

 [image: IRT Logo]

libbw64 – ITU-R BS.2088 Library

The libbw64 [https://github.com/irt-open-source/libbw64] library is a
lightweight C++ header only library to read and write BW64 files. BW64 is
standardised as Recommendation ITU-R BS.2088 [https://www.itu.int/rec/R-REC-BS.2088/en] and the successor of RF64. So it
already contains necessary extensions to support files which are bigger than 4
GB. Apart from that an BW64 file is able to contain the ADM metadata and link it
with the audio tracks in the file. To do that a BW64 specifies two new RIFF
chunks – the axml chunk and the chna chunk. To parse, create, modify and
write the ADM metadata in the axml chunk you may use the libadm [https://github.com/irt-open-source/libadm] library.

Features

	no dependencies

	support file sizes bigger than 4 GB (ds64 chunk)

	read and write axml and chna chunks

	16, 24, and 32 bit integer file formats

Acknowledgement

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 687645.

Getting Started

Requirements and dependencies

	compiler with C++11 support

	CMake build system (version 3.5 or later)

Installation

Just copy the content of the include directory to your project or add the
repository as a Git submodule to your project and make sure, that the bw64
folder is in your PATH, that the header files can be found by the compiler.

Alternatively clone the Git repository and install the library system wide using
the CMake build system. See the following instructions for *nix systems.

git clone git@github.com:irt-open-source/libbw64.git
cd libbw64
mkdir build && cd build
cmake ..
make
make install

Tutorial

In this tutorial we will create a simple application which adjusts the level of
all channels in a BW64 file and writes the output to a new file. We assume that
the include path of the library is added to the PATH.

Basic structure

Let us start with the basic structure of our programme.

#include <iostream>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

int main(int argc, char const* argv[]) {
 if (argc != 2) {
 std::cout << "usage: " << argv[0] << " [INFILE]" << std::endl;
 exit(1);
 }
 auto inFile = bw64::readFile(argv[1]);
 std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
 while (!inFile->eof()) {
 auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
 // TODO: process samples
 }
 return 0;
}

We include the header and open the file we want to read using the
bw64::readFile() function and add a while loop in which we read
the samples in a block buffer. The bw64::Bw64Reader::read() expects
a float array and the number of frames, the function should try to read. One
frame contains one sample for each channel. So if the
bw64::Bw64Reader::read() function should try to read N frames,
the buffer must be at least N * CHANNELS big. The samples are written into
the buffer in a channel interleaved order, as illustrated in the following
table.

	Index

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	Channel

	0

	1

	0

	1

	0

	1

	0

	1

	0

	1

	0

	Sample

	0

	0

	1

	1

	2

	2

	3

	3

	4

	4

	5

Note that we don’t need to close our file at the end of the programme. This will
be done automatically when inFile is destroyed at the end of the programme.

Write files

As a next step we also prepare our output file to write the samples.

#include <iostream>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

int main(int argc, char const* argv[]) {
 if (argc != 3) {
 std::cout << "usage: " << argv[0] << " [INFILE] [OUTFILE]" << std::endl;
 exit(1);
 }
 auto inFile = bw64::readFile(argv[1]);
 auto outFile =
 bw64::writeFile(argv[2], inFile->channels(), inFile->sampleRate(),
 inFile->bitDepth(), inFile->chnaChunk(), inFile->axmlChunk());

 std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
 while (!inFile->eof()) {
 auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
 // TODO: process samples
 outFile->write(&buffer[0], readFrames);
 }
 return 0;
}

We use the information from the input file we opened to initialize our output
file. We also need to add the chna and axml chunks from the input file
to the output file during initialization. We can directly use the buffer we
passed to the bw64::Bw64Reader::read() in the
bw64::Bw64Writer::write() function to write the unmodified samples.
So also the bw64::Bw64Writer::write() expects the order of the
samples to be interleaved as described above.

Add signal processing

To make our example complete, let us add some basic signal processing and adjust
the gain of all channels.

