
libbw64 Documentation
Release 0.10.0

Institut für Rundfunktechnik GmbH

Jan 29, 2019





Contents

1 Getting Started 3

2 Tutorial 5

3 Changelog 9

4 Main functions 11

5 BW64 file classes 13

6 Chunks 17

7 Utilities 23

8 Features 25

9 Acknowledgement 27

i



ii



libbw64 Documentation, Release 0.10.0

Contents 1



libbw64 Documentation, Release 0.10.0

2 Contents



CHAPTER 1

Getting Started

1.1 Requirements and dependencies

• compiler with C++11 support

• CMake build system (version 3.5 or later)

1.2 Installation

Just copy the content of the include directory to your project or add the repository as a Git submodule to your
project and make sure, that the bw64 folder is in your PATH, that the header files can be found by the compiler.

Alternatively clone the Git repository and install the library system wide using the CMake build system. See the
following instructions for *nix systems.

git clone git@github.com:irt-open-source/libbw64.git
cd libbw64
mkdir build && cd build
cmake ..
make
make install

3



libbw64 Documentation, Release 0.10.0

4 Chapter 1. Getting Started



CHAPTER 2

Tutorial

In this tutorial we will create a simple application which adjusts the level of all channels in a BW64 file and writes the
output to a new file. We assume that the include path of the library is added to the PATH.

2.1 Basic structure

Let us start with the basic structure of our programme.

#include <iostream>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

int main(int argc, char const* argv[]) {
if (argc != 2) {
std::cout << "usage: " << argv[0] << " [INFILE]" << std::endl;
exit(1);

}
auto inFile = bw64::readFile(argv[1]);
std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
while (!inFile->eof()) {
auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
// TODO: process samples

}
return 0;

}

We include the header and open the file we want to read using the bw64::readFile() function and add a while
loop in which we read the samples in a block buffer. The bw64::Bw64Reader::read() expects a float array
and the number of frames, the function should try to read. One frame contains one sample for each channel. So if the
bw64::Bw64Reader::read() function should try to read N frames, the buffer must be at least N * CHANNELS
big. The samples are written into the buffer in a channel interleaved order, as illustrated in the following table.

5



libbw64 Documentation, Release 0.10.0

Index 0 1 2 3 4 5 6 7 8 9 10
Channel 0 1 0 1 0 1 0 1 0 1 0
Sample 0 0 1 1 2 2 3 3 4 4 5

Note that we don’t need to close our file at the end of the programme. This will be done automatically when inFile
is destroyed at the end of the programme.

2.2 Write files

As a next step we also prepare our output file to write the samples.

#include <iostream>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

int main(int argc, char const* argv[]) {
if (argc != 3) {
std::cout << "usage: " << argv[0] << " [INFILE] [OUTFILE]" << std::endl;
exit(1);

}
auto inFile = bw64::readFile(argv[1]);
auto outFile =

bw64::writeFile(argv[2], inFile->channels(), inFile->sampleRate(),
inFile->bitDepth(), inFile->chnaChunk(), inFile->axmlChunk());

std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
while (!inFile->eof()) {
auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
// TODO: process samples
outFile->write(&buffer[0], readFrames);

}
return 0;

}

We use the information from the input file we opened to initialize our output file. We also need to add the chna
and axml chunks from the input file to the output file during initialization. We can directly use the buffer we passed
to the bw64::Bw64Reader::read() in the bw64::Bw64Writer::write() function to write the unmodi-
fied samples. So also the bw64::Bw64Writer::write() expects the order of the samples to be interleaved as
described above.

2.3 Add signal processing

To make our example complete, let us add some basic signal processing and adjust the gain of all channels.

