

 Navigation

 	
 index

 	
 next |

 	libaps 1.3 documentation

Welcome to libaps’s documentation!

[image: _images/BBNAPS-front-panel.jpg]

The BBN Arbitrary Pulse Sequencer (APS) is an arbitrary waveform generator with
an advanced sequencing ability. The sequencer allows for specification of
individual operations (gates) to be defined as units in a waveform library, so
that an algorithm/experiment can be defined by stringing together sequences of
gates and delays. This results in a very compact description for efficient
memory use.

Contents:

	Quick Start

	Installation Guide
	Hardware

	Software

	Standalone GUI control program

	API
	Methods

	Properties

	Example

	Sequence Mode and File Specification
	File Specification

	Link list field formats

	Specifications
	Detailed Specifications

Indices and tables

	Index

	Search Page

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libaps 1.3 documentation

Quick Start

TODO: Follow these steps to get up and running quickly...

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libaps 1.3 documentation

Installation Guide

Hardware

The BBN APS has separate enclosures for the power supply and analog
front-end. A single power supply module has two 5.5V outputs and two
3.3V outputs, which is sufficient to power two analog modules. Using the
supplied cables, connect a pair of power outputs with the same label
(PS1 or PS2) to the power inputs on the rear of an analog module. It is
important to maintain the labeled pairing when connecting to the analog
modules in order to ensure proper power sequencing and optimal noise
performance. These outputs are not hot-pluggable; one must ensure that
the power switch on the front of the supply module is in the off
position before connecting or disconnecting the power cables.

[image: _images/BBNAPS-rear-panel.jpg]
BBN APS rear panel. The rear panel of the APS has a USB connect as well as
3.3V and 5V power supply inputs. Be careful to connect power outputs on the
power supply with the same number in order to obtain the best noise
performance from the device. Never unplug the cables from the power inputs
while the power supply is on.

Once the power supply has been connected, turn the APS on with the power
switch on the front of the power supply. At this point, the FPGAs in the
analog module are in a blank state, awaiting upload of the pulse
sequencer firmware over the USB interface.

While the APS can run in a standalone configuration, we recommend
running with a 10MHz (+7dBm) external reference. This reference must
be supplied at the corresponding front panel input before powering on
the device. Multiple devices can be syncronized by supplying an
appropriate external trigger.

Software

USB Driver

The BBN APS requires a USB driver in order to communicate with the host PC.
Prior to plugging the APS into the host computer, you should download and unzip
the driver from the `FTDI website <http://www.ftdichip.com/Drivers/D2XX.htm>’_.
After connecting to a Windows XP/Vista/7 machine, the ‘new hardware’ wizard will
open. Occasionally Windows will find an appropriate driver without further
input, but more often you will need to supply the path to the FTDI driver
folder.

On Linux, for normal user access to the device you will have to add a udev rule.
Adding a file to /etc/rules.d such as 50-aps-usb-rules with the line

Make available to non-root users
SUBSYSTEM=="usb", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6001", GROUP="users", MODE="0666"

should work. The kernel bundles a USB virtual com port driver that will take
precedence over the FTDI driver libaps uses. See this FTDI guide [http://www.ftdichip.com/Support/Documents/AppNotes/AN_220_FTDI_Drivers_Installation_Guide_for_Linux%20.pdf]
for details but running the following commands after every plug-in or power
cycle event will work.

sudo rmmod ftdi_sio
sudo rmmod usbserial

It should also be possible to automate unbinding the VCO driver using a more
sophisticated udev rule.

libaps

The APS is driven by a C++ library with a C API. We have provided MATLAB,
python, and LabVIEW bindings to this library such that use of the APS is as
similar as possible in the various instrument control environments. The library
is bundled into a release package that is available in release tab [https://github.com/BBN-Q/libaps/releases] of the GitHub site. You simply need
to add the relevant paths to your MATLAB or Python code. In particular for
Python on Linux you will need to add the folder containing libaps.so to your
LD_LIBRARY_PATH.

