

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Left Luggage Detection 0.1.1 documentation

Welcome to Left Luggage Detection’s documentation!

	Authors:

	
	Andrea Rizzo, andrearizzo[at]outlook.com

	Matteo Bruni, matteo.bruni[at]gmail.com

Abstract

This wiki describes the method used to detect abandoned items in a
public space.
Today, video surveillance is used airports, train stations and public
spaces where it is essential guarantee a high security level.
The video stream is obtained through the use of a Kinect device.
The the RGB (intensity) and depth video streams are analyzed
independently. From each stream we obtain a set of proposal, i.e. left
luggage item, that are combined in the final step of our pipeline.

Contents

	Left luggage detection
	Introduction

	Background modeling
	Depth background model and proposals

	Intensity background model and proposals

	Combination of proposals

	Acknowledgments

	Developer Documentation
	Depth Processing
	Usage Example

	DepthProcessing class

	Intensity Processing
	Usage Example

	IntensityProcessing class

	Background Modules

	Kinect Connector

	Kinect Calibration

	Constant

	Utility

	Display

	Usage
	Offline Usage

	Project Dependencies
	1. OpenKinect
	Dependencies

	Manual Build

	2. OpenCV

	3. Pygame

	4. Optional
	SimpleCV

	cProfile

	Dataset

	Performance

	GNU GENERAL PUBLIC LICENSE

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Left luggage detection

This wiki describes the method used to detect abandoned items in a
public space.
Today, video surveillance is used airports, train stations and public
spaces where it is essential guarantee a high security level.
The video stream is obtained through the use of a Kinect device.
The the RGB (intensity) and depth video streams are analyzed
independently. From each stream we obtain a set of proposal, i.e. left
luggage item, that are combined in the final step of our pipeline.

	Introduction

	Background modeling
	Depth background model and proposals

	Intensity background model and proposals

	Combination of proposals

	Acknowledgments

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Left luggage detection

Introduction

In this section we briefly describe the proposed approach.

Image data: we use the Kinect device. Kinect sensor is a horizontal
bar connected to a small
base with a motorized pivot. The major device features are RGB camera
and depth sensor.
The device has a USB2 interface and the resolution of the RGB camera is
\(640 \times 480\) with 8 bit quantization. The depth camera instead
has a resolution of \(640 \times 480\) with 11 bit quantization.

Pipeline: our detection pipeline analyzes the RGB (intensity) and
depth video streams independently.
This means that the RGB left object proposals are found without considering the depth data and
the depth proposals are found without considering the RGB data.
Both sets of proposal are combined later in a processing stage.
The independent processing warranted because the RGB video stream is
defined everywhere,
i.e. for each pixel of a stream frame the intensity value is defined,
but it is liable to
photometric variations. Instead the depth video stream is not defined
everywhere. The depth value
is only available for the image regions that are close enough to the device. Also for black objects
the sensor can’t measure the depth value.

By using the two video streams a background models for depth and
RGB are computed.
To extract left luggage proposals the spatial changes over time are accumulated in an image aggregator. For the depth
aggregator we provide more
than one method to accumulate the depth changes. If the aggregator exceeds a threshold is segmented
with a bounding box and we mark the spatial region as left item proposal. The depth and intensity
proposal are compared using the PASCAL criterion.
The bounding boxes that satisfy the criterion are considered
left objects.

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Left luggage detection

Background modeling

In this section we describe the methods used to model the background.
Then we describe the methods used to accumulate the spatial changes and how the aggregators
are processed to extract the proposals.

Depth background model and proposals

The depth background model is computed by using an high-resolution (11-bit) depth matrix.
The method used to model the background is the
accumulate running average. At time \(t\) the model is updated with the following function:

\(model_{t} = (1-\alpha) \cdot model_{t-1} + \alpha \cdot frame_{t}\)

where the coefficient \(\alpha\) is the learning rate. For a proper background modelling we
have to detect the holes in depth map, i.e. the pixels where the sensor didn’t measure the depth.
The value of these pixels is \(2^{11}-1\). Then the foreground is extracted.
Since the depth image is very noisy, applying an opening is suggested.

To extract the proposal, we accumulate the spatial changes in depth. The methods provided are three.

Image accumulator

The first method is a simple image accumulator and it is quicker than the other methods.
By using a matrix with the same size of depth frame, the pixels that are in current foreground
are incremented by an unit value. Instead the pixels that were in the foreground but now are not
in current foreground the correspondent entries are decremented. To generate a proposal from
the accumulator we consider only the entry that have a number of observations above a threshold.
The proposals are extracted by using [1].
The proposals with area less than 50 pixels are not considered.

Bounding box accumulator

The bounding box accumulator method is slower than image accumulator but is more accurate. The
proposals are generated as in the previous method by using the mask of current foreground. So the
current set of bounding box are compared with the set of accumulated bounding box. We consider
two bounding box similar if the distance between two centers and the area ratio are under a threshold.
For each bounding box that has a match the correspondent entries in the accumulator are updated with
the new spatial coordinates and the counter are incremented by an unit value. For each bounding box
that hasn’t a match it’s temporarily stored in the accumulator with counter set to 1.
For each bounding box in the accumulator that hasn’t a match the correspondent count are decrement.
To generate a proposal from the accumulator we consider only the bounding boxes that have a number
of observations
above a threshold. Note that if more than one bounding box match with a bounding box in the accumulator
it considers the first match found.

Best bounding box accumulator

The best bounding box accumulator method is the slowest. It’s works as the previous method but if
more than one bounding box match with a bounding box in the accumulator it updates the accumulator by
using the best match found.

Intensity background model and proposals

The intensity background model is computed by using the method of Zivkovic et al [2].
The intensity-based proposal are generated with the dual foregrouonds model of Porikli et al. [3].

Porikli method

Briefly the Porikli method aims to detect an abandoned item. Instead of using a single background
approaches the Prikli methods use two backgrounds: long-term background \(B_{L}\) and short-term
background \(B_{S}\). To compute both backgrounds the method of Zivkovic is used. For long-term
background the learning rate \(\alpha_{L}\) is lower than the learning rate \(\alpha_{S}\) used
to compute the short-term background. Therefore the \(B_{L}\) is more resistant against the temporary
changes. In contrast, the \(B_{S}\) adapts to the underlying distribution faster and the changes in
the scene are blended more rapidly.
For each frame of video stream, the long and short term foregrounds
are extracted by substracting from the current frame the background models \(B_{L}\) and \(B_{S}\).
So we obtain a long-term foreground mask \(F_{L}\) and a short-term foreground mask \(F_{S}\).
Let \(I \left(x,y\right)\) be a pixel of the current frame, we have four cases:

1. if \(F_{L}\left(x,y\right)=1\) and \(F_{S}\left(x,y\right)=1\) then the pixel correspond
to a moving object;

2. if \(F_{L}\left(x,y\right)=1\) and \(F_{S}\left(x,y\right)=0\) then the pixel correspond
to a temporarily static object;

3. if \(F_{L}\left(x,y\right)=0\) and \(F_{S}\left(x,y\right)=1\) then the pixel correspond
to scene of background that was accluded before;

4. if \(F_{L}\left(x,y\right)=0\) and \(F_{S}\left(x,y\right)=0\) then the pixel is a
background pixel for both backgrounds model.

By using the \(F_{L}\) and \(F_{S}\) an image aggregator is computed. To each pixel correspond
an entry in the image aggregator. If a pixel is in \(F_{L}\) but is not in \(F_{S}\) the
correspond entry in the image aggregator is increment. Otherwise the image aggregator is decremented.

	[1]	Suzuki, S. and Abe, K., Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985).

	[2]	
	Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image pixel for the task of background subraction. Pattern Recogn. Lett., 27(7):773–780, May 2006.

	[3]	
	Porikli, Y. Ivanov, and T. Haga. Robust abandoned object detection using dual foregrounds. EURASIP J. Adv. Signal Process, 2008, Jan. 2008. 2, 3, 5

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Left luggage detection

Combination of proposals

Given the two sets of bounding box obtained through the processing of
depth and intensity video streams, we compute the following pairwise
overlap ratios:

\(r = \frac{area \left(B_{curr} \cap B_{acc} \right)}{area \left(B_{curr} \cup B_{acc} \right)}\)

[image: Example of left luggage detection]
A possible luggage, obtained through the formula above, is no longer detected because of two possible reasons:

	a left item is removed from the scene

	the item detected is standing still for a long amount of time. After this time the item became part of
the depth and rgb background. When the item became part of the background model we can’t detect
its presence doing \(current_frame - bg_model\) so we need a way to retain the information previously
discovered. If a Bounding box is present at the frame t-1 but not in the frame t, we check if pixels in the area,
defined by his bounding box, are still the same (i.e. the luggage is still there): this check is performed by
using the normalized correlation between the pixel in the t-1 and t frames.
If the similarity is above a certain threshold (i.e. 0.9) we keep drawing the old bounding box.

