
lasagne Documentation
Release 0.2.dev1

Lasagne contributors

Mar 04, 2017

Contents

1 User Guide 3
1.1 Installation . 3
1.2 Tutorial . 6
1.3 Layers . 14
1.4 Creating custom layers . 17
1.5 Development . 20

2 API Reference 23
2.1 lasagne.layers . 23
2.2 lasagne.updates . 92
2.3 lasagne.init . 102
2.4 lasagne.nonlinearities . 106
2.5 lasagne.objectives . 110
2.6 lasagne.regularization . 115
2.7 lasagne.random . 117
2.8 lasagne.utils . 118

3 Indices and tables 121

Bibliography 123

Python Module Index 125

i

ii

lasagne Documentation, Release 0.2.dev1

Lasagne is a lightweight library to build and train neural networks in Theano.

Lasagne is a work in progress, input is welcome. The available documentation is limited for now. The project is on
GitHub.

Contents 1

https://github.com/Lasagne/Lasagne

lasagne Documentation, Release 0.2.dev1

2 Contents

CHAPTER 1

User Guide

The Lasagne user guide explains how to install Lasagne, how to build and train neural networks using Lasagne, and
how to contribute to the library as a developer.

Installation

Lasagne has a couple of prerequisites that need to be installed first, but it is not very picky about versions. The single
exception is Theano: Due to its tight coupling to Theano, you will have to install a recent version of Theano (usually
more recent than the latest official release!) fitting the version of Lasagne you choose to install.

Most of the instructions below assume you are running a Linux or Mac system, but are otherwise very generic. For
detailed step-by-step instructions for specific platforms including Windows, check our From Zero to Lasagne guides.

If you run into any trouble, please check the Theano installation instructions which cover installing the prerequisites
for a range of operating systems, or ask for help on our mailing list.

Prerequisites

Python + pip

Lasagne currently requires Python 2.7 or 3.4 to run. Please install Python via the package manager of your operating
system if it is not included already.

Python includes pip for installing additional modules that are not shipped with your operating system, or shipped in
an old version, and we will make use of it below. We recommend installing these modules into your home directory
via --user, or into a virtual environment via virtualenv.

C compiler

Theano requires a working C compiler, and numpy/scipy require a compiler as well if you install them via pip. On
Linux, the default compiler is usually gcc, and on Mac OS, it’s clang. Again, please install them via the package

3

https://github.com/Lasagne/Lasagne/wiki/From-Zero-to-Lasagne
http://deeplearning.net/software/theano/install.html
https://groups.google.com/d/forum/lasagne-users
http://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/

lasagne Documentation, Release 0.2.dev1

manager of your operating system.

numpy/scipy + BLAS

Lasagne requires numpy of version 1.6.2 or above, and Theano also requires scipy 0.11 or above. Numpy/scipy rely
on a BLAS library to provide fast linear algebra routines. They will work fine without one, but a lot slower, so it is
worth getting this right (but this is less important if you plan to use a GPU).

If you install numpy and scipy via your operating system’s package manager, they should link to the BLAS library
installed in your system. If you install numpy and scipy via pip install numpy and pip install scipy,
make sure to have development headers for your BLAS library installed (e.g., the libopenblas-dev package
on Debian/Ubuntu) while running the installation command. Please refer to the numpy/scipy build instructions if in
doubt.

Theano

The version to install depends on the Lasagne version you choose, so this will be handled below.

Stable Lasagne release

Lasagne 0.1 requires a more recent version of Theano than the one available on PyPI. To install a version that is known
to work, run the following command:

pip install -r https://raw.githubusercontent.com/Lasagne/Lasagne/v0.1/requirements.txt

Warning: An even more recent version of Theano will often work as well, but at the time of writing, a simple
pip install Theano will give you a version that is too old.

To install release 0.1 of Lasagne from PyPI, run the following command:

pip install Lasagne==0.1

If you do not use virtualenv, add --user to both commands to install into your home directory instead. To
upgrade from an earlier installation, add --upgrade.

Bleeding-edge version

The latest development version of Lasagne usually works fine with the latest development version of Theano. To
install both, run the following commands:

pip install --upgrade https://github.com/Theano/Theano/archive/master.zip
pip install --upgrade https://github.com/Lasagne/Lasagne/archive/master.zip

Again, add --user if you want to install to your home directory instead.

Development installation

Alternatively, you can install Lasagne (and optionally Theano) from source, in a way that any changes to your local
copy of the source tree take effect without requiring a reinstall. This is often referred to as editable or development
mode. Firstly, you will need to obtain a copy of the source tree:

4 Chapter 1. User Guide

http://www.scipy.org/scipylib/building/index.html

lasagne Documentation, Release 0.2.dev1

git clone https://github.com/Lasagne/Lasagne.git

It will be cloned to a subdirectory called Lasagne. Make sure to place it in some permanent location, as for an
editable installation, Python will import the module directly from this directory and not copy over the files. Enter the
directory and install the known good version of Theano:

cd Lasagne
pip install -r requirements.txt

Alternatively, install the bleeding-edge version of Theano as described in the previous section.

To install the Lasagne package itself, in editable mode, run:

pip install --editable .

As always, add --user to install it to your home directory instead.

Optional: If you plan to contribute to Lasagne, you will need to fork the Lasagne repository on GitHub. This will
create a repository under your user account. Update your local clone to refer to the official repository as upstream,
and your personal fork as origin:

git remote rename origin upstream
git remote add origin https://github.com/<your-github-name>/Lasagne.git

If you set up an SSH key, use the SSH clone URL instead: git@github.com:<your-github-name>/
Lasagne.git.

You can now use this installation to develop features and send us pull requests on GitHub, see Development!

GPU support

Thanks to Theano, Lasagne transparently supports training your networks on a GPU, which may be 10 to 50 times
faster than training them on a CPU. Currently, this requires an NVIDIA GPU with CUDA support, and some additional
software for Theano to use it.

CUDA

Install the latest CUDA Toolkit and possibly the corresponding driver available from NVIDIA: https://developer.nvidia.
com/cuda-downloads

Closely follow the Getting Started Guide linked underneath the download table to be sure you don’t mess up your
system by installing conflicting drivers.

After installation, make sure /usr/local/cuda/bin is in your PATH, so nvcc --version works. Also make
sure /usr/local/cuda/lib64 is in your LD_LIBRARY_PATH, so the toolkit libraries can be found.

Theano

If CUDA is set up correctly, the following should print some information on your GPU (the first CUDA-capable GPU
in your system if you have multiple ones):

THEANO_FLAGS=device=gpu python -c "import theano; print(theano.sandbox.cuda.device_
→˓properties(0))"

1.1. Installation 5

https://help.github.com/categories/ssh/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

lasagne Documentation, Release 0.2.dev1

To configure Theano to use the GPU by default, create a file .theanorc directly in your home directory, with the
following contents:

[global]
floatX = float32
device = gpu

Optionally add allow_gc = False for some extra performance at the expense of (sometimes substantially) higher
GPU memory usage.

If you run into problems, please check Theano’s instructions for Using the GPU.

cuDNN

NVIDIA provides a library for common neural network operations that especially speeds up Convolutional Neural
Networks (CNNs). Again, it can be obtained from NVIDIA (after registering as a developer): https://developer.nvidia.
com/cudnn

Note that it requires a reasonably modern GPU with Compute Capability 3.0 or higher; see NVIDIA’s list of CUDA
GPUs.

To install it, copy the *.h files to /usr/local/cuda/include and the lib* files to /usr/local/cuda/
lib64.

To check whether it is found by Theano, run the following command:

python -c "from theano.sandbox.cuda.dnn import dnn_available as d; print(d() or d.msg)
→˓"

It will print True if everything is fine, or an error message otherwise. There are no additional steps required for
Theano to make use of cuDNN.

Docker

Instead of manually installing Theano and Lasagne on your machines as described above, you may want to use a
pre-made Docker image: Lasagne Docker (CPU) or Lasagne Docker (CUDA). These are updated on a weekly basis
with bleeding-edge builds of Theano and Lasagne. Examples of running bash in a Docker container are as follows:

sudo docker run -it kaixhin/lasagne
sudo nvidia-docker run -it kaixhin/cuda-lasagne:7.0

For a guide to Docker, see the official docs. CUDA support requires NVIDIA Docker. For more details on how to use
the Lasagne Docker images, consult the source project.

Tutorial

This tutorial will walk you through building a handwritten digits classifier using the MNIST dataset, arguably the
“Hello World” of neural networks. More tutorials and examples can be found in the Lasagne Recipes repository.

Before we start

The tutorial assumes that you are somewhat familiar with neural networks and Theano (the library which Lasagne is
built on top of). You can try to learn both at once from the Deeplearning Tutorial.

6 Chapter 1. User Guide

http://deeplearning.net/software/theano/tutorial/using_gpu.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://www.docker.com/what-docker
https://hub.docker.com/r/kaixhin/lasagne/
https://hub.docker.com/r/kaixhin/cuda-lasagne/
https://docs.docker.com
https://github.com/NVIDIA/nvidia-docker
https://github.com/Kaixhin/dockerfiles
https://github.com/Lasagne/Recipes
http://deeplearning.net/tutorial/

lasagne Documentation, Release 0.2.dev1

For a more slow-paced introduction to artificial neural networks, we recommend Convolutional Neural Networks for
Visual Recognition by Andrej Karpathy et al., Neural Networks and Deep Learning by Michael Nielsen or a standard
text book such as “Machine Learning” by Tom Mitchell.

To learn more about Theano, have a look at the Theano tutorial. You will not need all of it, but a basic understanding
of how Theano works is required to be able to use Lasagne. If you’re new to Theano, going through that tutorial up
to (and including) “More Examples” should get you covered! Graph Structures is a good extra read if you’re curious
about its inner workings.

Run the MNIST example

In this first part of the tutorial, we will just run the MNIST example that’s included in the source distribution of
Lasagne.

We assume that you have already run through the Installation. If you haven’t done so already, get a copy of the source
tree of Lasagne, and navigate to the folder in a terminal window. Enter the examples folder and run the mnist.py
example script:

cd examples
python mnist.py

If everything is set up correctly, you will get an output like the following:

Using gpu device 0: GeForce GT 640
Loading data...
Downloading train-images-idx3-ubyte.gz
Downloading train-labels-idx1-ubyte.gz
Downloading t10k-images-idx3-ubyte.gz
Downloading t10k-labels-idx1-ubyte.gz
Building model and compiling functions...
Starting training...

Epoch 1 of 500 took 1.858s
training loss: 1.233348
validation loss: 0.405868
validation accuracy: 88.78 %

Epoch 2 of 500 took 1.845s
training loss: 0.571644
validation loss: 0.310221
validation accuracy: 91.24 %

Epoch 3 of 500 took 1.845s
training loss: 0.471582
validation loss: 0.265931
validation accuracy: 92.35 %

Epoch 4 of 500 took 1.847s
training loss: 0.412204
validation loss: 0.238558
validation accuracy: 93.05 %

...

The example script allows you to try three different models, selected via the first command line argument. Run the
script with python mnist.py --help for more information and feel free to play around with it some more
before we have a look at the implementation.

1.2. Tutorial 7

http://cs231n.github.io/
http://cs231n.github.io/
http://neuralnetworksanddeeplearning.com/
http://deeplearning.net/software/theano/tutorial/
http://deeplearning.net/software/theano/extending/graphstructures.html

lasagne Documentation, Release 0.2.dev1

Understand the MNIST example

Let’s now investigate what’s needed to make that happen! To follow along, open up the source code in your favorite
editor (or online: mnist.py).

Preface

The first thing you might notice is that besides Lasagne, we also import numpy and Theano:

import numpy as np
import theano
import theano.tensor as T

import lasagne

While Lasagne is built on top of Theano, it is meant as a supplement helping with some tasks, not as a replacement.
You will always mix Lasagne with some vanilla Theano code.

Loading data

The first piece of code defines a function load_dataset(). Its purpose is to download the MNIST dataset (if it
hasn’t been downloaded yet) and return it in the form of regular numpy arrays. There is no Lasagne involved at all, so
for the purpose of this tutorial, we can regard it as:

def load_dataset():
...
return X_train, y_train, X_val, y_val, X_test, y_test

X_train.shape is (50000, 1, 28, 28), to be interpreted as: 50,000 images of 1 channel, 28 rows and 28
columns each. Note that the number of channels is 1 because we have monochrome input. Color images would have
3 channels, spectrograms also would have a single channel. y_train.shape is simply (50000,), that is, it is a
vector the same length of X_train giving an integer class label for each image – namely, the digit between 0 and 9
depicted in the image (according to the human annotator who drew that digit).

