
lexor Documentation
Release 0.1.2c0

Manuel Lopez

September 30, 2014

Contents

1 Basic Usage 3
1.1 What is Lexor? . 3
1.2 Installing Lexor . 3
1.3 Getting Started . 4

2 Command Line 7
2.1 Commands . 7

3 Lexor API 9
3.1 API . 9

4 Indices and tables 35

Python Module Index 37

i

ii

lexor Documentation, Release 0.1.2c0

Lexor is a document converter implemented in Python.

Contents 1

lexor Documentation, Release 0.1.2c0

2 Contents

CHAPTER 1

Basic Usage

1.1 What is Lexor?

Lexor provides a platform where we can specify how a document is parsed, converted and written. It is an expandable
Python package which aims to provide functionality to deal with any text file.

1.1.1 Motivation

Lexor started as a simple HTML file parser which later evolved into a markdown parser. The first versions took
inspiration on Python-Markdown. However, the need to modify and extend the functionality let us to find Pandoc.

Today, lexor aims to behave similary to Pandoc, in the sense that it converts documents but it does so to meet the
users preferences. For instance, we may want to write an HTML file in a minified form, that is, seeing as spaces and
new lines do not matter in almost all HTML tags we could write an HTML in a single line, provided that there are no
script or other special tags. Or perhaps we want to let Lexor write it in a different style. Lexor attempts to emulate
Pandoc in Python. We should note that Pandoc is written in Haskell and although Pandoc already has lots of document
converters, Lexor brings potential for Python users to create their own tools for processing files in a simplified manner.

1.2 Installing Lexor

1.2.1 Pip or Manual Installation

The easiest way to install lexor is to use pip. If you wish to perform a global installation and you have admin rights
then do

sudo pip install lexor

or to install in some directory under your user account

pip install --user lexor

Or if you prefer to do do a manual installation then you may do the following from the command line (where x.y is
the version number):

wget https://pypi.python.org/packages/source/l/lexor/lexor-x.y.tar.gz
tar xvzf lexor-x.y.tar.gz
cd lexor-x.y/
sudo python setup.py install

3

https://pythonhosted.org/Markdown/
http://johnmacfarlane.net/pandoc/

lexor Documentation, Release 0.1.2c0

The last command can be replaced by python setup.py install --user. See PyPI for all available ver-
sions.

1.2.2 Lexor Languages

The basic lexor installation does not provide any parsers, converters or writers. You must install them manually using
the install lexor command.

lexor install <language>

To see the available languages see http://jmlopez-rod.github.io/lexor-lang/.

1.3 Getting Started

As a simple example we will use the HTML language:

lexor install html

Consider the file example.html

<!DOCTYPE html>
<html>

<head>
<title>Example</title>

</head>
<body>

<h1>Example</h1>
<p>

This is an example

</p>
</body>

</html>

Now we can rewrite this file into three different versions:

lexor example.html html~plain,min,_~ -wn

The -w option writes the output to a file by appending the specified style. The -n suppress the output in the terminal.

The following are the files written:

example.default.html:

<!DOCTYPE html>
<html>
<head>
<title>Example</title>
</head>
<body>
<h1>Example</h1>
<p> This is an example </p>
</body>
</html>

example.plain.html:

4 Chapter 1. Basic Usage

https://pypi.python.org/pypi/lexor/
http://jmlopez-rod.github.io/lexor-lang/

lexor Documentation, Release 0.1.2c0

<!DOCTYPE html>
<html>

<head>
<title>Example</title>

</head>
<body>

<h1>Example</h1>
<p>

This is an example

</p>
</body>

example.min.html:

<!DOCTYPE html><html><head><title>Example</title></head><body><h1>Example</h1><p> This is an example </p></body></html>

For more information on how to transform files see the lexor command to.

1.3. Getting Started 5

lexor Documentation, Release 0.1.2c0

6 Chapter 1. Basic Usage

CHAPTER 2

Command Line

2.1 Commands

2.1.1 lexor install

Install a parser, writer or converter style.

7

lexor Documentation, Release 0.1.2c0

8 Chapter 2. Command Line

CHAPTER 3

Lexor API

3.1 API

This is the Lexor API documentation, autogenerated from the source code.

3.1.1 lexor package

To use lexor as a module you should explore in detail the packages provided with lexor. These packages contain many
other functions and information which can help you convert your document in the way you desire.

core The core of lexor defines basic objects such as Document and provides the main objects that define
the functions provided in this module.

command This module is in charge of providing all the available commands to lexor.

In this module we can find useful functions to quickly parse, convert and write files without first creating any of the
main lexor objects.

lexor.lexor(src, search=False, **keywords)
Utility function to parse and convert a file or string specified by src. If search is True then it will attemp to
search for src in the paths specified by the enviromental variable $LEXORINPUTS. The following are all the
valid keywords and its defaults that this function accepts:

•parser_style: ’_’

•parser_lang: None

•parser_defaults: None,

•convert_style: ’_’,

•convert_from: None,

•convert_to: ’html’,

•convert_defaults: None,

•convert: ’true’

Returns the converted Document object and the log Document containing possible warning or error messages.

lexor.parse(text, lang=’xml’, style=’default’)
Parse the text in the language specified by lang and return its Document form and a Document log containing
the errors encountered during parsing.

9

lexor Documentation, Release 0.1.2c0

lexor.read(filename, style=’default’, lang=None)
Read and parse a file. If lang is not specified then the language is assummed from the filename extension.
Returns the Document form and a Document log containing the errors encountered during parsing.

lexor.convert(doc, lang=None, style=’default’)
Convert the Document doc to another language in a given style. If the lang is not specified then the doc is
tranformed to the same language as the Document using the default style.

lexor.write(doc, filename=None, mode=’w’, **options)
Write doc to a file. To write to the standard output use the default parameters, otherwise provide filename. If
filename is provided you have the option of especifying the mode: ’w’ or ’a’.