#include <iostream>
#include <algorithm>
#include <functional>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

(continues on next page)

6 Chapter 2. Tutorial



libbw64 Documentation, Release 0.10.0

(continued from previous page)

int main(int argc, char const* argv[]) {
if (argc != 4) {
std::cout << "usage: " << argv[0] << " [INFILE] [OUTFILE] [GAIN]"

<< std::endl;
exit(1);

}
auto inFile = bw64::readFile(argv[1]);
auto outFile =

bw64::writeFile(argv[2], inFile->channels(), inFile->sampleRate(),
inFile->bitDepth(), inFile->chnaChunk(), inFile->axmlChunk());

std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
float gain = atof(argv[3]);
while (!inFile->eof()) {
auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
std::transform(buffer.begin(), buffer.end(), buffer.begin(),

[gain](float value) { return value * gain; });
outFile->write(&buffer[0], readFrames);

}
return 0;

}

2.3. Add signal processing 7



libbw64 Documentation, Release 0.10.0

8 Chapter 2. Tutorial



CHAPTER 3

Changelog

3.1 Unreleased

3.1.1 Added

3.1.2 Changed

3.1.3 Fixed

3.2 0.10.0 - (January 18, 2019)

3.2.1 Added

• Additional unit tests

3.2.2 Changed

• Use Catch2 instead of Boost.Test for unit testing

3.2.3 Fixed

• Fix Bw64Reader::seek() and Bw64Reader::tell() implementation

• RIFF chunk size calculation

3.3 0.9.0 - (July 23, 2018)

Initial release

9



libbw64 Documentation, Release 0.10.0

10 Chapter 3. Changelog



CHAPTER 4

Main functions

bw64::Bw64Reader and bw64::Bw64Writer classes usually should not be created manually. Instead the two
builder functions to either read or write a file should be used.

std::unique_ptr<Bw64Reader> bw64::readFile(const std::string &filename)
Open a BW64 file for reading.

Convenience function to open a BW64 file for reading.

Parameters

• filename: path of the file to read

Return unique_ptr to a Bw64Reader instance that is ready to read samples.

std::unique_ptr<Bw64Writer> bw64::writeFile(const std::string &filename, uint16_t channels = 1u,
uint16_t sampleRate = 48000u, uint16_t bitDepth =
24u, std::shared_ptr<ChnaChunk> chnaChunk = nullptr,
std::shared_ptr<AxmlChunk> axmlChunk = nullptr)

Open a BW64 file for writing.

Convenience function to open a new BW64 file for writing, adding axml and chna chunks.

If passed to this function, the axml and chna chunks will be added to the BW64 file before the actual data
chunk, which is the recommended practice if all components are already known before writing a file.

Return unique_ptr to a Bw64Writer instance that is ready to write samples.

Parameters

• filename: path of the file to write

• channels: the channel count of the new file

• sampleRate: the samplerate of the new file

• bitDepth: target bitdepth of the new file

• chnaChunk: Channel allocation chunk to include, if any

11



libbw64 Documentation, Release 0.10.0

• axmlChunk: AXML chunk to include, if any

12 Chapter 4. Main functions



CHAPTER 5

BW64 file classes

class Bw64Reader
Representation of a BW64 file.

Normally, you will create an instance of this class using bw64::readFile().

This is a RAII class, meaning that the file will be openend and initialized (parse header, format etc.) on con-
struction, and closed on destruction.

Public Functions

Bw64Reader(const char *filename)
Open a new BW64 file for reading.

Opens a new BW64 file for reading, parses the whole file to read the format and identify all chunks in it.

Note For convenience, you might consider using the readFile helper function.

~Bw64Reader()
Bw64Reader destructor.

The destructor will automatically close the file opened in the constructor.

uint32_t fileFormat() const
Get file format (RIFF, BW64 or RF64)

uint32_t fileSize() const
Get file size.

uint16_t formatTag() const
Get format tag.

uint16_t channels() const
Get number of channels.

13

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization


libbw64 Documentation, Release 0.10.0

uint32_t sampleRate() const
Get sample rate.

uint16_t bitDepth() const
Get bit depth.

uint64_t numberOfFrames() const
Get number of frames.

uint16_t blockAlignment() const
Get block alignment.

std::shared_ptr<DataSize64Chunk> ds64Chunk() const
Get ‘ds64’ chunk.

Return std::shared_ptr to DataSize64Chunk if present and otherwise a nullptr.

std::shared_ptr<FormatInfoChunk> formatChunk() const
Get ‘fmt ‘ chunk.

Return std::shared_ptr to FormatInfoChunk if present and otherwise a nullptr.

std::shared_ptr<DataChunk> dataChunk() const
Get ‘data’ chunk.