Building the model

This is where Lasagne steps in. It allows you to define an arbitrarily structured neural network by creating and
stacking or merging layers. Since every layer knows its immediate incoming layers, the output layer (or output layers)
of a network double as a handle to the network as a whole, so usually this is the only thing we will pass on to the rest
of the code.

As mentioned above, mnist.py supports three types of models, and we implement that via three easily exchangeable
functions of the same interface. First, we’ll define a function that creates a Multi-Layer Perceptron (MLP) of a
fixed architecture, explaining all the steps in detail. We’ll then present a function generating an MLP of a custom
architecture. Finally, we’ll show how to create a Convolutional Neural Network (CNN).

Multi-Layer Perceptron (MLP)

The first function, build_mlp(), creates an MLP of two hidden layers of 800 units each, followed by a softmax
output layer of 10 units. It applies 20% dropout to the input data and 50% dropout to the hidden layers. It is similar, but
not fully equivalent to the smallest MLP in [Hinton2012] (that paper uses different nonlinearities, weight initialization
and training).

8 Chapter 1. User Guide

https://github.com/Lasagne/Lasagne/blob/master/examples/mnist.py

lasagne Documentation, Release 0.2.dev1

The foundation of each neural network in Lasagne is an InputLayer instance (or multiple of those) representing
the input data that will subsequently be fed to the network. Note that the InputLayer is not tied to any specific data
yet, but only holds the shape of the data that will be passed to the network. In addition, it creates or can be linked to
a Theano variable that will represent the network input in the Theano graph we’ll build from the network later. Thus,
our function starts like this:

def build_mlp(input_var=None):
l_in = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),

input_var=input_var)

The four numbers in the shape tuple represent, in order: (batchsize, channels, rows, columns). Here
we’ve set the batchsize to None, which means the network will accept input data of arbitrary batchsize after com-
pilation. If you know the batchsize beforehand and do not need this flexibility, you should give the batchsize here
– especially for convolutional layers, this can allow Theano to apply some optimizations. input_var denotes the
Theano variable we want to link the network’s input layer to. If it is omitted (or set to None), the layer will just
create a suitable variable itself, but it can be handy to link an existing variable to the network at construction time –
especially if you’re creating networks of multiple input layers. Here, we link it to a variable given as an argument to
the build_mlp() function.

Before adding the first hidden layer, we’ll apply 20% dropout to the input data. This is realized via a DropoutLayer
instance:

l_in_drop = lasagne.layers.DropoutLayer(l_in, p=0.2)

Note that the first constructor argument is the incoming layer, such that l_in_drop is now stacked on top of l_in.
All layers work this way, except for layers that merge multiple inputs: those accept a list of incoming layers as their
first constructor argument instead.

We’ll proceed with the first fully-connected hidden layer of 800 units. Note that when stacking a DenseLayer on
higher-order input tensors, they will be flattened implicitly so we don’t need to care about that. In this case, the input
will be flattened from 1x28x28 images to 784-dimensional vectors.

l_hid1 = lasagne.layers.DenseLayer(
l_in_drop, num_units=800,
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.GlorotUniform())

Again, the first constructor argument means that we’re stacking l_hid1 on top of l_in_drop. num_units
simply gives the number of units for this fully-connected layer. nonlinearity takes a nonlinearity function,
several of which are defined in lasagne.nonlinearities. Here we’ve chosen the linear rectifier, so we’ll
obtain ReLUs. Finally, lasagne.init.GlorotUniform() gives the initializer for the weight matrix W. This
particular initializer samples weights from a uniform distribution of a carefully chosen range. Other initializers are
available in lasagne.init, and alternatively, W could also have been initialized from a Theano shared variable or
numpy array of the correct shape (784x800 in this case, as the input to this layer has 1*28*28=784 dimensions). Note
that lasagne.init.GlorotUniform() is the default, so we’ll omit it from here – we just wanted to highlight
that there is a choice.

We’ll now add dropout of 50%, another 800-unit dense layer and 50% dropout again:

l_hid1_drop = lasagne.layers.DropoutLayer(l_hid1, p=0.5)

l_hid2 = lasagne.layers.DenseLayer(
l_hid1_drop, num_units=800,
nonlinearity=lasagne.nonlinearities.rectify)

l_hid2_drop = lasagne.layers.DropoutLayer(l_hid2, p=0.5)

1.2. Tutorial 9

http://deeplearning.net/software/theano/glossary.html#term-variable
http://deeplearning.net/software/theano/glossary.html#term-expression-graph

lasagne Documentation, Release 0.2.dev1

Finally, we’ll add the fully-connected output layer. The main difference is that it uses the softmax nonlinearity, as
we’re planning to solve a 10-class classification problem with this network.

l_out = lasagne.layers.DenseLayer(
l_hid2_drop, num_units=10,
nonlinearity=lasagne.nonlinearities.softmax)

As mentioned above, each layer is linked to its incoming layer(s), so we only need the output layer(s) to access a
network in Lasagne:

return l_out

Custom MLP

The second function has a slightly more extensive signature:

def build_custom_mlp(input_var=None, depth=2, width=800, drop_input=.2,
drop_hidden=.5):

By default, it creates the same network as build_mlp() described above, but it can be customized with respect
to the number and size of hidden layers, as well as the amount of input and hidden dropout. This demonstrates how
creating a network in Python code can be a lot more flexible than a configuration file. See for yourself:

Input layer and dropout (with shortcut `dropout` for `DropoutLayer`):
network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),

input_var=input_var)
if drop_input:

network = lasagne.layers.dropout(network, p=drop_input)
Hidden layers and dropout:
nonlin = lasagne.nonlinearities.rectify
for _ in range(depth):

network = lasagne.layers.DenseLayer(
network, width, nonlinearity=nonlin)

if drop_hidden:
network = lasagne.layers.dropout(network, p=drop_hidden)

Output layer:
softmax = lasagne.nonlinearities.softmax
network = lasagne.layers.DenseLayer(network, 10, nonlinearity=softmax)
return network

With two if clauses and a for loop, this network definition allows varying the architecture in a way that would be
impossible for a .yaml file in Pylearn2 or a .cfg file in cuda-convnet.

Note that to make the code easier, all the layers are just called network here – there is no need to give them different
names if all we return is the last one we created anyway; we just used different names before for clarity.

Convolutional Neural Network (CNN)

Finally, the build_cnn() function creates a CNN of two convolution and pooling stages, a fully-connected hidden
layer and a fully-connected output layer. The function begins like the others:

def build_cnn(input_var=None):
network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),

input_var=input_var)

10 Chapter 1. User Guide

http://deeplearning.net/software/pylearn2/
https://code.google.com/p/cuda-convnet/

lasagne Documentation, Release 0.2.dev1

We don’t apply dropout to the inputs, as this tends to work less well for convolutional layers. Instead of a
DenseLayer, we now add a Conv2DLayer with 32 filters of size 5x5 on top:

network = lasagne.layers.Conv2DLayer(
network, num_filters=32, filter_size=(5, 5),
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.GlorotUniform())

The nonlinearity and weight initializer can be given just as for the DenseLayer (and again, GlorotUniform() is
the default, we’ll omit it from now). Strided and padded convolutions are supported as well; see the Conv2DLayer
docstring.

Note: For experts: Conv2DLayer will create a convolutional layer using T.nnet.conv2d, Theano’s default con-
volution. On compilation for GPU, Theano replaces this with a cuDNN-based implementation if available, otherwise
falls back to a gemm-based implementation. For details on this, please see the Theano convolution documentation.

Lasagne also provides convolutional layers directly enforcing a specific implementation: lasagne.layers.dnn.
Conv2DDNNLayer to enforce cuDNN, lasagne.layers.corrmm.Conv2DMMLayer to enforce the gemm-
based one, lasagne.layers.cuda_convnet.Conv2DCCLayer for Krizhevsky’s cuda-convnet.

We then apply max-pooling of factor 2 in both dimensions, using a MaxPool2DLayer instance:

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

We add another convolution and pooling stage like the ones before:

network = lasagne.layers.Conv2DLayer(
network, num_filters=32, filter_size=(5, 5),
nonlinearity=lasagne.nonlinearities.rectify)

network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

Then a fully-connected layer of 256 units with 50% dropout on its inputs (using the lasagne.layers.dropout
shortcut directly inline):

network = lasagne.layers.DenseLayer(
lasagne.layers.dropout(network, p=.5),
num_units=256,
nonlinearity=lasagne.nonlinearities.rectify)

And finally a 10-unit softmax output layer, again with 50% dropout:

network = lasagne.layers.DenseLayer(
lasagne.layers.dropout(network, p=.5),
num_units=10,
nonlinearity=lasagne.nonlinearities.softmax)

return network

Training the model

The remaining part of the mnist.py script copes with setting up and running a training loop over the MNIST dataset.

1.2. Tutorial 11

https://developer.nvidia.com/cudnn
http://deeplearning.net/software/theano/library/tensor/nnet/conv.html
https://code.google.com/p/cuda-convnet/

lasagne Documentation, Release 0.2.dev1

Dataset iteration

It first defines a short helper function for synchronously iterating over two numpy arrays of input data and targets,
respectively, in mini-batches of a given number of items. For the purpose of this tutorial, we can shorten it to:

def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
if shuffle:

...
for ...:

yield inputs[...], targets[...]

All that’s relevant is that it is a generator function that serves one batch of inputs and targets at a time until the given
dataset (in inputs and targets) is exhausted, either in sequence or in random order. Below we will plug this
function into our training loop, validation loop and test loop.

Preparation

Let’s now focus on the main() function. A bit simplified, it begins like this:

Load the dataset
X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()
Prepare Theano variables for inputs and targets
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
Create neural network model
network = build_mlp(input_var)

The first line loads the inputs and targets of the MNIST dataset as numpy arrays, split into training, validation and test
data. The next two statements define symbolic Theano variables that will represent a mini-batch of inputs and targets
in all the Theano expressions we will generate for network training and inference. They are not tied to any data yet,
but their dimensionality and data type is fixed already and matches the actual inputs and targets we will process later.
Finally, we call one of the three functions for building the Lasagne network, depending on the first command line
argument – we’ve just removed command line handling here for clarity. Note that we hand the symbolic input variable
to build_mlp() so it will be linked to the network’s input layer.

Loss and update expressions

Continuing, we create a loss expression to be minimized in training:

prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()

The first step generates a Theano expression for the network output given the input variable linked to the network’s
input layer(s). The second step defines a Theano expression for the categorical cross-entropy loss between said network
output and the targets. Finally, as we need a scalar loss, we simply take the mean over the mini-batch. Depending on
the problem you are solving, you will need different loss functions, see lasagne.objectives for more.

Having the model and the loss function defined, we create update expressions for training the network. An update
expression describes how to change the trainable parameters of the network at each presented mini-batch. We will
use Stochastic Gradient Descent (SGD) with Nesterov momentum here, but the lasagne.updates module offers
several others you can plug in instead:

12 Chapter 1. User Guide

lasagne Documentation, Release 0.2.dev1

params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.nesterov_momentum(

loss, params, learning_rate=0.01, momentum=0.9)

The first step collects all Theano SharedVariable instances making up the trainable parameters of the layer, and
the second step generates an update expression for each parameter.

For monitoring progress during training, after each epoch, we evaluate the network on the validation set. We need a
slightly different loss expression for that:

test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,

target_var)
test_loss = test_loss.mean()

The crucial difference is that we pass deterministic=True to the get_output call. This causes all nonde-
terministic layers to switch to a deterministic implementation, so in our case, it disables the dropout layers. As an
additional monitoring quantity, we create an expression for the classification accuracy:

test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
dtype=theano.config.floatX)

It also builds on the deterministic test_prediction expression.

Compilation

Equipped with all the necessary Theano expressions, we’re now ready to compile a function performing a training
step:

train_fn = theano.function([input_var, target_var], loss, updates=updates)

This tells Theano to generate and compile a function taking two inputs – a mini-batch of images and a vector of
corresponding targets – and returning a single output: the training loss. Additionally, each time it is invoked, it applies
all parameter updates in the updates dictionary, thus performing a gradient descent step with Nesterov momentum.

For validation, we compile a second function:

val_fn = theano.function([input_var, target_var], [test_loss, test_acc])

This one also takes a mini-batch of images and targets, then returns the (deterministic) loss and classification accuracy,
not performing any updates.

Training loop

We’re finally ready to write the training loop. In essence, we just need to do the following:

for epoch in range(num_epochs):
for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):

inputs, targets = batch
train_fn(inputs, targets)

This uses our dataset iteration helper function to iterate over the training data in random order, in mini-batches of 500
items each, for num_epochs epochs, and calls the training function we compiled to perform an update step of the
network parameters.