You may also provide a file you may have opened yourself in place of filename so that the writer writes to that
file, in this case the mode is ignored.

The valid options depends on the language the document specifies. See the DEFAULT values a particular writer
style has to obtain the valid options.

lexor.init(**keywords)
Every lexor style needs to call the init function. These are the valid keywords to initialize a style:

•version: (major, minor, micro, alpha/beta/rc/final, #)

•lang

•[to_lang]

•type

•description

•author

•author_email

•[url]

•license

•path: Must be set to __file__.

3.1.2 lexor.core package

The core of lexor is divided among the modules in this package.

node Provides the most basic structure to create the document object model (DOM).

elements Here we define the basic structures to handle the information provided in files. Make sure to
familiarize yourself with all the objects in this module to be able to write extensions for the Parser,
Converter and Writer.

parser The parser module provides the Parser and the abstract class NodeParser which helps us
write derived objects for future languages to parse.

converter The converter module provides the Converter and the abstract class NodeConverter
which helps us copy a Document we want to convert to another language.

writer The writer module provides the Writer and the abstract class NodeWriter which once sub-
classed help us tell the Writer how to write a Node to a file object.

10 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

lexor.core.parser module

Parser Module

Provides the Parser object which defines the basic mechanism for parsing character sequences. This involves using
objects derived from the abstract class NodeParser.

class lexor.core.parser.NodeParser(parser)
Bases: object

An object that has two methods: makeNode and close. The first method is required to be overloaded in derived
objects.

close(_)
This method needs to be overloaded if the node parser returns a Node with the make_node method.

This method will not get called if make_node returned a Node inside a list. The close function takes as
input the Node object that make_node returned and it should decide if the node can be closed or not. If it is
indeed time to close the Node then return a list with the position where the Node is being closed, otherwise
return None.

If this method is not overloaded then a NotImplementedError exception will be raised.

make_node()
This method is required to be overloaded by the derived node parser. It returns None if the node parser will
not be able to create a node from the current information in the parser. Otherwise it creates a Node object
and returns it.

When returning a node you have the option of informing the parser if the node is complete or not. For
instance, if your node parser creates an Element and it does not have any children to be parsed then return
a list containing only the single node. This will tell the parser that the node has been closed and it will
not call the close method of the node parser. If the Node does not have a child, say ProcessingInstruction,
RawText, or Void then there is no need to wrap the node in a list.

The Node object that this method returns also needs to have the property pos. This is a list of two integers
stating the line and column number where the node was encountered in the text that is being parsed. This
property will be removed by the parser once the parser finishes all processing with the node.

If this method is not overloaded as previously stated then a NotImplementedError exception will be raised.

msg(code, pos, arg=None, uri=None)
Send a message to the parser.

class lexor.core.parser.Parser(lang=’xml’, style=’default’, defaults=None)
Bases: object

To see the languages that it is able to parse see the lexor.lang module.

caret_position
The index in the text the parser is processing. You may use the attribute access caret if performance is an
issue.

cdata
The character sequence data that was last processed by the parse method. You may use the attribute access
text if performance is an issue.

compute(index)
Returns a position in the text [line, column] given an index. Note: This does not modify anything in the
parser. It only gives you the line and column where the caret would be given the index. The same applies
as in update. Do not use compute with an index less than the current position of the caret.

3.1. API 11

lexor Documentation, Release 0.1.2c0

copy_pos()
Returns a copy of the current position.

document
The parsed document. This is a Document or FragmentedDocument created by the parse method.

language
The language in which the Parser object will parse character sequences.

lexor_log
The lexor_log document. See this document after each call to parse to see warnings and errors in the text
that was parsed.

load_node_parsers()
Loads the node parsers. This function is called automatically when parse is called only if there was a
change in the settings.

msg(mod_name, code, pos, arg=None, uri=None)
Provide the name of module issuing the message, the code number, the position of caret and optional
arguments and uri. This information gets stored in the log.

parse(text, uri=None)
parses the given text. To see the results of this method see the document and log property. If no uri is given
then document will return a DocumentFragment node.

parsing_style
The style in which the Parser object will parse the character sequences.

position
Position of caret in the text in terms of line and column. i.e. returns [line, column]. You may use the
attribute access pos if performance is an issue.

set(lang, style, defaults=None)
Set the language and style in one call.

update(index)
Changes the position of the caret and updates pos. This function assumes that you are moving forward.
Do not update to an index which is less than the current position of the caret.

uri
The Uniform Resource Identifier. This is the name that was given to the text that was last parsed.

lexor.core.converter module

Converter Module

Provides the Converter object which defines the basic mechanism for converting the objects defined in
lexor.core.elements. This involves using objects derived from the abstract class NodeConverter.

class lexor.core.converter.BaseLog(converter)
Bases: object

A simple class to provide messages to a converter. You must derive an object from this class in the module
which will be issuing the messages. For instance:

class Log(BaseLog): pass

After that you can create a new object and use it in a module.

log = Log(converter)

12 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

where converter is a Converter provided to the module. Make sure that the module contains the objects MSG
and MSG_EXPLANATION.

msg(code, arg=None, uri=None)
Send a message to the converter.

class lexor.core.converter.Converter(fromlang=’xml’, tolang=’xml’, style=’default’, de-
faults=None)

Bases: object

To see the languages available to the Converter see the lexor.lang module.