Warning This method usually should not be called, as the acces to the DataChunk is handled seperately
by the Bw64Reader class .

Return std::shared_ptr to DataChunk if present and otherwise a nullptr.

std::shared_ptr<ChnaChunk> chnaChunk() const
Get ‘chna’ chunk.

Return std::shared_ptr to ChnaChunk if present and otherwise a nullptr.

std::shared_ptr<AxmlChunk> axmlChunk() const
Get ‘axml’ chunk.

Return std::shared_ptr to AxmlChunk if present and otherwise a nullptr.

std::vector<ChunkHeader> chunks() const
Get list of all chunks which are present in the file.

bool hasChunk(uint32_t id) const
Check if a chunk with the given id is present.

void seek(int32_t offset, std::ios_base::seekdir way = std::ios::beg)
Seek a frame position in the DataChunk.

template <typename T, typename = std::enable_if<std::is_floating_point<T>::value>>
uint64_t read(T *outBuffer, uint64_t frames)

Read frames from dataChunk.

Return number of frames read

Parameters

14 Chapter 5. BW64 file classes



libbw64 Documentation, Release 0.10.0

• outBuffer: Buffer to write the samples to

• frames: Number of frames to read

uint64_t tell()
Tell the current frame position of the dataChunk.

Return current frame position of the dataChunk

bool eof()
Check if end of data is reached.

Return true if end of data is reached and otherwise false

class Bw64Writer
BW64 Writer class.

Normally, you will create an instance of this class using bw64::writeFile().

This is a RAII class, meaning that the file will be openend and initialized (required headers etc.) on construction,
and closed and finalized (writing chunk sizes etc.) on destruction.

Public Functions

Bw64Writer(const char *filename, uint16_t channels, uint16_t sampleRate, uint16_t bitDepth,
std::vector<std::shared_ptr<Chunk>> additionalChunks)

Open a new BW64 file for writing.

Opens a new BW64 file for writing, initializes everything up to the data chunk. Afterwards, you may
write interleaved audio samples to this file.

If you need any chunks to appear before the data chunk, include them in the additionalChunks. They
will be written directly after opening the file.

Warning If the file already exists it will be overwritten.

Note For convenience, you might consider using the writeFile helper function.

~Bw64Writer()
Finalize file.

This destructor will write all yet-to-be-written chunks to the file and will also finalize all required infor-
mation, i.e. the final chunk sizes etc.

uint16_t formatTag() const
Get format tag.

uint16_t channels() const
Get number of channels.

uint32_t sampleRate() const
Get sample rate.

uint16_t bitDepth() const
Get bit depth.

15

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization


libbw64 Documentation, Release 0.10.0

uint64_t framesWritten() const
Get number of frames.

bool isBw64File()
Check if file is bigger than 4GB and therefore a BW64 file.

uint32_t chunkSizeForHeader(uint32_t id)
Get the chunk size for header.

uint64_t riffChunkSize()
Calculate riff chunk size.

void writeRiffHeader()
Write RIFF header.

void finalizeRiffChunk()
Update RIFF header.

template <typename ChunkType>
void writeChunk(std::shared_ptr<ChunkType> chunk)

Write chunk template.

template <typename ChunkType>
void overwriteChunk(uint32_t id, std::shared_ptr<ChunkType> chunk)

Overwrite chunk template.

template <typename T, typename = std::enable_if<std::is_floating_point<T>::value>>
uint64_t write(T *inBuffer, uint64_t frames)

Write frames to dataChunk.

Return number of frames written

Parameters

• inBuffer: Buffer to write the samples to

• frames: Number of frames to write

16 Chapter 5. BW64 file classes



CHAPTER 6

Chunks

class Chunk
RIFF chunk base class.

Subclassed by bw64::AxmlChunk, bw64::ChnaChunk, bw64::DataChunk, bw64::DataSize64Chunk,
bw64::FormatInfoChunk, bw64::JunkChunk, bw64::UnknownChunk

Public Functions

virtual uint32_t id() const = 0
Get FourCC id.

virtual uint64_t size() const = 0
Get the size of the chunk.

virtual void write(std::ostream &stream) const = 0
Write the chunk to a stream.

class FormatInfoChunk : public bw64::Chunk
Class representation of a FormatInfoChunk.