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Left luggage detection

Acknowledgments

This work was supported by the Media Integration and
Communication Center (MICC),
Alberto Del Bimbo,
Lorenzo Seidenari and
Lamberto Ballan

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Developer Documentation

Here you can find the developer documentation

	Depth Processing
	Usage Example

	DepthProcessing class

	Intensity Processing
	Usage Example

	IntensityProcessing class

	Background Modules

	Kinect Connector

	Kinect Calibration

	Constant

	Utility

	Display

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Depth Processing

The depth module contains classes that hide some of all the repeated
code associated with processing depth data. The main component
is the DepthProcessing class, which is used to process
continuously retrieved data from the kinect.
The background model used in this class is obtained through running average via
the method DepthProcessing.update_background_model()

Usage Example

If code already exists to retrieve the data extracting the bounding boxes proposals can be reduced to as little as the following:

DepthProcessing instance
depth = DepthProcessing(IMAGE_SHAPE)

while True:
 # retrieve the depth information
 depth.current_frame = cam.get_depth_matrix()
 if first_run:
 # in first run moving average start from first frame
 depth.background_model = depth.current_frame.astype(depth.background_model.dtype)
 first_run = False

 # get depth background
 depth.update_background_model(depth.current_frame)

 # get depth foreground
 depth.extract_foreground_mask_from_run_avg(depth.current_frame)

 # apply opening to remove noise
 depth.foreground_mask = bg_models.apply_opening(depth.foreground_mask,
 BG_OPEN_KSIZE,
 cv2.MORPH_ELLIPSE)

 depth_proposal_bbox = depth.extract_proposal_bbox(depth.ACCUMULATOR)

DepthProcessing class

	
class depth_processing.DepthProcessing(image_shape=(640, 480))[source]

	Depth Processing Class

	
extract_foreground_mask_from_run_avg(current_frame)[source]

	Extract depth foreground mask from running average computed substracting current_frame from background model
where the difference is above BG_MASK_THRESHOLD

	Parameters:	current_frame – current frame from which extract foreground

	Returns:	binary mask with 1 for foreground and 0 for background

	Return type:	np.int64

	
extract_proposal_bbox(method=0)[source]

	Compute bounding boxes for connected components from foreground masks that remain constant
for AGG_DEPTH_MAX_E frames.

To keep track of the bounding boxes over time the function uses an aggregator
depending on the method specified

	Parameters:	method – method used to keep track of the bounding boxes history. Methods available are:

	ACCUMULATOR: to use an image accumulator for each pixel (fastest method).
The bounding boxes are extracted from the pixels accumulated AGG_DEPTH_MAX_E times.

	RECT_MATCHING/RECT_MATCHING2: to keep track of the number of times a particular bounding box occurs over
time (slower method but more accurate).
Two bounding boxes in different frames are considered the same if their placement and dimension remain
within a tolerance threshold.

	Returns:	list of bounding boxes in the form of (x,y, width, height) where (x,y) is the top left corner

	Return type:	List

	Raise:	NotImplementedError: if a method different from ACCUMULATOR or RECT_MATCHING or RECT_MATCHING2 is specified

	
update_background_model(current_frame, holes_frame=<Mock object>)[source]

	Update depth background by running average

	Parameters:	current_frame – current frame whereby update bg model

	Returns:	background model

	Return type:	np.float32

	
depth_processing.update_depth_detection_aggregator(aggregator, foreground_current)[source]

	Update aggregator with the provided foreground. Each pixel of the image has a value that keeps the number of
times it has been seen as foreground.

	Parameters:	
	aggregator – an image of uint8

	foreground_current – mask of the current foreground

	Returns:	updated accumulator

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Intensity Processing

The intensity module contains classes that hide some of all the repeated
code associated with processing intensity data. The main component
is the IntensityProcessing class, which is used to process
continuously retrieved data from the kinect.
The background model used in this class is obtained through
Zivkovic method: Adaptive Gaussian Mixture Model.
The extraction of the foreground pixels proposals is obtained via the
IntensityProcessing.compute_foreground_masks().
The bounding boxes proposals are extracted using IntensityProcessing.extract_proposal_bbox()
from an aggregator build using Porikli’s method via IntensityProcessing.update_detection_aggregator().

Usage Example

If code already exists to retrieve the data extracting the bounding boxes proposals can be reduced to as little as the following:

get next video frame
rgb.current_frame = cam.get_image()
while True:
 # get rgb dual background (long and short sensitivity)
 # N.B. background is black (0) and foreground white (1)
 rgb.compute_foreground_masks(rgb.current_frame)

 # update rgb aggregator
 rgb.update_detection_aggregator()

 # extract bounding box proposals
 rgb_proposal_bbox = rgb.extract_proposal_bbox()

IntensityProcessing class

This module contains class for intensity processing.
This class handles the rgb camera status and its methods ensure proper updates to the background models
and the bounding boxes extraction.

	
class intensity_processing.IntensityProcessing(image_shape=(640, 480))[source]

	
	
compute_foreground_masks(frame)[source]

	Compute foreground masks for term background and short term background following Porikli’s method

	Parameters:	frame (np.uint8) – frame (3 channels) from which extract foregrounds masks

	Returns:	foreground masks for long term and short term backgrounds

	Return type:	np.int8

	
extract_proposal_bbox()[source]

	Extract RGB proposal as the bounding boxes of the areas of the accumulator
that have reached a value of AGG_RGB_MAX_E

	Returns:	list of bounding boxes

	
update_detection_aggregator()[source]

	Update aggregator with the provided foregrounds.
If a pixel is in foreground_long but not in foreground_short increment its accumulator
otherwise decrement it.
If a particular area has already been detected as proposal don’t decrement if the above condition is not
verified.

	Returns:	updated accumulator

	Return type:	np.int8

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Background Modules

	
bg_models.apply_dilation(image, kernel_size, kernel_type)[source]

	Apply dilation to image with the specified kernel type and image

	Parameters:	
	image – image to which apply opening

	kernel_size – size of the structuring element

	kernel_type – structuring element

	Returns:	image with opening applied

	Return type:	np.uint8

	
bg_models.apply_opening(image, kernel_size, kernel_type)[source]

	Apply opening to image with the specified kernel type and image

	Parameters:	
	image – image to which apply opening

	kernel_size – size of the structuring element

	kernel_type – structuring element

	Returns:	image with opening applied

	Return type:	np.uint8

	
bg_models.compute_background_running_average(frame, average, alpha, holes_frame)[source]

	Calculate background using running average technique new background is equal to:

\(bg_{new} = (1-alpha)*bg_{old} + alpha*frame\)

	Parameters:	
	frame (np.uint16) – current frame for background update

	average (np.float32) – background model to update

	alpha (float) – update learning rate

	frame_holes_mask (np mask) –

	Returns:	updated background model

	Return type:	np.float32

	
bg_models.compute_foreground_mask_from_func(f_bg, current_frame, alpha)[source]

	Extract binary foreground mask (1 foreground, 0 background) from f_bg background modeling function and update
background model.

	Parameters:	
	f_bg – background modeling function

	current_frame – current frame from which extract foreground

	alpha – update learning rate

	Returns:	foreground mask

	Return type:	np.uint8

	
bg_models.compute_holes_mask_in_frame(frame)[source]

	

	
bg_models.cut_foreground(image, mask)[source]

	Cut the foreground from the image using the mask supplied

	Parameters:	
	image – image from which cut foreground

	mask – mask of the foreground

	Returns:	image with only the foreground

	Raise:	IndexError error if the size of the image is wrong

	
bg_models.get_bounding_boxes(image)[source]

	Return Bounding Boxes in the format x,y,w,h where (x,y) is the top left corner

	Parameters:	image – image from which retrieve the bounding boxes

	Returns:	bounding boxes list

	Return type:	list

	
bg_models.get_bounding_boxes2(image)[source]

	Return Bounding Boxes in the format x,y,w,h where (x,y) is the top left corner

	Parameters:	image – image from which retrieve the bounding boxes

	Returns:	bounding boxes array, where each element has the form (x, y, w, h, counter) with counter = 1

	Return type:	np.array

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Kinect Connector

	
class kinectconnector.KinectConnector(device_number=0)[source]

	Wrapper for the Freenect python libraries
you can get_image() and get_depth() for separate channel images

	
get_depth()[source]

	Get the next available depth frame from the kinect, as a numpy array.
Low bits in this depth are stripped so it fits in an 8-bit image channel

	Returns:	A numpy array, shape:(640, 480)

	Return type:	np.uint8

	
get_depth_matrix()[source]

	Get the next available depth frame from the kinect, as a numpy array.

	Returns:	A numpy array, shape:(640, 480)

	Return type:	np.uint16

	
get_image()[source]

	Get the next available rgb frame from the kinect, as a numpy array.

	Returns:	A numpy array, shape:(640, 480, 3)

	Return type:	np.uint8

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Kinect Calibration

These are some functions to help work with kinect camera calibration and projective
geometry.
Tasks:

	Convert the kinect depth image to a metric 3D point cloud

	Convert the 3D point cloud to texture coordinates in the RGB image

Notes about the coordinate systems. There are three coordinate systems to worry about.