convert(doc, namespace=False)
Convert the Document doc.

convert_from
The language from which the converter will convert.

convert_to
The language to which the converter will convert.

converting_style
The converter style.

document
The parsed document. This is a Document or FragmentedDocument created by the convert method.

exec_python(node, id_num, parser, error=True)
Executes the contents of the processing instruction. You must provide an id number identifying the pro-
cessing instruction, the namespace where the execution takes place and a parser that will parse the output
provided by the execution. If error is True then any errors generated during the execution will be appended
to the output of the document.

lexor_log
The lexorlog document. See this document after each call to convert to see warnings and errors.

match_info(fromlang, tolang, style, defaults=None)
Check to see if the converter main information matches.

msg(mod_name, code, node, arg=None, uri=None)
Provide the name of module issuing the message, the code number, the node with the error, optional
arguments and uri. This information gets stored in the log.

pop()
Remove the last document and last log document and return them.

static remove_node(node)
Removes the node from the current document it is in. Returns the previous sibling is possible, otherwise it
returns an empty Text node.

set(fromlang, tolang, style, defaults=None)
Sets the languages and styles in one call.

update_log(log, after=True)
Append the messages from a log document to the converters log. Note that this removes the children from
log.

class lexor.core.converter.NodeConverter(converter)
Bases: object

A node converter is an object which determines if the node will be copied (default). To avoid copying the node
simply declare

copy = False

3.1. API 13

lexor Documentation, Release 0.1.2c0

when deriving a node converter. Note that by default, the children of the node (if any) will be copied and
assigned to the parent. To avoid copying the children then set

copy_children = False

classmethod end(node)
This method gets called after all the children have been copied. Make sure to return the node or the node
replacement.

msg(code, node, arg=None, uri=None)
Send a message to the converter.

classmethod start(node)
This method gets called only if copy is set to True (default). By overloading this method you have access
to the converter and the node. You can thus set extra variables in the converter or modify the node. DO
NOT modify any of the parents of the node. If there is a need to modify any of parents of the node then set
a variable in the converter to point to the node so that later on in the convert function it can be modified.

lexor.core.converter.echo(node)
Allows the insertion of Nodes generated within python embeddings.

<?python comment = PI(‘!–‘, ‘This is a comment’) echo(comment) ?>

lexor.core.converter.get_converter_namespace()
Many converters may be defined during the conversion of a document. In some cases we may need to save
references to objects in documents. If this is the case, then call this function to obtain the namespace where you
can save those references.

lexor.core.converter.get_current_node()
Return the Document node containing the python embeddings currently being executed.

lexor.core.converter.get_lexor_namespace()
The execution of python instructions take place in the namespace provided by this function.

lexor.core.converter.import_module(mod_path, mod_name=None)
Return a module from a path. If no name is provided then the name of the file loaded will be assigned to the
name. When using relative paths, it will find the module relative to the file executing the python embedding.

lexor.core.converter.include(input_file, **keywords)
Inserts a file into the current node.

lexor.core.writer module

Writer Module

Provides the Writer object which defines the basic mechanism for writing the objects defined in lexor.core.elements.
This involves using objects derived from the abstract class NodeWriter. See lexor.core.dev for more information on
how to write objects derived from NodeWriter to be able to write Documents in the way you desire.

class lexor.core.writer.DefaultWriter(writer)
Bases: lexor.core.writer.NodeWriter

If the language does not define a NodeWriter for __default__ then the writer will use this default writer.

end(node)
Write the end of the node as an xml end tag.

start(node)
Write the start of the node as a xml tag.

14 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

class lexor.core.writer.NodeWriter(writer)
Bases: object

A node writer is an object which writes a node in three steps: start, data/child, end.

classmethod child(_)
This method gets called for Elements that have children. If it gets overwritten then it will not traverse
through child nodes unless you return something other than None.

This method by default returns True so that the Writer can traverse through the child nodes.

data(node)
This method gets called only by CharacterData nodes. This method should be overloaded to write their
attribute data, otherwise it will write the node’s data as it is.

end(node)
Overload this method to write part of the Node object in the last encounter with the Node.

start(node)
Overload this method to write part of the Node object in the first encounter with the Node.

write(string, split=False)
Writes the string to a file object. The file object is determined by the Writer object that initialized this
object (self).

class lexor.core.writer.Writer(lang=’xml’, style=’default’, defaults=None)
Bases: object

To see the languages in which a Writer object is able to write see the lexor.lang module.

close()
Close the file.

disable_raw()
Turn off raw mode.

disable_wrap()
Turn off wrapping.

enable_raw()
Use this to set the writing in raw mode.

enable_wrap()
Use this to set the writing in wrapping mode.

endl(force=True, tot=1, tail=False)
Insert a new line character. By setting force to False you may omit inserting a new line character if the last
character printed was already the new line character.

filename
READ-ONLY: The name of the file to which a Node object was last written to.

flush_buffer(tail=True)
Empty the contents of the buffer.

get_node_writer(name)
Return one of the NodeWriter objects available to the Writer.

indent
The indentation at the beginning of each line.

language
The language in which the Writer writes Node objects.

3.1. API 15

lexor Documentation, Release 0.1.2c0

last()
Returns the last written string with the contents of the buffer.

normalize_buffer()
The term normalize means that the length of the buffer will be less than or equal to the wrapping width.
Anything that exceeds the limit will be flushed.

raw_enabled()
Determine if raw mode is enabled or not.

set(lang, style, defaults=None)
Set the language and style in one call.

string_buffer
The current string buffer. This is the string that will be printed after its length exceeds the writer’s width.

wrap_enabled()
Determine if wrap mode is enabled or not.

write(node, filename=None, mode=’w’)
Write node to a file or string. To write to a string use the default parameters, otherwise provide a file name.
If filename is provided you have the option of specifying the mode: ‘w’ or ‘a’.

