst.codemod.visitors)

 	AllOf (class in libcst.matchers)

 	AnnAssign (class in libcst)

 	Annotation (class in libcst)

 	annotation (libcst.AnnAssign attribute)

 	(libcst.Annotation attribute)

 	(libcst.Param attribute)

 	ApplyTypeAnnotationsVisitor (class in libcst.codemod.visitors)

 	Arg (class in libcst)

 	args (libcst.Call attribute)

 	AsName (class in libcst)

 	asname (libcst.ImportAlias attribute)

 	(libcst.WithItem attribute)

 	Assert (class in libcst)

 	
 	assertCodeEqual() (libcst.codemod.CodemodTest method)

 	assertCodemod() (libcst.codemod.CodemodTest method)

 	assertNoLogs() (libcst.codemod.CodemodTest method)

 	Assign (class in libcst)

 	AssignEqual (class in libcst)

 	Assignment (class in libcst.metadata)

 	Assignments (class in libcst.metadata)

 	assignments (libcst.metadata.Scope property)

 	AssignTarget (class in libcst)

 	Asynchronous (class in libcst)

 	asynchronous (libcst.CompFor attribute)

 	(libcst.For attribute)

 	(libcst.FunctionDef attribute)

 	(libcst.With attribute)

 	AtLeastN (class in libcst.matchers)

 	AtMostN (class in libcst.matchers)

 	attr (libcst.Attribute attribute)

 	Attribute (class in libcst)

 	AugAssign (class in libcst)

 	Await (class in libcst)

B

 	
 	BaseAssignment (class in libcst.metadata)

 	BaseAssignTargetExpression (class in libcst)

 	BaseComp (class in libcst)

 	BaseCompoundStatement (class in libcst)

 	BaseDelTargetExpression (class in libcst)

 	BaseDict (class in libcst)

 	BaseDictElement (class in libcst)

 	BaseElement (class in libcst)

 	BaseExpression (class in libcst)

 	BaseFormattedStringContent (class in libcst)

 	BaseList (class in libcst)

 	BaseMatcherNode (class in libcst.matchers)

 	BaseMetadataProvider (class in libcst)

 	BaseNumber (class in libcst)

 	BaseParenthesizableWhitespace (class in libcst)

 	bases (libcst.ClassDef attribute)

 	BaseSet (class in libcst)

 	BaseSimpleComp (class in libcst)

 	BaseSlice (class in libcst)

 	BaseSmallStatement (class in libcst)

 	BaseString (class in libcst)

 	BaseSuite (class in libcst)

 	BatchableCSTVisitor (class in libcst)

 	BatchableMetadataProvider (class in libcst.metadata)

 	BinaryOperation (class in libcst)

 	
 	BLACKLISTED (libcst.codemod.SkipReason attribute)

 	body (libcst.BaseCompoundStatement attribute)

 	(libcst.BaseSuite attribute)

 	(libcst.ClassDef attribute)

 	(libcst.Else attribute)

 	(libcst.ExceptHandler attribute)

 	(libcst.Finally attribute)

 	(libcst.For attribute)

 	(libcst.FunctionDef attribute)

 	(libcst.If attribute)

 	(libcst.IfExp attribute)

 	(libcst.IndentedBlock attribute)

 	(libcst.Lambda attribute)

 	(libcst.Module attribute)

 	(libcst.SimpleStatementLine attribute)

 	(libcst.SimpleStatementSuite attribute)

 	(libcst.Try attribute)

 	(libcst.While attribute)

 	(libcst.With attribute)

 	BooleanOperation (class in libcst)

 	Break (class in libcst)

 	BUILTIN (libcst.metadata.QualifiedNameSource attribute)

 	BuiltinAssignment (class in libcst.metadata)

 	BuiltinScope (class in libcst.metadata)

 	bytes (libcst.Module property)

 	ByteSpanPositionProvider (class in libcst.metadata)

C

 	
 	cache (libcst.metadata.FullRepoManager property)

 	Call (class in libcst)

 	call_if_inside() (in module libcst.matchers)

 	call_if_not_inside() (in module libcst.matchers)

 	cause (libcst.Raise attribute)

 	children (libcst.CSTNode property)

 	ClassDef (class in libcst)

 	ClassScope (class in libcst.metadata)

 	code (libcst.codemod.TransformSuccess attribute)

 	(libcst.Module property)

 	code_for_node() (libcst.Module method)

 	CodegenPartial (class in libcst.metadata)

 	Codemod (class in libcst.codemod)

 	CodemodCommand (class in libcst.codemod)

 	CodemodContext (class in libcst.codemod)

 	CodemodTest (class in libcst.codemod)

 	CodePosition (class in libcst.metadata)

 	CodeRange (class in libcst.metadata)

 	CodeSpan (class in libcst.metadata)

 	Colon (class in libcst)

 	colon (libcst.Lambda attribute)

 	column (libcst.metadata.CodePosition attribute)

 	Comma (class in libcst)

 	comma (libcst.Arg attribute)

 	(libcst.Assert attribute)

 	(libcst.DictElement attribute)

 	(libcst.Element attribute)

 	(libcst.ImportAlias attribute)

 	(libcst.NameItem attribute)

 	(libcst.Param attribute)

 	(libcst.ParamSlash attribute)

 	(libcst.ParamStar attribute)

 	(libcst.StarredDictElement attribute)

 	(libcst.StarredElement attribute)

 	(libcst.SubscriptElement attribute)

 	(libcst.WithItem attribute)

 	
 	Comment (class in libcst)

 	comment (libcst.EmptyLine attribute)

 	(libcst.TrailingWhitespace attribute)

 	comments (libcst.codemod.visitors.GatherCommentsVisitor attribute)

 	comparator (libcst.ComparisonTarget attribute)

 	Comparison (class in libcst)

 	comparisons (libcst.Comparison attribute)

 	ComparisonTarget (class in libcst)

 	CompFor (class in libcst)

 	CompIf (class in libcst)

 	ComprehensionScope (class in libcst.metadata)

 	ConcatenatedString (class in libcst)

 	config_for_parsing (libcst.Module property)

 	context (libcst.ParserSyntaxError property)

 	ContextAwareTransformer (class in libcst.codemod)

 	ContextAwareVisitor (class in libcst.codemod)

 	Continue (class in libcst)

 	conversion (libcst.FormattedStringExpression attribute)