Python requirements

The BBN APS driver for Python requires Python 2.7 or later (but not
Python 3+). You also need a working installation of NumPy and h5py. We recommend using the Anaconda python distribution [https://store.continuum.io/cshop/anaconda/].

MATLAB requirements

The BBN APS driver for MATLAB requires MATLAB 2010a or later. The driver
does not depend on any toolkits, so a vanilla install is sufficient.

LabVIEW requirements

The BBN APS driver for LabVIEW requires only a relatively recent LabVIEW
installation that supports object-oriented instrument classes (2008 or
later).

Standalone GUI control program

A standalone Win32 application is available for controlling the BBN APS.
This application is available on the downloads section of the BBN Qlab
repository on Github.

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libaps 1.3 documentation

API

libaps exports a C API which can be called from any other language that has a
foreign function interface that can interact with a C shared library.

Interface drivers for the BBN APS are available on several platforms
including: MATLAB, Python, and LabVIEW. Effort has been made to use
consistent naming across these interfaces, so that method signatures
look similar in the various platforms. The following methods are
available on all platforms, and are consider ‘public’ methods, in the
sense that the API for these methods is expected to be consistent across
major software versions. Use of methods outside of this list may result
in broken code when receiving future software updates.

Methods

APS()

	Inputs

	None

	Outputs

	an APS object

	Description

	This method instantiates an APS driver object. Creation of this
object is the first step in all use cases of the driver.

connect(address)

	Inputs

	integer or string address - device ID (integer) or serial number (string)

	Outputs

	None

	Description

	Opens the USB connection to the APS. May take as input a device ID or a device
serial number. The device ID is determined by an alphanumeric sorting of the
connected APS serial numbers. The first device in that sorted list has ID = 0.
Consequently, if you only have one APS connected, you can assume that it is
device 0.

disconnect()

	Inputs

	None

	Outputs

	None

	Description

	Closes the USB connection to the APS. The APS driver allows only one open
connection at a time, so it is important to include a call to disconnect()
in your code.

init(force, bitfile)

	Inputs

	integer force - (optional) 1 = force loading of FPGA firmware, 0 = do not force load (default); string bitfile - (optional) fullpath to a valid APS bitfile.

	Outputs

	None

	Description

	Performs all initialization tasks on the APS. This method should be called by
all user code between connect() and all other commands. The driver attempts
to detect whether initialization is necessary, and will skip most tasks if it
detects that the APS is in a ready state. You can override these checks and
force the driver to re-initialize the APS by calling this method with force = 1.

setAll(settings)

	Inputs

	struct (Python dictionary) settings - complete APS settings structure

	Outputs

	None

	Description

	A single method for doing all setup tasks for the APS. The settings structure
has the following elements:

	chan_n.enabled

	chan_n.amplitude

	chan_n.offset

	samplingRate

	triggerSource

	seqfile

where ‘n’ in the channel elements identifies the channel number (1-4). You can
see an example usage of setAll() in the Example.

loadConfig(path)

	Inputs

	string path - full path to an APS sequence configuration file

	Outputs

	None

	Description

	Loads a multi-channel sequence configuration files as described in
Sequence Mode and File Specification. loadConfig() will enable any channel for which
there is waveform/sequence data in the configuration file, and will set the run
mode to RUN_SEQUENCE.

loadWaveform(channel, waveform[])

	Inputs

	integer channel - target channel (1-4); integer/float array waveform[] -
signed 14-bit waveform data in the range (-8191, 8192) or signed float data in
the range (-1.0, 1.0)

	Outputs

	None

	Description

	Loads waveform data onto a channel of the APS. Also enables the channel. To load
sequence data, see loadConfig() and/or setAll().

run()

	Inputs

	None

	Outputs

	None

	Description

	Starts output on all enabled channels. See setEnabled() to see how to enable a channel.