Public Functions

FormatInfoChunk(uint16_t channels, uint32_t sampleRate, uint32_t bitDepth,
std::shared_ptr<ExtraData> extraData = nullptr)

Simple FormatInfoChunk constructor.

Parameters

• channels: number of channels

• sampleRate: sample rate of the audio data

• bitDepth: bit depth used in file

17



libbw64 Documentation, Release 0.10.0

• extraData: custom ExtraData (optional, nullptr if not custom)

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

uint16_t formatTag() const
FormatTag getter.

uint16_t channelCount() const
ChannelCount getter.

uint32_t sampleRate() const
SampleRate getter.

uint32_t bytesPerSecond() const
BytesPerSecond getter.

uint16_t blockAlignment() const
BlockAlignment getter.

uint16_t bitsPerSample() const
BitsPerSample getter.

const std::shared_ptr<ExtraData> extraData() const
ExtraData getter.

void write(std::ostream &stream) const
Write the chunk to a stream.

class ExtraData
Class representation of the ExtraData of a FormatInfoChunk.

Public Functions

ExtraData(uint16_t validBitsPerSample, uint32_t dwChannelMask, uint16_t subFormat, std::string
subFormatString)

ExtraData constructor.

uint16_t validBitsPerSample() const
ValidBitsPerSample getter.

uint32_t dwChannelMask() const
DwChannelMask getter.

uint16_t subFormat() const
SubFormat getter.

std::string subFormatString() const
SubFormatString getter.

class DataChunk : public bw64::Chunk
Class representation of a DataChunk.

18 Chapter 6. Chunks



libbw64 Documentation, Release 0.10.0

Public Functions

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

void write(std::ostream&) const
Not to be used write chunk to stream.

Warning As the data chunk is usually not written in one piece the override for this function is not used.
Using this method will throw an exception.

class JunkChunk : public bw64::Chunk
Class representation of a DataChunk.

Public Functions

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

void write(std::ostream &stream) const
Write the chunk to a stream.

class AxmlChunk : public bw64::Chunk
Class representation of an AxmlChunk.

Public Functions

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

void write(std::ostream &stream) const
Write the chunk to a stream.

class AudioId
Class representation of an AudioId field.

class ChnaChunk : public bw64::Chunk
Class representation of an ChnaChunk.

Public Functions

uint32_t id() const
Get FourCC id.

19



libbw64 Documentation, Release 0.10.0

uint64_t size() const
Get the size of the chunk.

uint16_t numTracks() const
NumTracks getter.

uint16_t numUids() const
NumUids getter.

std::vector<AudioId> audioIds() const
AudioIds getter.

void addAudioId(AudioId id)
Add AudioId to AudioId table.

void write(std::ostream &stream) const
Write the chunk to a stream.

class DataSize64Chunk : public bw64::Chunk
Class representation of a DataSize64 chunk.

Public Functions

DataSize64Chunk(uint64_t bw64Size = 0, uint64_t dataSize = 0, std::map<uint32_t, uint64_t> table
= std::map<uint32_t, uint64_t>())

DataSize64Chunk constructor.

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

uint64_t bw64Size() const
Bw64Size getter.

uint64_t dataSize() const
DataSize getter.

uint64_t dummySize() const
DummySize getter.

uint32_t tableLength() const
TableLength getter.

void bw64Size(uint64_t size)
Bw64Size setter.

void dataSize(uint64_t size)
DataSize setter.

void dummySize(uint64_t size)
DummySize setter.

const std::map<uint32_t, uint64_t> &table() const
Get table.

20 Chapter 6. Chunks



libbw64 Documentation, Release 0.10.0

bool hasChunkSize(uint32_t id) const
Has chunkSize for id.

uint64_t getChunkSize(uint32_t id) const
Get chunkSize for id.

void setChunkSize(uint32_t id, uint64_t size)
Set or add a ChunkSize.

void removeChunkSize(uint32_t id)
Remove a ChunkSize from table.

void clearChunkSizeTable()
Clear ChunkSize table.

void write(std::ostream &stream) const
Write the chunk to a stream.

class UnknownChunk : public bw64::Chunk
Class representation of a custom chunk.