 	CSTNode (class in libcst)

 	CSTTransformer (class in libcst)

 	CSTVisitor (class in libcst)

D

 	
 	Decorator (class in libcst)

 	decorator (libcst.Decorator attribute)

 	decorators (libcst.ClassDef attribute)

 	(libcst.FunctionDef attribute)

 	deep_clone() (libcst.CSTNode method)

 	deep_equals() (libcst.CSTNode method)

 	deep_remove() (libcst.CSTNode method)

 	deep_replace() (libcst.CSTNode method)

 	DEFAULT (libcst.MaybeSentinel attribute)

 	default (libcst.Param attribute)

 	default_indent (libcst.Module attribute)

 	(libcst.PartialParserConfig attribute)

 	default_newline (libcst.Module attribute)

 	(libcst.PartialParserConfig attribute)

 	
 	Del (class in libcst)

 	DEL (libcst.metadata.ExpressionContext attribute)

 	DESCRIPTION (libcst.codemod.CodemodCommand attribute)

 	Dict (class in libcst)

 	DictComp (class in libcst)

 	DictElement (class in libcst)

 	diff_code() (in module libcst.codemod)

 	doClassCleanups() (libcst.codemod.CodemodTest class method)

 	DoesNotMatch() (in module libcst.matchers)

 	DoNotCare() (in module libcst.matchers)

 	Dot (class in libcst)

 	dot (libcst.Attribute attribute)

E

 	
 	editor_column (libcst.ParserSyntaxError property)

 	editor_line (libcst.ParserSyntaxError property)

 	Element (class in libcst)

 	elements (libcst.Dict attribute)

 	(libcst.List attribute)

 	(libcst.Set attribute)

 	(libcst.Tuple attribute)

 	Ellipsis (class in libcst)

 	Else (class in libcst)

 	elt (libcst.BaseSimpleComp attribute)

 	(libcst.GeneratorExp attribute)

 	(libcst.ListComp attribute)

 	(libcst.SetComp attribute)

 	empty (libcst.BaseParenthesizableWhitespace property)

 	(libcst.ParenthesizedWhitespace property)

 	(libcst.SimpleWhitespace property)

 	empty_lines (libcst.ParenthesizedWhitespace attribute)

 	EmptyLine (class in libcst)

 	encoding (libcst.Module attribute)

 	(libcst.PartialParserConfig attribute)

 	end (libcst.FormattedString attribute)

 	(libcst.metadata.CodeRange attribute)

 	end_offset (libcst.metadata.CodegenPartial attribute)

 	ensure_type() (in module libcst.helpers)

 	enterClassContext() (libcst.codemod.CodemodTest class method)

 	enterContext() (libcst.codemod.CodemodTest method)

 	equal (libcst.AnnAssign attribute)

 	(libcst.Arg attribute)

 	(libcst.FormattedStringExpression attribute)

 	(libcst.Param attribute)

 	
 	error (libcst.codemod.TransformFailure attribute)

 	evaluated_alias (libcst.ImportAlias property)

 	evaluated_name (libcst.ImportAlias property)

 	evaluated_value (libcst.ConcatenatedString property)

 	(libcst.Float property)

 	(libcst.Imaginary property)

 	(libcst.Integer property)

 	(libcst.SimpleString property)

 	exc (libcst.Raise attribute)

 	ExceptHandler (class in libcst)

 	exec_transform_with_prettyprint() (in module libcst.codemod)

 	ExperimentalReentrantCodegenProvider (class in libcst.metadata)

 	Expr (class in libcst)

 	expression (libcst.Await attribute)

 	(libcst.FormattedStringExpression attribute)

 	(libcst.UnaryOperation attribute)

 	ExpressionContext (class in libcst.metadata)

 	ExpressionContextProvider (class in libcst.metadata)

 	extract() (in module libcst.matchers)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	extractall() (in module libcst.matchers)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

F

 	
 	failures (libcst.codemod.ParallelTransformResult attribute)

 	field() (libcst.CSTNode class method)

 	filename (libcst.codemod.CodemodContext attribute)

 	FilePathProvider (class in libcst.metadata)

 	filter_unused_imports() (libcst.codemod.visitors.GatherUnusedImportsVisitor method)

 	finalbody (libcst.Try attribute)

 	Finally (class in libcst)

 	findall() (in module libcst.matchers)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	first_colon (libcst.Slice attribute)

 	first_line (libcst.ParenthesizedWhitespace attribute)

 	FlattenSentinel (class in libcst)

 	Float (class in libcst)

 	footer (libcst.IndentedBlock attribute)

 	(libcst.Module attribute)

 	For (class in libcst)

 	for_in (libcst.BaseComp attribute)

 	(libcst.BaseSimpleComp attribute)

 	(libcst.DictComp attribute)

 	(libcst.GeneratorExp attribute)

 	(libcst.ListComp attribute)

 	(libcst.SetComp attribute)

 	
 	format_spec (libcst.FormattedStringExpression attribute)

 	FormattedString (class in libcst)

 	FormattedStringExpression (class in libcst)

 	FormattedStringText (class in libcst)

 	From (class in libcst)

 	full_module_name (libcst.codemod.CodemodContext attribute)

 	full_package_name (libcst.codemod.CodemodContext attribute)

 	FullRepoManager (class in libcst.metadata)

 	FullyQualifiedNameProvider (class in libcst.metadata)

 	func (libcst.Call attribute)

 	(libcst.matchers.MatchIfTrue property)

 	(libcst.matchers.MatchMetadataIfTrue property)

 	FunctionDef (class in libcst)

 	FunctionScope (class in libcst.metadata)

 	future_imports (libcst.PartialParserConfig attribute)

G

 	
 	gather_files() (in module libcst.codemod)

 	GatherCommentsVisitor (class in libcst.codemod.visitors)

 	GatherExportsVisitor (class in libcst.codemod.visitors)

 	GatherImportsVisitor (class in libcst.codemod.visitors)

 	GatherNamesFromStringAnnotationsVisitor (class in libcst.codemod.visitors)

 	GatherUnusedImportsVisitor (class in libcst.codemod.visitors)

 	gen_cache (libcst.BaseMetadataProvider attribute)

 	gen_cache() (libcst.metadata.FilePathProvider class method)

 	(libcst.metadata.FullyQualifiedNameProvider class method)