#include <iostream>
#include <algorithm>
#include <functional>
#include <bw64/bw64.hpp>

const unsigned int BLOCK_SIZE = 4096;

int main(int argc, char const* argv[]) {
 if (argc != 4) {
 std::cout << "usage: " << argv[0] << " [INFILE] [OUTFILE] [GAIN]"
 << std::endl;
 exit(1);
 }
 auto inFile = bw64::readFile(argv[1]);
 auto outFile =
 bw64::writeFile(argv[2], inFile->channels(), inFile->sampleRate(),
 inFile->bitDepth(), inFile->chnaChunk(), inFile->axmlChunk());

 std::vector<float> buffer(BLOCK_SIZE * inFile->channels());
 float gain = atof(argv[3]);
 while (!inFile->eof()) {
 auto readFrames = inFile->read(&buffer[0], BLOCK_SIZE);
 std::transform(buffer.begin(), buffer.end(), buffer.begin(),
 [gain](float value) { return value * gain; });
 outFile->write(&buffer[0], readFrames);
 }
 return 0;
}

Changelog

Unreleased

Added

Changed

Fixed

0.10.0 - (January 18, 2019)

Added

	Additional unit tests

Changed

	Use Catch2 instead of Boost.Test for unit testing

Fixed

	Fix Bw64Reader::seek() and Bw64Reader::tell() implementation

	RIFF chunk size calculation

0.9.0 - (July 23, 2018)

Initial release

Main functions

bw64::Bw64Reader and bw64::Bw64Writer classes usually
should not be created manually. Instead the two builder functions to either read
or write a file should be used.

	
std::unique_ptr<Bw64Reader> bw64::readFile(const std::string &filename)

	Open a BW64 file for reading.

Convenience function to open a BW64 file for reading.

	Parameters

	
	filename: path of the file to read

	Return

	unique_ptr to a Bw64Reader instance that is ready to read samples.

	
std::unique_ptr<Bw64Writer> bw64::writeFile(const std::string &filename, uint16_t channels = 1u, uint16_t sampleRate = 48000u, uint16_t bitDepth = 24u, std::shared_ptr<ChnaChunk> chnaChunk = nullptr, std::shared_ptr<AxmlChunk> axmlChunk = nullptr)

	Open a BW64 file for writing.

Convenience function to open a new BW64 file for writing, adding axml and chna chunks.

If passed to this function, the axml and chna chunks will be added to the BW64 file before the actual data chunk, which is the recommended practice if all components are already known before writing a file.

	Return

	unique_ptr to a Bw64Writer instance that is ready to write samples.

	Parameters

	
	filename: path of the file to write

	channels: the channel count of the new file

	sampleRate: the samplerate of the new file

	bitDepth: target bitdepth of the new file

	chnaChunk: Channel allocation chunk to include, if any

	axmlChunk: AXML chunk to include, if any

BW64 file classes

	
class Bw64Reader

	Representation of a BW64 file.

Normally, you will create an instance of this class using bw64::readFile().

This is a RAII [https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization] class, meaning that the file will be openend and initialized (parse header, format etc.) on construction, and closed on destruction.

Public Functions

	
Bw64Reader(const char *filename)

	Open a new BW64 file for reading.

Opens a new BW64 file for reading, parses the whole file to read the format and identify all chunks in it.

	Note

	For convenience, you might consider using the readFile helper function.

	
~Bw64Reader()

	Bw64Reader destructor.

The destructor will automatically close the file opened in the constructor.

	
uint32_t fileFormat() const

	Get file format (RIFF, BW64 or RF64)

	
uint32_t fileSize() const

	Get file size.

	
uint16_t formatTag() const

	Get format tag.

	
uint16_t channels() const

	Get number of channels.

	
uint32_t sampleRate() const

	Get sample rate.

	
uint16_t bitDepth() const

	Get bit depth.

	
uint64_t numberOfFrames() const

	Get number of frames.

	
uint16_t blockAlignment() const

	Get block alignment.

	
std::shared_ptr<DataSize64Chunk> ds64Chunk() const

	Get ‘ds64’ chunk.

