
libCellML Documentation
Release latest

Mar 22, 2021

Contents

1 Contents: 1
1.1 Roadmap . 1
1.2 Current Thinking for libCellML . 3
1.3 Use-cases for libCellML . 4
1.4 libCellML Object Model . 6
1.5 API Documentation . 6
1.6 Coverage Statistics . 10
1.7 Development Setup . 10
1.8 Building libCellML . 15
1.9 Submitting Code for Testing . 18
1.10 Contributing . 18
1.11 Review Process . 23
1.12 Coding Standard . 24
1.13 Contributors . 25
1.14 Glossary . 25
1.15 Options . 26

2 Indices and tables 27

3 Supported by: 29

Index 31

i

ii

CHAPTER 1

Contents:

1.1 Roadmap

Updated: 29 May 2019.

The current roadmap had evolved from that present in the 0.1.0 release of libCellML.

Each milestone may consist of several ‘releases’ and future requirements may impact the design and implementation
of earlier releases of libCellML. Major changes in the API will be accepted up to the release of libCellML version
1.0.0.

Contents

• Roadmap

– High level objectives

– Environment

* Requirements

– Milestone 1: Python bindings, validation, code generation, and documentation

– Milestone 2: units, JavaScript, and resets

– Milestone 3: DAE models

– Milestone 4: advanced capabilities

1.1.1 High level objectives

libCellML is focused on CellML 2.0 and beyond.

• The implementation of libCellML should be driven by the requirements for supporting CellML 2.0 and beyond.

1

https://libcellml.readthedocs.io/en/0.1.0/roadmap.html

libCellML Documentation, Release latest

– libCellML should be designed to support the CellML specification with the flexibility for extra restrictions,
constraints, or additions coming from future proposals for changing the specification.

• libCellML should be able to parse models in CellML 2.0 and newer versions of the specification.

• libCellML will only serialise models to the current version of the specification.

1.1.2 Environment

This section will specify the environment for the development of libCellML.

• GitHub to host the primary libCellML source repository and issue tracker under the CellML organisation (cur-
rent and former editorial board members).

• Development language: C++ with SWIG bindings.

• Build: CMake for generating cross-platform build rules.

• Test: using Buildbot on the ABI BaTS to run continuous integration testing.

• Test: unit testing to use gtest.

• Documentation: written in reStructuredText.

• Documentation: API and source code examples will be documented using C++-style Doxygen comments.

Requirements

• Documentation: made available on readthedocs.io. Read the Docs uses Sphinx for generating documentation.

• Documentation: is amenable for inclusion in external documentation efforts

• Development: Agile, test driven development where:

– Functionality is more important than API stability in early releases.

– Release early and often.

• Development: code review prior to acceptance into the primary repository using the pull request feature on
GitHub.

• Development: objectives are added and broken down into incremental tasks.

• Development: a single task should be no more than two weeks.

We should avoid using non-standard system libraries unless there is a compelling reason. Once features are available,
the API can be fine tuned in consultation with the CellML community.

1.1.3 Milestone 1: Python bindings, validation, code generation, and documenta-
tion

1. Python bindings.

1. Wrap the libCellML API using Swig to be able to generate Python bindings for the library.

2. Package the bindings so they can be easily installed across Windows, Linux, and macOS.

2. Load a CellML 2.0 model and validate it.

1. Validate models against the rules defined in the current draft of the CellML 2.0 specification (currently an
active document, outstanding issues regarding the new reset construct are likely to require updates to
the validation implementation).

2 Chapter 1. Contents:

https://github.com/
https://github.com/cellml
http://www.swig.org/
http://www.cmake.org/
http://buildbot.net/
https://code.google.com/p/googletest/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://www.doxygen.org/
https://readthedocs.io/
http://sphinx-doc.org/
https://help.github.com/articles/using-pull-requests
https://github.com/

libCellML Documentation, Release latest

3. Code generation.

1. Focus on non-DAE models.

2. Generate code for any simulatable non-DAE CellML model in PMR (i.e., translated from CellML 1.0/1.1).

3. Guide the code generated for a given model (e.g., a variable to be controlled from an external data source,
SED-ML defined changes, etc.).

4. Documentation available.

1. API.

2. Tutorials/documented code examples.

3. Integrating libCellML into common IDEs (Visual Studio, Qt Creator, and PyCharm).

4. Provide documentation on the installation and use of the Python bindings across Windows, Linux, and
macOS.

1.1.4 Milestone 2: units, JavaScript, and resets

1. Units.

1. Checking units within mathematical expressions.

2. Debugging assistance for model authors regarding units.

2. JavaScript.

1. Use Emscripten to create a JavaScript API for libCellML.

2. Provide a suitable packaged version of the JavaScript API for integration in common JavaScript environ-
ments (e.g., Node, Webpack).