 	(libcst.metadata.TypeInferenceProvider static method)

 	GENERATED (libcst.codemod.SkipReason attribute)

 	GeneratorExp (class in libcst)

 	get_cache_for_path() (libcst.metadata.FullRepoManager method)

 	get_docstring() (libcst.ClassDef method)

 	(libcst.FunctionDef method)

 	(libcst.Module method)

 	get_full_name_for_node() (in module libcst.helpers)

 	get_full_name_for_node_or_raise() (in module libcst.helpers)

 	
 	get_inherited_dependencies() (libcst.MetadataDependent class method)

 	get_metadata() (libcst.BaseMetadataProvider method)

 	(libcst.MetadataDependent method)

 	get_metadata_wrapper_for_path() (libcst.metadata.FullRepoManager method)

 	get_modified_module_bytes() (libcst.metadata.CodegenPartial method)

 	get_modified_module_code() (libcst.metadata.CodegenPartial method)

 	get_modified_statement_code() (libcst.metadata.CodegenPartial method)

 	get_original_module_bytes() (libcst.metadata.CodegenPartial method)

 	get_original_module_code() (libcst.metadata.CodegenPartial method)

 	get_original_statement_code() (libcst.metadata.CodegenPartial method)

 	get_qualified_names_for() (libcst.metadata.Assignment method)

 	(libcst.metadata.BuiltinAssignment method)

 	(libcst.metadata.Scope method)

 	get_transforms() (libcst.codemod.MagicArgsCodemodCommand method)

 	get_visitors() (libcst.BatchableCSTVisitor method)

 	Global (class in libcst)

 	globals (libcst.metadata.Scope attribute)

 	GlobalScope (class in libcst.metadata)

H

 	
 	handlers (libcst.Try attribute)

 	has_name() (libcst.metadata.QualifiedNameProvider static method)

 	has_trailing_newline (libcst.metadata.CodegenPartial attribute)

 	(libcst.Module attribute)

 	
 	header (libcst.IndentedBlock attribute)

 	(libcst.Module attribute)

I

 	
 	If (class in libcst)

 	IfExp (class in libcst)

 	ifs (libcst.CompFor attribute)

 	Imaginary (class in libcst)

 	Import (class in libcst)

 	IMPORT (libcst.metadata.QualifiedNameSource attribute)

 	ImportAlias (class in libcst)

 	ImportFrom (class in libcst)

 	ImportStar (class in libcst)

 	indent (libcst.EmptyLine attribute)

 	(libcst.IndentedBlock attribute)

 	(libcst.ParenthesizedWhitespace attribute)

 	IndentedBlock (class in libcst)

 	
 	Index (class in libcst)

 	initalized (libcst.matchers.TypeOf property)

 	inner_for_in (libcst.CompFor attribute)

 	insert_header_comments() (in module libcst.helpers)

 	Integer (class in libcst)

 	is_annotation (libcst.metadata.Access attribute)

 	is_in_use() (libcst.codemod.visitors.GatherUnusedImportsVisitor method)

 	is_type_hint (libcst.metadata.Access attribute)

 	item (libcst.From attribute)

 	(libcst.WithItem attribute)

 	items (libcst.With attribute)

 	iter (libcst.CompFor attribute)

 	(libcst.For attribute)

K

 	
 	key (libcst.DictComp attribute)

 	(libcst.DictElement attribute)

 	(libcst.matchers.MatchMetadata property)

 	(libcst.matchers.MatchMetadataIfTrue property)

 	
 	keyword (libcst.Arg attribute)

 	keywords (libcst.ClassDef attribute)

 	kwonly_params (libcst.Parameters attribute)

L

 	
 	Lambda (class in libcst)

 	last_line (libcst.ParenthesizedWhitespace attribute)

 	lbrace (libcst.Dict attribute)

 	(libcst.DictComp attribute)

 	(libcst.Set attribute)

 	(libcst.SetComp attribute)

 	lbracket (libcst.BaseList attribute)

 	(libcst.List attribute)

 	(libcst.ListComp attribute)

 	(libcst.Subscript attribute)

 	leading_lines (libcst.BaseCompoundStatement attribute)

 	(libcst.ClassDef attribute)

 	(libcst.Decorator attribute)

 	(libcst.Else attribute)

 	(libcst.ExceptHandler attribute)

 	(libcst.Finally attribute)

 	(libcst.For attribute)

 	(libcst.FunctionDef attribute)

 	(libcst.If attribute)

 	(libcst.SimpleStatementLine attribute)

 	(libcst.Try attribute)

 	(libcst.While attribute)

 	(libcst.With attribute)

 	leading_whitespace (libcst.SimpleStatementSuite attribute)

 	leave() (in module libcst.matchers)

 	left (libcst.BinaryOperation attribute)

 	(libcst.BooleanOperation attribute)

 	(libcst.Comparison attribute)

 	(libcst.ConcatenatedString attribute)

 	LeftCurlyBrace (class in libcst)

 	LeftParen (class in libcst)

 	LeftSquareBracket (class in libcst)

 	length (libcst.metadata.CodeSpan attribute)

 	LessThanEqual (class in libcst)

 	libcst.Add (built-in class)

 	libcst.AddAssign (built-in class)

 	libcst.And (built-in class)

 	libcst.BaseAugOp (built-in class)

 	libcst.BaseBinaryOp (built-in class)

 	libcst.BaseBooleanOp (built-in class)

 	libcst.BaseCompOp (built-in class)

 	libcst.BaseUnaryOp (built-in class)

 	libcst.BitAnd (built-in class)

 	libcst.BitAndAssign (built-in class)

 	libcst.BitInvert (built-in class)

 	libcst.BitOr (built-in class)

 	libcst.BitOrAssign (built-in class)

 	libcst.BitXor (built-in class)

 	libcst.BitXorAssign (built-in class)

 	libcst.Divide (built-in class)

 	libcst.DivideAssign (built-in class)

 	libcst.Equal (built-in class)

 	libcst.FloorDivide (built-in class)

 	libcst.FloorDivideAssign (built-in class)

 	libcst.GreaterThan (built-in class)

 	libcst.GreaterThanEqual (built-in class)

 	libcst.In (built-in class)

 	
 	libcst.Is (built-in class)

 	libcst.IsNot (built-in class)

 	libcst.LeftShift (built-in class)

 	libcst.LeftShiftAssign (built-in class)

 	libcst.LessThan (built-in class)

 	libcst.MatrixMultiply (built-in class)

 	libcst.MatrixMultiplyAssign (built-in class)

 	libcst.Minus (built-in class)

 	libcst.Modulo (built-in class)

 	libcst.ModuloAssign (built-in class)

 	libcst.Multiply (built-in class)

 	libcst.MultiplyAssign (built-in class)

 	libcst.Not (built-in class)

 	libcst.Power (built-in class)

 	libcst.PowerAssign (built-in class)

 	libcst.RightShift (built-in class)

 	libcst.RightShiftAssign (built-in class)

 	line (libcst.metadata.CodePosition attribute)

 	lines_after_decorators (libcst.ClassDef attribute)

