
lexlib Documentation
Release 3.0.0

R. Steiner

Feb 08, 2019





Contents:

1 Input and output 1

2 Neighbors 3

3 Structure 5

4 Indices and tables 7

Python Module Index 9

i



ii



CHAPTER 1

Input and output

Functions for reading and writing files.

lexlib.io.get_words(file_path, column_name, delimiter=’, ’, **fmtparams)
Return a list containing only the items from the column_name column in the delimiter-separated file found at
file_path. Also takes any of csv.DictReader’s fmtparams.

1



lexlib Documentation, Release 3.0.0

2 Chapter 1. Input and output



CHAPTER 2

Neighbors

Neighbor calculation functions for lexlib.

lexlib.neighbors.check_neighbors(a, b, sep=None)
Determine whether two words are neighbors. Returns True if they are neighbors and False if they are not.

sep – String used to separate phonemes (if the words are phonological forms). To separate into individual
characters, set to None (default).

lexlib.neighbors.get_neighbor_dict(words, **kwargs)
Compare each word in a list of words to each word in a corpus word list (or in the same list if corpus is not
given), and return a dict where each target word is a key, and its value is a list of its neighbors. (If you are
looking for a function to get neighbor pairs, see get_neighbor_pairs()).

keyword arguments: corpus – List of all the words to get the neighbors from. If empty, defaults to words.

sep – String used to separate phonemes (if the words are phonological forms). To separate into individual
characters, set to None (default).

debug – If True, it prints the current word and the words being compared to it to the console. Defaults to
False.

lexlib.neighbors.get_neighbor_pairs(words, **kwargs)
Compare each word in a list of words to each word in a corpus word list (or in the same list if corpus is not
given), and return a list of (word, neighbor) pairs. (If you are looking for a function to get lists of all the
neighbors for specific words, see get_neighbor_pairs()).

keyword arguments: corpus – List of all the words to get the neighbors from. If omitted, defaults to words.

sep – String used to separate phonemes (if the words are phonological forms). To separate into individual
characters, set to None (default).

debug – If True, it logs the current word and the words being compared to it to the console. Defaults to
False.

lexlib.neighbors.get_neighbor_positions(neighbor_pairs, sep=None)
Given a list of (word1, word2) neighbor_pairs, return a list of (word1, word2, position) triples, where position
is the position in the words where the neighbor relationship is formed. Note that this can only be calculated for
pairs of substitution neighbors. If the words differ in length, position will be -1.

3



lexlib Documentation, Release 3.0.0

Example:

>>> neighbor_pairs = [("cat", "cap"), ("cat", "cut"), ("cat", "cast")]
>>> get_neighbor_positions(neighbor_pairs)
[("cat", "cap", 3), ("cat", "cut", 2), ("cat", "cast", -1)]

lexlib.neighbors.get_neighbor_types(neighbor_dict, sep=None)
Given a neighbor_dict (where a key is a “target” word and its value is a list of all of its neighbors), return a
list of (word1, word2, relationship) triples, where relationship is one of “deletion,” “addition,” “substitution,” or
“unknown”.

4 Chapter 2. Neighbors



CHAPTER 3

Structure

Functions related to the structure of words.

lexlib.structure.clusters(words, vowels, sep=None, unique=False, case_sensitive=True)
Separates a list of words into clusters. Clusters are defined as sequences of characters that do not contain any of
the characters in the list of vowels.

If sep is defined, it will be used as the delimiter string (for example, with sep=”.”, the word “a.bc.de” will be
treated as the three-character sequence [“a”, “bc”, “de”]).

If unique is True, returns each cluster only once. If unique is False (the default), returns each cluster as many
times as it occurs.

If case_sensitive is True (the default), uppercase and lowercase characters will be treated as two different charac-
ters (e.g., “a” will be seen as different from “A”). If case_sensitive is False, uppercase and lowercase characters
will be treated as the same character, and the output will be lowercase (e.g., “a” and “A” will both be treated as
“a”).

lexlib.structure.clusters_word(word, vowels, sep=None, case_sensitive=True)
Separates a word into clusters, defined as sequences of characters that do not contain any of the characters in
the list of vowels.

If sep is defined, it will be used as the delimiter string (for example, with sep=”.”, the word “a.bc.de” will be
treated as the three-character sequence [“a”, “bc”, “de”]).

If case_sensitive is True (the default), uppercase and lowercase characters will be treated as two different charac-
ters (e.g., “a” will be seen as different from “A”). If case_sensitive is False, uppercase and lowercase characters
will be treated as the same character, and the output will be lowercase (e.g., “a” and “A” will both be treated as
“a”).

lexlib.structure.filter_by_nsyll(words, vowels, nsyll, sep=None)
Given a list of words, return a list containing only the words with the desired number of syllables, determined
by the number of characters from the vowels list found in that word.

The number of syllables, nsyll can be either an integer or a list of integers. If it is a list, the returned list will
contain words of any syllable length included in nsyll.

5



lexlib Documentation, Release 3.0.0

If sep is defined, it will be used as the delimiter string (for example, with sep=”.”, the word “a.bc.de” will be
treated as the three-character sequence [“a”, “bc”, “de”]).

lexlib.structure.get_cv(word, vowels, sep=None)
Calculate the consonant (“C”) and vowel (“V”) structure of the given word. Returns a string of the characters
“C” and “V” corresponding to the characters in the word.

vowels – A list of the characters representing vowels.

sep – String used to separate phonemes (if the words are phonological forms). To separate into individual
characters, set to None (default).

lexlib.structure.nsyll_list(words, vowels, sep=None)
Count the number of syllables in each word in a words list, determined by the number of characters from the
vowels list found in that word. Return a list of (word, nsyll) pairs.

If sep is defined, it will be used as the delimiter string (for example, with sep=”.”, the word “a.bc.de” will be
treated as the three-character sequence [“a”, “bc”, “de”]).

lexlib.structure.nsyll_word(word, vowels, sep=None)
Count the number of syllables in a word, determined by the number of characters from the vowels list found in
that word.

If sep is defined, it will be used as the delimiter string (for example, with sep=”.”, the word “a.bc.de” will be
treated as the three-character sequence [“a”, “bc”, “de”]).

6 Chapter 3. Structure



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

7



lexlib Documentation, Release 3.0.0

8 Chapter 4. Indices and tables



Python Module Index

l
lexlib.io, 1
lexlib.neighbors, 3
lexlib.structure, 5

9



lexlib Documentation, Release 3.0.0

10 Python Module Index



Index

C
check_neighbors() (in module lexlib.neighbors), 3
clusters() (in module lexlib.structure), 5
clusters_word() (in module lexlib.structure), 5

F
filter_by_nsyll() (in module lexlib.structure), 5

G
get_cv() (in module lexlib.structure), 6
get_neighbor_dict() (in module

lexlib.neighbors), 3
get_neighbor_pairs() (in module

lexlib.neighbors), 3
get_neighbor_positions() (in module

lexlib.neighbors), 3
get_neighbor_types() (in module

lexlib.neighbors), 4
get_words() (in module lexlib.io), 1

L
lexlib.io (module), 1
lexlib.neighbors (module), 3
lexlib.structure (module), 5

N
nsyll_list() (in module lexlib.structure), 6
nsyll_word() (in module lexlib.structure), 6

11


	Input and output
	Neighbors
	Structure
	Indices and tables
	Python Module Index