3. Document the installation and use of the JavaScript API.

3. Resets.

1. Extend libCellML implementation to fully support resets.

1.1.5 Milestone 3: DAE models

1. DAE models.

1. Code generation support for models with DAEs.

1.1.6 Milestone 4: advanced capabilities

1. High-order model manipulation (recall the discussion with Andrew McCulloch at the 8th CellML workshop).

1. Again, it is outside the scope of libCellML, but helping tool developers provide these kinds of services is
very important.

1.2 Current Thinking for libCellML

This document simply outlines some of the current rationale that has an influence on how the codebase is developed.

1.2. Current Thinking for libCellML 3

libCellML Documentation, Release latest

• Temporarily dealing with external documents that are stored on the local file system (relative to the current
CellML model document).

– Allows testing of the most common model import scenario (local files addressed with a relative URL).

– Absolves libcellml from fetching files and communicating across the Internet.

– Expect to provide another layer that would perform this role as a libCellML I/O library, which would allow
the removal of this temporary inclusion.

– No avenue to retrieve remote external references.

• Serialise and deserialise from a string.

• Present a useful interface not one tied to the XML serialisation structure.

• Validation is quite separate (you are free to make invalid CellML models).

• Public API treats MathML as strings only.

– Internal to the code generation we are currently creating our own MathML object model based on an
abstract syntax tree.

– Minimal implementation to support the immediate requirement of code generation.

– Expect to provide another layer that would handle MathML as a separate thing, potentially linking back to
the advanced functionality envisions for symbolic analysis of the model.

– Internal to the validator, the MathML strings are parsed into a DOM for use in schema validation against
the MathML schema.

1.3 Use-cases for libCellML

1. Create: create a model from scratch and serialise it to XML (in each case the test is that the serialised model
matches manually validated XML documents)

i. an empty model

ii. a model with a valid name

iii. a model with an invalid name

iv. a model with a single component

a. a component with a valid name

b. a component with an invalid name

v. a model with two or more components

vi. a model with three components and an encapsulation hierarchy

a. one component encapsulating two children

b. one component encapsulating a single child which in turn encapsulates a single child

c. an invalid cyclical encapsulation hierarchy

vii. manipulation of a model with multi-level component encapsulation hierarchy

a. remove a top-level component

b. remove an encapsulated child component

c. change the name of a top-level component

4 Chapter 1. Contents:

https://www.w3.org/XML/
https://www.cellml.org/
https://www.w3.org/Math/
https://www.w3.org/XML/
https://www.w3.org/XML/

libCellML Documentation, Release latest

d. change the name of an encapsulated child component

e. replace one component with a new component

f. take a component (remove the component and return it to the user)

g. determine if a component with a given name exists in a model or component

h. determine the number of components encapsulated by a model or component

viii. a model with imported components

a. import a component from a model

b. import two components from the same model as separate components

c. import a component into a hierarchy

d. import a component from a non-existent URL

ix. a model with units

a. a single base units with valid name

b. a single base units with an invalid name

c. a units which defines micro-Ampere * Kelvin / milli-siemens

d. the units from 1.ix.a and 1.ix.c and multiplies them

e. create a new base units e.g. ‘pH’

x. a model with imported units

a. import a units from a model

1. with a valid name

2. with an invalid name

b. import a units from a non-existent URL

c. import a units from a model and scale it, prefix it, offset it, exponentise it

xi. a model with variables

a. model from 1.iv.a and define a variable with a valid name and units dimensionless

1. with a valid variable initial value of 0.0

2. with a private interface

b. model from 1.iv.a and define a variable with an invalid name and units dimensionless

c. model from 1.iv.a and define a variable with a valid name and invalid units name.

d. a model with a single component containing two variables.

1. with valid variable initial values of 1.0 and -1.0, respectively.

2. one with an initial value of 1.0 and the other with an initial value of the first variable.

3. with one public and one public_and_private interface, respectively.

xii. a model with connections

a. model from 1.vi.a, each child containing a single variable

1. with a private interface in the parent and public interface in the child components and connect the
variable in both children to the parent.

1.3. Use-cases for libCellML 5

libCellML Documentation, Release latest

2. with a public interface in all components and connect the variables in the children to the parent

xiii. a model with maths and variables

a. model from 1.xi.d.1 and define valid maths

xiv. a model with maths, variables and connections

a. model with two components, each containing two variables, maths, and one connection

2. Modify: modify models from 1.

i. add {components, units, maths, variables, connections}

ii. remove {components, units, maths, variables, connections}

iii. update {components, units, maths, model attributes, variables, connections}

3. Load: load each of the models from 1 and 2 (new models can be added for this part if required).

i. a model with imported components

a. a single component

b. a component with a hierarchy

c. a component from a non-existent URL

4. Validate: create, load, and modify models and then validate them (the test is that the models are correctly
identified as valid or invalid, and for the case when they are invalid the correct reason is given, covering each
rule in the specification).