This class can be used to copy unknown chunks from an input file to an output file.

Public Functions

uint32_t id() const
Get FourCC id.

uint64_t size() const
Get the size of the chunk.

void write(std::ostream &stream) const
Write the chunk to a stream.

21



libbw64 Documentation, Release 0.10.0

22 Chapter 6. Chunks



CHAPTER 7

Utilities

constexpr uint32_t bw64::utils::fourCC(char const p[5])
Convert char array chunkIds to uint32_t.

std::string bw64::utils::fourCCToStr(uint32_t value)
Convert uint32_t chunkId to string.

The libbw64 library is a lightweight C++ header only library to read and write BW64 files. BW64 is standardised as
Recommendation ITU-R BS.2088 and the successor of RF64. So it already contains necessary extensions to support
files which are bigger than 4 GB. Apart from that an BW64 file is able to contain the ADM metadata and link it with
the audio tracks in the file. To do that a BW64 specifies two new RIFF chunks – the axml chunk and the chna chunk.
To parse, create, modify and write the ADM metadata in the axml chunk you may use the libadm library.

23

https://github.com/irt-open-source/libbw64
https://www.itu.int/rec/R-REC-BS.2088/en
https://github.com/irt-open-source/libadm


libbw64 Documentation, Release 0.10.0

24 Chapter 7. Utilities



CHAPTER 8

Features

• no dependencies

• support file sizes bigger than 4 GB (ds64 chunk)

• read and write axml and chna chunks

• 16, 24, and 32 bit integer file formats

25



libbw64 Documentation, Release 0.10.0

26 Chapter 8. Features



CHAPTER 9

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 687645.

27



libbw64 Documentation, Release 0.10.0

28 Chapter 9. Acknowledgement



Index

B
bw64::AudioId (C++ class), 19
bw64::AxmlChunk (C++ class), 19
bw64::AxmlChunk::id (C++ function), 19
bw64::AxmlChunk::size (C++ function), 19
bw64::AxmlChunk::write (C++ function), 19
bw64::Bw64Reader (C++ class), 13
bw64::Bw64Reader::~Bw64Reader (C++ function), 13
bw64::Bw64Reader::axmlChunk (C++ function), 14
bw64::Bw64Reader::bitDepth (C++ function), 14
bw64::Bw64Reader::blockAlignment (C++ function), 14
bw64::Bw64Reader::Bw64Reader (C++ function), 13
bw64::Bw64Reader::channels (C++ function), 13
bw64::Bw64Reader::chnaChunk (C++ function), 14
bw64::Bw64Reader::chunks (C++ function), 14
bw64::Bw64Reader::dataChunk (C++ function), 14
bw64::Bw64Reader::ds64Chunk (C++ function), 14
bw64::Bw64Reader::eof (C++ function), 15
bw64::Bw64Reader::fileFormat (C++ function), 13
bw64::Bw64Reader::fileSize (C++ function), 13
bw64::Bw64Reader::formatChunk (C++ function), 14
bw64::Bw64Reader::formatTag (C++ function), 13
bw64::Bw64Reader::hasChunk (C++ function), 14
bw64::Bw64Reader::numberOfFrames (C++ function),

14
bw64::Bw64Reader::read (C++ function), 14
bw64::Bw64Reader::sampleRate (C++ function), 13
bw64::Bw64Reader::seek (C++ function), 14
bw64::Bw64Reader::tell (C++ function), 15
bw64::Bw64Writer (C++ class), 15
bw64::Bw64Writer::~Bw64Writer (C++ function), 15
bw64::Bw64Writer::bitDepth (C++ function), 15
bw64::Bw64Writer::Bw64Writer (C++ function), 15
bw64::Bw64Writer::channels (C++ function), 15
bw64::Bw64Writer::chunkSizeForHeader (C++ func-