1.2. Tutorial 13

lasagne Documentation, Release 0.2.dev1

But to be able to monitor the training progress, we capture the training loss, compute the validation loss and print some
information to the console every time an epoch finishes:

for epoch in range(num_epochs):
In each epoch, we do a full pass over the training data:
train_err = 0
train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):

inputs, targets = batch
train_err += train_fn(inputs, targets)
train_batches += 1

And a full pass over the validation data:
val_err = 0
val_acc = 0
val_batches = 0
for batch in iterate_minibatches(X_val, y_val, 500, shuffle=False):

inputs, targets = batch
err, acc = val_fn(inputs, targets)
val_err += err
val_acc += acc
val_batches += 1

Then we print the results for this epoch:
print("Epoch {} of {} took {:.3f}s".format(

epoch + 1, num_epochs, time.time() - start_time))
print(" training loss:\t\t{:.6f}".format(train_err / train_batches))
print(" validation loss:\t\t{:.6f}".format(val_err / val_batches))
print(" validation accuracy:\t\t{:.2f} %".format(

val_acc / val_batches * 100))

At the very end, we re-use the val_fn() function to compute the loss and accuracy on the test set, finishing the
script.

Where to go from here

This finishes our introductory tutorial. For more information on what you can do with Lasagne’s layers, just continue
reading through Layers and Creating custom layers. More tutorials, examples and code snippets can be found in
the Lasagne Recipes repository. Finally, the reference lists and explains all layers (lasagne.layers), weight
initializers (lasagne.init), nonlinearities (lasagne.nonlinearities), loss expressions (lasagne.
objectives), training methods (lasagne.updates) and regularizers (lasagne.regularization) in-
cluded in the library, and should also make it simple to create your own.

Layers

The lasagne.layers module provides various classes representing the layers of a neural network. All of them are
subclasses of the lasagne.layers.Layer base class.

Creating a layer

A layer can be created as an instance of a Layer subclass. For example, a dense layer can be created as follows:

14 Chapter 1. User Guide

https://github.com/Lasagne/Recipes

lasagne Documentation, Release 0.2.dev1

>>> import lasagne
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100)

This will create a dense layer with 100 units, connected to another layer l_in.

Creating a network

Note that for almost all types of layers, you will have to specify one or more other layers that the layer you are creating
gets its input from. The main exception is InputLayer, which can be used to represent the input of a network.

Chaining layer instances together like this will allow you to specify your desired network structure. Note that the
same layer can be used as input to multiple other layers, allowing for arbitrary tree and directed acyclic graph (DAG)
structures.

Here is an example of an MLP with a single hidden layer:

>>> import theano.tensor as T
>>> l_in = lasagne.layers.InputLayer((100, 50))
>>> l_hidden = lasagne.layers.DenseLayer(l_in, num_units=200)
>>> l_out = lasagne.layers.DenseLayer(l_hidden, num_units=10,
... nonlinearity=T.nnet.softmax)

The first layer of the network is an InputLayer, which represents the input. When creating an input layer, you should
specify the shape of the input data. In this example, the input is a matrix with shape (100, 50), representing a batch
of 100 data points, where each data point is a vector of length 50. The first dimension of a tensor is usually the batch
dimension, following the established Theano and scikit-learn conventions.

The hidden layer of the network is a dense layer with 200 units, taking its input from the input layer. Note that we did
not specify the nonlinearity of the hidden layer. A layer with rectified linear units will be created by default.

The output layer of the network is a dense layer with 10 units and a softmax nonlinearity, allowing for 10-way classi-
fication of the input vectors.

Note also that we did not create any object representing the entire network. Instead, the output layer instance l_out is
also used to refer to the entire network in Lasagne.

Naming layers

For convenience, you can name a layer by specifying the name keyword argument:

>>> l_hidden = lasagne.layers.DenseLayer(l_in, num_units=200,
... name="hidden_layer")

Initializing parameters

Many types of layers, such as DenseLayer, have trainable parameters. These are referred to by short names that
match the conventions used in modern deep learning literature. For example, a weight matrix will usually be called W,
and a bias vector will usually be b.

When creating a layer with trainable parameters, Theano shared variables will be created for them and initialized
automatically. You can optionally specify your own initialization strategy by using keyword arguments that match the
parameter variable names. For example:

1.3. Layers 15

lasagne Documentation, Release 0.2.dev1

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100,
... W=lasagne.init.Normal(0.01))

The weight matrix W of this dense layer will be initialized using samples from a normal distribution with standard
deviation 0.01 (see lasagne.init for more information).

There are several ways to manually initialize parameters:

• Theano shared variable If a shared variable instance is provided, this is used unchanged as the parameter
variable. For example:

>>> import theano
>>> import numpy as np
>>> W = theano.shared(np.random.normal(0, 0.01, (50, 100)))
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=W)

• numpy array If a numpy array is provided, a shared variable is created and initialized using the array. For
example:

>>> W_init = np.random.normal(0, 0.01, (50, 100))
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=W_init)

• callable If a callable is provided (e.g. a function or a lasagne.init.Initializer instance), a shared
variable is created and the callable is called with the desired shape to generate suitable initial parameter
values. The variable is then initialized with those values. For example:

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100,
... W=lasagne.init.Normal(0.01))

Or, using a custom initialization function:

>>> def init_W(shape):
... return np.random.normal(0, 0.01, shape)
>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, W=init_W)

Some types of parameter variables can also be set to None at initialization (e.g. biases). In that case, the parameter
variable will be omitted. For example, creating a dense layer without biases is done as follows:

>>> l = lasagne.layers.DenseLayer(l_in, num_units=100, b=None)

Parameter sharing

Parameter sharing between multiple layers can be achieved by using the same Theano shared variable instance for
their parameters. For example:

>>> l1 = lasagne.layers.DenseLayer(l_in, num_units=100)
>>> l2 = lasagne.layers.DenseLayer(l_in, num_units=100, W=l1.W)

These two layers will now share weights (but have separate biases).

Propagating data through layers

To compute an expression for the output of a single layer given its input, the get_output_for() method can be used.
To compute the output of a network, you should instead call lasagne.layers.get_output() on it. This will
traverse the network graph.

16 Chapter 1. User Guide

lasagne Documentation, Release 0.2.dev1

You can call this function with the layer you want to compute the output expression for:

>>> y = lasagne.layers.get_output(l_out)

In that case, a Theano expression will be returned that represents the output in function of the input variables associated
with the lasagne.layers.InputLayer instance (or instances) in the network, so given the example network
from before, you could compile a Theano function to compute its output given an input as follows:

>>> f = theano.function([l_in.input_var], lasagne.layers.get_output(l_out))

You can also specify a Theano expression to use as input as a second argument to lasagne.layers.
get_output():

>>> x = T.matrix('x')
>>> y = lasagne.layers.get_output(l_out, x)
>>> f = theano.function([x], y)

This only works when there is only a single InputLayer in the network. If there is more than one, you can specify
input expressions in a dictionary. For example, in a network with two input layers l_in1 and l_in2 and an output layer
l_out:

>>> x1 = T.matrix('x1')
>>> x2 = T.matrix('x2')
>>> y = lasagne.layers.get_output(l_out, { l_in1: x1, l_in2: x2 })

Any keyword arguments passed to get_output() are propagated to all layers. This makes it possible to control the
behavior of the entire network. The main use case for this is the deterministic keyword argument, which disables
stochastic behaviour such as dropout when set to True. This is useful because a deterministic output is desirable at
evaluation time.

>>> y = lasagne.layers.get_output(l_out, deterministic=True)

Some networks may have multiple output layers - or you may just want to compute output expressions for intermediate
layers in the network. In that case, you can pass a list of layers. For example, in a network with two output layers
l_out1 and l_out2:

>>> y1, y2 = lasagne.layers.get_output([l_out1, l_out2])

You could also just call lasagne.layers.get_output() twice:

>>> y1 = lasagne.layers.get_output(l_out1)
>>> y2 = lasagne.layers.get_output(l_out2)

However, this is not recommended! Some network layers may have non-deterministic output, such as dropout layers.
If you compute the network output expressions with separate calls to lasagne.layers.get_output(), they
will not use the same samples. Furthermore, this may lead to unnecessary computation because Theano is not always
able to merge identical computations properly. Calling get_output() only once prevents both of these issues.

Creating custom layers

A simple layer

To implement a custom layer in Lasagne, you will have to write a Python class that subclasses Layer and implement
at least one method: get_output_for(). This method computes the output of the layer given its input. Note that both
the output and the input are Theano expressions, so they are symbolic.

1.4. Creating custom layers 17

lasagne Documentation, Release 0.2.dev1

The following is an example implementation of a layer that multiplies its input by 2:

class DoubleLayer(lasagne.layers.Layer):
def get_output_for(self, input, **kwargs):

return 2 * input

This is all that’s required to implement a functioning custom layer class in Lasagne.

A layer that changes the shape

If the layer does not change the shape of the data (for example because it applies an elementwise operation), then
implementing only this one method is sufficient. Lasagne will assume that the output of the layer has the same shape
as its input.

However, if the operation performed by the layer changes the shape of the data, you also need to implement
get_output_shape_for(). This method computes the shape of the layer output given the shape of its input. Note
that this shape computation should result in a tuple of integers, so it is not symbolic.

This method exists because Lasagne needs a way to propagate shape information when a network is defined, so it can
determine what sizes the parameter tensors should be, for example. This mechanism allows each layer to obtain the
size of its input from the previous layer, which means you don’t have to specify the input size manually. This also
prevents errors stemming from inconsistencies between the layers’ expected and actual shapes.

We can implement a layer that computes the sum across the trailing axis of its input as follows:

class SumLayer(lasagne.layers.Layer):
def get_output_for(self, input, **kwargs):

return input.sum(axis=-1)

def get_output_shape_for(self, input_shape):
return input_shape[:-1]

It is important that the shape computation is correct, as this shape information may be used to initialize other layers in
the network.

A layer with parameters

If the layer has parameters, these should be initialized in the constructor. In Lasagne, parameters are represented
by Theano shared variables. A method is provided to create and register parameter variables: lasagne.layers.
Layer.add_param().

To show how this can be used, here is a layer that multiplies its input by a matrix W (much like a typical fully
connected layer in a neural network would). This matrix is a parameter of the layer. The shape of the matrix will be
(num_inputs, num_units), where num_inputs is the number of input features and num_units has to be
specified when the layer is created.

class DotLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, W=lasagne.init.Normal(0.01), **kwargs):

super(DotLayer, self).__init__(incoming, **kwargs)
num_inputs = self.input_shape[1]
self.num_units = num_units
self.W = self.add_param(W, (num_inputs, num_units), name='W')

def get_output_for(self, input, **kwargs):
return T.dot(input, self.W)

18 Chapter 1. User Guide

lasagne Documentation, Release 0.2.dev1

def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)

A few things are worth noting here: when overriding the constructor, we need to call the superclass constructor on the
first line. This is important to ensure the layer functions properly. Note that we pass **kwargs - although this is not
strictly necessary, it enables some other cool Lasagne features, such as making it possible to give the layer a name:

>>> l_dot = DotLayer(l_in, num_units=50, name='my_dot_layer')

The call to self.add_param() creates the Theano shared variable representing the parameter, and registers it so
it can later be retrieved using lasagne.layers.Layer.get_params(). It returns the created variable, which
we tuck away in self.W for easy access.

Note that we’ve also made it possible to specify a custom initialization strategy for W by adding a constructor argument
for it, e.g.:

>>> l_dot = DotLayer(l_in, num_units=50, W=lasagne.init.Constant(0.0))

This ‘Lasagne idiom’ of tucking away a created parameter variable in an attribute for easy access and adding a con-
structor argument with the same name to specify the initialization strategy is very common throughout the library.

Finally, note that we used self.input_shape to determine the shape of the parameter matrix. This property is
available in all Lasagne layers, once the superclass constructor has been called.

A layer with multiple behaviors

Some layers can have multiple behaviors. For example, a layer implementing dropout should be able to be switched
on or off. During training, we want it to apply dropout noise to its input and scale up the remaining values, but during
evaluation we don’t want it to do anything.

For this purpose, the get_output_for() method takes optional keyword arguments (kwargs). When get_output()
is called to compute an expression for the output of a network, all specified keyword arguments are passed to the
get_output_for() methods of all layers in the network.

For layers that add noise for regularization purposes, such as dropout, the convention in Lasagne is to use the keyword
argument deterministic to control its behavior.