5. Import CellML 1.0/1.1 models.

6. Export CellML 1.1 (and by extension CellML 1.0).

1.4 libCellML Object Model

1.4.1 Introduction

The object model described by this document is a very high level conceptual design. The focus is on a design to
support the initial use cases from the use case document Use-cases for libCellML. This document is organic and is
expected to change in accordance with community decisions/discussion.

1.4.2 Overview of Object Model

1.4.3 Object Model for Use Cases 1 - 4

1.5 API Documentation

The API is documented through Doxygen, the generated files are available here.

Note: The Doxygen API documentation pages are not currently available on readthedocs.

6 Chapter 1. Contents:

code/index.html
http://libcellml.readthedocs.io/en/latest/

libCellML Documentation, Release latest

1.5. API Documentation 7

libCellML Documentation, Release latest

8 Chapter 1. Contents:

libCellML Documentation, Release latest

1.5. API Documentation 9

libCellML Documentation, Release latest

1.6 Coverage Statistics

The output from the coverage testing using gcov is available here.

Note: The coverage testing pages are not currently available on Read the Docs. The coverage test sometimes (this
behaviour has been observed on macOS using Clang) reports single lines containing only a closing curly brace as not
covered. This is currently being treated as a false positive. This can be seen in the ‘Missing’ column of the test report
where only single lines are reported. For the case discussed here, the reported line should only contain a single closing
curly brace. In this situation, we will accept the missed coverage report.

1.7 Development Setup

This section describes how someone wanting to contribute to the libCellML project should set up their working copy
for developing libCellML.

Contents

• Development Setup

– Overview

– Pre-requisite acquisition

* Git

* CMake

* Toolchain

· Windows

* LibXml2

* Python bindings

– Optional tools

* Ninja

* clcache / ccache

– Setting up the codebase

* Forking your own copy

* Clone

* Set Git remotes

– Finally

1.7.1 Overview

The libCellML codebase is hosted on GitHub and therefore Git is used to track changes. Before you begin, you will
need to have a few pre-requisites satisfied:

10 Chapter 1. Contents:

coverage/index.html
http://libcellml.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/MacOS
https://clang.llvm.org/
https://github.com/
https://git-scm.com/

libCellML Documentation, Release latest

1. GitHub user account (for the rest of this document we will call our user andre).

2. Git.

3. CMake.

4. Toolchain for building software (dependent on the operating system).

5. LibXml2.

Some optional tools can also be used to speed up compilation:

1. Ninja.

2. clcache (on Windows) / ccache (on Linux and macOS).

1.7.2 Pre-requisite acquisition

In this section, we cover the retrieval and installation of pre-requisites.

Git

Creating a GitHub user account is straightforward and can be done here. Installing a Git client is particular to each
operating system and some pointers are offered below:

• Windows Git is available from a variety of vendors.

We commonly use Git for windows, but other popular Git implementations are:

• GitHub Desktop

• GitKracken

• Git SCM

• Ubuntu (and other Linux distributions) Git can be installed using the package manager with the command sudo
apt install git.

• macOS Git is pre-installed and available from the command line.

CMake

CMake is the cross-platform family of tools designed to build, test and package software. CMake is used to control
the software compilation process using simple platform and compiler independent configuration files, and to generate
native makefiles and workspaces that can be used in the compiler environment of your choice.

Again, installation of CMake is particular to each operating system. For Ubuntu (and other Linux distributions),
CMake can be installed using the package manager with the command sudo apt install cmake. For Windows
and macOS, CMake provides installation binaries. Choose the binary appropriate for your operating system and follow
the installation instructions.

Toolchain

The toolchain specifies the compiler that we will use to build libCellML. Toolchains are highly dependent on the
operating system. When we test libCellML, we currently use Visual Studio on Windows, GCC on Ubuntu, and Clang
on macOS. We recommend using these compilers on these systems, but feel free to use a different toolchain. We
sometimes use the Intel C++ compiler to build libCellML, but we do not (at the time of writing) test with it.

1.7. Development Setup 11

https://github.com/
https://git-scm.com/
https://cmake.org/
http://xmlsoft.org/
https://ninja-build.org/
https://github.com/frerich/clcache
https://en.wikipedia.org/wiki/Microsoft_Windows
https://ccache.dev/
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://github.com/
https://github.com/join
https://git-scm.com/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://git-scm.com/
http://gitforwindows.org/
https://git-scm.com/
https://desktop.github.com/
https://www.gitkraken.com/
https://git-scm.com/
https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Linux
https://git-scm.com/
https://en.wikipedia.org/wiki/MacOS
https://git-scm.com/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Linux
https://cmake.org/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://cmake.org/
https://cmake.org/download/
https://visualstudio.microsoft.com/downloads/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://gcc.gnu.org/
https://en.wikipedia.org/wiki/Ubuntu
https://clang.llvm.org/
https://en.wikipedia.org/wiki/MacOS
https://software.intel.com/en-us/c-compilers

libCellML Documentation, Release latest

The following sub-sections provide guidance on how to install the recommended toolchain on the major operating
systems that libCellML supports.