You may also provide a file you may have opened yourself in place of filename so that the writer writes to
that file.

Use the __str__ function to retrieve the contents written to a string.

write_str(string, split=False)
The write function is meant to be used with Node objects. Use this function to write simple strings while
the file descriptor is open.

writing_style
The style in which the Writer writes a Node object.

lexor.core.writer.find_whitespace(line, start, lim)
Attempts to find the index of the first whitespace before lim, if its not found, then it looks ahead.

lexor.core.writer.replace(string, *key_val)
Replacement of strings done in one pass. Example:

>>> replace("a < b && b < c", (’<’, ’<’), (’&’, ’&’))
’a < b && b < c’

Source: <http://stackoverflow.com/a/15221068/788553>

lexor.core.selector module

Selector

This module is trying to simulate jquery selectors. If some code looks similar to that of the Sizzle CSS Selector engine
it is because the ideas were taken from it.

In short, credit goes to [Sizzle][1] and CSS for the seletor idea.

[1]: http://sizzlejs.com/

class lexor.core.selector.Selector(selector, node, results=None)
Bases: object

JQuery like object.

16 Chapter 3. Lexor API

http://stackoverflow.com/a/15221068/788553
http://sizzlejs.com/

lexor Documentation, Release 0.1.2c0

after(*arg, **keywords)
Insert content, specified by the parameter, after each element in the set of matched elements.

: .after(content [,content])

:: content Type: htmlString or Element or Array or jQuery string, Node, array of Node, or Selector object
to insert after each element in the set of matched elements.

:: content Type: htmlString or Element or Array or jQuery One or more additional DOM elements, arrays
of elements, HTML strings, or jQuery objects to insert after each element in the set of matched elements.

: .after(function(node, index))

:: function(node, index) A function that returns a string, DOM element(s), or Selector object to insert after
each element in the set of matched elements. Receives the element in the set and its index position in the
set as its arguments.

: .after(..., lang=’html’, style=’default’, ‘defaults’=None)

:: lang The language in which strings will be parsed in.

:: style The style in which strings will be parsed in.

:: defaults A dictionary with string keywords and values especifying options for the particular style.

append(*arg, **keywords)
Insert content, specified by the parameter, to the end of each element in the set of matched elements.

Should behave similarly as https://api.jquery.com/append/. Major difference is in the function. When
passing a function it should take 2 parameters: node, index. Where node will be the current element to
which the return value will be appended to.

before(*arg, **keywords)
Insert content, specified by the parameter, before each element in the set of matched elements.

: .before(content [,content])

:: content Type: htmlString or Element or Array or jQuery string, Node, array of Node, or Selector object
to insert before each element in the set of matched elements.

:: content Type: htmlString or Element or Array or jQuery One or more additional DOM elements, arrays
of elements, HTML strings, or jQuery objects to insert before each element in the set of matched elements.

: .before(function(node, index))

:: function(node, index) A function that returns a string, DOM element(s), or Selector object to insert
before each element in the set of matched elements. Receives the element in the set and its index position
in the set as its arguments.

: .before(..., lang=’html’, style=’default’, ‘defaults’=None)

:: lang The language in which strings will be parsed in.

:: style The style in which strings will be parsed in.

:: defaults A dictionary with string keywords and values especifying options for the particular style.

contents()
Get the children of each element in the set of matched elements, including text and comment nodes.

find(selector)
Get the descendants of each element in the current set of matched elements, filtered by a selector.

prepend(*arg, **keywords)
Insert content, specified by the parameter, to the beginning of each element in the setof matched elements.

3.1. API 17

https://api.jquery.com/append/

lexor Documentation, Release 0.1.2c0

Should behave similarly as https://api.jquery.com/append/. Major difference is in the function. When
passing a function it should take 2 parameters: node, index. Where node will be the current element to
which the return value will be appended to.

lexor.core.selector.clone_obj(obj, parser)
Utility function to create deep copies of objects used for the Selector object. A parser should be given in case
the object is a string.

lexor.core.selector.get_date()
Obtain an integer representation of the date.

lexor.core.selector.mark_function(fnc)
Mark a function for special use by Sizzle.

lexor.core.selector.select(selector, context, results, seed)
A low-level selection function that works with Sizzle’s compiled selector functions

@param {String|Function} selector A selector or a pre-compiled selector function built with Siz-
zle.compile

@param {Element} context @param {Array} [results] @param {Array} [seed] A set of elements to match
against

lexor.core.selector.sizzle(selector, context, results=None, seed=None)
Function shamelessly borrowed and partially translated to python from http://sizzlejs.com/.

lexor.core.selector.tokenize(selector, parse_only=False)
Tokenize...

3.1.3 lexor.core.node module

This module defines the basic object of the document object model (DOM).

class lexor.core.node.Node
Bases: object

Primary datatype for the entire Document Object Model.

__init__()
Initializes all data descriptors to None. Each descriptor has an associated READ-ONLY property. Read
the comment on each property to see what each descriptor represents.

node_name

Read-Only Property
The name of this node. Its value depends on the node type. This property is associated with the attribute
name.

owner_document

Read-Only Property
The Document in which this node resides. This property is associated with the attribute owner.

parent_node

18 Chapter 3. Lexor API

https://api.jquery.com/append/
http://sizzlejs.com/

lexor Documentation, Release 0.1.2c0

Read-Only Property
The parent of this node. If the node has been just created or removed from a Document then this property
is None. This property is associated with the attribute parent.

node_index

Read-Only Property
The number of preceding siblings.