	Kinect depth image: (u, v, depth) u and v are image coordinates,

(0,0) is the top left corner of the image
(640,480) is the bottom right corner of the image.

Depth is the raw 11-bit image from the kinect, where 0 is infinitely far away
and larger numbers are closer to the camera
(2047 indicates an error pixel)

	Kinect rgb image: (u, v) u and v are image coordinates

(0,0) is the top left corner
(640,480) is the bottom right corner

	XYZ world coordinates: (x, y, z)
The 3D world coordinates, in meters, relative to the depth camera.

(0,0,0) is the camera center.
Negative Z values are in front of the camera, and the positive Z direction points
towards the camera.
The X axis points to the right, and the Y axis points up. This is the standard
right-handed coordinate system used by OpenGL.

	
calibkinect.depth2xyzuv(depth, u=None, v=None)[source]

	Return a point cloud, an Nx3 array, made by projecting the kinect depth map
through intrinsic / extrinsic calibration matrices

You can provide only a portion of the depth image, or a downsampled version of
the depth image if you want; just make sure to provide the correct coordinates
in the u,v arguments.

Example:
This downsamples the depth image by 2 and then projects to metric point cloud
u,v = mgrid[:480:2,:640:2]
xyz,uv = depth2xyzuv(freenect.sync_get_depth()[::2,::2], u, v)

This projects only a small region of interest in the upper corner of the depth image
u,v = mgrid[10:120,50:80]
xyz,uv = depth2xyzuv(freenect.sync_get_depth()[v,u], u, v)

	Parameters:	
	depth – comes directly from the kinect

	u – image coordinates, same size as depth (default is the original image)

	v – image coordinates, same size as depth (default is the original image)

	Returns:	xyz - 3D world coordinates in meters (Nx3) uv - image coordinates for the RGB image (Nx3)

	
calibkinect.uv_matrix()[source]

	Returns a matrix you can use to project XYZ coordinates (in meters) into
U,V coordinates in the kinect RGB image

	Returns:	matrix

	
calibkinect.xyz_matrix()[source]

	Returns a matrix you can use to project U,V coordinates (in meters) into
XYZ coordinates in the kinect RGB image

	Returns:	matrix

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Constant

	
const.DEPTH_HOLE_VALUE = 2047

	Depth holes in openfreenect have maximum value in 11 bit

	
const.BG_OPEN_KSIZE = 7

	Structuring element size used to apply opening

	
const.BG_RUN_AVG_LRATE = 0.001

	Learning rate for running average in depth processing

	
const.BG_MASK_THRESHOLD = 3

	Minimum threshold to consider a pixel foreground in running average
e.g. \(|pixel - average(pixel)| \ge BG_MASK_THRESHOLD\)

	
const.BG_ZIV_LONG_LRATE = 0.0005

	Background learning rate in Zivkovich method for long background model

	
const.BG_ZIV_SHORT_LRATE = 0.02

	Background learning rate in Zivkovich method for short background model

	
const.BG_ZIV_HIST = 1

	History for Zivkovick background method

	
const.BG_ZIV_LONG_THRESH = 900

	Threshold for Zivkovich method for long background model

	
const.BG_ZIV_SHORT_THRESH = 200

	Threshold for Zivkovich method for short background model

	
const.AGG_RGB_MAX_E = 15

	number of frames after which a pixel is considered an left item in rgb domain

	
const.AGG_RGB_PENALTY = 7

	penalty in the accumulator for a pixel not in current foreground in rgb domain

	
const.AGG_DEPTH_MAX_E = 30

	number of frames after which a pixel is considered an left item in depth domain

	
const.AGG_DEPTH_PENALTY = 20

	penalty in the accumulator for a pixel not in current foreground in depth domain

	
const.AGG_DEPTH_BBOX = 5

	accumulator threshold for RECT_MATCHING/RECT_MATCHING2 in depth detection

	
const.BBOX_MIN_AREA = 70

	minimum area in pixel to create a bounding box

	
const.DISPLAY_TYPE = 'PYGAME'

	Default display type: can be PYGAME or SIMPLECV

	
const.IMAGE_SHAPE = (640, 480)

	Default image size retrieved from kinect

	
const.PYGAME_LAYOUT = 4

	number of images to show in the output can be 2 or 4

	
const.SHOW_FPS = True

	shows fps

	
const.ENABLE_PROFILING = False

	get profiling info for the first 100 frames

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Utility

	
utils.boxes_intersect(bbox1, bbox2)[source]

	Return if two rect overlap

	
utils.boxes_intersect2(bbox1, bbox2)[source]

	Return if two rect overlap

	
utils.draw_bounding_box(image, bbox)[source]

	Draw all bounding box inside image as red rectangle

	Parameters:	
	image – image where draw the bounding box

	bbox – array of bounding boxes as (x,y,w,h) where x,y is the topleft corner of the rectangle

	Returns:	image with bbox drawn

	
utils.get_center_area_from_rect(rect)[source]

	coordinates rect center

	
utils.norm_correlate(a, v)[source]

	

	
utils.rect_similarity(rect1, rect2)[source]

	Check whatever two rect are similar with a tolerance of 10px in center distance and 0.1 in area ratio

	
utils.rect_similarity2(r1, r2)[source]

	Return if r1 and r2 satisfy overlapping criterion

	
utils.rgb2gray(rgb)[source]

	

	
utils.similarity_measure_rect(bbox_test, bbox_target)[source]

	Return similarity measure between two bounding box

	Parameters:	
	bbox_test –

	bbox_target –

	Returns:	

	
utils.to_rgb(im)[source]

	

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

 	Developer Documentation

Display

	
class video_type.VideoDisplay(v_type, n_views)[source]

	Video Display class. Depending on the method choosed (PYGAME or SIMPLECV)
Initialize a screen type to show the output.

	
quit()[source]

	Quit the video stream

	
show(frame_upper_left, frame_upper_right, frame_bottom_left=None, frame_bottom_right=None)[source]

	Display the four frames in a 1280x960 display

	Parameters:	
	frame_upper_left –

	frame_upper_right –

	frame_bottom_left –

	frame_bottom_right –

	Returns:	True if the drawing succeed or False if the user choose to exit

	Return type:	boolean

	Raises SystemExit:

		

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Usage

To use our application you can simply launch the main application via:

python left-luggage-detection.py

Note

make sure your kinect is connected to your pc and the power supply otherwise you’ll only be able to control the
motor and not the video stream

Offline Usage

You can also test this application using registered video via Fakenect library which is included inside Openkinect.

To record a video:

mkdir directory_record
record directory_record

To use a recorded video you need to specify two environment variables LD_PRELOAD to point to the fakenet lib
instead of the freenect one and FAKENECT_PATH that point to the video folder:

LD_PRELOAD="/usr/local/lib64/fakenect/libfreenect.so" FAKENECT_PATH="video/path" python left-luggage-detection.py

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Project Dependencies

You need to have the following libs/programs installed:

1. OpenKinect

Home page: http://openkinect.org/wiki/Main_Page

Source Code: https://github.com/OpenKinect/libfreenect

Dependencies

Manual Build on Linux: for compiling, you need to have the following libs/programs installed:

	cmake

	libusb-1.0-0

	libusb-1.0-0-dev

	pkg-config

	libglut3

	libglut3-dev

APT users: (Works on Ubuntu 10.10)

sudo apt-get install cmake libglut3-dev pkg-config build-essential libxmu-dev libxi-dev libusb-1.0-0-dev

For Ubuntu 13.04, use this instead (replaced libglut3 with freeglut3):

sudo apt-get install cmake freeglut3-dev pkg-config build-essential libxmu-dev libxi-dev libusb-1.0-0-dev

The python wrapper also need:

sudo apt-get install cython python-dev python-numpy

Manual Build

Download last libfreenect version from github and compile with CMAKE:

git clone git://github.com/OpenKinect/libfreenect.git
cd libfreenect
mkdir build
cd build
cmake ..
make
sudo make install
sudo ldconfig /usr/local/lib64/

To test if the library is correctly installed use:

sudo glview

To install the Python wrapper

cd libfreenect/wrappers/python
sudo python setup.py install

To use Kinect as a non-root user do the following:

sudo adduser $USER video

2. OpenCV

To install OpenCV you can use the following script

wget https://raw.github.com/jayrambhia/Install-OpenCV/master/Ubuntu/opencv_latest.sh
chmod +x opencv_latest.sh
./opencv_latest.sh

Note

If you want cuda support add WITH_CUDA=ON in the cmake section in the above script

3. Pygame

To display the video stream we use pygame so you’ll need:

sudo apt-get install python-pygame

4. Optional

SimpleCV

If you decide to use SimpleCV class to display the video stream install SimpleCV from: http://simplecv.org/download

cProfile

To run memory and speed benchmark of the application

sudo apt-get install pythontracer

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Dataset

Video4
https://mega.co.nz/#!2dwj0SLD!P5qPJTFT5II2egI3-5ZLgXhQYH-OQIIEZL0IkdtAefY

Video5
https://mega.co.nz/#!bI4h0T7Q!Q8BzVH_WK8rhRqHFlFuyPiUOyz2shkwf6Tp-UWdnEcU

Video12
https://mega.co.nz/#!mBpDQYbJ!NBMqY2sgXgtC-9GkTEtdVwaLegos_hHYhS_by2-vMcg

Video13
https://mega.co.nz/#!jUIyAJxb!CN3aYrluSl4AnP18BPYN6jrVYgPKd6KOuhXpYf88UGA

Video14
https://mega.co.nz/#!iF5kwRYT!8IDAO76Yx4Ytl9Fj0fxGPtF3YIMkY2Jd9IA9x71FnGA

Video16
https://mega.co.nz/#!qUJVSJbY!9m3DMLIKzqRZa1MokpQlWpmhnISSqnhILXeuHlkgvEQ

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

Performance

[image: Performance of the method]
The approach used in this application is demanding in term of performance.
The proposed framework runs at 5 fps on a modern PC, just like the one proposed in the paper from which
the authors were inspired.