Windows

Visual Studio is available to download from here. We currently test with Visual Studio 2015 (version 14), but later
versions are known to work. The Community edition is more than sufficient for the needs of libCellML. To minimize
the size of the installation, you may install only the C++ compiler. This component (and its requirements) is sufficient
for building libCellML.

LibXml2

LibXml2 is already installed on macOS, so no further action is required on that platform. On Windows, we must install
LibXml2 using the recommended implementation available from here while on Ubuntu LibXml2 can be installed using
sudo apt install libxml2-dev.

Python bindings

Optional Python bindings are provided using SWIG. To compile the bindings, a SWIG installation is required, as well
as a Python 2 or Python 3 installation (including the development packages on Linux systems, e.g. python-dev).
Creation of Python bindings can be enabled/disabled at configuration time.

1.7.3 Optional tools

Ninja

Ninja is a replacement for make. It can be downloaded from here. Alternatively, on Ubuntu (and other Linux distri-
butions), it can be installed using the package manager with the command sudo apt install ninja-build.
On macOS, it can be installed using Homebrew with the command brew install ninja.

clcache / ccache

clcache (on Windows) and ccache (on Linux and macOS) are compiler caches. They cache compilations, which means
that the first time they are used, compilation will be slower than normal. However, subsequent compilations will be
significantly faster.

clcache can be downloaded and installed from here. Note that it will only work with paths that do not contain spaces.
So, if you installed the recommended implementation of LibXml2, you will need to move it to a location that does
not contain spaces and update your PATH accordingly (or uninstall LibXml2 and reinstall it in a PATH that does not
contain spaces).

On Ubuntu (and other Linux distributions), ccache can be installed using the package manager with the command
sudo apt install ccache. Alternatively, you can get the latest version from here, and build it and install it
yourself:

./configure --prefix=/usr
make -j
sudo make install

On macOS, ccache can be installed using Homebrew with the command brew install ccache.

12 Chapter 1. Contents:

https://visualstudio.microsoft.com/downloads/
http://xmlsoft.org/
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
http://xmlsoft.org/
https://github.com/OpenCMISS-Dependencies/libxml2/releases
https://en.wikipedia.org/wiki/Ubuntu
http://xmlsoft.org/
http://www.swig.org/
http://www.swig.org/
https://en.wikipedia.org/wiki/Linux
https://ninja-build.org/
https://github.com/ninja-build/ninja/releases
https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Linux
https://brew.sh/
https://github.com/frerich/clcache
https://en.wikipedia.org/wiki/Microsoft_Windows
https://ccache.dev/
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://github.com/frerich/clcache
https://github.com/frerich/clcache/releases/
http://xmlsoft.org/
https://en.wikipedia.org/wiki/Ubuntu
https://en.wikipedia.org/wiki/Linux
https://ccache.dev/
https://ccache.dev/download.html
https://en.wikipedia.org/wiki/MacOS
https://ccache.dev/
https://brew.sh/

libCellML Documentation, Release latest

1.7.4 Setting up the codebase

The remainder of this document assumes that the above pre-requisites have been met. It covers setup from the com-
mand line. If you are using a GUI like GitHub Desktop then you will need to adjust the commands for the GUI you
are using.

The goal here is to get a working copy of source code, tests, and documentation onto your computer so that you can
begin development. To make this happen, you will need to fork the prime libCellML repository, make a clone onto your
computer, and set up the Git remotes. In fig_devSetup_githubRepos, you can see a pictorial representation of
what we are aiming to achieve.

Fig. 1: Setup of repositories for development.

The four steps to getting set up are detailed below.

Forking your own copy

Login to GitHub using your credentials and go to https://github.com/cellml/libcellml.

Use the fork button to create a libcellml repository under your own account, see fig_devSetup_githubFork for
locating this button.

Clone

You now need to clone the libCellML repository to your computer. You do this by going to your fork (in this example
user andre’s fork) at https://github.com/andre/libcellml.

1.7. Development Setup 13

https://en.wikipedia.org/wiki/Graphical_user_interface
https://desktop.github.com/
https://en.wikipedia.org/wiki/Graphical_user_interface
https://git-scm.com/
https://github.com/
https://github.com/cellml/libcellml
https://github.com/andre/libcellml

libCellML Documentation, Release latest

Fig. 2: Fork button for libCellML repository.

Warning: Do not try and clone this location substitute your GitHub username for andre. In all likelihood, it does
not exist.

On the right hand side of the webpage, on your fork of the repository, you can get the link for cloning the repository
to your computer, in our example:

https://github.com/andre/libcellml.git

Now clone the repository:

cd <somewhere/you/keep/development/code>
git clone https://github.com/andre/libcellml.git

Note: again, do not clone this location substitute your GitHub username for andre.