>>> x is x.parent_node[x.node_index]
True

This property is associated with the attribute index.

node_level

Read-Only Property
The nodes level of containtment in a Document object.

This property is associated with the attribute level.

element_index

Read-Only Property
The number of preceding element siblings.

previous_sibling

Read-Only Property
The node immediately preceding this node. If this property is not None then

>>> x.previous_sibling <==> x.parent_node[x.node_index - 1]

This property is associated with the attribute prev.

next_sibling

Read-Only Property
The node immediately following this node. If this property is not None then

>>> x.next_sibling <==> x.parent_node[x.node_index + 1]

This property is associated with the attribute next.

previous_element

Read-Only Property

3.1. API 19

lexor Documentation, Release 0.1.2c0

The last sibling Element preceding this node.

next_element

Read-Only Property
The sibling Element after this node.

remove_children()
Remove all the child nodes.

__repr__()

>>> x.__repr__() == repr(x)
True

__str__()

>>> x.__str__() == str(x)
True

insert_before(index, new_child)
Inserts new_child to the list of children just before the child specified by index.

extend_before(index, new_children)
Inserts the contents of an iterable containing nodes just before the child specified by index. The following
are equivalent:

>>> while doc: node.parent.insert_before(index, doc[0])

>>> node.extend_before(index, doc)

The second form, however, has a more efficient reindexing method.

append_child(new_child)
Adds the node new_child to the end of the list of children of this node. If the node is a
DocumentFragment then it appends its child nodes. Returns the calling node.

extend_children(new_children)
Extend the list of children by appending children from an iterable containing nodes.

append_after(new_child)
Place new_child after the node.

append_nodes_after(new_children)
Place new_children after the node.

prepend_before(new_child)
Place new_child before the node.

prepend_nodes_before(new_children)
Place new_children before the node.

normalize()
Removes empty Text nodes, and joins adjacent Text nodes.

__len__()
Return the number of child nodes.

20 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

>>> x.__len__() == len(x)
True

__getitem__(i)
Return the i-th child of this node.

>>> x.__getitem__(i) <==> x[i]
>>> x.__getitem__(slice(i, j)) <==> x[i:j]
>>> x.__getitem__(slice(i, j, dt)) <==> x[i:j:dt]

When using a slice, the __getitem__ function will return a list with references to the requested nodes.

__delitem__(index)
Delete child nodes.

>>> x.__delitem__(index) <==> del x[index]
>>> x.__delitem__(slice(i, j)) <==> del x[i:j]
>>> x.__delitem__(slice(i, j, dt)) <==> del x[i:j:dt]

__setitem__(index, node)
Replace child nodes.

>>> x.__setitem__(index) = node <==> x[index] = node
>>> x.__setitem__(slice(i, j)) = dfrag <==> x[i:j] = dfrag
>>> x.__setitem__(slice(i, j, dt)) = dfrag <==> x[i:j:dt] = dfrag

When using slices the nodes to be assigned to the indices need to be contained in a DocumentFragment
node. This function does not support insertion as the regular slice for list does. To insert use a node use
insert_before() or append_after().

get_nodes_by_name(name)
Return a list of child nodes that have the given name.

set_parent(parent, index)

Helper Method
Modifies the parent node and takes care of the child node levels.

disconnect()

Helper Method
Reset its attributes.

set_prev(node)

Helper Method
Sets the prev attribute.

set_next(node)

Helper Method
Sets the next attribute.

3.1. API 21

lexor Documentation, Release 0.1.2c0

increase_child_level()

Helper Method
Sets the level of the child nodes.

append_child_node(new_child)

Helper Method
Use this method to insert a node at a the end of the child list. See append_child() and
extend_children() to see this method in action.

insert_node_before(index, new_child)

Helper Method
Insert a new_child at a given index. See insert_before() and extend_before() to see this
method in action.

3.1.4 lexor.core.elements module

This module defines the elements of the document object model (DOM). This implementation follows most of the
recommendations of w3.

Inheritance Tree

lexor.core.node.Node (__builtin__.object)
CharacterData

Text

ProcessingInstruction

Comment

CData

Entity

DocumentType

Element

RawText (Element, CharacterData)
Void

Document

DocumentFragment

class lexor.core.elements.CharacterData(text=’‘)
Bases: lexor.core.node.Node

A simple interface to deal with strings.

22 Chapter 3. Lexor API

http://www.w3.org/TR/2012/WD-dom-20121206/

lexor Documentation, Release 0.1.2c0

__init__(text=’‘)
Set the data property to the value of text and set its name to ’#character-data’.

node_value
Return or set the value of the node. This property is a wrapper for the data attribute.

class lexor.core.elements.Text(text=’‘)
Bases: lexor.core.elements.CharacterData

A node to represent a string object.

__init__(text=’‘)
Call its base constructor and set its name to ’#text’.

clone_node(_=True)
Return a new Text node with the same data content.

class lexor.core.elements.ProcessingInstruction(target, data=’‘)
Bases: lexor.core.elements.CharacterData

Represents a “processing instruction”, used to keep processor-specific information in the text of the document.

__init__(target, data=’‘)
Create a Text node with its data set to data.

target
The target of this processing instruction.

clone_node(_=True)
Returns a new PI with the same data content.

class lexor.core.elements.Comment(data=’‘)
Bases: lexor.core.elements.CharacterData

A node to store comments.