	Return

	std::shared_ptr to DataSize64Chunk if present and otherwise a nullptr.

	
std::shared_ptr<FormatInfoChunk> formatChunk() const

	Get ‘fmt ‘ chunk.

	Return

	std::shared_ptr to FormatInfoChunk if present and otherwise a nullptr.

	
std::shared_ptr<DataChunk> dataChunk() const

	Get ‘data’ chunk.

	Warning

	This method usually should not be called, as the acces to the DataChunk is handled seperately by the Bw64Reader class .

	Return

	std::shared_ptr to DataChunk if present and otherwise a nullptr.

	
std::shared_ptr<ChnaChunk> chnaChunk() const

	Get ‘chna’ chunk.

	Return

	std::shared_ptr to ChnaChunk if present and otherwise a nullptr.

	
std::shared_ptr<AxmlChunk> axmlChunk() const

	Get ‘axml’ chunk.

	Return

	std::shared_ptr to AxmlChunk if present and otherwise a nullptr.

	
std::vector<ChunkHeader> chunks() const

	Get list of all chunks which are present in the file.

	
bool hasChunk(uint32_t id) const

	Check if a chunk with the given id is present.

	
void seek(int32_t offset, std::ios_base::seekdir way = std::ios::beg)

	Seek a frame position in the DataChunk.

	
template <typename T, typename = std::enable_if<std::is_floating_point<T>::value>>
uint64_t read(T *outBuffer, uint64_t frames)

	Read frames from dataChunk.

	Return

	number of frames read

	Parameters

	
	outBuffer: Buffer to write the samples to

	frames: Number of frames to read

	
uint64_t tell()

	Tell the current frame position of the dataChunk.

	Return

	current frame position of the dataChunk

	
bool eof()

	Check if end of data is reached.

	Return

	true if end of data is reached and otherwise false

	
class Bw64Writer

	BW64 Writer class.

Normally, you will create an instance of this class using bw64::writeFile().

This is a RAII [https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization] class, meaning that the file will be openend and initialized (required headers etc.) on construction, and closed and finalized (writing chunk sizes etc.) on destruction.

Public Functions

	
Bw64Writer(const char *filename, uint16_t channels, uint16_t sampleRate, uint16_t bitDepth, std::vector<std::shared_ptr<Chunk>> additionalChunks)

	Open a new BW64 file for writing.

Opens a new BW64 file for writing, initializes everything up to the data chunk. Afterwards, you may write interleaved audio samples to this file.

If you need any chunks to appear

before the data chunk, include them in the additionalChunks. They will be written directly after opening the file.
	Warning

	If the file already exists it will be overwritten.

	Note

	For convenience, you might consider using the writeFile helper function.

	
~Bw64Writer()

	Finalize file.

This destructor will write all yet-to-be-written chunks to the file and will also finalize all required information, i.e. the final chunk sizes etc.

	
uint16_t formatTag() const

	Get format tag.

	
uint16_t channels() const

	Get number of channels.

	
uint32_t sampleRate() const

	Get sample rate.

	
uint16_t bitDepth() const

	Get bit depth.

	
uint64_t framesWritten() const

	Get number of frames.

	
bool isBw64File()

	Check if file is bigger than 4GB and therefore a BW64 file.

	
uint32_t chunkSizeForHeader(uint32_t id)

	Get the chunk size for header.

	
uint64_t riffChunkSize()

	Calculate riff chunk size.

	
void writeRiffHeader()

	Write RIFF header.

	
void finalizeRiffChunk()

	Update RIFF header.

	
template <typename ChunkType>
void writeChunk(std::shared_ptr<ChunkType> chunk)

	Write chunk template.

	
template <typename ChunkType>
void overwriteChunk(uint32_t id, std::shared_ptr<ChunkType> chunk)

	Overwrite chunk template.

	
template <typename T, typename = std::enable_if<std::is_floating_point<T>::value>>
uint64_t write(T *inBuffer, uint64_t frames)

	Write frames to dataChunk.