Set Git remotes

You now need to setup a read-only remote connection to the prime libCellML repository. Given that you are still in
the directory where you cloned the libCellML repository from, do the following:

cd libcellml
git remote add prime https://github.com/cellml/libcellml.git
git config remote.prime.pushurl "You really did not want to do that!"

You have now added a new remote named prime and set origin as the default fetch and push location to point
at repositories under your control on GitHub. Here, prime is a reference to the main definitive repository where
releases are made from for the libCellML project. You have also set the prime repository as read-only by setting an
invalid push URL.

14 Chapter 1. Contents:

https://github.com/
https://github.com/
https://github.com/

libCellML Documentation, Release latest

1.7.5 Finally

You are all done and ready to start development, read Building on how to build libCellML. Then, read Contribution to
get your changes into libCellML’s prime repository.

1.8 Building libCellML

This document covers building libCellML from source. It is assumed that you already have the codebase downloaded
and ready for building. The variable LIBCELLML_SRC shall be used to refer to the directory containing the LICENSE
file for libCellML.

1.8.1 Build Directory

It is best to build libCellML outside of the source tree. To this end, create a build directory that is not the
LIBCELLML_SRC directory. A sibling directory of LIBCELLML_SRC is a good choice, named something like
build or libcellml-build. The variable LIBCELLML_BUILD shall be used to refer to the build directory.

1.8.2 Configuration

The libCellML library uses the CMake build configuration tool to configure the library. Version 3.2 or greater of
CMake is required to configure libCellML.

The configuration options for the library are detailed in the following table. The command line options can be set
with the -D flag, like so -DBUILD_TYPE=Release. Please note that in CMake GUI Configuration applications,
the config variable is prefixed with LIBCELLML_

Options

Config Default Description
BUILD_SHARED ON Build shared libraries (so, dylib, DLLs).
BUILD_TYPE Release The type of build Release, Debug, etc.
COMPILER_CACHE ON Enable compiler cache (if available).
COVERAGE ON Enable coverage testing (if available).
INSTALL_PREFIX /usr/lib Install path prefix (platform specific).
MEMCHECK ON Enable memcheck testing (if available).
TWAE * ON Treat warnings as errors.
UNIT_TESTS ON Enable tests.

* In CMake GUI Configuration applications this option is given in full
LIBCELLML_TREAT_WARNINGS_AS_ERRORS

From the command line (bash shell), libCellML can be configured to create an optimised shared object library like so:

cd $LIBCELLML_BUILD
cmake -DBUILD_TYPE=Release $LIBCELLML_SRC

1.8. Building libCellML 15

https://cmake.org/
https://cmake.org/
https://cmake.org/

libCellML Documentation, Release latest

Windows

When configuring libCellML on Windows, we may need to set the location of the LibXml2 library, which is dependent
on the computer’s environment settings. We can set the location of the LibXml2 library when we configure libCellML.
When we configure libCellML, the location of LibXml2 can be specified through the command line by adding the
parameter:

-DLibXml2_DIR="C:\Program Files\libxml2 2.9.6\lib\cmake"

to the configuration command. This assumes that the recommended LibXml2 binaries have been installed to the
default location C:\Program Files\libxml2 2.9.6. Please note that this method will only work with the
recommended LibXml2 binaries, LibXml2 binaries from other sources will not work in this way.

Windows CMake-GUI

When we use the CMake-GUI application on Windows, we first set the location of the source files and the location for
the generated build files. fig_devBuilding_windowsCMakeGUISourceBuildDirs shows the source files
directory and the build directory set for user andre.

Fig. 3: CMake-GUI with source and build directores set for user andre.

When we press the Configure button, CMake performs an initial configuration. This initial configura-
tion is likely to encounter an error because CMake is not able to find LibXml2. We can see in
fig_devBuilding_windowsCMakeConfigurationError that this has happened for user andre.

We can resolve this error easily if we set the value of the LibXml2_DIR variable to the location of the LibXml2
cmake directory. fig_devBuilding_windowsCMakeLibXml2DIRNotFound shows the LibXml2_DIR
variable with the value of LibXml2_DIR-NOTFOUND.

Setting the value of LibXml2_DIR to C:\Program Files\libxml2 2.9.6\lib\cmake and configuring
again will result in a successful configuration (fig_devBuilding_windowsCMakeLibXml2DirSet shows a
successfully configured LibXml2_DIR variable) from which build files may be generated using the Generate button.

16 Chapter 1. Contents:

https://en.wikipedia.org/wiki/Microsoft_Windows
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
http://xmlsoft.org/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://cmake.org/
https://cmake.org/
http://xmlsoft.org/
http://xmlsoft.org/

libCellML Documentation, Release latest

Fig. 4: CMake-GUI showing configuration error after initial configuration attempt.

Fig. 5: LibXml2_DIR variable with a value of LibXml2_DIR-NOTFOUND.

Fig. 6: LibXml2_DIR variable with a value of C:\Program Files\libxml2 2.9.6\lib\cmake.