stop()

	Inputs

	None

	Outputs

	None

	Description

	Disables output on all enabled channels and resets the pulse sequencer back to
the beginning of the sequence.

isRunning()

	Inputs

	None

	Outputs

	boolean

	Description

	Returns true if any channel of the APS is currently running.

setRunMode(channel, mode)

	Inputs

	integer channel - target channel (1-4); integer mode - RUN_WAVEFORM (0) or
RUN_SEQUENCE (1)

	Outputs

	None

	Description

	Sets the run mode to either directly output the contents of waveform memory,
or to function as a pulse sequencer, stepping through the loaded link list
entries.

setOffset(channel, offset)

	Inputs

	integer channel - target channel (1-4); float offset - normalized channel
offset in range (-1.0, 1.0)

	Outputs

	None

	Description

	Sets the voltage offset of the specified channel. Note: the APS mimics a
voltage offset by shifting the waveform data. Consequently, it is possible to
introduce clipping of the waveform by using this method.

setAmplitude(channel, offset)

	Inputs

	integer channel - target channel (1-4); float offset - channel amplitude/scale factor

	Outputs

	None

	Description

	Sets the channel scale factor. Note: the APS mimics channel amplitude by
multiplying the waveform data by the channel scale factor. It is possible to
introduce clipping of the waveform by using this method.

setEnabled(channel, enabled)

	Inputs

	integer channel - target channel (1-4); bool enabled - enabled state of channel

	Outputs

	None

	Description

	Enables or disables the specified channel.

setTriggerDelay(channel, delay)

Deprecated - will not be supported in future releases

	Inputs

	integer channel - target channel (1-4); integer delay - channel
trigger/marker delay with respect to the analog output, specified in units of
4 sample increments (e.g. delay = 3 is a 12 sample delay)

	Description

	Sets a fixed delay of the marker channel associated with a given analog output
channel.

Properties

samplingRate

	Description

	Set or get the sampling rate (in MS/s). Valid inputs are (1200, 600, 300, 100,
or 40).

triggerSource

	Description

	Set the trigger source. Valid inputs are ‘internal’ or ‘external’.

Example

This example uses setAll() rather than calling individual methods.

% create settings structure
settings = struct();
settings.chan_1.enabled = true;
settings.chan_1.amplitude = 1.0;
settings.chan_1.offset = 0;
settings.chan_2.enabled = true;
settings.chan_2.amplitude = 1.0;
settings.chan_2.offset = 0;
settings.chan_3.enabled = true;
settings.chan_3.amplitude = 0.8;
settings.chan_3.offset = 0.1;
settings.chan_4.enabled = true;
settings.chan_4.amplitude = 1.2;
settings.chan_4.offset = -0.05;
settings.samplingRate = 1200;
settings.triggerSource = `external';
settings.seqfile = `Ramsey/Ramsey.h5';

aps = deviceDrivers.APS();
aps.connect(0);
aps.init();
aps.setAll(settings);
aps.run();

% acquire data...

aps.stop();
aps.disconnect();

The same thing could be accomplished with calls to individual methods:

aps = deviceDrivers.APS();
aps.connect(0);
aps.init();

% configure the APS
% set up channels
aps.setAmplitude(1, 1.0);
aps.setOffset(1, 0);
aps.setAmplitude(2, 1.0);
aps.setOffset(2, 0);
aps.setAmplitude(3, 0.8);
aps.setOffset(3, 0.1);
aps.setAmplitude(4, 1.2);
aps.setOffset(4, -0.05);

% load pulse sequence
aps.loadConfig(`Ramsey/Ramsey.h5');

% configure output rate and trigger source
aps.samplingRate = 1200;
aps.triggerSource = `external';

aps.run();

% acquire data...

aps.stop();
aps.disconnect();