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Left Luggage Detection 0.1.1 documentation

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Left Luggage Detection 0.1.1 documentation

 Python Module Index

 b |
 c |
 d |
 i |
 k |
 u |
 v

 			

 		
 b	

 	
 	
 bg_models	

 			

 		
 c	

 	
 	
 calibkinect	

 	
 	
 const	

 			

 		
 d	

 	
 	
 depth_processing	

 			

 		
 i	

 	
 	
 intensity_processing	

 			

 		
 k	

 	
 	
 kinectconnector	

 			

 		
 u	

 	
 	
 utils	

 			

 		
 v	

 	
 	
 video_type	

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Left Luggage Detection 0.1.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | K
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X

A

 	

 	AGG_DEPTH_BBOX (in module const)

 	AGG_DEPTH_MAX_E (in module const)

 	AGG_DEPTH_PENALTY (in module const)

 	AGG_RGB_MAX_E (in module const)

 	

 	AGG_RGB_PENALTY (in module const)

 	apply_dilation() (in module bg_models)

 	apply_opening() (in module bg_models)

B

 	

 	BBOX_MIN_AREA (in module const)

 	BG_MASK_THRESHOLD (in module const)

 	bg_models (module)

 	BG_OPEN_KSIZE (in module const)

 	BG_RUN_AVG_LRATE (in module const)

 	BG_ZIV_HIST (in module const)

 	

 	BG_ZIV_LONG_LRATE (in module const)

 	BG_ZIV_LONG_THRESH (in module const)

 	BG_ZIV_SHORT_LRATE (in module const)

 	BG_ZIV_SHORT_THRESH (in module const)

 	boxes_intersect() (in module utils)

 	boxes_intersect2() (in module utils)

C

 	

 	calibkinect (module)

 	compute_background_running_average() (in module bg_models)

 	compute_foreground_mask_from_func() (in module bg_models)

 	compute_foreground_masks() (intensity_processing.IntensityProcessing method)

 	

 	compute_holes_mask_in_frame() (in module bg_models)

 	const (module)

 	cut_foreground() (in module bg_models)

D

 	

 	depth2xyzuv() (in module calibkinect)

 	DEPTH_HOLE_VALUE (in module const)

 	depth_processing (module)

 	

 	DepthProcessing (class in depth_processing)

 	DISPLAY_TYPE (in module const)

 	draw_bounding_box() (in module utils)

E

 	

 	ENABLE_PROFILING (in module const)

 	extract_foreground_mask_from_run_avg() (depth_processing.DepthProcessing method)

 	

 	extract_proposal_bbox() (depth_processing.DepthProcessing method)

 	

 	(intensity_processing.IntensityProcessing method)

G

 	

 	get_bounding_boxes() (in module bg_models)

 	get_bounding_boxes2() (in module bg_models)

 	get_center_area_from_rect() (in module utils)

 	

 	get_depth() (kinectconnector.KinectConnector method)

 	get_depth_matrix() (kinectconnector.KinectConnector method)

 	get_image() (kinectconnector.KinectConnector method)

I

 	

 	IMAGE_SHAPE (in module const)

 	intensity_processing (module)

 	

 	IntensityProcessing (class in intensity_processing)

K

 	

 	KinectConnector (class in kinectconnector)

 	

 	kinectconnector (module)

N

 	

 	norm_correlate() (in module utils)

P

 	

 	PYGAME_LAYOUT (in module const)

Q

 	

 	quit() (video_type.VideoDisplay method)

R

 	

 	rect_similarity() (in module utils)

 	rect_similarity2() (in module utils)

 	

 	rgb2gray() (in module utils)

S

 	

 	show() (video_type.VideoDisplay method)

 	SHOW_FPS (in module const)

 	

 	similarity_measure_rect() (in module utils)

T

 	

 	to_rgb() (in module utils)

U

 	

 	update_background_model() (depth_processing.DepthProcessing method)

 	update_depth_detection_aggregator() (in module depth_processing)

 	update_detection_aggregator() (intensity_processing.IntensityProcessing method)

 	

 	utils (module)

 	uv_matrix() (in module calibkinect)

V

 	

 	video_type (module)

 	

 	VideoDisplay (class in video_type)

X

 	

 	xyz_matrix() (in module calibkinect)

 Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

modules.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

.

		Background Modules

		Kinect Calibration

		Constant

		Depth Processing
		Usage Example

		DepthProcessing class

		Intensity Processing
		Usage Example

		IntensityProcessing class

		Kinect Connector

		left-luggage-detection Module

		Utility

		Display

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

left-luggage-detection.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

left-luggage-detection Module

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

test.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

Performance

To study the performance of our application we have used cProfiler to analyze the most demanding section in terms of
CPU performance:

IMMAGINE SNAKEVIZ

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

report/approach.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

Approach

In this section we briefly describe the proposed approach.

Image data: we use the Kinect device. Kinect sensor is a horizontal
bar connected to a small
base with a motorized pivot. The major device features are RGB camera
and depth sensor.
The device has a USB2 interface and the resolution of the RGB camera is
\(640 \times 480\) with 8 bit quantization. The depth camera instead
has a resolution of \(640 \times 480\) with 11 bit quantization.

Pipeline: our detection pipeline analyzes the RGB (intensity) and
depth video streams independently.
This means that the RGB left object proposals are found without considering the depth data and
the depth proposals are found without considering the RGB data.
Both sets of proposal are combined later in a processing stage.
The independent processing warranted because the RGB video stream is
defined everywhere,
i.e. for each pixel of a stream frame the intensity value is defined,
but it is liable to
photometric variations. Instead the depth video stream is not defined
everywhere. The depth value
is only available for the image regions that are close enough to the device. Also for black objects
the sensor can’t measure the depth value.

By using the two video streams a background models for depth and
RGB are computed.
To extract left luggage proposals the spatial changes over time are accumulated in an image aggregator. For the depth
aggregator we provide more
than one method to accumulate the depth changes. If the aggregator exceeds a threshold is segmented
with a bounding box and we mark the spatial region as left item proposal. The depth and intensity
proposal are compared using the PASCAL criterion.
The bounding boxes that satisfy the criterion are considered
left objects.

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/video_type.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for video_type

__author__ = "Andrea Rizzo, Matteo Bruni"
__copyright__ = "Copyright 2014, Dining Engineers"
__license__ = "GPLv2"

import numpy as np
from const import *

PYGAME = "PYGAME"
SIMPLECV = "SIMPLECV"

if DISPLAY_TYPE == PYGAME:
 import pygame
 import pygame.camera
 from pygame.locals import *
else:
 from SimpleCV import *

[docs]class VideoDisplay:
 """
 Video Display class. Depending on the method choosed (PYGAME or SIMPLECV)
 Initialize a screen type to show the output.
 """

 def __init__(self, v_type, n_views):

 self.n_views = n_views
 self.type = v_type
 self.frame_count = 0

 if v_type == PYGAME:
 pygame.init()
 if n_views == 2:
 self.screen = pygame.display.set_mode([1280, 480])
 else:
 self.screen = pygame.display.set_mode([1280, 960])

 pygame.display.set_caption("Left Luggage Detection")

 self.clock = pygame.time.Clock()

 else:

 if n_views == 2:
 self.screen = Display(resolution=(1280, 480))
 else:
 self.screen = Display(resolution=(1280, 960))

[docs] def show(self, frame_upper_left, frame_upper_right, frame_bottom_left=None, frame_bottom_right=None):
 """
 Display the four frames in a 1280x960 display

 :param frame_upper_left:
 :param frame_upper_right:
 :param frame_bottom_left:
 :param frame_bottom_right:
 :return: True if the drawing succeed or False if the user choose to exit
 :rtype: boolean
 :raise SystemExit:
 """
 self.frame_count += 1
 if self.type == PYGAME:

 tickFPS = self.clock.tick()
 #print "fps:", self.clock.get_fps()

 if self.n_views == 2:

 # show only 2 frames

 frame = np.zeros(shape=(1280, 480, 3))
 frame[:640, :480] = frame_upper_left
 frame[640:, :480] = frame_upper_right

 surface = pygame.surfarray.make_surface(frame)
 self.screen.blit(surface, (0, 0))

 # pick a font you have and set its size
 myfont = pygame.font.SysFont("Arial", 15)
 # apply it to text on a label
 label_tl = myfont.render("Video Stream RGB", 1, (255, 255, 255))
 label_tr = myfont.render("Final proposals", 1, (255, 255, 255))

 # put the label object on the screen at point x=100, y=100
 self.screen.blit(label_tl, (20, 10))
 self.screen.blit(label_tr, (660, 10))

 else:

 # show all 4
 frame = np.zeros(shape=(1280, 960, 3))
 frame[:640, :480] = frame_upper_left
 frame[640:, :480] = frame_upper_right
 frame[:640, 480:] = frame_bottom_left
 frame[640:, 480:] = frame_bottom_right

 surface = pygame.surfarray.make_surface(frame)
 self.screen.blit(surface, (0, 0))

 # pick a font you have and set its size
 myfont = pygame.font.SysFont("Arial", 15)
 # apply it to text on a label
 label_tl = myfont.render("Video Stream RGB", 1, (255, 255, 255))
 label_tr = myfont.render("Final proposals", 1, (255, 255, 255))
 label_bl = myfont.render("DEPTH foreground and detection Proposals", 1, (255, 255, 255))
 label_br = myfont.render("RGB foreground and detection Proposals", 1, (255, 255, 255))

 # put the label object on the screen at point x=100, y=100
 self.screen.blit(label_tl, (20, 10))
 self.screen.blit(label_tr, (660, 10))
 self.screen.blit(label_bl, (20, 490))
 self.screen.blit(label_br, (660, 490))

 if SHOW_FPS:
 label_fps = myfont.render("FPS: "+str(self.clock.get_fps()), 1, (255, 255, 255))
 self.screen.blit(label_fps, (1100, 10))

 pygame.display.flip()

 events = pygame.event.get()
 for event in events:
 if event.type == pygame.MOUSEBUTTONUP:
 pygame.display.quit()
 return False
 # exit conditions --> windows titlebar x click
 if event.type == pygame.QUIT:
 return False
 raise SystemExit

 if ENABLE_PROFILING:
 # profile only the first 100 frames
 if self.frame_count == 100:
 return False
 return True

 else:

 # SIMPLECV
 if self.n_views == 2:
 # save images to display
 i_frame_upper_left = Image(frame_upper_left)
 i_frame_upper_right = Image(frame_upper_right)

 # rows of display
 frame_up = i_frame_upper_left.sideBySide(i_frame_upper_right)

 # save images to display
 frame_up.save(self.screen)
 else:

 # save images to display
 i_frame_upper_left = Image(frame_upper_left)
 i_frame_upper_right = Image(frame_upper_right)
 i_frame_bottom_left = Image(frame_bottom_left)
 i_frame_bottom_right = Image(frame_bottom_right)

 # rows of display
 frame_up = i_frame_upper_left.sideBySide(i_frame_upper_right)
 frame_bottom = i_frame_bottom_left.sideBySide(i_frame_bottom_right)

 # save images to display
 frame_up.sideBySide(frame_bottom, side="bottom").save(self.screen)

 # quit if click on display
 if self.screen.mouseLeft:
 return False
 return True

[docs] def quit(self):
 """
 Quit the video stream

 """
 if self.type == PYGAME:
 # from meliae import scanner
 # scanner.dump_all_objects("kinect_memory_pygame")
 pygame.display.quit()
 else:
 self.screen.done = True
 self.screen.quit()

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/kinectconnector.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for kinectconnector

__author__ = "Andrea Rizzo, Matteo Bruni"
__copyright__ = "Copyright 2014, Dining Engineers"
__license__ = "GPLv2"

import numpy as np
import freenect

[docs]class KinectConnector():
 """
 Wrapper for the Freenect python libraries
 you can get_image() and get_depth() for separate channel images
 """

 def __init__(self, device_number=0):
 self.device_number = device_number

 # this code was borrowed from
 # https://github.com/amiller/libfreenect-goodies
[docs] def get_image(self):
 """
 Get the next available rgb frame from the kinect, as a numpy array.

 :return: A numpy array, shape:(640, 480, 3)
 :rtype: np.uint8
 """
 video = freenect.sync_get_video(self.device_number)[0]
 #video = video[:, :, ::-1] # RGB -> BGR
 return video.transpose([1, 0, 2])

 #

[docs] def get_depth(self):
 """
 Get the next available depth frame from the kinect, as a numpy array.
 Low bits in this depth are stripped so it fits in an 8-bit image channel

 :return: A numpy array, shape:(640, 480)
 :rtype: np.uint8
 """
 depth = freenect.sync_get_depth(self.device_number)[0]
 np.clip(depth, 0, 2**10 - 1, depth)
 depth >>= 2
 depth = depth.astype(np.uint8).transpose()
 return depth

[docs] def get_depth_matrix(self):
 """
 Get the next available depth frame from the kinect, as a numpy array.

 :return: A numpy array, shape:(640, 480)
 :rtype: np.uint16
 """
 # NB: TRASPOSE THE MATRIX
 return freenect.sync_get_depth(self.device_number)[0].T

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/utils.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for utils

__author__ = "Andrea Rizzo, Matteo Bruni"
__copyright__ = "Copyright 2014, Dining Engineers"
__license__ = "GPLv2"

import numpy as np
import cv2
#import pykdtree.kdtree

[docs]def to_rgb(im):
 # This should be fsater than 1, as we only
 # truncate to uint8 once (?)
 w, h = im.shape
 ret = np.empty((w, h, 3), dtype=np.uint8)
 ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = im
 return ret

[docs]def rgb2gray(rgb):

 r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
 gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

 return gray

def query_kdtree(data_tree, data_query):
kdtree = pykdtree.kdtree.KDTree(data_tree)
dist, idx = kdtree.query(data_query)
return dist, idx

[docs]def get_center_area_from_rect(rect):
 #print "rect: ", rect
 """ coordinates rect center """
 cx = rect[0] + rect[2] / 2
 cy = rect[1] + rect[3] / 2
 area = area = rect[2] * rect[3]
 return cx, cy, area

(s[0], s[1]), (s[0]+s[2], s[1]+s[3])

[docs]def boxes_intersect(bbox1, bbox2):
 """ Return if two rect overlap """
 return ((np.abs(bbox1[0]-bbox2[0])*2) < (bbox1[2]+bbox2[2])) and ((np.abs(bbox1[1]-bbox2[1])*2) < (bbox1[3]+bbox2[3]))

[docs]def boxes_intersect2(bbox1, bbox2):
 """ Return if two rect overlap """
 def in_range(value, min, max):
 return (value >= min) and (value <= max)

 x_overlap = in_range(bbox1[0], bbox2[0], bbox2[0]+bbox2[2]) or in_range(bbox2[0], bbox1[0], bbox1[0]+bbox1[2])
 y_overlap = in_range(bbox1[1], bbox2[1], bbox2[1]+bbox2[3]) or in_range(bbox2[1], bbox1[1], bbox1[1]+bbox1[3])

 return x_overlap and y_overlap

[docs]def rect_similarity(rect1, rect2):
 """Check whatever two rect are similar with a tolerance of 10px in center distance and 0.1 in area ratio """
 cx1, cy1, a1 = get_center_area_from_rect(rect1)
 cx2, cy2, a2 = get_center_area_from_rect(rect2)

 c_diff = np.linalg.norm(np.array([cx1, cy1]) - np.array([cx2, cy2]))
 a_ratio = a1/a2
 if c_diff < 10:
 if np.abs(a_ratio-0.1) <= 1:
 return True
 else:
 return False
 else:
 return False

[docs]def rect_similarity2(r1, r2):
 """ Return if r1 and r2 satisfy overlapping criterion """
 if boxes_intersect(r1, r2):
 # return similarity
 if similarity_measure_rect(r1, r2) > 0.5:
 return True
 return False
 return False

[docs]def similarity_measure_rect(bbox_test, bbox_target):
 """ Return similarity measure between two bounding box

 :param bbox_test:
 :param bbox_target:
 :return:
 """

 def gen_box(bbox):
 from shapely.geometry import box
 box = box(bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3])
 return box

 bbtest = gen_box(bbox_test)
 bbtarget = gen_box(bbox_target)

 return bbtarget.intersection(bbtest).area/bbtarget.union(bbtest).area

[docs]def norm_correlate(a, v):
 a = (a - np.mean(a)) / (np.std(a) * len(a))
 v = (v - np.mean(v)) / np.std(v)

 return np.correlate(a, v)

[docs]def draw_bounding_box(image, bbox):
 """ Draw all bounding box inside image as red rectangle