	Return

	number of frames written

	Parameters

	
	inBuffer: Buffer to write the samples to

	frames: Number of frames to write

Chunks

	
class Chunk

	RIFF chunk base class.

Subclassed by bw64::AxmlChunk, bw64::ChnaChunk, bw64::DataChunk, bw64::DataSize64Chunk, bw64::FormatInfoChunk, bw64::JunkChunk, bw64::UnknownChunk

Public Functions

	
virtual uint32_t id() const = 0

	Get FourCC id.

	
virtual uint64_t size() const = 0

	Get the size of the chunk.

	
virtual void write(std::ostream &stream) const = 0

	Write the chunk to a stream.

	
class FormatInfoChunk : public bw64::Chunk

	Class representation of a FormatInfoChunk.

Public Functions

	
FormatInfoChunk(uint16_t channels, uint32_t sampleRate, uint32_t bitDepth, std::shared_ptr<ExtraData> extraData = nullptr)

	Simple FormatInfoChunk constructor.

	Parameters

	
	channels: number of channels

	sampleRate: sample rate of the audio data

	bitDepth: bit depth used in file

	extraData: custom ExtraData (optional, nullptr if not custom)

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
uint16_t formatTag() const

	FormatTag getter.

	
uint16_t channelCount() const

	ChannelCount getter.

	
uint32_t sampleRate() const

	SampleRate getter.

	
uint32_t bytesPerSecond() const

	BytesPerSecond getter.

	
uint16_t blockAlignment() const

	BlockAlignment getter.

	
uint16_t bitsPerSample() const

	BitsPerSample getter.

	
const std::shared_ptr<ExtraData> extraData() const

	ExtraData getter.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

	
class ExtraData

	Class representation of the ExtraData of a FormatInfoChunk.

Public Functions

	
ExtraData(uint16_t validBitsPerSample, uint32_t dwChannelMask, uint16_t subFormat, std::string subFormatString)

	ExtraData constructor.

	
uint16_t validBitsPerSample() const

	ValidBitsPerSample getter.

	
uint32_t dwChannelMask() const

	DwChannelMask getter.

	
uint16_t subFormat() const

	SubFormat getter.

	
std::string subFormatString() const

	SubFormatString getter.

	
class DataChunk : public bw64::Chunk

	Class representation of a DataChunk.

Public Functions

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
void write(std::ostream&) const

	Not to be used write chunk to stream.

	Warning

	As the data chunk is usually not written in one piece the override for this function is not used. Using this method will throw an exception.

	
class JunkChunk : public bw64::Chunk

	Class representation of a DataChunk.

Public Functions

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

	
class AxmlChunk : public bw64::Chunk

	Class representation of an AxmlChunk.

Public Functions

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

	
class AudioId

	Class representation of an AudioId field.

	
class ChnaChunk : public bw64::Chunk

	Class representation of an ChnaChunk.

Public Functions

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
uint16_t numTracks() const

	NumTracks getter.

	
uint16_t numUids() const

	NumUids getter.

	
std::vector<AudioId> audioIds() const

	AudioIds getter.

	
void addAudioId(AudioId id)

	Add AudioId to AudioId table.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

	
class DataSize64Chunk : public bw64::Chunk

	Class representation of a DataSize64 chunk.

Public Functions

	
DataSize64Chunk(uint64_t bw64Size = 0, uint64_t dataSize = 0, std::map<uint32_t, uint64_t> table = std::map<uint32_t, uint64_t>())

	DataSize64Chunk constructor.