1.8. Building libCellML 17

libCellML Documentation, Release latest

If LibXml2 was not installed to C:\Program Files\libxml2 2.9.6, you will need to adjust the path to match
your situation.

1.8.3 Build

Once the build scripts have been generated by CMake, invoke the build with the appropriate command. For
Makefile-based configurations, the command is simply:

make

If testing is enabled, run the tests using the test target:

make test

or using the ctest application:

ctest

For a more verbose output, run:

ctest -V

1.9 Submitting Code for Testing

If you wish to test some new code without having to create a pull request you can. Buildbot has the capacity to build
a libCellML compliant repository through the use of a ForceScheduler. To make use of this facility, you will need to
authenticate with the Buildbot system. Access to this facility is granted on request to David Nickerson. The Buildbot
system uses MD5 encrypted passwords as created by htpasswd. With your request to David include the output of this
command:

htpasswd -n <your-chosen-username>

The website http://www.htaccesstools.com/htpasswd-generator/ can be used if you do not have access to the htpasswd
application.

When your request has been dealt with, you will be able to login to Buildbot and submit code for testing.

1.10 Contributing

This document covers the process to follow for getting your changes into the prime repository. While there are many
types of contribution, this section focuses on contributions made through GitHub and Git, or in other words assets
that are managed using the version control system. It is assumed that Setup and Building have already been read and
followed.

Contents

• Contributing

– Overview

– GitHub Issue

18 Chapter 1. Contents:

http://xmlsoft.org/
https://cmake.org/
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://buildbot.net/
http://docs.buildbot.net/latest/developer/cls-forcesched.html
https://buildbot.net/
mailto:d.nickerson@auckland.ac.nz
https://buildbot.net/
https://httpd.apache.org/docs/current/programs/htpasswd.html
http://www.htaccesstools.com/htpasswd-generator/
https://httpd.apache.org/docs/current/programs/htpasswd.html
http://autotest.bioeng.auckland.ac.nz/libcellml-buildbot/builders
https://github.com/
https://git-scm.com/

libCellML Documentation, Release latest

* Labels

– Topic Branch

– Test Driven Development

– GitHub Pull Request

– Satisfy Comments

– Review

– Completion

1.10.1 Overview

For any body of work intended for the prime repository start with a GitHub issue. The issue can be used to discuss the
topic and clarify any problems related to it. Once progress has been made towards addressing the issue, a pull request
is created that references the issue.

Reviewers provide feedback on the changes by adding comments to the pull request or associated commits. The
Buildbot build/test procedure will run each time changes are pushed to the pull request’s branch, and the results
are displayed in the pull request view.

Once all the changes and reviews are complete, one of the prime repository owners will merge the pull request into
the prime repository, onto the develop branch.

Note that a bug is just a type of issue, and that resolving the bug should have both the implementation to fix the bug
and a test that triggers the bug.

Figure %s gives a graphical overview of the developer contribution process. For more details, see the text below.

1.10.2 GitHub Issue

If an issue does not exist for the required work (e.g. implementation of a feature, fixing of a bug), then create a new
one. The issue is the place to discuss the particulars related to the issue, discussions on determining the scope of the
issue or clarification of any points that are unclear.

Labels

A GitHub issue may be assigned labels by the project administrators to help identify its status at a glance. General
labels currently used for libCellML are:

• Bug: the issue identifies a malfunction in the current codebase.

• Feature: the issue constitutes a request or plan for a new feature.

• Needs tests: the issue requires test(s) to be complete. This may refer to a bug report, contributed code, com-
ments, etc. in the issue.

• Needs documentation: the issue requires documentation to be complete. This may refer to a bug report,
contributed code, comments, etc. in the issue.

• Needs reviewing: the issue requires further review from project participants to be complete. This may refer to
a bug report, contributed code, comments, etc. in the issue.

In addition, a Platform label may be used to identify the issue as specific to a given platform (Windows/Linux/macOS).
Milestone labels may be used to project when a feature is expected to be complete and/or indicate the priority of a

1.10. Contributing 19

https://github.com/
https://buildbot.net/
https://github.com/
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS

libCellML Documentation, Release latest

Fig. 7: Developer contribution process.

20 Chapter 1. Contents:

libCellML Documentation, Release latest

given issue. Higher priority issues will take precedence and therefore be assigned a more immediate (lower) milestone
number.

1.10.3 Topic Branch

A topic or feature branch is a branch that is local to you (and anyone you collaborate with), it is a branch that will not
be available from the prime repository. All development work should be carried out on a topic branch, for example
any major feature that you work on or minor bug fix. Before creating a local topic branch, pull the latest changes from
the prime repository develop branch.

Following this process will make it easier to have multiple topic branches at once and keep them in-sync with the
prime repository develop branch, which will in turn make it easier to manage multiple pull requests.