 :param image: image where draw the bounding box
 :param bbox: array of bounding boxes as (x,y,w,h) where x,y is the topleft corner of the rectangle
 :return: image with bbox drawn
 """
 for s in bbox:
 cv2.rectangle(image, (s[0], s[1]), (s[0]+s[2], s[1]+s[3]), 255, 1)

 return image

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/depth_processing.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for depth_processing

__author__ = "Andrea Rizzo, Matteo Bruni"
__copyright__ = "Copyright 2014, Dining Engineers"
__license__ = "GPLv2"

"""
This module contains class for depth processing.
This class handles the depth camera status and its methods ensure proper updates to the background models
and the bounding boxes extraction.
"""

import numpy as np
import bg_models
from const import *
from utils import *

[docs]class DepthProcessing:
 """ Depth Processing Class """

 ACCUMULATOR = 0
 RECT_MATCHING = 1
 RECT_MATCHING2 = 2

 def __init__(self, image_shape=(640, 480)):
 self.current_frame = np.zeros(shape=image_shape, dtype=np.uint16)
 self.current_frame_holes = np.zeros(shape=image_shape, dtype=np.uint64)
 self.background_holes = np.zeros(shape=image_shape, dtype=np.uint64)
 self.accumulator = np.zeros(shape=image_shape, dtype=np.uint8)
 #self.background_aggregator = np.zeros(shape=image_shape, dtype=np.int8)
 self.background_model = np.zeros(shape=image_shape, dtype=np.float32)
 self.foreground_mask = np.zeros(shape=image_shape)
 self.rect_accum = []
 self.rect_accum2 = np.array([], dtype=int)

[docs] def update_background_model(self, current_frame, holes_frame=np.zeros(shape=IMAGE_SHAPE, dtype=np.uint64)):
 """
 Update depth background by running average

 :param current_frame: current frame whereby update bg model
 :return: background model
 :rtype: np.float32
 """
 self.background_model, self.background_holes = bg_models.compute_background_running_average(
 current_frame, self.background_model, BG_RUN_AVG_LRATE, holes_frame)

 return self.background_model

[docs] def extract_foreground_mask_from_run_avg(self, current_frame):
 """
 Extract depth foreground mask from running average computed substracting current_frame from background model
 where the difference is above BG_MASK_THRESHOLD

 :param current_frame: current frame from which extract foreground
 :return: binary mask with 1 for foreground and 0 for background
 :rtype: np.int64
 """
 # if current frame has holes use modelbg pixels instead
 #current_frame_filtered = (np.where(current_frame == DEPTH_HOLE_VALUE, self.background_model, current_frame)).astype(np.float32)
 #diff = (current_frame_filtered - self.background_model)
 diff = (current_frame - self.background_model)
 self.foreground_mask = (np.where(np.abs(diff) >= BG_MASK_THRESHOLD, 1, 0)) * np.logical_not(self.current_frame_holes)
 # * np.logical_not(self.background_holes)
 return self.foreground_mask

[docs] def extract_proposal_bbox(self, method=ACCUMULATOR):
 """
 Compute bounding boxes for connected components from foreground masks that remain constant
 for AGG_DEPTH_MAX_E frames.

 To keep track of the bounding boxes over time the function uses an aggregator
 depending on the method specified

 :param method: method used to keep track of the bounding boxes history. Methods available are:

 - *ACCUMULATOR*: to use an image accumulator for each pixel (fastest method).
 The bounding boxes are extracted from the pixels accumulated AGG_DEPTH_MAX_E times.

 - *RECT_MATCHING/RECT_MATCHING2*: to keep track of the number of times a particular bounding box occurs over
 time (slower method but more accurate).
 Two bounding boxes in different frames are considered the same if their placement and dimension remain
 within a tolerance threshold.

 :return: list of bounding boxes in the form of (x,y, width, height) where (x,y) is the top left corner
 :rtype: List
 :raise: *NotImplementedError*: if a method different from ACCUMULATOR or RECT_MATCHING or RECT_MATCHING2 is specified
 """
 bbox_to_draw = []

 if method == self.ACCUMULATOR:
 self.accumulator = update_depth_detection_aggregator(self.accumulator, self.foreground_mask)
 bbox = bg_models.get_bounding_boxes(np.uint8(self.accumulator))
 bbox_to_draw = bbox

 elif method == self.RECT_MATCHING:
 # quicker than RECT_MATCHING2 but less accurate
 # doesn't consider the best match but any match

 # temp list of proposal
 results = []

 # get current bbox
 bbox = bg_models.get_bounding_boxes(self.foreground_mask)

 # bool list for each bbox in rect_accumulator
 # if true => we had a match between current and accumulator
 bool_accum = [False]*len(self.rect_accum)
 bool_curr = [False]*len(bbox)

 if len(self.rect_accum) != 0:

 for i in range(len(self.rect_accum)):
 accum_entry = self.rect_accum[i]
 for j in range(len(bbox)):
 curr_entry = bbox[j]
 if rect_similarity(accum_entry[0], curr_entry):
 if accum_entry[1] < AGG_DEPTH_MAX_E:
 val = (curr_entry, accum_entry[1] + 1)
 else:
 val = (curr_entry, accum_entry[1])
 results.append(val)
 bool_accum[i] = bool_curr[j] = True

 for i, rect_match in enumerate(bool_curr):
 if not rect_match:
 val = (bbox[i], 1)
 results.append(val)

 for i, rect_match in enumerate(bool_accum):
 if not rect_match:
 counter = self.rect_accum[i][1]
 if counter > 0:
 val = (self.rect_accum[i][0], self.rect_accum[i][1]-AGG_DEPTH_PENALTY)
 results.append(val)

 else:
 if len(bbox) is not 0:
 for rect in bbox:
 #c_x, c_y, area = get_center_area_from_rect(rect)
 #query = (c_x, c_y, area, 1)
 results.append((rect, 1))

 self.rect_accum = results
 for box in self.rect_accum:
 if box[1] >= AGG_DEPTH_BBOX:
 bbox_to_draw.append(box[0])

 elif method == self.RECT_MATCHING2:

 rect_current = bg_models.get_bounding_boxes2(self.foreground_mask)

 if self.rect_accum2.size != 0:
 # accumulator is not empty check with current rect

 # define an int array (of rect_current lenght)
 # where we will save the index of the best match
 # for each rect in rect_current with rect_accumulator
 # -1 means no match
 current_best_match_idx = [-1]*rect_current.shape[0]

 # define a bool array of rect_accum lenght
 # where we will save whatever the i-th element of the accumulator
 # had a match with rect_current
 accumulator_match = [False]*self.rect_accum2.shape[0]

 for i, r_curr in enumerate(rect_current):
 max_value = 0
 max_idx = -1
 #print "da cur. "
 for j, r_acc in enumerate(self.rect_accum2):
 # keep track of the best match for the current rect
 distance = similarity_measure_rect(r_curr, r_acc)
 #print distance,
 if distance > 0.5:
 #if rect_similarity(r_curr, r_acc):
 #print r_curr, r_acc
 # save in accumulator_match that we have a match
 accumulator_match[j] = True
 if max_value < distance:
 max_idx = j
 #max_value = distance
 current_best_match_idx[i] = max_idx

 # increment counter of the matched rect and add the new ones found in current
 for i, idx in enumerate(current_best_match_idx):
 if idx == -1:
 # this rect has no match in accumulator
 # add it to accumul
 # print "rect current: ", self.rect_accum2, rect_current[i]
 self.rect_accum2 = np.concatenate((self.rect_accum2, [rect_current[i]]))
 else:
 # we had a match in accumulator
 # increment counter
 if self.rect_accum2[idx][-1] < AGG_DEPTH_MAX_E:
 self.rect_accum2[idx][-1] += 1
 # update coords with the new values
 self.rect_accum2[idx][0:4] = rect_current[i][0:4]

 # now update the accumulator:
 element_to_delete = []
 for j, match in enumerate(accumulator_match):
 if not match:
 # get the counter for the rect without match
 counter = self.rect_accum2[j][-1]
 if counter > 1:
 # decrement counter
 self.rect_accum2[j][-1] -= 1 # self.rect_accum2[j][-1] - 1
 else:
 element_to_delete.append(j)

 # delete rect that reached 0 counter
 self.rect_accum2 = np.delete(self.rect_accum2, element_to_delete, 0)

 else:
 # accumulator is empty, fill it with current rect
 #print "fill accum with curr", rect_current
 self.rect_accum2 = np.copy(rect_current) # np.append(self.rect_accum2, rect_current)

 #print self.rect_accum2.shape
 # extract bounding box
 for box in self.rect_accum2:
 #print box
 # if counter at leas THRESHOLD print it
 if box[-1] > AGG_DEPTH_BBOX:
 bbox_to_draw.append(box[0:4])

 else:
 raise NotImplementedError("Not implemented")

 return bbox_to_draw

[docs]def update_depth_detection_aggregator(aggregator, foreground_current):
 """
 Update aggregator with the provided foreground. Each pixel of the image has a value that keeps the number of
 times it has been seen as foreground.