Lasagne’s lasagne.layers.DropoutLayer looks roughly like this (simplified implementation for illustration
purposes):

from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
_srng = RandomStreams()

class DropoutLayer(Layer):
def __init__(self, incoming, p=0.5, **kwargs):

super(DropoutLayer, self).__init__(incoming, **kwargs)
self.p = p

def get_output_for(self, input, deterministic=False, **kwargs):
if deterministic: # do nothing in the deterministic case

return input
else: # add dropout noise otherwise

retain_prob = 1 - self.p
input /= retain_prob
return input * _srng.binomial(input.shape, p=retain_prob,

dtype=theano.config.floatX)

1.4. Creating custom layers 19

lasagne Documentation, Release 0.2.dev1

Development

The Lasagne project was started by Sander Dieleman in September 2014. It is developed by a core team of eight
people (in alphabetical order: Eric Battenberg, Sander Dieleman, Daniel Nouri, Eben Olson, Aäron van den Oord,
Colin Raffel, Jan Schlüter, Søren Kaae Sønderby) and numerous additional contributors on GitHub: https://github.
com/Lasagne/Lasagne

As an open-source project by researchers for researchers, we highly welcome contributions! Every bit helps and will
be credited.

Philosophy

Lasagne grew out of a need to combine the flexibility of Theano with the availability of the right building blocks for
training neural networks. Its development is guided by a number of design goals:

• Simplicity: Be easy to use, easy to understand and easy to extend, to facilitate use in research. Interfaces should
be kept small, with as few classes and methods as possible. Every added abstraction and feature should be
carefully scrutinized, to determine whether the added complexity is justified.

• Transparency: Do not hide Theano behind abstractions, directly process and return Theano expressions or
Python / numpy data types. Try to rely on Theano’s functionality where possible, and follow Theano’s conven-
tions.

• Modularity: Allow all parts (layers, regularizers, optimizers, ...) to be used independently of Lasagne. Make it
easy to use components in isolation or in conjunction with other frameworks.

• Pragmatism: Make common use cases easy, do not overrate uncommon cases. Ideally, everything should be
possible, but common use cases shouldn’t be made more difficult just to cater for exotic ones.

• Restraint: Do not obstruct users with features they decide not to use. Both in using and in extending compo-
nents, it should be possible for users to be fully oblivious to features they do not need.

• Focus: “Do one thing and do it well”. Do not try to provide a library for everything to do with deep learning.

What to contribute

Give feedback

To send us general feedback, questions or ideas for improvement, please post on our mailing list.

If you have a very concrete feature proposal, add it to the issue tracker on GitHub:

• Explain how it would work, and link to a scientific paper if applicable.

• Keep the scope as narrow as possible, to make it easier to implement.

Report bugs

Report bugs at the issue tracker on GitHub. If you are reporting a bug, please include:

• your Lasagne and Theano version.

• steps to reproduce the bug, ideally reduced to a few Python commands.

• the results you obtain, and the results you expected instead.

If you are unsure whether the behavior you experience is a bug, or if you are unsure whether it is related to Lasagne
or Theano, please just ask on our mailing list first.

20 Chapter 1. User Guide

http://ericbattenberg.com/
http://benanne.github.io
http://danielnouri.org
https://github.com/ebenolson
https://twitter.com/avdnoord
http://colinraffel.com/
http://www.ofai.at/~jan.schlueter/
http://www1.bio.ku.dk/english/staff/?pure=en/persons/418078
https://github.com/Lasagne/Lasagne/graphs/contributors
https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
https://groups.google.com/forum/#!forum/lasagne-users
https://github.com/Lasagne/Lasagne/issues
https://github.com/Lasagne/Lasagne/issues
https://groups.google.com/forum/#!forum/lasagne-users

lasagne Documentation, Release 0.2.dev1

Fix bugs

Look through the GitHub issues for bug reports. Anything tagged with “bug” is open to whoever wants to implement
it. If you discover a bug in Lasagne you can fix yourself, by all means feel free to just implement a fix and not report
it first.

Implement features

Look through the GitHub issues for feature proposals. Anything tagged with “feature” or “enhancement” is open to
whoever wants to implement it. If you have a feature in mind you want to implement yourself, please note that Lasagne
has a fairly narrow focus and we strictly follow a set of design principles, so we cannot guarantee upfront that your
code will be included. Please do not hesitate to just propose your idea in a GitHub issue or on the mailing list first, so
we can discuss it and/or guide you through the implementation.

Write documentation

Whenever you find something not explained well, misleading, glossed over or just wrong, please update it! The Edit
on GitHub link on the top right of every documentation page and the [source] link for every documented entity in the
API reference will help you to quickly locate the origin of any text.

How to contribute

Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit on GitHub link on the top right of a
documentation page or the [source] link of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser and send us a Pull Request. All you need for
this is a free GitHub account.

For any more substantial changes, please follow the steps below to setup Lasagne for development.

Development setup

First, follow the instructions for performing a development installation of Lasagne (including forking on GitHub):
Development installation

To be able to run the tests and build the documentation locally, install additional requirements with: pip install
-r requirements-dev.txt (adding --user if you want to install to your home directory instead).

If you use the bleeding-edge version of Theano, then instead of running that command, just use pip install to
manually install all dependencies listed in requirements-dev.txt with their correct versions; otherwise it will
attempt to downgrade Theano to the known good version in requirements.txt.

Documentation

The documentation is generated with Sphinx. To build it locally, run the following commands:

cd docs
make html

1.5. Development 21

http://sphinx-doc.org/latest/index.html

lasagne Documentation, Release 0.2.dev1

Afterwards, open docs/_build/html/index.html to view the documentation as it would appear on readthe-
docs. If you changed a lot and seem to get misleading error messages or warnings, run make clean html to force
Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to ensure consistency throughout the
library. For additional information on the syntax and conventions used, please refer to the following documents:

• reStructuredText Primer

• Sphinx reST markup constructs

• A Guide to NumPy/SciPy Documentation

Testing

Lasagne has a code coverage of 100%, which has proven very helpful in the past, but also creates some duties:

• Whenever you change any code, you should test whether it breaks existing features by just running the test suite.
The test suite will also be run by Travis for any Pull Request to Lasagne.

• Any code you add needs to be accompanied by tests ensuring that nobody else breaks it in future. Coveralls will
check whether the code coverage stays at 100% for any Pull Request to Lasagne.

• Every bug you fix indicates a missing test case, so a proposed bug fix should come with a new test that fails
without your fix.

To run the full test suite, just do

py.test

Testing will take over 5 minutes for the first run, but less than a minute for subsequent runs when Theano can reuse
compiled code. It will end with a code coverage report specifying which code lines are not covered by tests, if any.
Furthermore, it will list any failed tests, and failed PEP8 checks.

To only run tests matching a certain name pattern, use the -k command line switch, e.g., -k pool will run the
pooling layer tests only.

To land in a pdb debug prompt on a failure to inspect it more closely, use the --pdb switch.

Finally, for a loop-on-failing mode, do pip install pytest-xdist and run py.test -f. This will pause
after the run, wait for any source file to change and run all previously failing tests again.

Sending Pull Requests

When you’re satisfied with your addition, the tests pass and the documentation looks good without any markup errors,
commit your changes to a new branch, push that branch to your fork and send us a Pull Request via GitHub’s web
interface.

All these steps are nicely explained on GitHub: https://guides.github.com/introduction/flow/

When filing your Pull Request, please include a description of what it does, to help us reviewing it. If it is fixing an
open issue, say, issue #123, add Fixes #123, Resolves #123 or Closes #123 to the description text, so GitHub will close
it when your request is merged.

22 Chapter 1. User Guide

http://lasagne.readthedocs.org/
http://lasagne.readthedocs.org/
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://travis-ci.org/
https://coveralls.io/
https://www.python.org/dev/peps/pep-0008/
https://guides.github.com/introduction/flow/

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

lasagne.layers

Helper functions

lasagne.layers.get_output(layer_or_layers, inputs=None, **kwargs)
Computes the output of the network at one or more given layers. Optionally, you can define the input(s) to
propagate through the network instead of using the input variable(s) associated with the network’s input layer(s).

Parameters layer_or_layers : Layer or list

the Layer instance for which to compute the output expressions, or a list of Layer
instances.

inputs : None, Theano expression, numpy array, or dict

If None, uses the input variables associated with the InputLayer instances. If a
Theano expression, this defines the input for a single InputLayer instance. Will
throw a ValueError if there are multiple InputLayer instances. If a numpy array,
this will be wrapped as a Theano constant and used just like a Theano expression. If a
dictionary, any Layer instance (including the input layers) can be mapped to a Theano
expression or numpy array to use instead of its regular output.

Returns output : Theano expression or list

the output of the given layer(s) for the given network input

Notes

Depending on your network architecture, get_output([l1, l2]) may be crucially different from [get_output(l1),
get_output(l2)]. Only the former ensures that the output expressions depend on the same intermediate expres-

23

lasagne Documentation, Release 0.2.dev1

sions. For example, when l1 and l2 depend on a common dropout layer, the former will use the same dropout
mask for both, while the latter will use two different dropout masks.

lasagne.layers.get_output_shape(layer_or_layers, input_shapes=None)
Computes the output shape of the network at one or more given layers.

Parameters layer_or_layers : Layer or list

the Layer instance for which to compute the output shapes, or a list of Layer in-
stances.

input_shapes : None, tuple, or dict

If None, uses the input shapes associated with the InputLayer instances. If a tuple,
this defines the input shape for a single InputLayer instance. Will throw a ValueEr-
ror if there are multiple InputLayer instances. If a dictionary, any Layer instance
(including the input layers) can be mapped to a shape tuple to use instead of its regular
output shape.

Returns tuple or list

the output shape of the given layer(s) for the given network input

lasagne.layers.get_all_layers(layer, treat_as_input=None)
This function gathers all layers below one or more given Layer instances, including the given layer(s). Its main
use is to collect all layers of a network just given the output layer(s). The layers are guaranteed to be returned in
a topological order: a layer in the result list is always preceded by all layers its input depends on.

Parameters layer : Layer or list

the Layer instance for which to gather all layers feeding into it, or a list of Layer
instances.

treat_as_input : None or iterable

an iterable of Layer instances to treat as input layers with no layers feeding into them.
They will show up in the result list, but their incoming layers will not be collected
(unless they are required for other layers as well).

Returns list

a list of Layer instances feeding into the given instance(s) either directly or indirectly,
and the given instance(s) themselves, in topological order.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> get_all_layers(l1) == [l_in, l1]
True
>>> l2 = DenseLayer(l_in, num_units=10)
>>> get_all_layers([l2, l1]) == [l_in, l2, l1]
True
>>> get_all_layers([l1, l2]) == [l_in, l1, l2]
True
>>> l3 = DenseLayer(l2, num_units=20)
>>> get_all_layers(l3) == [l_in, l2, l3]
True
>>> get_all_layers(l3, treat_as_input=[l2]) == [l2, l3]
True

24 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

lasagne.layers.get_all_params(layer, unwrap_shared=True, **tags)
Returns a list of Theano shared variables or expressions that parameterize the layer.

This function gathers all parameters of all layers below one or more given Layer instances, including the
layer(s) itself. Its main use is to collect all parameters of a network just given the output layer(s).

By default, all shared variables that participate in the forward pass will be returned. The list can optionally be
filtered by specifying tags as keyword arguments. For example, trainable=True will only return trainable
parameters, and regularizable=True will only return parameters that can be regularized (e.g., by L2
decay).

Parameters layer : Layer or list

The Layer instance for which to gather all parameters, or a list of Layer instances.

unwrap_shared : bool (default: True)

Affects only parameters that were set to a Theano expression. If True the function re-
turns the shared variables contained in the expression, otherwise the Theano expression
itself.

**tags (optional)

tags can be specified to filter the list. Specifying tag1=True will limit the list to
parameters that are tagged with tag1. Specifying tag1=False will limit the list to
parameters that are not tagged with tag1. Commonly used tags are regularizable
and trainable.

Returns params : list

A list of Theano shared variables or expressions representing the parameters.

Notes

If any of the layers’ parameters was set to a Theano expression instead of a shared variable, unwrap_shared con-
trols whether to return the shared variables involved in that expression (unwrap_shared=True, the default),
or the expression itself (unwrap_shared=False). In either case, tag filtering applies to the expressions,
considering all variables within an expression to be tagged the same.

Examples

Collecting all parameters from a two-layer network:

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> l2 = DenseLayer(l1, num_units=30)
>>> all_params = get_all_params(l2)
>>> all_params == [l1.W, l1.b, l2.W, l2.b]
True

Parameters can be filtered by tags, and parameter expressions are unwrapped to return involved shared variables
by default:

2.1. lasagne.layers 25

lasagne Documentation, Release 0.2.dev1

>>> from lasagne.utils import floatX
>>> w1 = theano.shared(floatX(.01 * np.random.randn(50, 30)))
>>> w2 = theano.shared(floatX(1))
>>> l2 = DenseLayer(l1, num_units=30, W=theano.tensor.exp(w1) - w2, b=None)
>>> all_params = get_all_params(l2, regularizable=True)
>>> all_params == [l1.W, w1, w2]
True

When disabling unwrapping, the expression for l2.W is returned instead:

>>> all_params = get_all_params(l2, regularizable=True,
... unwrap_shared=False)
>>> all_params == [l1.W, l2.W]
True

lasagne.layers.count_params(layer, **tags)
This function counts all parameters (i.e., the number of scalar values) of all layers below one or more given
Layer instances, including the layer(s) itself.