The following Git command line commands show an example of how to create a topic branch for fixing a (hypothetical)
bug described in issue #123:

1.10. Contributing 21

https://git-scm.com/

libCellML Documentation, Release latest

git fetch prime develop
git checkout develop # Not required if already on develop branch
git merge prime/develop
git checkout -b issue123

1.10.4 Test Driven Development

Test driven development entails writing a test that covers the intended functionality (this may require a suite of tests
to be written) and no more. The tests will require some skeleton implementation so that the test(s) can compile but by
definition not pass, at least not pass all the tests. The purpose of this is two-fold:

1. write the test(s) first, set out the intended design that can be shared through a pull request; and

2. implement the skeleton that will include the documentation clearly describing the intended purpose.

Following this contribution process allows others to comment and make corrections before time is spent on the func-
tional code.

It may be necessary to refactor the current design to enable the easiest possible way to add the new feature. This is a
good thing as the quality of the design improves and this makes it easier to work with in the future. Refactoring means
improving the code without adding features, and the tests provide validation that the refactored code performs as well
as before.

For simple or obvious bugs, which have fallen through the testing gaps, just the implementation is fine.

1.10.5 GitHub Pull Request

Once some changes have been made and local commits committed, push your changes to your GitHub libCellML
repository (refer to Figure %s). From there, create a pull request from your topic branch to the prime repository
develop branch. When creating the pull request, make sure to add in the comment Addresses issue #123
(of course, replace the number 123 with the actual number of the issue you are addressing), or something to that effect.
This will create a link between the issue and the pull request enabling other people to see that you are working on this
issue and comment on your work.

The following Git command line commands show an example of how to add all files, commit the changes and push
them to a GitHub repository for the first time:

git add .
git commit -m "Descriptive message about the changes made."
git push -u origin issue123

The git add and git commit commands should be obvious, the git push command sets the local branch
issue123 to be linked with the remote branch issue123 in the origin (the default shorthand for your libCellML
repository on GitHub) repository. This branch will be created in the origin repository if it does not already exist.

To create a pull request from one GitHub repository to another, follow the instructions here.

1.10.6 Satisfy Comments

It is important to respond to all feedback appropriately, the review process will check to make sure that all comments
have been dealt with. Feel free to respond to comments as appropriate, e.g. through code changes, posting a direct
reply, etc.

22 Chapter 1. Contents:

https://github.com/
https://git-scm.com/
https://github.com/
https://github.com/
https://github.com/
https://help.github.com/articles/creating-a-pull-request/

libCellML Documentation, Release latest

1.10.7 Review

It may happen that submitted work is not reviewed immediately or the work is finished before any comments have
been made. If this is the case add a comment to the pull request asking for the submission to be reviewed. An email
will be sent out to the repository owners who will respond and review the submission, please remember that everyone
is busy and it may not happen right away.

1.10.8 Completion

To complete the process, it is required to have two owners of the prime repository comment on the pull request that
they are satisfied that the work on the issue is complete and also that the feedback has been addressed, in essence
that they are “happy” to merge the submission. For small submissions, it is sufficient for the second owner to show
satisfaction by performing the merge. For larger submissions one of the owners will post a comment on the issue
notifying subscribers that they intend to merge the pull request. If no further objections are raised, the pull request will
be merged and closed.

A little reminder for the repository owners to check that the Review Process has been followed/(is going to be followed)
when merging the pull request.

1.11 Review Process

1.11.1 Check for the Green Tick

Before accepting a tranche of work into the libCellML prime repository check that Buildbot has tested and passed the
code. The status of the code is shown in the last commit of a pushed group of commits in the pull request. The last
commit will have a red cross for a failed build or a green tick for a passed build. Obviously, make sure that the last
commit has a green tick before merging.

1.11.2 Read the Documentation

The documentation for the project is built as part of the testing process. The details link at the bottom of the pull
request web page will take you to the Buildbot build of the library. This page shows the results of the unit tests for
each target operating system, the results of the coverage test, the results of the memory check test, and the results of
the documentation build.

The Documentation Builder link (entry 2 in step 5) will take you to the build for the documentation. On this page, you
can see the steps taken to build the documentation. In the last step of the build (step 7), there is a link ‘dox’ (entry 2)
that will take you to the built documentation.

The documentation should be reviewed in its final format particularly those parts of the documentation that (should)
have changed due to the current pull request. The API documentation (generated by Doxygen) can be reached from
the API Documentation page. The coverage statistics for the library (generated from gcovr) can be reached through
the Coverage Statistics page.

1.11.3 Comments Resolved

All comments on the pull request and associated issue should be responded to and satisfied. It is the reviewers
responsibility to check that this has happened before merging the pull request.

1.11. Review Process 23

https://buildbot.net/
https://buildbot.net/
http://www.doxygen.nl/
https://gcovr.com/

libCellML Documentation, Release latest

1.11.4 Coding Standard

Currently, there is no fully defined libCellML coding standard set, but the Google C++ Style Guide can be considered
a baseline for the standard of code that is expected for libCellML. See the Coding Standards document for deviations
from this guideline.