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
uint64_t bw64Size() const

	Bw64Size getter.

	
uint64_t dataSize() const

	DataSize getter.

	
uint64_t dummySize() const

	DummySize getter.

	
uint32_t tableLength() const

	TableLength getter.

	
void bw64Size(uint64_t size)

	Bw64Size setter.

	
void dataSize(uint64_t size)

	DataSize setter.

	
void dummySize(uint64_t size)

	DummySize setter.

	
const std::map<uint32_t, uint64_t> &table() const

	Get table.

	
bool hasChunkSize(uint32_t id) const

	Has chunkSize for id.

	
uint64_t getChunkSize(uint32_t id) const

	Get chunkSize for id.

	
void setChunkSize(uint32_t id, uint64_t size)

	Set or add a ChunkSize.

	
void removeChunkSize(uint32_t id)

	Remove a ChunkSize from table.

	
void clearChunkSizeTable()

	Clear ChunkSize table.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

	
class UnknownChunk : public bw64::Chunk

	Class representation of a custom chunk.

This class can be used to copy unknown chunks from an input file to an output file.

Public Functions

	
uint32_t id() const

	Get FourCC id.

	
uint64_t size() const

	Get the size of the chunk.

	
void write(std::ostream &stream) const

	Write the chunk to a stream.

Utilities

	
constexpr uint32_t bw64::utils::fourCC(char const p[5])

	Convert char array chunkIds to uint32_t.

	
std::string bw64::utils::fourCCToStr(uint32_t value)

	Convert uint32_t chunkId to string.

Index

 B

B

 	
 	bw64::AudioId (C++ class)

 	bw64::AxmlChunk (C++ class)

 	bw64::AxmlChunk::id (C++ function)

 	bw64::AxmlChunk::size (C++ function)

 	bw64::AxmlChunk::write (C++ function)

 	bw64::Bw64Reader (C++ class)

 	bw64::Bw64Reader::axmlChunk (C++ function)

 	bw64::Bw64Reader::bitDepth (C++ function)

 	bw64::Bw64Reader::blockAlignment (C++ function)

 	bw64::Bw64Reader::Bw64Reader (C++ function)

 	bw64::Bw64Reader::channels (C++ function)

 	bw64::Bw64Reader::chnaChunk (C++ function)

 	bw64::Bw64Reader::chunks (C++ function)

 	bw64::Bw64Reader::dataChunk (C++ function)

 	bw64::Bw64Reader::ds64Chunk (C++ function)

 	bw64::Bw64Reader::eof (C++ function)

 	bw64::Bw64Reader::fileFormat (C++ function)

 	bw64::Bw64Reader::fileSize (C++ function)

 	bw64::Bw64Reader::formatChunk (C++ function)

 	bw64::Bw64Reader::formatTag (C++ function)

 	bw64::Bw64Reader::hasChunk (C++ function)

 	bw64::Bw64Reader::numberOfFrames (C++ function)

 	bw64::Bw64Reader::read (C++ function)

 	bw64::Bw64Reader::sampleRate (C++ function)

 	bw64::Bw64Reader::seek (C++ function)

 	bw64::Bw64Reader::tell (C++ function)

 	bw64::Bw64Reader::~Bw64Reader (C++ function)

 	bw64::Bw64Writer (C++ class)

 	bw64::Bw64Writer::bitDepth (C++ function)

 	bw64::Bw64Writer::Bw64Writer (C++ function)

 	bw64::Bw64Writer::channels (C++ function)

 	bw64::Bw64Writer::chunkSizeForHeader (C++ function)

 	bw64::Bw64Writer::finalizeRiffChunk (C++ function)

 	bw64::Bw64Writer::formatTag (C++ function)

 	bw64::Bw64Writer::framesWritten (C++ function)

 	bw64::Bw64Writer::isBw64File (C++ function)

 	bw64::Bw64Writer::overwriteChunk (C++ function)

 	bw64::Bw64Writer::riffChunkSize (C++ function)

 	bw64::Bw64Writer::sampleRate (C++ function)

 	bw64::Bw64Writer::write (C++ function)

 	bw64::Bw64Writer::writeChunk (C++ function)