This is useful to compare the capacity of various network architectures. All parameters returned by the
Layer`s' `get_params methods are counted.

Parameters layer : Layer or list

The Layer instance for which to count the parameters, or a list of Layer instances.

**tags (optional)

tags can be specified to filter the list of parameter variables that will be included in the
count. Specifying tag1=True will limit the list to parameters that are tagged with
tag1. Specifying tag1=False will limit the list to parameters that are not tagged
with tag1. Commonly used tags are regularizable and trainable.

Returns int

The total number of learnable parameters.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> param_count = count_params(l1)
>>> param_count
1050
>>> param_count == 20 * 50 + 50 # 20 input * 50 units + 50 biases
True

lasagne.layers.get_all_param_values(layer, **tags)
This function returns the values of the parameters of all layers below one or more given Layer instances,
including the layer(s) itself.

This function can be used in conjunction with set_all_param_values to save and restore model parameters.

Parameters layer : Layer or list

The Layer instance for which to gather all parameter values, or a list of Layer in-
stances.

26 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

**tags (optional)

tags can be specified to filter the list. Specifying tag1=True will limit the list to
parameters that are tagged with tag1. Specifying tag1=False will limit the list to
parameters that are not tagged with tag1. Commonly used tags are regularizable
and trainable.

Returns list of numpy.array

A list of numpy arrays representing the parameter values.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_param_values = get_all_param_values(l1)
>>> (all_param_values[0] == l1.W.get_value()).all()
True
>>> (all_param_values[1] == l1.b.get_value()).all()
True

lasagne.layers.set_all_param_values(layer, values, **tags)
Given a list of numpy arrays, this function sets the parameters of all layers below one or more given Layer
instances (including the layer(s) itself) to the given values.

This function can be used in conjunction with get_all_param_values to save and restore model parameters.

Parameters layer : Layer or list

The Layer instance for which to set all parameter values, or a list of Layer instances.

values : list of numpy.array

A list of numpy arrays representing the parameter values, must match the number of
parameters. Every parameter’s shape must match the shape of its new value.

**tags (optional)

tags can be specified to filter the list of parameters to be set. Specifying tag1=True
will limit the list to parameters that are tagged with tag1. Specifying tag1=False
will limit the list to parameters that are not tagged with tag1. Commonly used tags are
regularizable and trainable.

Raises ValueError

If the number of values is not equal to the number of params, or if a parameter’s shape
does not match the shape of its new value.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)
>>> all_param_values = get_all_param_values(l1)
>>> # all_param_values is now [l1.W.get_value(), l1.b.get_value()]
>>> # ...
>>> set_all_param_values(l1, all_param_values)
>>> # the parameter values are restored.

2.1. lasagne.layers 27

lasagne Documentation, Release 0.2.dev1

Layer base classes

class lasagne.layers.Layer(incoming, name=None)
The Layer class represents a single layer of a neural network. It should be subclassed when implementing new
types of layers.

Because each layer can keep track of the layer(s) feeding into it, a network’s output Layer instance can double
as a handle to the full network.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

name : a string or None

An optional name to attach to this layer.

add_param(spec, shape, name=None, **tags)
Register and possibly initialize a parameter tensor for the layer.

When defining a layer class, this method is called in the constructor to define which parameters the layer
has, what their shapes are, how they should be initialized and what tags are associated with them. This
allows layer classes to transparently support parameter initialization from numpy arrays and callables, as
well as setting parameters to existing Theano shared variables or Theano expressions.

All registered parameters are stored along with their tags in the ordered dictionary Layer.params, and
can be retrieved with Layer.get_params(), optionally filtered by their tags.

Parameters spec : Theano shared variable, expression, numpy array or callable

initial value, expression or initializer for this parameter. See lasagne.utils.
create_param() for more information.

shape : tuple of int

a tuple of integers representing the desired shape of the parameter tensor.

name : str (optional)

a descriptive name for the parameter variable. This will be passed to theano.
shared when the variable is created, prefixed by the layer’s name if any (in the form
'layer_name.param_name'). If spec is already a shared variable or expression,
this parameter will be ignored to avoid overwriting an existing name.

**tags (optional)

tags associated with the parameter can be specified as keyword arguments. To associate
the tag tag1 with the parameter, pass tag1=True.

By default, the tags regularizable and trainable are associated with the pa-
rameter. Pass regularizable=False or trainable=False respectively to
prevent this.

Returns Theano shared variable or Theano expression

the resulting parameter variable or parameter expression

28 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Notes

It is recommended to assign the resulting parameter variable/expression to an attribute of the layer for easy
access, for example:

>>> self.W = self.add_param(W, (2, 3), name='W')

get_output_for(input, **kwargs)
Propagates the given input through this layer (and only this layer).

Parameters input : Theano expression

The expression to propagate through this layer.

Returns output : Theano expression

The output of this layer given the input to this layer.

Notes

This is called by the base lasagne.layers.get_output() to propagate data through a network.

This method should be overridden when implementing a new Layer class. By default it raises NotImple-
mentedError.

get_output_shape_for(input_shape)
Computes the output shape of this layer, given an input shape.

Parameters input_shape : tuple

A tuple representing the shape of the input. The tuple should have as many elements as
there are input dimensions, and the elements should be integers or None.

Returns tuple

A tuple representing the shape of the output of this layer. The tuple has as many ele-
ments as there are output dimensions, and the elements are all either integers or None.

Notes

This method will typically be overridden when implementing a new Layer class. By default it simply
returns the input shape. This means that a layer that does not modify the shape (e.g. because it applies an
elementwise operation) does not need to override this method.

get_params(unwrap_shared=True, **tags)
Returns a list of Theano shared variables or expressions that parameterize the layer.

By default, all shared variables that participate in the forward pass will be returned (in the order they were
registered in the Layer’s constructor via add_param()). The list can optionally be filtered by specifying
tags as keyword arguments. For example, trainable=True will only return trainable parameters, and
regularizable=True will only return parameters that can be regularized (e.g., by L2 decay).

If any of the layer’s parameters was set to a Theano expression instead of a shared variable, unwrap_shared
controls whether to return the shared variables involved in that expression (unwrap_shared=True, the
default), or the expression itself (unwrap_shared=False). In either case, tag filtering applies to the
expressions, considering all variables within an expression to be tagged the same.

Parameters unwrap_shared : bool (default: True)

2.1. lasagne.layers 29

lasagne Documentation, Release 0.2.dev1

Affects only parameters that were set to a Theano expression. If True the function re-
turns the shared variables contained in the expression, otherwise the Theano expression
itself.

**tags (optional)

tags can be specified to filter the list. Specifying tag1=True will limit the list to
parameters that are tagged with tag1. Specifying tag1=False will limit the list to
parameters that are not tagged with tag1. Commonly used tags are regularizable
and trainable.

Returns list of Theano shared variables or expressions

A list of variables that parameterize the layer

Notes

For layers without any parameters, this will return an empty list.

class lasagne.layers.MergeLayer(incomings, name=None)
This class represents a layer that aggregates input from multiple layers. It should be subclassed when imple-
menting new types of layers that obtain their input from multiple layers.

Parameters incomings : a list of Layer instances or tuples

The layers feeding into this layer, or expected input shapes.

name : a string or None

An optional name to attach to this layer.

get_output_for(inputs, **kwargs)
Propagates the given inputs through this layer (and only this layer).

Parameters inputs : list of Theano expressions

The Theano expressions to propagate through this layer.

Returns Theano expressions

The output of this layer given the inputs to this layer.

Notes

This is called by the base lasagne.layers.get_output() to propagate data through a network.

This method should be overridden when implementing a new Layer class with multiple inputs. By default
it raises NotImplementedError.

get_output_shape_for(input_shapes)
Computes the output shape of this layer, given a list of input shapes.

Parameters input_shape : list of tuple

A list of tuples, with each tuple representing the shape of one of the inputs (in the correct
order). These tuples should have as many elements as there are input dimensions, and
the elements should be integers or None.

Returns tuple

A tuple representing the shape of the output of this layer. The tuple has as many ele-
ments as there are output dimensions, and the elements are all either integers or None.

30 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Notes

This method must be overridden when implementing a new Layer class with multiple inputs. By default
it raises NotImplementedError.

Network input

class lasagne.layers.InputLayer(shape, input_var=None, name=None, **kwargs)
This layer holds a symbolic variable that represents a network input. A variable can be specified when the layer
is instantiated, else it is created.

Parameters shape : tuple of int or None elements

The shape of the input. Any element can be None to indicate that the size of that
dimension is not fixed at compile time.

input_var : Theano symbolic variable or None (default: None)

A variable representing a network input. If it is not provided, a variable will be created.

Raises ValueError

If the dimension of input_var is not equal to len(shape)

Notes

The first dimension usually indicates the batch size. If you specify it, Theano may apply more optimizations
while compiling the training or prediction function, but the compiled function will not accept data of a different
batch size at runtime. To compile for a variable batch size, set the first shape element to None instead.

Examples

>>> from lasagne.layers import InputLayer
>>> l_in = InputLayer((100, 20))

Dense layers

class lasagne.layers.DenseLayer(incoming, num_units, W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, num_leading_axes=1,
**kwargs)

A fully connected layer.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

num_units : int

The number of units of the layer

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a
matrix with shape (num_inputs, num_units). See lasagne.utils.
create_param() for more information.

2.1. lasagne.layers 31

lasagne Documentation, Release 0.2.dev1

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the layer will have
no biases. Otherwise, biases should be a 1D array with shape (num_units,). See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

num_leading_axes : int

Number of leading axes to distribute the dot product over. These axes will be kept in
the output tensor, remaining axes will be collapsed and multiplied against the weight
matrix. A negative number gives the (negated) number of trailing axes to involve in the
dot product.

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=50)

If the input has more than two axes, by default, all trailing axes will be flattened. This is useful when a dense
layer follows a convolutional layer.

>>> l_in = InputLayer((None, 10, 20, 30))
>>> DenseLayer(l_in, num_units=50).output_shape
(None, 50)

Using the num_leading_axes argument, you can specify to keep more than just the first axis. E.g., to apply the
same dot product to each step of a batch of time sequences, you would want to keep the first two axes.

>>> DenseLayer(l_in, num_units=50, num_leading_axes=2).output_shape
(None, 10, 50)
>>> DenseLayer(l_in, num_units=50, num_leading_axes=-1).output_shape
(None, 10, 20, 50)

class lasagne.layers.NINLayer(incoming, num_units, untie_biases=False,
W=lasagne.init.GlorotUniform(), b=lasagne.init.Constant(0.),
nonlinearity=lasagne.nonlinearities.rectify, **kwargs)

Network-in-network layer. Like DenseLayer, but broadcasting across all trailing dimensions beyond the 2nd.
This results in a convolution operation with filter size 1 on all trailing dimensions. Any number of trailing
dimensions is supported, so NINLayer can be used to implement 1D, 2D, 3D, ... convolutions.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

num_units : int

The number of units of the layer

untie_biases : bool

If false the network has a single bias vector similar to a dense layer. If true a separate
bias vector is used for each trailing dimension beyond the 2nd.

W : Theano shared variable, expression, numpy array or callable

32 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Initial value, expression or initializer for the weights. These should be a matrix with
shape (num_inputs, num_units), where num_inputs is the size of the sec-
ond dimension of the input. See lasagne.utils.create_param() for more
information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None,
the layer will have no biases. Otherwise, biases should be a 1D ar-
ray with shape (num_units,) for untie_biases=False, and a tensor
of shape (num_units, input_shape[2], ..., input_shape[-1]) for
untie_biases=True. See lasagne.utils.create_param() for more in-
formation.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

References

[R35]

Examples

>>> from lasagne.layers import InputLayer, NINLayer
>>> l_in = InputLayer((100, 20, 10, 3))
>>> l1 = NINLayer(l_in, num_units=5)

Convolutional layers

class lasagne.layers.Conv1DLayer(incoming, num_filters, filter_size, stride=1, pad=0,
untie_biases=False, W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, flip_filters=True, convo-
lution=lasagne.theano_extensions.conv.conv1d_mc0, **kwargs)

1D convolutional layer

Performs a 1D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 3D tensor, with shape (batch_size, num_input_channels,
input_length).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 1-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 1-element tuple specifying the stride of the convolution operation.

2.1. lasagne.layers 33

lasagne Documentation, Release 0.2.dev1

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

An integer or a 1-element tuple results in symmetric zero-padding of the given size on
both borders.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a matrix (2D).