 	(libcst.FunctionDef attribute)

 	List (class in libcst)

 	ListComp (class in libcst)

 	LOAD (libcst.metadata.ExpressionContext attribute)

 	LOCAL (libcst.metadata.QualifiedNameSource attribute)

 	lower (libcst.Slice attribute)

 	lpar (libcst.Attribute attribute)

 	(libcst.Await attribute)

 	(libcst.BaseList attribute)

 	(libcst.BinaryOperation attribute)

 	(libcst.BooleanOperation attribute)

 	(libcst.Call attribute)

 	(libcst.ClassDef attribute)

 	(libcst.Comparison attribute)

 	(libcst.ConcatenatedString attribute)

 	(libcst.Dict attribute)

 	(libcst.DictComp attribute)

 	(libcst.Ellipsis attribute)

 	(libcst.Float attribute)

 	(libcst.FormattedString attribute)

 	(libcst.GeneratorExp attribute)

 	(libcst.IfExp attribute)

 	(libcst.Imaginary attribute)

 	(libcst.ImportFrom attribute)

 	(libcst.Integer attribute)

 	(libcst.Lambda attribute)

 	(libcst.List attribute)

 	(libcst.ListComp attribute)

 	(libcst.Name attribute)

 	(libcst.Set attribute)

 	(libcst.SetComp attribute)

 	(libcst.SimpleString attribute)

 	(libcst.StarredElement attribute)

 	(libcst.Subscript attribute)

 	(libcst.Tuple attribute)

 	(libcst.UnaryOperation attribute)

 	(libcst.With attribute)

 	(libcst.Yield attribute)

M

 	
 	MagicArgsCodemodCommand (class in libcst.codemod)

 	make_fixture_data() (libcst.codemod.CodemodTest static method)

 	matcher (libcst.matchers.AtLeastN property)

 	(libcst.matchers.AtMostN property)

 	MatcherDecoratableTransformer (class in libcst.matchers)

 	MatcherDecoratableVisitor (class in libcst.matchers)

 	matches() (in module libcst.matchers)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	MatchIfTrue (class in libcst.matchers)

 	MatchMetadata (class in libcst.matchers)

 	MatchMetadataIfTrue (class in libcst.matchers)

 	MatchRegex() (in module libcst.matchers)

 	MaybeSentinel (class in libcst)

 	message (libcst.ParserSyntaxError attribute)

 	metadata (libcst.MetadataDependent attribute)

 	METADATA_DEPENDENCIES (libcst.codemod.visitors.GatherCommentsVisitor attribute)

 	(libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor attribute)

 	(libcst.codemod.visitors.GatherUnusedImportsVisitor attribute)

 	(libcst.codemod.visitors.RemoveImportsVisitor attribute)

 	(libcst.metadata.FullyQualifiedNameProvider attribute)

 	(libcst.metadata.QualifiedNameProvider attribute)

 	(libcst.metadata.ScopeProvider attribute)

 	(libcst.metadata.TypeInferenceProvider attribute)

 	(libcst.MetadataDependent attribute)

 	
 	metadata_manager (libcst.codemod.CodemodContext attribute)

 	MetadataDependent (class in libcst)

 	MetadataWrapper (class in libcst.metadata)

 	Module (class in libcst)

 	module (libcst.codemod.Codemod property)

 	(libcst.codemod.CodemodContext property)

 	(libcst.codemod.ContextAwareVisitor property)

 	(libcst.ImportFrom attribute)

 	(libcst.metadata.MetadataWrapper property)

 	msg (libcst.Assert attribute)

N

 	
 	n (libcst.matchers.AtLeastN property)

 	(libcst.matchers.AtMostN property)

 	Name (class in libcst)

 	name (libcst.AsName attribute)

 	(libcst.ClassDef attribute)

 	(libcst.ExceptHandler attribute)

 	(libcst.FunctionDef attribute)

 	(libcst.ImportAlias attribute)

 	(libcst.metadata.BaseAssignment attribute)

 	(libcst.metadata.QualifiedName attribute)

 	(libcst.NameItem attribute)

 	(libcst.Param attribute)

 	NameItem (class in libcst)

 	
 	names (libcst.codemod.visitors.GatherNamesFromStringAnnotationsVisitor attribute)

 	(libcst.Global attribute)

 	(libcst.Import attribute)

 	(libcst.ImportFrom attribute)

 	(libcst.Nonlocal attribute)

 	Newline (class in libcst)

 	newline (libcst.EmptyLine attribute)

 	(libcst.TrailingWhitespace attribute)

 	node (libcst.metadata.Access attribute)

 	(libcst.metadata.Assignment attribute)

 	nodes (libcst.FlattenSentinel attribute)

 	Nonlocal (class in libcst)

 	NotEqual (class in libcst)

 	NotIn (class in libcst)

O

 	
 	on_leave() (libcst.CSTTransformer method)

 	(libcst.CSTVisitor method)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	on_leave_attribute() (libcst.CSTTransformer method)

 	(libcst.CSTVisitor method)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	on_visit() (libcst.CSTTransformer method)

 	(libcst.CSTVisitor method)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	on_visit_attribute() (libcst.CSTTransformer method)

 	(libcst.CSTVisitor method)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	
 	OneOf (class in libcst.matchers)

 	operator (libcst.AugAssign attribute)

 	(libcst.BinaryOperation attribute)

 	(libcst.BooleanOperation attribute)

 	(libcst.ComparisonTarget attribute)

 	(libcst.UnaryOperation attribute)

 	options (libcst.matchers.AllOf property)

 	(libcst.matchers.OneOf property)

 	(libcst.matchers.TypeOf property)