 :param aggregator: an image of uint8
 :param foreground_current: mask of the current foreground
 :return: updated accumulator
 """
 not_in_current_foreground = np.int8(np.logical_not(foreground_current))
 # increment aggregator
 result = aggregator + foreground_current - not_in_current_foreground * AGG_DEPTH_PENALTY

 # set aggregate bounds
 result = np.clip(result, 0, AGG_DEPTH_MAX_E)
 return result

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/intensity_processing.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for intensity_processing

"""
This module contains class for intensity processing.
This class handles the rgb camera status and its methods ensure proper updates to the background models
and the bounding boxes extraction.
"""

import numpy as np
import bg_models
from const import *
from utils import *
import cv2

[docs]class IntensityProcessing:

 def __init__(self, image_shape=(640, 480)):
 # shape have 3 channels
 shape_rgb = image_shape+(3,)

 self.current_frame = np.zeros(shape=shape_rgb, dtype=np.uint8)
 self.proposal_foreground = np.zeros(shape=shape_rgb, dtype=np.uint8)

 self.foreground_mask_long_term = np.zeros(shape=image_shape)
 self.foreground_mask_short_term = np.zeros(shape=image_shape)
 self.background_aggregator = np.zeros(shape=image_shape, dtype=np.int8)
 self.proposal_mask = np.zeros(shape=image_shape, dtype=np.uint8) # mask from aggregator

 # define Zivkovic background subtraction function LONG
 self.f_bg_long = cv2.BackgroundSubtractorMOG2(BG_ZIV_HIST, BG_ZIV_LONG_THRESH, False)
 # define zivkovic background subtraction function SHORT
 self.f_bg_short = cv2.BackgroundSubtractorMOG2(BG_ZIV_HIST, BG_ZIV_SHORT_THRESH, False)

[docs] def compute_foreground_masks(self, frame):
 """
 Compute foreground masks for term background and short term background following Porikli's method

 :param np.uint8 frame: frame (3 channels) from which extract foregrounds masks
 :returns: foreground masks for long term and short term backgrounds
 :rtype: np.int8
 """

 # get rgb dual background (long and short sensitivity)
 # N.B. background is black (0) and foreground white (1)
 self.foreground_mask_long_term = bg_models.compute_foreground_mask_from_func(self.f_bg_long, frame,
 BG_ZIV_LONG_LRATE)

 self.foreground_mask_short_term = bg_models.compute_foreground_mask_from_func(self.f_bg_short, frame,
 BG_ZIV_SHORT_LRATE)

 self.foreground_mask_long_term = bg_models.apply_dilation(self.foreground_mask_long_term, 1, cv2.MORPH_ELLIPSE)
 self.foreground_mask_short_term = bg_models.apply_dilation(self.foreground_mask_short_term, 1, cv2.MORPH_ELLIPSE)

 return self.foreground_mask_long_term, self.foreground_mask_short_term

[docs] def update_detection_aggregator(self):
 """
 Update aggregator with the provided foregrounds.
 If a pixel is in foreground_long but not in foreground_short increment its accumulator
 otherwise decrement it.
 If a particular area has already been detected as proposal don't decrement if the above condition is not
 verified.

 :return: updated accumulator
 :rtype: np.int8
 """

 proposal_candidate = self.foreground_mask_long_term * np.int8(np.logical_not(self.foreground_mask_short_term))
 other_cases = np.int8(np.logical_not(proposal_candidate))

 # increment aggregator
 result = self.background_aggregator + proposal_candidate

 # # AVOID REMOVING FROM PROPOSAL OF ALREADY DETECTED OBJECT
 # # mask of max values (proposal)
 # mask_proposal = np.where((result >= AGG_RGB_MAX_E), 1, 0)
 # mask_new_pixel_in_bg = np.int32(np.logical_not(self.foreground_mask_long_term)) * \
 # np.int32(np.logical_not(self.foreground_mask_short_term))
 # # # pixel of older proposal that are becoming background (FL =0 and FS = 0)
 # mask = mask_proposal * mask_new_pixel_in_bg
 # # # # avoid previous pixel from being penalized
 # other_cases = np.where((other_cases == mask), 0, other_cases)
 # # # caso 0 -1
 # # mask_penalty = np.int32(np.logical_not(foreground_long)) * np.int32(foreground_short)

 # add penalty to pixel not in proposal
 result = result - other_cases * AGG_RGB_PENALTY #- mask_penalty * (AGG_RGB_MAX_E-1)

 # set aggregate bounds
 self.background_aggregator = np.clip(result, 0, AGG_RGB_MAX_E)
 return self.background_aggregator

[docs] def extract_proposal_bbox(self):
 """
 Extract RGB proposal as the bounding boxes of the areas of the accumulator
 that have reached a value of AGG_RGB_MAX_E

 :return: list of bounding boxes
 """
 self.proposal_mask = np.where(self.background_aggregator == AGG_RGB_MAX_E, 1, 0)
 # get rgb blobs
 bbox = bg_models.get_bounding_boxes(self.proposal_mask.astype(np.uint8))

 self.proposal_foreground = bg_models.cut_foreground(self.current_frame, self.proposal_mask)

 return bbox

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 All modules for which code is available

		bg_models

		calibkinect

		depth_processing

		intensity_processing

		kinectconnector

		utils

		video_type

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_images/performance.png
100x

blit_array /usr/lib/python2.7/dist-

packages/pygame/_numpysurfarray.py:
3n

-21.54%

E100x
21.93%

E100x
15.66 %

compute_foreground_masks /home/hunter/git/
left-luggage-detection/intensity_processing.py:
33

F116.15%

extract_foreground_mask_from_run_avg /
PP home/hunter/git/left-luggage-detection/
depth_processing.py:48

5.78 %

-— .00 %

1100 YT1100 x|
2.92%| 4.80%

compute_background_running_average /home/

hunter/git/left-luggage-

1

etection/bg_models.py

'T100x|
292%

update_depth_detection_aggregator /home/
hunter/git/l€ft-luggage-detection/depth_

processing.py:236

-—1.06 %

_modules/calibkinect.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for calibkinect

#FROM https://github.com/amiller/libfreenect-goodies/blob/master/calibkinect.py
"""
These are some functions to help work with kinect camera calibration and projective
geometry.
Tasks:

 - Convert the kinect depth image to a metric 3D point cloud
 - Convert the 3D point cloud to texture coordinates in the RGB image

Notes about the coordinate systems. There are three coordinate systems to worry about.

 1. Kinect depth image: (u, v, depth) u and v are image coordinates,

 (0,0) is the top left corner of the image
 (640,480) is the bottom right corner of the image.

 Depth is the raw 11-bit image from the kinect, where 0 is infinitely far away
 and larger numbers are closer to the camera
 (2047 indicates an error pixel)

 2. Kinect rgb image: (u, v) u and v are image coordinates

 (0,0) is the top left corner
 (640,480) is the bottom right corner

 3. XYZ world coordinates: (x, y, z)
 The 3D world coordinates, in meters, relative to the depth camera.

 (0,0,0) is the camera center.
 Negative Z values are in front of the camera, and the positive Z direction points
 towards the camera.
 The X axis points to the right, and the Y axis points up. This is the standard
 right-handed coordinate system used by OpenGL.

"""
import numpy as np

[docs]def depth2xyzuv(depth, u=None, v=None):
 """
 Return a point cloud, an Nx3 array, made by projecting the kinect depth map
 through intrinsic / extrinsic calibration matrices

 You can provide only a portion of the depth image, or a downsampled version of
 the depth image if you want; just make sure to provide the correct coordinates
 in the u,v arguments.

 Example:
 # This downsamples the depth image by 2 and then projects to metric point cloud
 u,v = mgrid[:480:2,:640:2]
 xyz,uv = depth2xyzuv(freenect.sync_get_depth()[::2,::2], u, v)

 # This projects only a small region of interest in the upper corner of the depth image
 u,v = mgrid[10:120,50:80]
 xyz,uv = depth2xyzuv(freenect.sync_get_depth()[v,u], u, v)

 :param depth: comes directly from the kinect
 :param u: image coordinates, same size as depth (default is the original image)
 :param v: image coordinates, same size as depth (default is the original image)
 :returns: xyz - 3D world coordinates in meters (Nx3) uv - image coordinates for the RGB image (Nx3)
 """
 if u is None or v is None:
 u, v = np.mgrid[:480, :640]

 # Build a 3xN matrix of the d,u,v data
 C = np.vstack((u.flatten(), v.flatten(), depth.flatten(), 0*u.flatten()+1))

 # Project the duv matrix into xyz using xyz_matrix()
 X, Y, Z, W = np.dot(xyz_matrix(), C)
 X, Y, Z = X/W, Y/W, Z/W
 xyz = np.vstack((X, Y, Z)).transpose()
 xyz = xyz[Z < 0, :]

 # Project the duv matrix into U,V rgb coordinates using rgb_matrix() and xyz_matrix()
 U, V, _, W = np.dot(np.dot(uv_matrix(), xyz_matrix()), C)
 U, V = U/W, V/W
 uv = np.vstack((U, V)).transpose()
 uv = uv[Z < 0, :]