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 3D tensor with
shape (num_filters, num_input_channels, filter_length). See
lasagne.utils.create_param() for more information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the layer will have no
biases. Otherwise, biases should be a 1D array with shape (num_filters,) if un-
tied_biases is set to False. If it is set to True, its shape should be (num_filters,
input_length) instead. See lasagne.utils.create_param() for more in-
formation.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: True)

Whether to flip the filters before sliding them over the input, performing a convolution
(this is the default), or not to flip them and perform a correlation. Note that for some
other convolutional layers in Lasagne, flipping incurs an overhead and is disabled by
default – check the documentation when using learned weights from another layer.

convolution : callable

The convolution implementation to use. The lasagne.theano_extensions.conv module
provides some alternative implementations for 1D convolutions, because the Theano
API only features a 2D convolution implementation. Usually it should be fine to leave
this at the default value. Note that not all implementations support all settings for pad
and subsample.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

34 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

class lasagne.layers.Conv2DLayer(incoming, num_filters, filter_size, stride=(1, 1), pad=0,
untie_biases=False, W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, flip_filters=True, convo-
lution=theano.tensor.nnet.conv2d, **kwargs)

2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 2-element tuple specifying the stride of the convolution operation.

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

A single integer results in symmetric zero-padding of the given size on all borders, a
tuple of two integers allows different symmetric padding per dimension.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

2.1. lasagne.layers 35

lasagne Documentation, Release 0.2.dev1

Initial value, expression or initializer for the weights. These should be a 4D
tensor with shape (num_filters, num_input_channels, filter_rows,
filter_columns). See lasagne.utils.create_param() for more infor-
mation.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: True)

Whether to flip the filters before sliding them over the input, performing a convolution
(this is the default), or not to flip them and perform a correlation. Note that for some
other convolutional layers in Lasagne, flipping incurs an overhead and is disabled by
default – check the documentation when using learned weights from another layer.

convolution : callable

The convolution implementation to use. Usually it should be fine to leave this at the
default value.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

Note: For experts: Conv2DLayer will create a convolutional layer using T.nnet.conv2d, Theano’s default con-
volution. On compilation for GPU, Theano replaces this with a cuDNN-based implementation if available, otherwise
falls back to a gemm-based implementation. For details on this, please see the Theano convolution documentation.

Lasagne also provides convolutional layers directly enforcing a specific implementation: lasagne.layers.dnn.
Conv2DDNNLayer to enforce cuDNN, lasagne.layers.corrmm.Conv2DMMLayer to enforce the gemm-
based one, lasagne.layers.cuda_convnet.Conv2DCCLayer for Krizhevsky’s cuda-convnet.

class lasagne.layers.TransposedConv2DLayer(incoming, num_filters, filter_size,
stride=(1, 1), crop=0, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
flip_filters=False, **kwargs)

2D transposed convolution layer

Performs the backward pass of a 2D convolution (also called transposed convolution, fractionally-strided con-
volution or deconvolution in the literature) on its input and optionally adds a bias and applies an elementwise
nonlinearity.

36 Chapter 2. API Reference

https://developer.nvidia.com/cudnn
http://deeplearning.net/software/theano/library/tensor/nnet/conv.html
https://code.google.com/p/cuda-convnet/

lasagne Documentation, Release 0.2.dev1

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 2-element tuple specifying the stride of the transposed convolution op-
eration. For the transposed convolution, this gives the dilation factor for the input –
increasing it increases the output size.

crop : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the transposed convolution is computed where the input and the filter overlap
by at least one position (a full convolution). When stride=1, this yields an output
that is larger than the input by filter_size - 1. It can be thought of as a valid
convolution padded with zeros. The crop argument allows you to decrease the amount
of this zero-padding, reducing the output size. It is the counterpart to the pad argument
in a non-transposed convolution.

A single integer results in symmetric cropping of the given size on all borders, a tuple
of two integers allows different symmetric cropping per dimension.

'full' disables zero-padding. It is is equivalent to computing the convolution wher-
ever the input and the filter fully overlap.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no cropping / a full convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 4D
tensor with shape (num_input_channels, num_filters, filter_rows,
filter_columns). Note that the first two dimensions are swapped compared to
a non-transposed convolution. See lasagne.utils.create_param() for more
information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape

2.1. lasagne.layers 37

lasagne Documentation, Release 0.2.dev1

should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: False)

Whether to flip the filters before sliding them over the input, performing a convolution,
or not to flip them and perform a correlation (this is the default). Note that this flag is
inverted compared to a non-transposed convolution.

output_size : int or iterable of int or symbolic tuple of ints

The output size of the transposed convolution. Allows to specify which of the possible
output shapes to return when stride > 1. If not specified, the smallest shape will be
returned.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The transposed convolution is implemented as the backward pass of a corresponding non-transposed convolu-
tion. It can be thought of as dilating the input (by adding stride - 1 zeros between adjacent input elements),
padding it with filter_size - 1 - crop zeros, and cross-correlating it with the filters. See [R33] for
more background.

References

[R33]

Examples

To transpose an existing convolution, with tied filter weights:

>>> from lasagne.layers import Conv2DLayer, TransposedConv2DLayer
>>> conv = Conv2DLayer((None, 1, 32, 32), 16, 3, stride=2, pad=2)
>>> deconv = TransposedConv2DLayer(conv, conv.input_shape[1],
... conv.filter_size, stride=conv.stride, crop=conv.pad,
... W=conv.W, flip_filters=not conv.flip_filters)

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

lasagne.layers.Deconv2DLayer
alias of TransposedConv2DLayer

38 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

class lasagne.layers.DilatedConv2DLayer(incoming, num_filters, filter_size, dila-
tion=(1, 1), pad=0, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, flip_filters=False,
**kwargs)

2D dilated convolution layer

Performs a 2D convolution with dilated filters, then optionally adds a bias and applies an elementwise nonlin-
earity.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters.

dilation : int or iterable of int

An integer or a 2-element tuple specifying the dilation factor of the filters. A factor of
𝑥 corresponds to 𝑥− 1 zeros inserted between adjacent filter elements.

pad : int, iterable of int, or ‘valid’ (default: 0)

The amount of implicit zero padding of the input. This implementation does not support
padding, the argument is provided for compatibility to other convolutional layers only.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 4D
tensor with shape (num_input_channels, num_filters, filter_rows,
filter_columns). Note that the first two dimensions are swapped compared to a
non-dilated convolution. See lasagne.utils.create_param() for more infor-
mation.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: False)

2.1. lasagne.layers 39

lasagne Documentation, Release 0.2.dev1

Whether to flip the filters before sliding them over the input, performing a convolution,
or not to flip them and perform a correlation (this is the default). This implementa-
tion does not support flipped filters, the argument is provided for compatibility to other
convolutional layers only.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The dilated convolution is implemented as the backward pass of a convolution wrt. weights, passing the filters
as the output gradient. It can be thought of as dilating the filters (by adding dilation - 1 zeros between
adjacent filter elements) and cross-correlating them with the input. See [R34] for more background.

References

[R34]

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

Local layers

class lasagne.layers.LocallyConnected2DLayer(incoming, num_filters, filter_size, stride=(1,
1), pad=’same’, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
flip_filters=True, channelwise=False,
**kwargs)

2D locally connected layer

Performs an operation similar to a 2D convolution but without the weight sharing, then optionally adds a bias
and applies an elementwise nonlinearity.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters.

stride : int or iterable of int

40 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

An integer or a 2-element tuple specifying the stride of the convolution operation. This
implementation only supports unit stride, the argument is provided for compatibility to
convolutional layers only.

pad : int, iterable of int, or ‘valid’ (default: ‘same’)

The amount of implicit zero padding of the input. This implementation only supports
‘same’ padding, the argument is provided for compatibility to other convolutional layers
only.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. If channelwise is set
to False, the weights should be a 6D tensor with shape (num_filters,
num_input_channels, filter_rows, filter_columns,
output_rows, output_columns). If channelwise is set to True, the
weights should be a 5D tensor with shape (num_filters, filter_rows,
filter_columns, output_rows, output_columns). See lasagne.
utils.create_param() for more information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: True)

Whether to flip the filters before multiplying them over the input, similar to a convolu-
tion (this is the default), or not to flip them, similar to a correlation.

channelwise : bool (default: False)

If False, each filter interacts will all of the input channels as in a convolution. If
True, each filter only interacts with the corresponding input channel. That is, each
output channel only depends on its filter and on the input channel at the same channel
index. In this case, the number of output channels (i.e. number of filters) should be
equal to the number of input channels.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Raises ValueError

When channelwise is set to True and the number of filters differs from the number
of input channels, a ValueError is raised.

2.1. lasagne.layers 41

lasagne Documentation, Release 0.2.dev1

Notes

This implementation computes the output tensor by iterating over the filter weights and multiplying them with
shifted versions of the input tensor. This implementation assumes no stride, ‘same’ padding and no dilation.

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

Pooling layers

class lasagne.layers.MaxPool1DLayer(incoming, pool_size, stride=None, pad=0, ig-
nore_border=True, **kwargs)

1D max-pooling layer

Performs 1D max-pooling over the trailing axis of a 3D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

The length of the pooling region. If an iterable, it should have a single element.

stride : integer, iterable or None

The stride between sucessive pooling regions. If None then stride ==
pool_size.

pad : integer or iterable

The number of elements to be added to the input on each side. Must be less than stride.

ignore_border : bool

If True, partial pooling regions will be ignored. Must be True if pad != 0.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the operation, so it will fall back to
a slower implementation.

class lasagne.layers.MaxPool2DLayer(incoming, pool_size, stride=None, pad=(0, 0), ig-
nore_border=True, **kwargs)

2D max-pooling layer

Performs 2D max-pooling over the two trailing axes of a 4D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

42 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

pool_size : integer or iterable

The length of the pooling region in each dimension. If an integer, it is promoted to a
square pooling region. If an iterable, it should have two elements.

stride : integer, iterable or None

The strides between sucessive pooling regions in each dimension. If None then
stride = pool_size.

pad : integer or iterable

Number of elements to be added on each side of the input in each dimension. Each
value must be less than the corresponding stride.

ignore_border : bool

If True, partial pooling regions will be ignored. Must be True if pad != (0, 0).

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the operation, so it will fall back to
a slower implementation.

class lasagne.layers.Pool1DLayer(incoming, pool_size, stride=None, pad=0, ignore_border=True,
mode=’max’, **kwargs)

1D pooling layer

Performs 1D mean or max-pooling over the trailing axis of a 3D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

The length of the pooling region. If an iterable, it should have a single element.

stride : integer, iterable or None

The stride between sucessive pooling regions. If None then stride ==
pool_size.

pad : integer or iterable

The number of elements to be added to the input on each side. Must be less than stride.

ignore_border : bool

If True, partial pooling regions will be ignored. Must be True if pad != 0.

mode : {‘max’, ‘average_inc_pad’, ‘average_exc_pad’}

Pooling mode: max-pooling or mean-pooling including/excluding zeros from partially
padded pooling regions. Default is ‘max’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

2.1. lasagne.layers 43

lasagne Documentation, Release 0.2.dev1

See also:

MaxPool1DLayer Shortcut for max pooling layer.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the operation, so it will fall back to
a slower implementation.

class lasagne.layers.Pool2DLayer(incoming, pool_size, stride=None, pad=(0, 0), ig-
nore_border=True, mode=’max’, **kwargs)

2D pooling layer

Performs 2D mean or max-pooling over the two trailing axes of a 4D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

The length of the pooling region in each dimension. If an integer, it is promoted to a
square pooling region. If an iterable, it should have two elements.

stride : integer, iterable or None

The strides between sucessive pooling regions in each dimension. If None then
stride = pool_size.

pad : integer or iterable

Number of elements to be added on each side of the input in each dimension. Each
value must be less than the corresponding stride.

ignore_border : bool

If True, partial pooling regions will be ignored. Must be True if pad != (0, 0).

mode : {‘max’, ‘average_inc_pad’, ‘average_exc_pad’}

Pooling mode: max-pooling or mean-pooling including/excluding zeros from partially
padded pooling regions. Default is ‘max’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

See also:

MaxPool2DLayer Shortcut for max pooling layer.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

Using ignore_border=False prevents Theano from using cuDNN for the operation, so it will fall back to
a slower implementation.