 	Or (class in libcst)

 	orelse (libcst.For attribute)

 	(libcst.If attribute)

 	(libcst.IfExp attribute)

 	(libcst.Try attribute)

 	(libcst.While attribute)

 	OTHER (libcst.codemod.SkipReason attribute)

P

 	
 	parallel_exec_transform_with_prettyprint() (in module libcst.codemod)

 	ParallelTransformResult (class in libcst.codemod)

 	Param (class in libcst)

 	Parameters (class in libcst)

 	params (libcst.FunctionDef attribute)

 	(libcst.Lambda attribute)

 	(libcst.Parameters attribute)

 	ParamSlash (class in libcst)

 	ParamStar (class in libcst)

 	parent (libcst.metadata.Scope attribute)

 	ParenthesizedWhitespace (class in libcst)

 	ParentNodeProvider (class in libcst.metadata)

 	parse_expression() (in module libcst)

 	parse_module() (in module libcst)

 	parse_statement() (in module libcst)

 	
 	parse_template_expression() (in module libcst.helpers)

 	parse_template_module() (in module libcst.helpers)

 	parse_template_statement() (in module libcst.helpers)

 	parsed_python_version (libcst.PartialParserConfig attribute)

 	ParserSyntaxError (class in libcst)

 	PartialParserConfig (class in libcst)

 	parts (libcst.FormattedString attribute)

 	Pass (class in libcst)

 	Plus (class in libcst)

 	PositionProvider (class in libcst.metadata)

 	posonly_ind (libcst.Parameters attribute)

 	posonly_params (libcst.Parameters attribute)

 	prefix (libcst.FormattedString property)

 	(libcst.SimpleString property)

 	python_version (libcst.PartialParserConfig attribute)

Q

 	
 	QualifiedName (class in libcst.metadata)

 	QualifiedNameProvider (class in libcst.metadata)

 	
 	QualifiedNameSource (class in libcst.metadata)

 	quote (libcst.FormattedString property)

 	(libcst.SimpleString property)

R

 	
 	Raise (class in libcst)

 	raw_column (libcst.ParserSyntaxError attribute)

 	raw_line (libcst.ParserSyntaxError attribute)

 	raw_value (libcst.SimpleString property)

 	rbrace (libcst.Dict attribute)

 	(libcst.DictComp attribute)

 	(libcst.Set attribute)

 	(libcst.SetComp attribute)

 	rbracket (libcst.BaseList attribute)

 	(libcst.List attribute)

 	(libcst.ListComp attribute)

 	(libcst.Subscript attribute)

 	record_assignment() (libcst.metadata.Access method)

 	record_assignments() (libcst.metadata.Access method)

 	references (libcst.metadata.BaseAssignment property)

 	referents (libcst.metadata.Access property)

 	relative (libcst.ImportFrom attribute)

 	RemovalSentinel (class in libcst)

 	REMOVE (libcst.RemovalSentinel attribute)

 	remove_unused_import() (libcst.codemod.visitors.RemoveImportsVisitor static method)

 	remove_unused_import_by_node() (libcst.codemod.visitors.RemoveImportsVisitor static method)

 	RemoveFromParent() (in module libcst)

 	RemoveImportsVisitor (class in libcst.codemod.visitors)

 	replace() (in module libcst.matchers)

 	(libcst.matchers.MatcherDecoratableTransformer method)

 	(libcst.matchers.MatcherDecoratableVisitor method)

 	resolve() (libcst.metadata.MetadataWrapper method)

 	(libcst.MetadataDependent method)

 	resolve_cache() (libcst.metadata.FullRepoManager method)

 	resolve_many() (libcst.metadata.MetadataWrapper method)

 	Return (class in libcst)

 	returns (libcst.FunctionDef attribute)

 	right (libcst.BinaryOperation attribute)

 	(libcst.BooleanOperation attribute)

 	(libcst.ConcatenatedString attribute)

 	
 	RightCurlyBrace (class in libcst)

 	RightParen (class in libcst)

 	RightSquareBracket (class in libcst)

 	rpar (libcst.Attribute attribute)

 	(libcst.Await attribute)

 	(libcst.BaseList attribute)

 	(libcst.BinaryOperation attribute)

 	(libcst.BooleanOperation attribute)

 	(libcst.Call attribute)

 	(libcst.ClassDef attribute)

 	(libcst.Comparison attribute)

 	(libcst.ConcatenatedString attribute)

 	(libcst.Dict attribute)

 	(libcst.DictComp attribute)

 	(libcst.Ellipsis attribute)

 	(libcst.Float attribute)

 	(libcst.FormattedString attribute)

 	(libcst.GeneratorExp attribute)

 	(libcst.IfExp attribute)

 	(libcst.Imaginary attribute)

 	(libcst.ImportFrom attribute)

 	(libcst.Integer attribute)

 	(libcst.Lambda attribute)

 	(libcst.List attribute)

 	(libcst.ListComp attribute)

 	(libcst.Name attribute)

 	(libcst.Set attribute)

 	(libcst.SetComp attribute)

 	(libcst.SimpleString attribute)

 	(libcst.StarredElement attribute)

 	(libcst.Subscript attribute)

 	(libcst.Tuple attribute)

 	(libcst.UnaryOperation attribute)

 	(libcst.With attribute)

 	(libcst.Yield attribute)

S

 	
 	SaveMatchedNode() (in module libcst.matchers)

 	Scope (class in libcst.metadata)

 	scope (libcst.metadata.Access attribute)

 	(libcst.metadata.BaseAssignment attribute)

 	ScopeProvider (class in libcst.metadata)

 	scratch (libcst.codemod.CodemodContext attribute)

 	second_colon (libcst.Slice attribute)

 	Semicolon (class in libcst)

 	semicolon (libcst.AnnAssign attribute)

 	(libcst.Assert attribute)

 	(libcst.Assign attribute)

 	(libcst.AugAssign attribute)

 	(libcst.BaseSmallStatement attribute)

 	(libcst.Break attribute)

 	(libcst.Continue attribute)

 	(libcst.Del attribute)

 	(libcst.Expr attribute)

 	(libcst.Global attribute)

 	(libcst.Import attribute)

 	(libcst.ImportFrom attribute)

 	(libcst.Nonlocal attribute)

 	(libcst.Pass attribute)

 	(libcst.Raise attribute)

 	(libcst.Return attribute)