 	bw64::Bw64Writer::writeRiffHeader (C++ function)

 	bw64::Bw64Writer::~Bw64Writer (C++ function)

 	bw64::ChnaChunk (C++ class)

 	bw64::ChnaChunk::addAudioId (C++ function)

 	bw64::ChnaChunk::audioIds (C++ function)

 	bw64::ChnaChunk::id (C++ function)

 	bw64::ChnaChunk::numTracks (C++ function)

 	bw64::ChnaChunk::numUids (C++ function)

 	bw64::ChnaChunk::size (C++ function)

 	bw64::ChnaChunk::write (C++ function)

 	bw64::Chunk (C++ class)

 	
 	bw64::Chunk::id (C++ function)

 	bw64::Chunk::size (C++ function)

 	bw64::Chunk::write (C++ function)

 	bw64::DataChunk (C++ class)

 	bw64::DataChunk::id (C++ function)

 	bw64::DataChunk::size (C++ function)

 	bw64::DataChunk::write (C++ function)

 	bw64::DataSize64Chunk (C++ class)

 	bw64::DataSize64Chunk::bw64Size (C++ function), [1]

 	bw64::DataSize64Chunk::clearChunkSizeTable (C++ function)

 	bw64::DataSize64Chunk::dataSize (C++ function), [1]

 	bw64::DataSize64Chunk::DataSize64Chunk (C++ function)

 	bw64::DataSize64Chunk::dummySize (C++ function), [1]

 	bw64::DataSize64Chunk::getChunkSize (C++ function)

 	bw64::DataSize64Chunk::hasChunkSize (C++ function)

 	bw64::DataSize64Chunk::id (C++ function)

 	bw64::DataSize64Chunk::removeChunkSize (C++ function)

 	bw64::DataSize64Chunk::setChunkSize (C++ function)

 	bw64::DataSize64Chunk::size (C++ function)

 	bw64::DataSize64Chunk::table (C++ function)

 	bw64::DataSize64Chunk::tableLength (C++ function)

 	bw64::DataSize64Chunk::write (C++ function)

 	bw64::ExtraData (C++ class)

 	bw64::ExtraData::dwChannelMask (C++ function)

 	bw64::ExtraData::ExtraData (C++ function)

 	bw64::ExtraData::subFormat (C++ function)

 	bw64::ExtraData::subFormatString (C++ function)

 	bw64::ExtraData::validBitsPerSample (C++ function)

 	bw64::FormatInfoChunk (C++ class)

 	bw64::FormatInfoChunk::bitsPerSample (C++ function)

 	bw64::FormatInfoChunk::blockAlignment (C++ function)

 	bw64::FormatInfoChunk::bytesPerSecond (C++ function)

 	bw64::FormatInfoChunk::channelCount (C++ function)

 	bw64::FormatInfoChunk::extraData (C++ function)

 	bw64::FormatInfoChunk::FormatInfoChunk (C++ function)

 	bw64::FormatInfoChunk::formatTag (C++ function)

 	bw64::FormatInfoChunk::id (C++ function)

 	bw64::FormatInfoChunk::sampleRate (C++ function)

 	bw64::FormatInfoChunk::size (C++ function)

 	bw64::FormatInfoChunk::write (C++ function)

 	bw64::JunkChunk (C++ class)

 	bw64::JunkChunk::id (C++ function)

 	bw64::JunkChunk::size (C++ function)

 	bw64::JunkChunk::write (C++ function)

 	bw64::readFile (C++ function)

 	bw64::UnknownChunk (C++ class)

 	bw64::UnknownChunk::id (C++ function)

 	bw64::UnknownChunk::size (C++ function)

 	bw64::UnknownChunk::write (C++ function)

 	bw64::utils::fourCC (C++ function)

 	bw64::utils::fourCCToStr (C++ function)

 	bw64::writeFile (C++ function)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 libbw64 – ITU-R BS.2088 Library

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/irt_logo.png

_static/comment-bright.png