44 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

class lasagne.layers.Upscale1DLayer(incoming, scale_factor, mode=’repeat’, **kwargs)
1D upscaling layer

Performs 1D upscaling over the trailing axis of a 3D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

scale_factor : integer or iterable

The scale factor. If an iterable, it should have one element.

mode : {‘repeat’, ‘dilate’}

Upscaling mode: repeat element values or upscale leaving zeroes between upscaled
elements. Default is ‘repeat’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

class lasagne.layers.Upscale2DLayer(incoming, scale_factor, mode=’repeat’, **kwargs)
2D upscaling layer

Performs 2D upscaling over the two trailing axes of a 4D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

scale_factor : integer or iterable

The scale factor in each dimension. If an integer, it is promoted to a square scale factor
region. If an iterable, it should have two elements.

mode : {‘repeat’, ‘dilate’}

Upscaling mode: repeat element values or upscale leaving zeroes between upscaled
elements. Default is ‘repeat’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

Using mode='dilate' followed by a convolution can be realized more efficiently with a transposed convo-
lution, see lasagne.layers.TransposedConv2DLayer.

class lasagne.layers.Upscale3DLayer(incoming, scale_factor, mode=’repeat’, **kwargs)
3D upscaling layer

Performs 3D upscaling over the three trailing axes of a 5D input tensor.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

scale_factor : integer or iterable

The scale factor in each dimension. If an integer, it is promoted to a cubic scale factor
region. If an iterable, it should have three elements.

mode : {‘repeat’, ‘dilate’}

2.1. lasagne.layers 45

lasagne Documentation, Release 0.2.dev1

Upscaling mode: repeat element values or upscale leaving zeroes between upscaled
elements. Default is ‘repeat’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

class lasagne.layers.GlobalPoolLayer(incoming, pool_function=theano.tensor.mean, **kwargs)
Global pooling layer

This layer pools globally across all trailing dimensions beyond the 2nd.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_function : callable

the pooling function to use. This defaults to theano.tensor.mean (i.e. mean-pooling)
and can be replaced by any other aggregation function.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

class lasagne.layers.FeaturePoolLayer(incoming, pool_size, axis=1,
pool_function=theano.tensor.max, **kwargs)

Feature pooling layer

This layer pools across a given axis of the input. By default this is axis 1, which corresponds to the feature axis
for DenseLayer, Conv1DLayer and Conv2DLayer. The layer can be used to implement maxout.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer

the size of the pooling regions, i.e. the number of features / feature maps to be pooled
together.

axis : integer

the axis along which to pool. The default value of 1 works for DenseLayer,
Conv1DLayer and Conv2DLayer.

pool_function : callable

the pooling function to use. This defaults to theano.tensor.max (i.e. max-pooling) and
can be replaced by any other aggregation function.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

This layer requires that the size of the axis along which it pools is a multiple of the pool size.

class lasagne.layers.FeatureWTALayer(incoming, pool_size, axis=1, **kwargs)
‘Winner Take All’ layer

This layer performs ‘Winner Take All’ (WTA) across feature maps: zero out all but the maximal activation value
within a region.

Parameters incoming : a Layer instance or tuple

46 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

The layer feeding into this layer, or the expected input shape.

pool_size : integer

the number of feature maps per region.

axis : integer

the axis along which the regions are formed.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

This layer requires that the size of the axis along which it groups units is a multiple of the pool size.

class lasagne.layers.SpatialPyramidPoolingLayer(incoming, pool_dims=[4, 2, 1],
mode=’max’, implementation=’fast’,
**kwargs)

Spatial Pyramid Pooling Layer

Performs spatial pyramid pooling (SPP) over the input. It will turn a 2D input of arbitrary size into an output of
fixed dimension. Hence, the convolutional part of a DNN can be connected to a dense part with a fixed number
of nodes even if the dimensions of the input image are unknown.

The pooling is performed over 𝑙 pooling levels. Each pooling level 𝑖 will create 𝑀𝑖 output features. 𝑀𝑖 is given
by 𝑛𝑖 * 𝑛𝑖, with 𝑛𝑖 as the number of pooling operation per dimension in level 𝑖, and we use a list of the 𝑛𝑖‘s as
a parameter for SPP-Layer. The length of this list is the level of the spatial pyramid.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_dims : list of integers

The list of 𝑛𝑖‘s that define the output dimension of each pooling level 𝑖. The length of
pool_dims is the level of the spatial pyramid.

mode : string

Pooling mode, one of ‘max’, ‘average_inc_pad’, ‘average_exc_pad’ Defaults to ‘max’.

implementation : string

Either ‘fast’ or ‘kaiming’. The ‘fast’ version uses theano’s pool_2d operation, which is
fast but does not work for all input sizes. The ‘kaiming’ mode is slower but implements
the pooling as described in [1], and works with any input size.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

This layer should be inserted between the convolutional part of a DNN and its dense part. Convolutions can
be used for arbitrary input dimensions, but the size of their output will depend on their input dimensions. Con-
necting the output of the convolutional to the dense part then usually demands us to fix the dimensions of the
network’s InputLayer. The spatial pyramid pooling layer, however, allows us to leave the network input dimen-
sions arbitrary. The advantage over a global pooling layer is the added robustness against object deformations
due to the pooling on different scales.

2.1. lasagne.layers 47

lasagne Documentation, Release 0.2.dev1

References

[R42]

Recurrent layers

Layers to construct recurrent networks. Recurrent layers can be used similarly to feed-forward layers except that the
input shape is expected to be (batch_size, sequence_length, num_inputs). The CustomRecurrent-
Layer can also support more than one “feature” dimension (e.g. using convolutional connections), but for all other
layers, dimensions trailing the third dimension are flattened.

The following recurrent layers are implemented:

CustomRecurrentLayer A layer which implements a recurrent connection.
RecurrentLayer Dense recurrent neural network (RNN) layer
LSTMLayer A long short-term memory (LSTM) layer.
GRULayer Gated Recurrent Unit (GRU) Layer

For recurrent layers with gates we use a helper class to set up the parameters in each gate:

Gate Simple class to hold the parameters for a gate connection.

Please refer to that class if you need to modify initial conditions of gates.

Recurrent layers and feed-forward layers can be combined in the same network by using a few reshape operations;
please refer to the example below.

Examples

The following example demonstrates how recurrent layers can be easily mixed with feed-forward layers using
ReshapeLayer and how to build a network with variable batch size and number of time steps.

>>> from lasagne.layers import *
>>> num_inputs, num_units, num_classes = 10, 12, 5
>>> # By setting the first two dimensions as None, we are allowing them to vary
>>> # They correspond to batch size and sequence length, so we will be able to
>>> # feed in batches of varying size with sequences of varying length.
>>> l_inp = InputLayer((None, None, num_inputs))
>>> # We can retrieve symbolic references to the input variable's shape, which
>>> # we will later use in reshape layers.
>>> batchsize, seqlen, _ = l_inp.input_var.shape
>>> l_lstm = LSTMLayer(l_inp, num_units=num_units)
>>> # In order to connect a recurrent layer to a dense layer, we need to
>>> # flatten the first two dimensions (our "sample dimensions"); this will
>>> # cause each time step of each sequence to be processed independently
>>> l_shp = ReshapeLayer(l_lstm, (-1, num_units))
>>> l_dense = DenseLayer(l_shp, num_units=num_classes)
>>> # To reshape back to our original shape, we can use the symbolic shape
>>> # variables we retrieved above.
>>> l_out = ReshapeLayer(l_dense, (batchsize, seqlen, num_classes))

48 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

class lasagne.layers.CustomRecurrentLayer(incoming, input_to_hidden, hidden_to_hidden,
nonlinearity=lasagne.nonlinearities.rectify,
hid_init=lasagne.init.Constant(0.), back-
wards=False, learn_init=False, gradient_steps=-
1, grad_clipping=0, unroll_scan=False, pre-
compute_input=True, mask_input=None,
only_return_final=False, **kwargs)

A layer which implements a recurrent connection.

This layer allows you to specify custom input-to-hidden and hidden-to-hidden connections by instantiating
lasagne.layers.Layer instances and passing them on initialization. Note that these connections can
consist of multiple layers chained together. The output shape for the provided input-to-hidden and hidden-to-
hidden connections must be the same. If you are looking for a standard, densely-connected recurrent layer,
please see RecurrentLayer. The output is computed by

ℎ𝑡 = 𝜎(𝑓𝑖(𝑥𝑡) + 𝑓ℎ(ℎ𝑡−1))

Parameters incoming : a lasagne.layers.Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

input_to_hidden : lasagne.layers.Layer

lasagne.layers.Layer instance which connects input to the hidden state
(𝑓𝑖). This layer may be connected to a chain of layers, which must end in a
lasagne.layers.InputLayer with the same input shape as incoming, ex-
cept for the first dimension: When precompute_input == True (the default),
it must be incoming.output_shape[0]*incoming.output_shape[1]
or None; when precompute_input == False, it must be incoming.
output_shape[0] or None.

hidden_to_hidden : lasagne.layers.Layer

Layer which connects the previous hidden state to the new state (𝑓ℎ). This layer
may be connected to a chain of layers, which must end in a lasagne.layers.
InputLayer with the same input shape as hidden_to_hidden‘s output shape.

nonlinearity : callable or None

Nonlinearity to apply when computing new state (𝜎). If None is provided, no nonlin-
earity will be applied.

hid_init : callable, np.ndarray, theano.shared or Layer

Initializer for initial hidden state (ℎ0).

backwards : bool

If True, process the sequence backwards and then reverse the output again such that the
output from the layer is always from 𝑥1 to 𝑥𝑛.

learn_init : bool

If True, initial hidden values are learned.

gradient_steps : int

Number of timesteps to include in the backpropagated gradient. If -1, backpropagate
through the entire sequence.

grad_clipping : float

If nonzero, the gradient messages are clipped to the given value during the backward
pass. See [R52] (p. 6) for further explanation.

2.1. lasagne.layers 49

lasagne Documentation, Release 0.2.dev1

unroll_scan : bool

If True the recursion is unrolled instead of using scan. For some graphs this gives a
significant speed up but it might also consume more memory. When unroll_scan is
True, backpropagation always includes the full sequence, so gradient_steps must be set
to -1 and the input sequence length must be known at compile time (i.e., cannot be given
as None).

precompute_input : bool

If True, precompute input_to_hid before iterating through the sequence. This can result
in a speedup at the expense of an increase in memory usage.

mask_input : lasagne.layers.Layer

Layer which allows for a sequence mask to be input, for when sequences are of variable
length. Default None, which means no mask will be supplied (i.e. all sequences are of
the same length).

only_return_final : bool

If True, only return the final sequential output (e.g. for tasks where a single target value
for the entire sequence is desired). In this case, Theano makes an optimization which
saves memory.

References

[R52]

Examples

The following example constructs a simple CustomRecurrentLayer which has dense input-to-hidden and hidden-
to-hidden connections.

>>> import lasagne
>>> n_batch, n_steps, n_in = (2, 3, 4)
>>> n_hid = 5
>>> l_in = lasagne.layers.InputLayer((n_batch, n_steps, n_in))
>>> l_in_hid = lasagne.layers.DenseLayer(
... lasagne.layers.InputLayer((None, n_in)), n_hid)
>>> l_hid_hid = lasagne.layers.DenseLayer(
... lasagne.layers.InputLayer((None, n_hid)), n_hid)
>>> l_rec = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid)

The CustomRecurrentLayer can also support “convolutional recurrence”, as is demonstrated below.

>>> n_batch, n_steps, n_channels, width, height = (2, 3, 4, 5, 6)
>>> n_out_filters = 7
>>> filter_shape = (3, 3)
>>> l_in = lasagne.layers.InputLayer(
... (n_batch, n_steps, n_channels, width, height))
>>> l_in_to_hid = lasagne.layers.Conv2DLayer(
... lasagne.layers.InputLayer((None, n_channels, width, height)),
... n_out_filters, filter_shape, pad='same')
>>> l_hid_to_hid = lasagne.layers.Conv2DLayer(
... lasagne.layers.InputLayer(l_in_to_hid.output_shape),
... n_out_filters, filter_shape, pad='same')

50 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

>>> l_rec = lasagne.layers.CustomRecurrentLayer(
... l_in, l_in_to_hid, l_hid_to_hid)

get_output_for(inputs, **kwargs)
Compute this layer’s output function given a symbolic input variable.

Parameters inputs : list of theano.TensorType

inputs[0] should always be the symbolic input variable. When this layer has a mask
input (i.e. was instantiated with mask_input != None, indicating that the lengths of
sequences in each batch vary), inputs should have length 2, where inputs[1] is the
mask. The mask should be supplied as a Theano variable denoting whether each time
step in each sequence in the batch is part of the sequence or not. mask should be a
matrix of shape (n_batch, n_time_steps) where mask[i, j] = 1 when j
<= (length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i). When the hidden state of this layer is to be pre-filled (i.e. was set
to a Layer instance) inputs should have length at least 2, and inputs[-1] is the hidden
state to prefill with.