 	Set (class in libcst)

 	set_metadata() (libcst.BaseMetadataProvider method)

 	SetComp (class in libcst)

 	should_allow_multiple_passes() (libcst.codemod.Codemod method)

 	SimpleStatementLine (class in libcst)

 	SimpleStatementSuite (class in libcst)

 	
 	SimpleString (class in libcst)

 	SimpleWhitespace (class in libcst)

 	skip_description (libcst.codemod.TransformSkip attribute)

 	skip_reason (libcst.codemod.TransformSkip attribute)

 	SkipFile (class in libcst.codemod)

 	SkipReason (class in libcst.codemod)

 	skips (libcst.codemod.ParallelTransformResult attribute)

 	Slice (class in libcst)

 	slice (libcst.Subscript attribute)

 	(libcst.SubscriptElement attribute)

 	source (libcst.metadata.QualifiedName attribute)

 	star (libcst.Arg attribute)

 	(libcst.Index attribute)

 	(libcst.Param attribute)

 	star_arg (libcst.Parameters attribute)

 	star_kwarg (libcst.Parameters attribute)

 	StarredDictElement (class in libcst)

 	StarredElement (class in libcst)

 	start (libcst.FormattedString attribute)

 	(libcst.metadata.CodeRange attribute)

 	(libcst.metadata.CodeSpan attribute)

 	start_offset (libcst.metadata.CodegenPartial attribute)

 	step (libcst.Slice attribute)

 	STORE (libcst.metadata.ExpressionContext attribute)

 	store_stub_in_context() (libcst.codemod.visitors.ApplyTypeAnnotationsVisitor static method)

 	Subscript (class in libcst)

 	SubscriptElement (class in libcst)

 	Subtract (class in libcst)

 	SubtractAssign (class in libcst)

 	successes (libcst.codemod.ParallelTransformResult attribute)

T

 	
 	target (libcst.AnnAssign attribute)

 	(libcst.AssignTarget attribute)

 	(libcst.AugAssign attribute)

 	(libcst.CompFor attribute)

 	(libcst.Del attribute)

 	(libcst.For attribute)

 	targets (libcst.Assign attribute)

 	test (libcst.Assert attribute)

 	(libcst.CompIf attribute)

 	(libcst.If attribute)

 	(libcst.IfExp attribute)

 	(libcst.While attribute)

 	traceback_str (libcst.codemod.TransformFailure attribute)

 	trailing_whitespace (libcst.Decorator attribute)

 	(libcst.SimpleStatementLine attribute)

 	(libcst.SimpleStatementSuite attribute)

 	TrailingWhitespace (class in libcst)

 	
 	TRANSFORM (libcst.codemod.CodemodTest attribute)

 	transform_module() (in module libcst.codemod)

 	(libcst.codemod.Codemod method)

 	transform_module_impl() (libcst.codemod.Codemod method)

 	(libcst.codemod.CodemodCommand method)

 	(libcst.codemod.visitors.ApplyTypeAnnotationsVisitor method)

 	TransformExit (class in libcst.codemod)

 	TransformFailure (class in libcst.codemod)

 	TransformResult (in module libcst.codemod)

 	TransformSkip (class in libcst.codemod)

 	TransformSuccess (class in libcst.codemod)

 	Try (class in libcst)

 	Tuple (class in libcst)

 	type (libcst.ExceptHandler attribute)

 	type_parameters (libcst.ClassDef attribute)

 	(libcst.FunctionDef attribute)

 	TypeInferenceProvider (class in libcst.metadata)

 	TypeOf (class in libcst.matchers)

U

 	
 	UnaryOperation (class in libcst)

 	
 	unused_imports (libcst.codemod.visitors.GatherUnusedImportsVisitor attribute)

 	upper (libcst.Slice attribute)

V

 	
 	validate_types_deep() (libcst.CSTNode method)

 	validate_types_shallow() (libcst.CSTNode method)

 	value (libcst.AnnAssign attribute)

 	(libcst.Arg attribute)

 	(libcst.Assign attribute)

 	(libcst.Attribute attribute)

 	(libcst.AugAssign attribute)

 	(libcst.Comment attribute)

 	(libcst.DictComp attribute)

 	(libcst.DictElement attribute)

 	(libcst.Element attribute)

 	(libcst.Expr attribute)

 	(libcst.Float attribute)

 	(libcst.FormattedStringText attribute)

 	(libcst.Imaginary attribute)

 	(libcst.Index attribute)

 	(libcst.Integer attribute)

 	(libcst.matchers.MatchMetadata property)

 	(libcst.Name attribute)

 	(libcst.Newline attribute)

 	(libcst.NotEqual attribute)

 	(libcst.Return attribute)

 	(libcst.SimpleString attribute)

 	(libcst.SimpleWhitespace attribute)

 	(libcst.StarredDictElement attribute)

 	(libcst.StarredElement attribute)

 	(libcst.Subscript attribute)

 	(libcst.Yield attribute)

 	
 	visit() (in module libcst.matchers)

 	(libcst.CSTNode method)

 	(libcst.metadata.MetadataWrapper method)

 	(libcst.Module method)

 	visit_batched() (in module libcst)

 	(libcst.metadata.MetadataWrapper method)

 	VisitorBasedCodemodCommand (class in libcst.codemod)

 	VisitorMetadataProvider (class in libcst.metadata)

W

 	
 	warn() (libcst.codemod.Codemod method)

 	(libcst.codemod.ContextAwareVisitor method)

 	warning_messages (libcst.codemod.TransformExit attribute)

 	(libcst.codemod.TransformFailure attribute)

 	(libcst.codemod.TransformSkip attribute)

 	(libcst.codemod.TransformSuccess attribute)

 	warnings (libcst.codemod.CodemodContext attribute)

 	(libcst.codemod.ParallelTransformResult attribute)

 	While (class in libcst)

 	whitespace (libcst.EmptyLine attribute)

 	(libcst.TrailingWhitespace attribute)

 	whitespace_after (libcst.AssignEqual attribute)

 	(libcst.Asynchronous attribute)

 	(libcst.Colon attribute)

 	(libcst.Comma attribute)

 	(libcst.Dot attribute)

 	(libcst.LeftCurlyBrace attribute)

 	(libcst.LeftParen attribute)

 	(libcst.LeftSquareBracket attribute)

 	(libcst.LessThanEqual attribute)