__init__(data=’‘)
Create a comment node.

comment_type
Type of comment. This property is meant to help with documents that support different styles of comments.

clone_node(_=True)
Returns a new comment with the same data content.

class lexor.core.elements.CData(data=’‘)
Bases: lexor.core.elements.CharacterData

Although this node has been deprecated from the DOM, it seems that xml still uses it.

__init__(data=’‘)
Create a CDATA node and set the node name to ’#cdata-section’.

clone_node(_=True)
Returns a new CData node with the same data content.

class lexor.core.elements.Entity(text=’‘)
Bases: lexor.core.elements.CharacterData

From merriam-webster definition:

•Something that exists by itself.

•Something that is separate from other things.

3.1. API 23

https://developer.mozilla.org/en-US/docs/Web/API/Node.nodeType
http://www.merriam-webster.com/dictionary/entity

lexor Documentation, Release 0.1.2c0

This node acts in the same way as a Text node but it has one main difference. The data it contains should
contain no white spaces. This node should be reserved for special characters or words that have different
meanings across different languages. For instance in HTML you have the & to represent &. In LaTeX you
have to type \$ to represent $. Using this node will help you handle these Entities hopefully more efficiently
than simply finding and replacing them in a Text node.

__init__(text=’‘)
Create an Entity node and set the node name to #entity.

clone_node(_=True)
Returns a new Entity with the same data content.

class lexor.core.elements.DocumentType(data=’‘)
Bases: lexor.core.elements.CharacterData

A node to store the doctype declaration. This node will not follow the specifications at this point (May 30,
2013). It will simply recieve the string in between <!doctype and >.

Specs: http://www.w3.org/TR/2012/WD-dom-20121206/#documenttype

__init__(data=’‘)
Create a DocumentType node and set its name to #doctype.

clone_node(_=True)
Returns a new doctype with the same data content.

class lexor.core.elements.Element(name, data=None)
Bases: lexor.core.node.Node

Node object configured to have child Nodes and attributes.

__init__(name, data=None)
The parameter data should be a dict object. The element will use the keys and values to populate its
attributes. You may modify the elements internal dictionary. However, this may unintentially overwrite
the attributes defined by the __setitem__ method. If you wish to add another attribute to the Element
object use the convention of adding an underscore at the end of the attribute. i.e

>>> strong = Element(’strong’)
>>> strong.message_ = ’An internal message’
>>> strong[’message’] = ’Attribute message’

__call__(selector)
Return a lexor.core.selector.Selector object.

update_attributes(node)
Copies the attributes of the input node into the calling node.

__getitem__(k)
Return the k-th child of this node if k is an integer. Otherwise return the attribute of name with value of k.

>>> x.__getitem__(k) is x[k]
True

get(k, val=’‘)
Return the attribute of name with value of k.

__setitem__(k, val)
Overloaded array operator. Appends or modifies an attribute. See its base method
lexor.core.node.Node.__setitem__() for documentation on when val is not string.

>>> x.__setitem__(attname) = ’att’ <==> x[attname] = ’att’

24 Chapter 3. Lexor API

http://www.w3.org/TR/2012/WD-dom-20121206/#documenttype

lexor Documentation, Release 0.1.2c0

__delitem__(k)
Remove a child or attribute.

>>> x.__delitem__(k) <==> del x[k]

__contains__(obj)
Return True if obj is a node and it is a child of this element or if obj is an attribute of this element. Return
False otherwise.

>>> x.__contains__(obj) == obj in x
True

contains(obj)
Unlike __contains__, this method returns True if obj is any of the desendents of the node.

__iter__()
Iterate over the element attributes names.

>>> for attribute_name in node: ...

attlen
The number of attributes.

attributes
Return a list of the attribute names in the element.

values
Return a list of the attribute values in the Element.

attribute(index)
Return the name of the attribute at the specified index.

attr(index)
Return the value of the attribute at the specified index.

items()
return all the items.

update(dict_)
update with the values of dict_. useful when the element is empty and you created an Attr object. then just
update the values.

rename(old_name, new_name)
Renames an attribute.

>>> from lexor.core.elements import Element
>>> node = Element(’div’)
>>> node[’att1’] = ’val1’
>>> node
div[0x10a090750 att1="val1"]:
>>> node.rename(’att1’, ’new-att-name’)
>>> node
div[0x10a090750 new-att-name="val1"]:

clone_node(deep=False, normalize=True)
Returns a new node. When deep is True, it will clone also clone all the child nodes.

get_elements_by_class_name(classname)
Return a list of all child elements which have all of the given class names.

3.1. API 25

lexor Documentation, Release 0.1.2c0

children(children=None, **keywords)
Set the elements children by providing a list of nodes or a string. If using a string then you may provide
any of the following keywords to dictate how to parse and convert:

•parser_style: ’_’

•parser_lang: ’html

•parser_defaults: None,

•convert_style: ’_’,

•convert_from: None,

•convert_to: ’html’,

•convert_defaults: None,

•convert: ’false’

If no children are provided then it returns a string of the children written in plain html. To change this
behavior provide the following keywords:

•writer_style: ’plain’

•writer_lang: ’html

Important: This requires the installation of lexor styles.

__weakref__
list of weak references to the object (if defined)

class lexor.core.elements.RawText(name, data=’‘, att=None)
Bases: lexor.core.elements.Element, lexor.core.elements.CharacterData

A few elements do not have children, instead they have data. Such elements exist in HTML: script, title
among others.

__init__(name, data=’‘, att=None)
You may provide att as a dict object.

clone_node(deep=True, normalize=True)
Returns a new RawText element

__weakref__
list of weak references to the object (if defined)

class lexor.core.elements.Void(name, att=None)
Bases: lexor.core.elements.Element

An element with no children.