 # Return both the XYZ coordinates and the UV coordinates
 return xyz, uv

[docs]def uv_matrix():
 """
 Returns a matrix you can use to project XYZ coordinates (in meters) into
 U,V coordinates in the kinect RGB image

 :return: matrix
 """
 rot = np.array([[9.99846e-01, -1.26353e-03, 1.74872e-02],
 [-1.4779096e-03, -9.999238e-01, 1.225138e-02],
 [1.747042e-02, -1.227534e-02, -9.99772e-01]])
 trans = np.array([[1.9985e-02, -7.44237e-04, -1.0916736e-02]])
 m = np.hstack((rot, -trans.transpose()))
 m = np.vstack((m, np.array([[0, 0, 0, 1]])))
 KK = np.array([[529.2, 0, 329, 0],
 [0, 525.6, 267.5, 0],
 [0, 0, 0, 1],
 [0, 0, 1, 0]])
 m = np.dot(KK, m)
 return m

[docs]def xyz_matrix():
 """
 Returns a matrix you can use to project U,V coordinates (in meters) into
 XYZ coordinates in the kinect RGB image

 :return: matrix
 """
 fx = 594.21
 fy = 591.04
 a = -0.0030711
 b = 3.3309495
 cx = 339.5
 cy = 242.7
 mat = np.array([[1/fx, 0, 0, -cx/fx],
 [0, -1/fy, 0, cy/fy],
 [0, 0, 0, -1],
 [0, 0, a, b]])
 return mat

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_modules/bg_models.html

 Navigation

 		
 index

 		
 modules |

 		Left Luggage Detection 0.1.1 documentation »

 		Module code »

 Source code for bg_models

__author__ = "Andrea Rizzo, Matteo Bruni"
__copyright__ = "Copyright 2014, Dining Engineers"
__license__ = "GPLv2"

import cv2
import numpy as np
import utils
from const import *

[docs]def compute_background_running_average(frame, average, alpha, holes_frame):
 """

 Calculate background using running average technique new background is equal to:

 :math:`bg_{new} = (1-alpha)*bg_{old} + alpha*frame`

 :param np.uint16 frame: current frame for background update
 :param np.float32 average: background model to update
 :param float alpha: update learning rate
 :param frame_holes_mask:
 :type frame_holes_mask: np mask
 :return: updated background model
 :rtype: np.float32
 """

 # def preprocessing(frame, average):
 # frame_result = np.zeros(shape=frame.shape, dtype=np.float32)
 # average_result = np.zeros(shape=average.shape, dtype=np.float32)
 #
 # for i in range(frame.shape[0]):
 # for j in range(frame.shape[1]):
 # if frame[i][j] == DEPTH_HOLE_VALUE:
 # if average[i][j] != DEPTH_HOLE_VALUE:
 # frame_result[i][j] = (average[i][j])
 # else:
 # frame_result[i][j] = (frame[i][j])
 # else:
 # if average[i][j] == DEPTH_HOLE_VALUE:
 # average_result[i][j] = (frame[i][j])
 # else:
 # average_result[i][j] = (average[i][j])
 # return frame_result, average_result
 # detect holes in depth map
 # either in current frame and in average frame
 holes_average = np.where(average == DEPTH_HOLE_VALUE, 1, 0)

 # diff to detect if a pixel (x,y) is a:
 # hole in current frame and not in average = 1
 # hole in average and not in current frame = -1
 # if holes in current and average leave hole (will be fixed by another frame in the future)
 # replace holes with value of the other one

 # BEST CONFIGURATION BUT SLOWER
 #holes_diff = holes_frame - holes_average
 #frame = np.where(holes_diff == 1, average, frame)
 #average = np.where(holes_diff == -1, frame, average)
 # optimize!
 #frame = frame - holes_frame * frame + holes_frame * average
 #average = average - holes_average * average + holes_average * frame
 # MOAR OPTIMIZATIONS!
 frame = frame + holes_frame * (average - frame)
 average = average + holes_average * (frame - average)
 cv2.accumulateWeighted(frame, average, alpha)

 # SPEEDY BUT LESS EFFECTIVE FILTERING HOLES
 ## needed to convert to C_CONTINUOUS AREA
 # holes_diff = holes_frame + holes_average
 # average = average.copy()
 # cv2.accumulateWeighted(frame, average, alpha, holes_diff.astype(np.uint8))

 #cv2.accumulateWeighted(frame, average, alpha)

 return average, holes_average

[docs]def compute_holes_mask_in_frame(frame):
 return np.where(frame == DEPTH_HOLE_VALUE, 1, 0)

get rgb background

[docs]def compute_foreground_mask_from_func(f_bg, current_frame, alpha):
 """
 Extract binary foreground mask (1 foreground, 0 background) from f_bg background modeling function and update
 background model.

 :param f_bg: background modeling function
 :param current_frame: current frame from which extract foreground
 :param alpha: update learning rate
 :return: foreground mask
 :rtype: np.uint8
 """
 foreground = np.zeros(shape=current_frame.shape, dtype=np.uint8)
 # get foreground in numpy array
 foreground = f_bg.apply(current_frame, foreground, alpha)
 # NB WITH F_BG SET TO FALSE WE HAVE ONLY 2 POSSIBLE VALUES 0 (bg) or 255 (fg)
 # with shadows == True we get 127
 # convert to 0 1 notation since by default apply => 0 bg, 255fg shadow other value
 foreground = np.where((foreground == 0), 0, 1)
 return foreground

[docs]def cut_foreground(image, mask):
 """
 Cut the foreground from the image using the mask supplied

 :param image: image from which cut foreground
 :param mask: mask of the foreground
 :return: image with only the foreground
 :raise: *IndexError* error if the size of the image is wrong
 """
 if len(image.shape) == 2 or image.shape[2] == 1:
 # we have a greyscale image
 return image * mask
 elif len(image.shape) == 3 and image.shape[2] == 3:
 return image * utils.to_rgb(mask)
 else:
 raise IndexError("image has the wrong number of channels (must have 1 or 3 channels")

[docs]def apply_opening(image, kernel_size, kernel_type):
 """
 Apply opening to image with the specified kernel type and image

 :param image: image to which apply opening
 :param kernel_size: size of the structuring element
 :param kernel_type: structuring element
 :return: image with opening applied
 :rtype: np.uint8
 """
 u_image = image.astype(np.uint8)
 #foreground_mask_depth = foreground_mask_depth.astype(np.uint8)
 kernel = cv2.getStructuringElement(kernel_type, (kernel_size, kernel_size))
 u_image = cv2.morphologyEx(u_image, cv2.MORPH_OPEN, kernel)
 return u_image

[docs]def apply_dilation(image, kernel_size, kernel_type):
 """
 Apply dilation to image with the specified kernel type and image

 :param image: image to which apply opening
 :param kernel_size: size of the structuring element
 :param kernel_type: structuring element
 :return: image with opening applied
 :rtype: np.uint8
 """
 u_image = image.astype(np.uint8)
 #foreground_mask_depth = foreground_mask_depth.astype(np.uint8)
 kernel = cv2.getStructuringElement(kernel_type, (kernel_size, kernel_size))
 u_image = cv2.morphologyEx(u_image, cv2.MORPH_DILATE, kernel)
 return u_image

[docs]def get_bounding_boxes(image):
 """
 Return Bounding Boxes in the format x,y,w,h where (x,y) is the top left corner

 :param image: image from which retrieve the bounding boxes
 :return: bounding boxes list
 :rtype: list
 """
 bbox = []
 contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

 for cnt in contours:
 # filter contours with area less than 50 pixel
 if cv2.contourArea(cnt) > BBOX_MIN_AREA:
 rect = cv2.boundingRect(cnt)
 if rect not in bbox:
 bbox.append(rect)

 return bbox

[docs]def get_bounding_boxes2(image):
 """
 Return Bounding Boxes in the format x,y,w,h where (x,y) is the top left corner

 :param image: image from which retrieve the bounding boxes
 :return: bounding boxes array, where each element has the form (x, y, w, h, counter) with counter = 1
 :rtype: np.array
 """
 squares = []
 bbox_elements = np.array([], dtype=int)
 contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
 for cnt in contours:
 # filter contours with area less than 50 pixel
 if cv2.contourArea(cnt) > BBOX_MIN_AREA:
 rect = cv2.boundingRect(cnt)
 if rect not in squares:
 squares.append(rect)
 if bbox_elements.size is 0:
 # save bbox with a counter set to one
 bbox_elements = np.array([[rect[0], rect[1], rect[2], rect[3], 1]])
 else:
 bbox_elements = np.concatenate((bbox_elements, [[rect[0], rect[1], rect[2], rect[3], 1]]))
 return bbox_elements

 © Copyright 2014, Andrea Rizzo, Matteo Bruni.
 Created using Sphinx 1.3.1.

_images/example1.png