 	(libcst.NotEqual attribute)

 	(libcst.NotIn attribute)

 	(libcst.Or attribute)

 	(libcst.ParamSlash attribute)

 	(libcst.Plus attribute)

 	(libcst.Semicolon attribute)

 	(libcst.Subtract attribute)

 	(libcst.SubtractAssign attribute)

 	whitespace_after_arg (libcst.Arg attribute)

 	whitespace_after_as (libcst.AsName attribute)

 	whitespace_after_assert (libcst.Assert attribute)

 	whitespace_after_at (libcst.Decorator attribute)

 	whitespace_after_await (libcst.Await attribute)

 	whitespace_after_class (libcst.ClassDef attribute)

 	whitespace_after_colon (libcst.DictComp attribute)

 	(libcst.DictElement attribute)

 	whitespace_after_def (libcst.FunctionDef attribute)

 	whitespace_after_del (libcst.Del attribute)

 	whitespace_after_else (libcst.IfExp attribute)

 	whitespace_after_equal (libcst.AssignTarget attribute)

 	whitespace_after_except (libcst.ExceptHandler attribute)

 	whitespace_after_expression (libcst.FormattedStringExpression attribute)

 	whitespace_after_for (libcst.CompFor attribute)

 	(libcst.For attribute)

 	whitespace_after_from (libcst.From attribute)

 	(libcst.ImportFrom attribute)

 	whitespace_after_func (libcst.Call attribute)

 	whitespace_after_global (libcst.Global attribute)

 	whitespace_after_if (libcst.IfExp attribute)

 	whitespace_after_import (libcst.Import attribute)

 	(libcst.ImportFrom attribute)

 	whitespace_after_in (libcst.CompFor attribute)

 	(libcst.For attribute)

 	whitespace_after_indicator (libcst.Annotation attribute)

 	whitespace_after_lambda (libcst.Lambda attribute)

 	whitespace_after_name (libcst.ClassDef attribute)

 	(libcst.FunctionDef attribute)

 	whitespace_after_nonlocal (libcst.Nonlocal attribute)

 	whitespace_after_param (libcst.Param attribute)

 	whitespace_after_raise (libcst.Raise attribute)

 	whitespace_after_return (libcst.Return attribute)

 	
 	whitespace_after_star (libcst.Arg attribute)

 	(libcst.Index attribute)

 	(libcst.Param attribute)

 	whitespace_after_test (libcst.If attribute)

 	whitespace_after_type_parameters (libcst.ClassDef attribute)

 	(libcst.FunctionDef attribute)

 	whitespace_after_value (libcst.Subscript attribute)

 	whitespace_after_while (libcst.While attribute)

 	whitespace_after_with (libcst.With attribute)

 	whitespace_after_yield (libcst.Yield attribute)

 	whitespace_before (libcst.AssignEqual attribute)

 	(libcst.Colon attribute)

 	(libcst.Comma attribute)

 	(libcst.CompFor attribute)

 	(libcst.CompIf attribute)

 	(libcst.Dot attribute)

 	(libcst.LessThanEqual attribute)

 	(libcst.NotEqual attribute)

 	(libcst.NotIn attribute)

 	(libcst.Or attribute)

 	(libcst.RightCurlyBrace attribute)

 	(libcst.RightParen attribute)

 	(libcst.RightSquareBracket attribute)

 	(libcst.Semicolon attribute)

 	(libcst.Subtract attribute)

 	(libcst.SubtractAssign attribute)

 	whitespace_before_args (libcst.Call attribute)

 	whitespace_before_as (libcst.AsName attribute)

 	whitespace_before_colon (libcst.ClassDef attribute)

 	(libcst.DictComp attribute)

 	(libcst.DictElement attribute)

 	(libcst.Else attribute)

 	(libcst.ExceptHandler attribute)

 	(libcst.Finally attribute)

 	(libcst.For attribute)

 	(libcst.FunctionDef attribute)

 	(libcst.Try attribute)

 	(libcst.While attribute)

 	(libcst.With attribute)

 	whitespace_before_else (libcst.IfExp attribute)

 	whitespace_before_equal (libcst.AssignTarget attribute)

 	whitespace_before_expression (libcst.FormattedStringExpression attribute)

 	whitespace_before_from (libcst.From attribute)

 	whitespace_before_if (libcst.IfExp attribute)

 	whitespace_before_import (libcst.ImportFrom attribute)

 	whitespace_before_in (libcst.CompFor attribute)

 	(libcst.For attribute)

 	whitespace_before_indicator (libcst.Annotation attribute)

 	whitespace_before_params (libcst.FunctionDef attribute)

 	whitespace_before_test (libcst.CompIf attribute)

 	(libcst.If attribute)

 	whitespace_before_value (libcst.StarredDictElement attribute)

 	(libcst.StarredElement attribute)

 	whitespace_between (libcst.ConcatenatedString attribute)

 	(libcst.NotIn attribute)

 	WhitespaceInclusivePositionProvider (class in libcst.metadata)

 	With (class in libcst)

 	with_changes() (libcst.CSTNode method)

 	with_deep_changes() (libcst.CSTNode method)

 	WithItem (class in libcst)

 	wrapper (libcst.codemod.CodemodContext attribute)

Y

 	
 	Yield (class in libcst)

Z

 	
 	ZeroOrMore() (in module libcst.matchers)

 	
 	ZeroOrOne() (in module libcst.matchers)

 _images/graphviz-5abc4ec20945fe144f1e6bf5595e17c6293ea371.png

_images/graphviz-5c2de0e04145e667464d63da6d46626de5d9592a.png

nav.xhtml

 Table of Contents

 		
 LibCST

 		
 Why LibCST?