__init__(name, att=None)
You may provide att as a dict object.

clone_node(_=True, normalize=True)
Returns a new Void element.

class lexor.core.elements.Document(lang=’xml’, style=’default’)
Bases: lexor.core.elements.Element

Contains information about the document that it holds.

__init__(lang=’xml’, style=’default’)
Creates a new document object and sets its name to #document.

26 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

clone_node(deep=False, normalize=True)
Returns a new Document. Note: it does not copy the default values.

language
The current document’s language. This property is used by the writer to determine how to write the
document.

This property is a wrapper for the lang attribute.

writing_style
The current document’s style. This property is used by the writer to determine how to write the document.

This property is a wrapper for the style attribute.

uri
The Uniform Resource Identifier. This property may become useful if the document represents a file. This
property should be set by the a Parser object telling us the location of the file that it parsed into the
Document object.

static create_element(tagname, data=None)
Utility function to avoid having to import lexor.core.elements module. Returns an element object.

get_element_by_id(element_id)
Return the first element, in tree order, within the document whose ID is element_id, or None if there is
none.

class lexor.core.elements.DocumentFragment(lang=’xml’, style=’default’)
Bases: lexor.core.elements.Document

Takes in an element and “steals” its children. This element should only be used as a temporary container. Note
that the __str__ method may not yield the expected results since all the function will do is use the __str__
method in each of its children. First assign this object to an actual Document.

append_child(new_child)
Adds the node new_child to the end of the list of children of this node. The children con-
tained in a DocumentFragment only have a parent (the DocumentFragment). As opposed as
lexor.core.node.Node.append_child() which also takes care of the prev and next at-
tributes.

__repr__()

>>> x.__repr__() <==> repr(x)

__str__()

>>> x.__str__() <==> str(x)

3.1.5 lexor.command package

Submodules

lexor.command.config module

Config

This module is in charge of providing all the necessary settings to the rest of the modules in lexor.

3.1. API 27

lexor Documentation, Release 0.1.2c0

class lexor.command.config.ConfigDispAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None, re-
quired=False, help=None, metavar=None)

Bases: argparse.Action

Derived argparse Action class to use when displaying the configuration file and location.

lexor.command.config.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.config.get_cfg(names, defaults=None)
Obtain settings from the configuration file.

lexor.command.config.read_config()
Read a configuration file.

lexor.command.config.run()
Run command.

lexor.command.config.set_style_cfg(obj, name, defaults)
Given an obj, this can be a Parser, Converter or Writer. It sets the attribute defaults to the specified defaults in
the configuration file or by the user by overwriting values in the parameter defaults.

lexor.command.config.update_single(cfg, name, defaults=None)
Helper function for get_cfg.

lexor.command.config.value_completer(**_)
value completer.

lexor.command.config.var_completer(**_)
var completer.

lexor.command.config.write_config(cfg_file)
Write the configuration file.

lexor.command.defaults module

Defaults

Print the default values for each command.

lexor.command.defaults.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.defaults.name_completer(**_)
var completer.

lexor.command.defaults.run()
Run command.

lexor.command.develop module

Develop

Routine to append a path to the develop section in the configuration file.

lexor.command.develop.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.develop.run()
Append the path to the develop section in the configuration file.

28 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

lexor.command.dist module

Distribute

Package a style along with auxiliary and test files.

lexor.command.dist.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.dist.run()
Run the command.

lexor.command.dist.style_completer(parsed_args, **_)
Return a list of valid files to edit.

lexor.command.document module

Document

Routine to create an xml file with the documentation of a lexor style.

lexor.command.document.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.document.append_main(doc, mod)
Append the main module. Return a dictionary containing all the modules used in the style.

lexor.command.document.check_filename(arg)
Check if the inputfile exists.

lexor.command.document.full_class_name(cls)
Obtain the full class name.

lexor.command.document.get_class_node(cls)
Return a class node. Assumes that cls is a valid class.

lexor.command.document.get_defaults_node(obj)
Obtain defaults node.

lexor.command.document.get_function_node(func)
Return a function node.

lexor.command.document.get_info_node(info)
Generate the info node.

lexor.command.document.get_mapping_node(mapping)
Generate the mapping node.

lexor.command.document.get_member_node(member)
Return a property node.

lexor.command.document.get_property_node(prop)
Return a property node.

lexor.command.document.make_module_node(mod, name=None)
Create a module node documenation.

lexor.command.document.run()
Run the command.

lexor.command.document.separate_objects(mod, remove=None)
Given a module, it separates the objects into a dictionary.

3.1. API 29

lexor Documentation, Release 0.1.2c0

lexor.command.document.xml_style(lang_str)
Parses a style string.

lexor.command.edit module

Edit

Module to open files with an editor.

lexor.command.edit.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.edit.run()
Run the edit command.

lexor.command.edit.valid_files(parsed_args, **_)
Return a list of valid files to edit.

lexor.command.install module

Install

Routine to install a parser/writer/converter style.

lexor.command.install.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.install.download_file(url, base=’.’)
Download a file.

lexor.command.install.install_style(style, install_dir)
Install a given style to the install_dir path.

lexor.command.install.run()
Run the command.

lexor.command.install.unzip_file(local_name)
Extract the contents of a zip file.

lexor.command.lang module

Language

This module provides functions to load the different languages parsers, writers and converters.

Constants

LEXOR_PATH: The paths where lexor looks for the parsing, writing and converting styles.

lexor.command.lang.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.lang.get_style_module(type_, lang, style, to_lang=None)
Return a parsing/writing/converting module.

lexor.command.lang.load_aux(info)
Wrapper around load_mod for easy use when developing styles. The only parameter is the dictionary INFO that
needs to exist with every style. INFO is returned by the init function in the lexor module.