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	libaps 1.3 documentation

Sequence Mode and File Specification

In addition to outputting waveforms of up to 32,768 points, the APS
supports a sequence mode that outputs a series of pulses from the
waveform memory. This sequence definition table, known as a ‘link list’,
can store up to 8,192 entries. The APS’s dual-port memory architecture
allows the driver software to stream data to the sequence memory while
the device is running. If configured such that an individual sequence
duration is longer than the transfer time (\(\sim 10\,\mathrm{ms}\)
per channel), then the APS can output a nearly continuous stream of
pulses. Use of this streaming mode of operation is largely transparent
to the user. One simply asks to load some sequence data to the APS, and
if there are more entries than can fit onto the device memory, the
driver will use streaming mode automatically.

The APS sequence mode requires the construction of a set of one or more
link lists. The APS begins output of each link list upon receipt of a
trigger, which can be supplied at the external trigger input of the
analog module, or it can be generated internally. Each link list is
composed of one or more entries, which can be any of the following
types:

	waveform - an analog pulse defined by a section of waveform
memory

	time/amplitude pair - a constant amplitude signal of a specified
duration

	delay - a time/amplitude pair with amplitude zero

Each entry may also specify a transition in the output of the associated
digital (marker) channel. In particular, one can specify the position of
a rising edge, falling edge, or pulse at a delay from the beginning of
the output of the entry.

The APS firmware allows for an additional division of each link list
into sub-sequences known as ‘mini link lists’. This allows the user to
specify sequences with repeated sections, or sections which should wait
for a trigger to output. One use of this feature is to specify sets of
experiments which scan over some parameter such as a delay or a pulse
height, and take the data in a ‘round robin’ mode, as supported by many
digitizers.

FigureExample pulse sequence: A simple pulse sequence that might occur in a Hahn
echo experiment as implemented using a link list. Note that one can test
very long delays because the data stored in waveform memory is independent
of the experiment delays. shows an example of a Hahn echo experiment
(\(\pi/2\)-pulse, wait \(\tau\), \(\pi\)-pulse, wait
\(\tau\), \(\pi/2\)-pulse) specified as a link list. The
waveform memory (right panel) contains just two pulses, corresponding to
the \(\pi/2\) and \(\pi\) pulses. Then the link list (bottom)
joins these pulses together with appropriate delays.

[image: _images/pulse-sequence.png]
Example pulse sequence: A simple pulse sequence that might occur in a Hahn
echo experiment as implemented using a link list. Note that one can test
very long delays because the data stored in waveform memory is independent
of the experiment delays.

File Specification

Sequences are programmed using an HDF5 file with the following layout (n is an integer between 1-4):

/version - attribute indicating file version number

/channelDataFor - attribute containing array of integers specifying channels for which data is supplied in the file

/miniLLRepeat - attribute containing default number of times to repeat each mini link list (0 = play without repeats)

/chan_n/isListListData - integer attribute specifying whether link list data is supplied for this channel

/chan_n/isIQMode - integer attribute specifying whether this channel contains data for an I/Q pair (default = 1)

/chan_n/waveformLib - int16 vector of 14-bit waveform values, sign-extended to 16-bits

/chan_n/linkListData/length - integer attribute specifying number of link list entries

/chan_n/linkListData/addr - int16 vector of waveform addresses

/chan_n/linkListData/count - int16 vector of waveform lengths

/chan_n/linkListData/repeat - int16 vector of repeats

/chan_n/linkListData/trigger1 - int16 vector of offset counts for trigger1 pulses

/chan_n/linkListData/trigger2 - int16 vector of offset counts for trigger2 pulses

Link list field formats

An individual sequence entry consists of a value from each of the addr, count,
repeat, trigger1, and trigger2 fields. Data is encoded in these fields in the
following way:

Address: 16-bit offset in quad samples into waveform memory.

Count: length of waveform in quad samples minus one. For example, a waveform
that is 16 samples long has count = 3. The minimum count is 2.