 		
 Abstract Syntax Trees (AST)

 		
 Concrete Syntax Trees (CST)

 		
 LibCST

 		
 Motivation

 		
 Exact Representation

 		
 Ease of Traversal

 		
 Ease of Modification

 		
 Well Tested

 		
 Parsing and Visitors

 		
 Parse Source Code

 		
 Example: add typing annotation from pyi stub file to Python source

 		
 Build Visitor or Transformer

 		
 Generate Source Code

 		
 Metadata

 		
 Providing Metadata

 		
 Line and Column Metadata

 		
 Accessing Metadata

 		
 Using the MetadataWrapper

 		
 Using Dependency Declaration

 		
 Scope Analysis

 		
 Warn on unused imports and undefined references

 		
 Automatically Remove Unused Import

 		
 Matchers

 		
 Basic Matcher Usage

 		
 Matcher Decorators

 		
 Codemodding

 		
 Setting up and Running Codemods

 		
 Writing a Codemod

 		
 Testing Codemods

 		
 Best Practices

 		
 Avoid isinstance when traversing

 		
 Prefer updated_node when modifying trees

 		
 Provide a config when generating code from templates

 		
 Parsing

 		
 parse_module()

 		
 parse_expression()

 		
 parse_statement()

 		
 PartialParserConfig

 		
 PartialParserConfig.python_version

 		
 PartialParserConfig.parsed_python_version

 		
 PartialParserConfig.encoding

 		
 PartialParserConfig.future_imports

 		
 PartialParserConfig.default_indent

 		
 PartialParserConfig.default_newline

 		
 Syntax Errors

 		
 ParserSyntaxError

 		
 Nodes

 		
 CSTNode

 		
 CSTNode

 		
 Module

 		
 Module

 		
 Expressions

 		
 BaseExpression

 		
 Names and Object Attributes

 		
 Operations and Comparisons

 		
 Control Flow

 		
 Lambdas and Function Calls

 		
 Literal Values

 		
 Collections

 		
 Comprehensions

 		
 Subscripts and Slices

 		
 Parenthesis, Brackets, and Braces

 		
 Statements

 		
 Simple Statements

 		
 Compound Statements

 		
 Helper Nodes

 		
 Statement Blocks

 		
 Operators

 		
 Unary Operators

 		
 Boolean Operators

 		
 Binary Operators

 		
 Comparison Operators

 		
 Augmented Assignment Operators

 		
 Miscellaneous

 		
 AssignEqual

 		
 Colon

 		
 Comma

 		
 Dot

 		
 ImportStar

 		
 Semicolon

 		
 Whitespace

 		
 Comment

 		
 EmptyLine

 		
 Newline

 		
 ParenthesizedWhitespace

 		
 SimpleWhitespace

 		
 TrailingWhitespace

 		
 BaseParenthesizableWhitespace

 		
 Maybe Sentinel

 		
 MaybeSentinel

 		
 Visitors

 		
 CSTVisitor

 		
 CSTVisitor.on_visit()

 		
 CSTVisitor.on_leave()

 		
 CSTVisitor.on_visit_attribute()

 		
 CSTVisitor.on_leave_attribute()

 		
 CSTTransformer

 		
 CSTTransformer.on_visit()

 		
 CSTTransformer.on_leave()

 		
 CSTTransformer.on_visit_attribute()

 		
 CSTTransformer.on_leave_attribute()

 		
 RemoveFromParent()

 		
 RemovalSentinel

 		
 RemovalSentinel.REMOVE

 		
 FlattenSentinel

 		
 FlattenSentinel.nodes

 		
 Visit and Leave Helper Functions

 		
 Traversal Order

 		
 Batched Visitors

 		
 BatchableCSTVisitor

 		
 visit_batched()

 		
 Metadata

 		
 Metadata APIs

 		
 Accessing Metadata

 		
 Providing Metadata

 		
 Metadata Providers

 		
 Position Metadata

 		
 Expression Context Metadata

 		
 Scope Metadata

 		
 Qualified Name Metadata

 		
 Parent Node Metadata

 		
 File Path Metadata

 		
 Type Inference Metadata

 		
 Matchers

 		
 Matcher APIs

 		
 Functions

 		
 Decorators

 		
 Traversal Order

 		
 Matcher Types

 		
 Concrete Matchers

 		
 Special Matchers

 		
 Sequence Wildcard Matchers

 		
 Codemods

 		
 Codemod Base

 		
 Codemod

 		
 CodemodContext

 		
 ContextAwareTransformer

 		
 ContextAwareVisitor

 		
 SkipFile

 		
 CodemodTest

 		
 Execution Interface

 		
 transform_module()

 		
 TransformResult

 		
 TransformSuccess

 		
 TransformFailure

 		
 TransformSkip

 		
 SkipReason

 		
 TransformExit

 		
 Command-Line Support

 		
 CodemodCommand

 		
 VisitorBasedCodemodCommand

 		
 MagicArgsCodemodCommand

 		
 Command-Line Toolkit

 		
 gather_files()

 		
 exec_transform_with_prettyprint()

 		
 parallel_exec_transform_with_prettyprint()

 		
 ParallelTransformResult

 		
 diff_code()

 		
 Library of Transforms

 		
 GatherImportsVisitor

 		
 GatherExportsVisitor

 		
 AddImportsVisitor

 		
 RemoveImportsVisitor

 		
 ApplyTypeAnnotationsVisitor

 		
 GatherUnusedImportsVisitor

 		
 GatherCommentsVisitor

 		
 GatherNamesFromStringAnnotationsVisitor

 		
 Helpers

 		
 Construction Helpers

 		
 parse_template_module()

 		
 parse_template_expression()

 		
 parse_template_statement()

 		
 Transformation Helpers

 		
 insert_header_comments()

 		
 Traversing Helpers

 		
 get_full_name_for_node()

 		
 get_full_name_for_node_or_raise()

 		
 ensure_type()

 		
 Experimental APIs

 		
 Reentrant Code Generation

 		
 ExperimentalReentrantCodegenProvider

 		
 CodegenPartial

_images/graphviz-d27e3495fa9bb130d76879db599060e8039a9fc5.png
gody[0] trailing_whitespace

TrailingWhitespace

hitespace comment
SimpleWhitespace @
unc args[0] args[1] value alue

value

hitespace_after

n SimpleWhitespace

alue

_images/python_scopes.png
builtin scope

ITERATIONS = 10 global scope

class_attribute = 20

i

for i in range(ITERATIONS):

return [
i foriin range(10)

]

Cls().fn()

_static/horizontal_white_sidebar.png
82 LiIbCST

_static/file.png

_static/minus.png

_static/plus.png

_static/logo/favicon_16px.png

_static/img/python_scopes.png
builtin scope

ITERATIONS = 10 global scope

class_attribute = 20

i

for i in range(ITERATIONS):

return [
i foriin range(10)

]

Cls().fn()

_static/logo/favicon_32px.png

_static/logo/horizontal_white_sidebar.png
82 LiIbCST