1.11.5 Merging

When merging a pull request, the reviewer should add a comment so that the corresponding issue is closed. This can
be done by adding a directive to the merge commit, like so:

closes #123

where the numeral corresponds to the issue that needs to be closed. You can use other directives that will achieve the
same outcome, here is a list of all directives that will work on GitHub.

1.12 Coding Standard

The coding standard for libCellML follows that specified in the Google C++ Style Guide, but it does not have to be
followed to the letter, other people have not so positive opinions about the quality of the google style guide. The
coding standard in use for libCellML is in evidence in the code itself, so new code should be consistent with what is
already there.

In essence, we seek code that looks good, is easy to read and has great documentation. We do not want to spend time
discussing the minutiae of the coding style.

The following is a list of exceptions/deviations from the google style guide that have been agreed upon for libCellML
software development purposes. Think of it like case-law.

• Lower camel case class method names.

• Indent core code 4 spaces at a time (no tabs); for CMake files use 2-space indentation.

1.12.1 Doxygen Comments

• Code-words (e.g. true/false, std::string) should be styled as typewriter text with a preceding “@c”.

• Doxygen comments should be sentence-style: beginning with capitalisation (except code-words) and ending
with punctuation. However, they do not need to form grammatically correct sentences.

1.12.2 Test Naming

• Names should respect the lower camel case convention.

• Names should be explicit enough to identify the specific code features they cover.

1.12.3 Variable Naming

The following rules for naming of variables should be followed.

• Class member variables: mMyClassMemberVariable.

• Function parameter variables: myFunctionParameterVariable.

24 Chapter 1. Contents:

https://google.github.io/styleguide/cppguide.html
https://help.github.com/articles/closing-issues-via-commit-messages/
https://github.com/
https://google.github.io/styleguide/cppguide.html
https://www.linkedin.com/pulse/20140503193653-3046051-why-google-style-guide-for-c-is-a-deal-breaker
https://cmake.org/
https://en.wikipedia.org/wiki/Camel_case

libCellML Documentation, Release latest

• Local variables: myLocalVariable.

1.13 Contributors

All contributors to the libCellML software project agree to the terms and conditions of the Apache v2.0 license.

1.13.1 List of Funding Organisations

• University of Auckland

• VPR

1.13.2 List of Contributors

The following is a list of contributors (in surname alphabetical order) who have contributed lines of source code to the
libCellML project on or before 2019-09-23.

• Ted Ahmadi

• Robert Blake

• Michael Clerx

• Jonathan Cooper

• Alan Garny

• David Ladd

• Massimiliano Leoni

• Kyle Medley

• Keri Moyle

• David Nickerson

• Hugh Sorby

For an up-to-date list of contributors see https://github.com/cellml/libcellml/graphs/contributors.

1.14 Glossary

Prime repository

Prime libCellML repository The repository at https://github.com/cellml/libcellml is the definitive repository for the
software and used for creating software releases. We will refer to this repository as the prime repository.

1.13. Contributors 25

https://opensource.org/licenses/Apache-2.0
https://www.auckland.ac.nz/
http://www.virtualrat.org/
https://github.com/TedAhmadi
https://github.com/rblake-llnl
https://github.com/MichaelClerx
https://github.com/jonc125
https://github.com/agarny
https://github.com/dladd
https://github.com/massimiliano-leoni
https://github.com/0u812
https://github.com/kerimoyle
https://github.com/nickerso
https://github.com/hsorby
https://github.com/cellml/libcellml/graphs/contributors
https://github.com/cellml/libcellml

libCellML Documentation, Release latest

1.15 Options

Config Default Description
BUILD_SHARED ON Build shared libraries (so, dylib, DLLs).
BUILD_TYPE Release The type of build Release, Debug, etc.
COMPILER_CACHE ON Enable compiler cache (if available).
COVERAGE ON Enable coverage testing (if available).
INSTALL_PREFIX /usr/lib Install path prefix (platform specific).
MEMCHECK ON Enable memcheck testing (if available).
TWAE * ON Treat warnings as errors.
UNIT_TESTS ON Enable tests.

* In CMake GUI Configuration applications this option is given in full
LIBCELLML_TREAT_WARNINGS_AS_ERRORS

26 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

27

libCellML Documentation, Release latest

28 Chapter 2. Indices and tables

CHAPTER 3

Supported by:

29

http://www.virtualrat.org
http://www.abi.auckland.ac.nz

libCellML Documentation, Release latest

30 Chapter 3. Supported by:

Index

P
Prime libCellML repository, 25
Prime repository, 25

31

	Contents:
	Roadmap
	Current Thinking for libCellML
	Use-cases for libCellML
	libCellML Object Model
	API Documentation
	Coverage Statistics
	Development Setup
	Building libCellML
	Submitting Code for Testing
	Contributing
	Review Process
	Coding Standard
	Contributors
	Glossary
	Options

	Indices and tables
	Supported by:
	Index