Repeat: 10-bit repeat count for the waveform. Bits 10-11 are reserved. Bit 15
is the START_MINILL flag. Bit 14 is the END_MINILL flag. Bit 13 is the
WAIT_FOR_TRIG flag. Bit 12 is the TA_PAIR flag.

Trigger1/2: offset in quad samples to output a trigger pulse on the
corresponding marker output channel. A value of zero means no pulse.
Accordingly, it is not possible to have a pulse aligned with the first sample
of a waveform.

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	libaps 1.3 documentation

Specifications

Each unit has four 14-bit 1.2 GS/s analog output channels and four 300 MS/s
digital marker channels. The clocks can be synchronized to an external 10 MHz
reference. The device can be triggered internally or via an external trigger
input. The device uses low-noise linear power supplies with an ultra-low-noise
buffer amplifier on the DAC outputs to provide a system noise comparable to a 1
kOhm resistor.

The BBN Arbitrary Pulse Sequencer (APS) is USB slave module with four
1.2 GS/s 14-bit analog output channels and four 300 MS/s digital marker
channels. A high-bandwidth amplifier buffers the DAC outputs to drive a
50 ohm load to ±1V full-scale. High-speed LatticeSC3 FPGAs generate 600
MHz DDR sample streams for the DAC channels. Low-skew, low-jitter 300
MHz and 1.2 GHz clocks from a PLL clock generator drive the FPGAs and
the DACs. The clocks can be phase locked to an external 10 MHz
reference.

The voltage noise of the APS is limited by the noise performance of the
last-stage output amplifier, an Analog Devices AD8099. The measured
noise at the analog channel outputs is shown in Fig[fig:noise]. Careful
engineering of the power supplies and analog/digital ground plane
separation lead to system noise performance that is orders of magnitude
better than some commonly used waveform generators.

[image: _images/aps-ii-tek-noise-comparison.png]
Comparison of AWG output noise. Output noise power versus frequency for the
Tektronix AWG5014, Innovative Integration X6-1000M, and BBN APS. The APS’s
linear power supplies and low-noise output amplifier lead to signficant
improvements in the noise performance. The II X6 is significantly better than
the Tek5014, but suffers from resonances in the noise spectrum because it is
in a host PC environment.

Detailed Specifications

	Parameter
	Value

	Analog channels
	four 14-bit 1.2 GS/s outputs

	Jitter
	28ps RMS (71ps peak-to-peak)

	Rise/fall time
	2ns

	Settling time
	2ns to 10%, 10ns to 1%

	Digital channels
	four 300 MS/s capacitvely coupled outputs

	Trigger input
	1 V minimum into \(50\,\mathrm{\Omega}\), 5 V maximum; triggered on rising edge

	Waveform memory
	32,768 samples per channel

	Sequence memory
	8,192 entries per channel (unlimited with streaming)

	Minimum sequence pulse length
	12 samples (10 ns)

	Maximum sequence pulse length
	27 us waveform, or 8 s time-amplitude pair

	Minimum sequence length
	2 entries

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	libaps 1.3 documentation

Index

 Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_images/BBNAPS-rear-panel.jpg
L

@

@

_images/aps-ii-tek-noise-comparison.png
— 11 X6-1000M|
—BBNAPS
—Tek5014

-130

dBVpys/VHz

-140

-150]

-160!
10° 10' 100 10° 10 10°
Frequency (Hz)

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_images/BBNAPS-front-panel.jpg
ARBITRARY PULSE SEQUENCER .)

@ ® ®
(CRCRCRN R ORCN RN R

12 oH34
o i@t onz mee onaBmcs one s micBree “on” “on
W

_images/pulse-sequence.png
waveform memory

wim1 | wfm2

el o el o oy

_static/plus.png

_static/up-pressed.png

_static/bbn-logo.png
BBN Technologies

search.html

 Navigation

 		
 index

 		libaps 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, BBN.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment.png

_static/down.png