30 Chapter 3. Lexor API

lexor Documentation, Release 0.1.2c0

lexor.command.lang.load_mod(modbase, dirpath)
Return a dictionary containing the modules located in dirpath. The name modbase must be provided so that each
module may have a unique identifying name. The result will be a dictionary of modules. Each of the modules
will have the name “modbase_modname” where modname is a module in the directory.

lexor.command.lang.load_rel(path, module)
Load relative to a path. If path is the name of a file the filename will be dropped.

lexor.command.lang.map_explanations(mod, exp)
Helper function to create a map of msg codes to explanations in the lexor language modules.

lexor.command.lang.run()
Run the command.

lexor.command.paste module

Paste

Routine to append paste templates.

lexor.command.paste.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.paste.lang_completer(**_)
Return the meta var.

lexor.command.paste.make_auxilary(base, type_, fmt, aux_type=’‘)
Creates a new node parser module.

lexor.command.paste.make_style(base, type_, fmt)
Creates a new style file.

lexor.command.paste.run()
Run the command.

lexor.command.paste.style_completer(**_)
Return the meta var.

lexor.command.test module

Lexor Test

This module contains various test for lexor.

lexor.command.test.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.test.compare_with(str_obj, expected)
Calls nose.eq_ to compare the strings and prints a custom message.

lexor.command.test.find_failed(tests, lang, style)
Run the tests and return a list of the tests that fail.

lexor.command.test.nose_msg_explanations(lang, type_, style, name)
Gather the MSG_EXPLANATION list and run the tests it contains.

lexor.command.test.parse_convert_write(callerfile, in_, out_, style, tolang)
Provide the filename as the input and the style you wish to compare it against.

lexor.command.test.parse_msg(msg)
Obtain the tests embedded inside the messages declared in a style. The format of the messages is as follows:

3.1. API 31

lexor Documentation, Release 0.1.2c0

<tab>[A-Z][0-9]*: <msg>

or

<tab>([A-Z][0-9]*|Okay): <tab><tab>msg ... <tab><tab>msg continues <tab>([A-Z][0-9]*|Okay):
msg

Where <tab> consists of 4 whitespaces. This function returns the message without the tests and a list of tuples
of the form (code, msg) along with the message

lexor.command.test.parse_write(callerfile, in_, out_, style, lang)
Provide the filename as the input and the style you wish to compare it against.

lexor.command.test.print_log(node)
Display the error obtained from parsing.

lexor.command.test.run()
Run command.

lexor.command.test.run_develop(param, cfg, verbose)
Run develop tests.

lexor.command.test.run_installed(param, cfg, verbose)
Run installed tests.

lexor.command.to module

to

Execute lexor by transforming a file “to” another language.

lexor.command.to.add_parser(subp, fclass)
Add a parser to the main subparser.

lexor.command.to.convert_and_write(f_name, parser, in_lang, log, arg)
Auxiliary function to reduce the number of branches in run.

lexor.command.to.get_input(input_file, cfg, default=’_’)
Returns the text to be parsed along with the name assigned to that text. The last output is the extension of the
file.

lexor.command.to.input_language(tolang)
Parses the tolang argument.

lexor.command.to.language_style(lang_str)
Parses a language string. In particular, the options –from and –log.

lexor.command.to.parse_styles(lang_str)
Parses a language string. In particular, the options –from and –log.

lexor.command.to.run()
Run the command.

lexor.command.to.run_converter(param)
Auxiliary function for convert and write.

lexor.command.to.run_writer(param)
Auxiliary function for convert and write.

lexor.command.to.split_at(delimiter, text, opens=’[<(‘, closes=’]>)’, quotes=”’\’‘)
Custom function to split at commas. Taken from stackoverflow http://stackoverflow.com/a/20599372/788553

32 Chapter 3. Lexor API

http://stackoverflow.com/a/20599372/788553

lexor Documentation, Release 0.1.2c0

lexor.command.to.style_parameters(style)
Parsers a style name along with its parameters.

lexor.command.to.write_document(writer, doc, fname, arg)
Auxiliary function for convert_and_write.

lexor.command.to.write_log(writer, log, quiet)
Write the log file to stderr.

Module contents

Command

Collection of functions to create lexor’s command line utility.

lexor.command.date(short=False)
Return the current date as a string.

lexor.command.error(msg)
Print a message to the standard error stream and exit.

lexor.command.exec_cmd(cmd, verbose=False)
Run a subprocess and return its output and errors.

lexor.command.import_mod(name)
Return a module by string.

lexor.command.warn(msg)
Print a message to the standard error

3.1. API 33

lexor Documentation, Release 0.1.2c0

34 Chapter 3. Lexor API

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

This version of the documentation was built September 30, 2014.

35

lexor Documentation, Release 0.1.2c0

36 Chapter 4. Indices and tables

Python Module Index

l
lexor, 9
lexor.command, 33
lexor.command.config, 27
lexor.command.defaults, 28
lexor.command.develop, 28
lexor.command.dist, 29
lexor.command.document, 29
lexor.command.edit, 30
lexor.command.install, 30
lexor.command.lang, 30
lexor.command.paste, 31
lexor.command.test, 31
lexor.command.to, 32
lexor.core, 10
lexor.core.converter, 12
lexor.core.elements, 22
lexor.core.node, 18
lexor.core.parser, 11
lexor.core.selector, 16
lexor.core.writer, 14

37

	Basic Usage
	What is Lexor?
	Installing Lexor
	Getting Started

	Command Line
	Commands

	Lexor API
	API

	Indices and tables
	Python Module Index