tion), 16
bw64::Bw64Writer::finalizeRiffChunk (C++ function),

16
bw64::Bw64Writer::formatTag (C++ function), 15

bw64::Bw64Writer::framesWritten (C++ function), 15
bw64::Bw64Writer::isBw64File (C++ function), 16
bw64::Bw64Writer::overwriteChunk (C++ function), 16
bw64::Bw64Writer::riffChunkSize (C++ function), 16
bw64::Bw64Writer::sampleRate (C++ function), 15
bw64::Bw64Writer::write (C++ function), 16
bw64::Bw64Writer::writeChunk (C++ function), 16
bw64::Bw64Writer::writeRiffHeader (C++ function), 16
bw64::ChnaChunk (C++ class), 19
bw64::ChnaChunk::addAudioId (C++ function), 20
bw64::ChnaChunk::audioIds (C++ function), 20
bw64::ChnaChunk::id (C++ function), 19
bw64::ChnaChunk::numTracks (C++ function), 20
bw64::ChnaChunk::numUids (C++ function), 20
bw64::ChnaChunk::size (C++ function), 19
bw64::ChnaChunk::write (C++ function), 20
bw64::Chunk (C++ class), 17
bw64::Chunk::id (C++ function), 17
bw64::Chunk::size (C++ function), 17
bw64::Chunk::write (C++ function), 17
bw64::DataChunk (C++ class), 18
bw64::DataChunk::id (C++ function), 19
bw64::DataChunk::size (C++ function), 19
bw64::DataChunk::write (C++ function), 19
bw64::DataSize64Chunk (C++ class), 20
bw64::DataSize64Chunk::bw64Size (C++ function), 20
bw64::DataSize64Chunk::clearChunkSizeTable (C++

function), 21
bw64::DataSize64Chunk::dataSize (C++ function), 20
bw64::DataSize64Chunk::DataSize64Chunk (C++ func-

tion), 20
bw64::DataSize64Chunk::dummySize (C++ function),

20
bw64::DataSize64Chunk::getChunkSize (C++ function),

21
bw64::DataSize64Chunk::hasChunkSize (C++ function),

20
bw64::DataSize64Chunk::id (C++ function), 20
bw64::DataSize64Chunk::removeChunkSize (C++ func-

tion), 21

29



libbw64 Documentation, Release 0.10.0

bw64::DataSize64Chunk::setChunkSize (C++ function),
21

bw64::DataSize64Chunk::size (C++ function), 20
bw64::DataSize64Chunk::table (C++ function), 20
bw64::DataSize64Chunk::tableLength (C++ function),

20
bw64::DataSize64Chunk::write (C++ function), 21
bw64::ExtraData (C++ class), 18
bw64::ExtraData::dwChannelMask (C++ function), 18
bw64::ExtraData::ExtraData (C++ function), 18
bw64::ExtraData::subFormat (C++ function), 18
bw64::ExtraData::subFormatString (C++ function), 18
bw64::ExtraData::validBitsPerSample (C++ function), 18
bw64::FormatInfoChunk (C++ class), 17
bw64::FormatInfoChunk::bitsPerSample (C++ function),

18
bw64::FormatInfoChunk::blockAlignment (C++ func-

tion), 18
bw64::FormatInfoChunk::bytesPerSecond (C++ func-

tion), 18
bw64::FormatInfoChunk::channelCount (C++ function),

18
bw64::FormatInfoChunk::extraData (C++ function), 18
bw64::FormatInfoChunk::FormatInfoChunk (C++ func-

tion), 17
bw64::FormatInfoChunk::formatTag (C++ function), 18
bw64::FormatInfoChunk::id (C++ function), 18
bw64::FormatInfoChunk::sampleRate (C++ function), 18
bw64::FormatInfoChunk::size (C++ function), 18
bw64::FormatInfoChunk::write (C++ function), 18
bw64::JunkChunk (C++ class), 19
bw64::JunkChunk::id (C++ function), 19
bw64::JunkChunk::size (C++ function), 19
bw64::JunkChunk::write (C++ function), 19
bw64::readFile (C++ function), 11
bw64::UnknownChunk (C++ class), 21
bw64::UnknownChunk::id (C++ function), 21
bw64::UnknownChunk::size (C++ function), 21
bw64::UnknownChunk::write (C++ function), 21
bw64::utils::fourCC (C++ function), 23
bw64::utils::fourCCToStr (C++ function), 23
bw64::writeFile (C++ function), 11

30 Index


	Getting Started
	Tutorial
	Changelog
	Main functions
	BW64 file classes
	Chunks
	Utilities
	Features
	Acknowledgement