Returns layer_output : theano.TensorType

Symbolic output variable.

class lasagne.layers.RecurrentLayer(incoming, num_units, W_in_to_hid=lasagne.init.Uniform(),
W_hid_to_hid=lasagne.init.Uniform(),
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
hid_init=lasagne.init.Constant(0.), backwards=False,
learn_init=False, gradient_steps=-1, grad_clipping=0,
unroll_scan=False, precompute_input=True,
mask_input=None, only_return_final=False, **kwargs)

Dense recurrent neural network (RNN) layer

A “vanilla” RNN layer, which has dense input-to-hidden and hidden-to-hidden connections. The output is
computed as

ℎ𝑡 = 𝜎(𝑥𝑡𝑊𝑥 + ℎ𝑡−1𝑊ℎ + 𝑏)

Parameters incoming : a lasagne.layers.Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

num_units : int

Number of hidden units in the layer.

W_in_to_hid : Theano shared variable, numpy array or callable

Initializer for input-to-hidden weight matrix (𝑊𝑥).

W_hid_to_hid : Theano shared variable, numpy array or callable

Initializer for hidden-to-hidden weight matrix (𝑊ℎ).

b : Theano shared variable, numpy array, callable or None

Initializer for bias vector (𝑏). If None is provided there will be no bias.

nonlinearity : callable or None

Nonlinearity to apply when computing new state (𝜎). If None is provided, no nonlin-
earity will be applied.

2.1. lasagne.layers 51

lasagne Documentation, Release 0.2.dev1

hid_init : callable, np.ndarray, theano.shared or Layer

Initializer for initial hidden state (ℎ0).

backwards : bool

If True, process the sequence backwards and then reverse the output again such that the
output from the layer is always from 𝑥1 to 𝑥𝑛.

learn_init : bool

If True, initial hidden values are learned.

gradient_steps : int

Number of timesteps to include in the backpropagated gradient. If -1, backpropagate
through the entire sequence.

grad_clipping : float

If nonzero, the gradient messages are clipped to the given value during the backward
pass. See [R53] (p. 6) for further explanation.

unroll_scan : bool

If True the recursion is unrolled instead of using scan. For some graphs this gives a
significant speed up but it might also consume more memory. When unroll_scan is
True, backpropagation always includes the full sequence, so gradient_steps must be set
to -1 and the input sequence length must be known at compile time (i.e., cannot be given
as None).

precompute_input : bool

If True, precompute input_to_hid before iterating through the sequence. This can result
in a speedup at the expense of an increase in memory usage.

mask_input : lasagne.layers.Layer

Layer which allows for a sequence mask to be input, for when sequences are of variable
length. Default None, which means no mask will be supplied (i.e. all sequences are of
the same length).

only_return_final : bool

If True, only return the final sequential output (e.g. for tasks where a single target value
for the entire sequence is desired). In this case, Theano makes an optimization which
saves memory.

References

[R53]

class lasagne.layers.LSTMLayer(incoming, num_units, ingate=lasagne.layers.Gate(), for-
getgate=lasagne.layers.Gate(), cell=lasagne.layers.Gate(
W_cell=None, nonlinearity=lasagne.nonlinearities.tanh),
outgate=lasagne.layers.Gate(), nonlinear-
ity=lasagne.nonlinearities.tanh, cell_init=lasagne.init.Constant(0.),
hid_init=lasagne.init.Constant(0.), backwards=False,
learn_init=False, peepholes=True, gradient_steps=-1,
grad_clipping=0, unroll_scan=False, precompute_input=True,
mask_input=None, only_return_final=False, **kwargs)

A long short-term memory (LSTM) layer.

52 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Includes optional “peephole connections” and a forget gate. Based on the definition in [R54], which is the
current common definition. The output is computed by

𝑖𝑡 = 𝜎𝑖(𝑥𝑡𝑊𝑥𝑖 + ℎ𝑡−1𝑊ℎ𝑖 + 𝑤𝑐𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎𝑓 (𝑥𝑡𝑊𝑥𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑤𝑐𝑓 ⊙ 𝑐𝑡−1 + 𝑏𝑓)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝜎𝑐(𝑥𝑡𝑊𝑥𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)

𝑜𝑡 = 𝜎𝑜(𝑥𝑡𝑊𝑥𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑤𝑐𝑜 ⊙ 𝑐𝑡 + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜎ℎ(𝑐𝑡)

Parameters incoming : a lasagne.layers.Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

num_units : int

Number of hidden/cell units in the layer.

ingate : Gate

Parameters for the input gate (𝑖𝑡): 𝑊𝑥𝑖, 𝑊ℎ𝑖, 𝑤𝑐𝑖, 𝑏𝑖, and 𝜎𝑖.

forgetgate : Gate

Parameters for the forget gate (𝑓𝑡): 𝑊𝑥𝑓 , 𝑊ℎ𝑓 , 𝑤𝑐𝑓 , 𝑏𝑓 , and 𝜎𝑓 .

cell : Gate

Parameters for the cell computation (𝑐𝑡): 𝑊𝑥𝑐, 𝑊ℎ𝑐, 𝑏𝑐, and 𝜎𝑐.

outgate : Gate

Parameters for the output gate (𝑜𝑡): 𝑊𝑥𝑜, 𝑊ℎ𝑜, 𝑤𝑐𝑜, 𝑏𝑜, and 𝜎𝑜.

nonlinearity : callable or None

The nonlinearity that is applied to the output (𝜎ℎ). If None is provided, no nonlinearity
will be applied.

cell_init : callable, np.ndarray, theano.shared or Layer

Initializer for initial cell state (𝑐0).

hid_init : callable, np.ndarray, theano.shared or Layer

Initializer for initial hidden state (ℎ0).

backwards : bool

If True, process the sequence backwards and then reverse the output again such that the
output from the layer is always from 𝑥1 to 𝑥𝑛.

learn_init : bool

If True, initial hidden values are learned.

peepholes : bool

If True, the LSTM uses peephole connections. When False, ingate.W_cell, forget-
gate.W_cell and outgate.W_cell are ignored.

gradient_steps : int

Number of timesteps to include in the backpropagated gradient. If -1, backpropagate
through the entire sequence.

grad_clipping : float

2.1. lasagne.layers 53

lasagne Documentation, Release 0.2.dev1

If nonzero, the gradient messages are clipped to the given value during the backward
pass. See [R54] (p. 6) for further explanation.

unroll_scan : bool

If True the recursion is unrolled instead of using scan. For some graphs this gives a
significant speed up but it might also consume more memory. When unroll_scan is
True, backpropagation always includes the full sequence, so gradient_steps must be set
to -1 and the input sequence length must be known at compile time (i.e., cannot be given
as None).

precompute_input : bool

If True, precompute input_to_hid before iterating through the sequence. This can result
in a speedup at the expense of an increase in memory usage.

mask_input : lasagne.layers.Layer

Layer which allows for a sequence mask to be input, for when sequences are of variable
length. Default None, which means no mask will be supplied (i.e. all sequences are of
the same length).

only_return_final : bool

If True, only return the final sequential output (e.g. for tasks where a single target value
for the entire sequence is desired). In this case, Theano makes an optimization which
saves memory.

References

[R54]

get_output_for(inputs, **kwargs)
Compute this layer’s output function given a symbolic input variable

Parameters inputs : list of theano.TensorType

inputs[0] should always be the symbolic input variable. When this layer has a mask
input (i.e. was instantiated with mask_input != None, indicating that the lengths of
sequences in each batch vary), inputs should have length 2, where inputs[1] is the
mask. The mask should be supplied as a Theano variable denoting whether each time
step in each sequence in the batch is part of the sequence or not. mask should be a
matrix of shape (n_batch, n_time_steps) where mask[i, j] = 1 when j
<= (length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i). When the hidden state of this layer is to be pre-filled (i.e. was set
to a Layer instance) inputs should have length at least 2, and inputs[-1] is the hidden
state to prefill with. When the cell state of this layer is to be pre-filled (i.e. was set
to a Layer instance) inputs should have length at least 2, and inputs[-1] is the hidden
state to prefill with. When both the cell state and the hidden state are being pre-filled
inputs[-2] is the hidden state, while inputs[-1] is the cell state.

Returns layer_output : theano.TensorType

Symbolic output variable.

54 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

class lasagne.layers.GRULayer(incoming, num_units, resetgate=lasagne.layers.Gate(W_cell=None),
updategate=lasagne.layers.Gate(W_cell=None), hid-
den_update=lasagne.layers.Gate(W_cell=None,
lasagne.nonlinearities.tanh), hid_init=lasagne.init.Constant(0.),
backwards=False, learn_init=False, gradient_steps=-1,
grad_clipping=0, unroll_scan=False, precompute_input=True,
mask_input=None, only_return_final=False, **kwargs)

Gated Recurrent Unit (GRU) Layer

Implements the recurrent step proposed in [R55], which computes the output by

𝑟𝑡 = 𝜎𝑟(𝑥𝑡𝑊𝑥𝑟 + ℎ𝑡−1𝑊ℎ𝑟 + 𝑏𝑟)

𝑢𝑡 = 𝜎𝑢(𝑥𝑡𝑊𝑥𝑢 + ℎ𝑡−1𝑊ℎ𝑢 + 𝑏𝑢)

𝑐𝑡 = 𝜎𝑐(𝑥𝑡𝑊𝑥𝑐 + 𝑟𝑡 ⊙ (ℎ𝑡−1𝑊ℎ𝑐) + 𝑏𝑐)

ℎ𝑡 = (1− 𝑢𝑡)⊙ ℎ𝑡−1 + 𝑢𝑡 ⊙ 𝑐𝑡

Parameters incoming : a lasagne.layers.Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

num_units : int

Number of hidden units in the layer.

resetgate : Gate

Parameters for the reset gate (𝑟𝑡): 𝑊𝑥𝑟, 𝑊ℎ𝑟, 𝑏𝑟, and 𝜎𝑟.

updategate : Gate

Parameters for the update gate (𝑢𝑡): 𝑊𝑥𝑢, 𝑊ℎ𝑢, 𝑏𝑢, and 𝜎𝑢.

hidden_update : Gate

Parameters for the hidden update (𝑐𝑡): 𝑊𝑥𝑐, 𝑊ℎ𝑐, 𝑏𝑐, and 𝜎𝑐.

hid_init : callable, np.ndarray, theano.shared or Layer

Initializer for initial hidden state (ℎ0).

backwards : bool

If True, process the sequence backwards and then reverse the output again such that the
output from the layer is always from 𝑥1 to 𝑥𝑛.

learn_init : bool

If True, initial hidden values are learned.

gradient_steps : int

Number of timesteps to include in the backpropagated gradient. If -1, backpropagate
through the entire sequence.

grad_clipping : float

If nonzero, the gradient messages are clipped to the given value during the backward
pass. See [R55] (p. 6) for further explanation.

unroll_scan : bool

If True the recursion is unrolled instead of using scan. For some graphs this gives a
significant speed up but it might also consume more memory. When unroll_scan is
True, backpropagation always includes the full sequence, so gradient_steps must be set

2.1. lasagne.layers 55

lasagne Documentation, Release 0.2.dev1

to -1 and the input sequence length must be known at compile time (i.e., cannot be given
as None).

precompute_input : bool

If True, precompute input_to_hid before iterating through the sequence. This can result
in a speedup at the expense of an increase in memory usage.

mask_input : lasagne.layers.Layer

Layer which allows for a sequence mask to be input, for when sequences are of variable
length. Default None, which means no mask will be supplied (i.e. all sequences are of
the same length).

only_return_final : bool

If True, only return the final sequential output (e.g. for tasks where a single target value
for the entire sequence is desired). In this case, Theano makes an optimization which
saves memory.

Notes

An alternate update for the candidate hidden state is proposed in [R56]:

𝑐𝑡 = 𝜎𝑐(𝑥𝑡𝑊𝑖𝑐 + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑊ℎ𝑐 + 𝑏𝑐)

We use the formulation from [R55] because it allows us to do all matrix operations in a single dot product.

References

[R55], [R56], [R57]

get_output_for(inputs, **kwargs)
Compute this layer’s output function given a symbolic input variable

Parameters inputs : list of theano.TensorType

inputs[0] should always be the symbolic input variable. When this layer has a mask
input (i.e. was instantiated with mask_input != None, indicating that the lengths of
sequences in each batch vary), inputs should have length 2, where inputs[1] is the
mask. The mask should be supplied as a Theano variable denoting whether each time
step in each sequence in the batch is part of the sequence or not. mask should be a
matrix of shape (n_batch, n_time_steps) where mask[i, j] = 1 when j
<= (length of sequence i) and mask[i, j] = 0 when j > (length
of sequence i). When the hidden state of this layer is to be pre-filled (i.e. was set
to a Layer instance) inputs should have length at least 2, and inputs[-1] is the hidden
state to prefill with.

Returns layer_output : theano.TensorType

Symbolic output variable.

class lasagne.layers.Gate(W_in=lasagne.init.Normal(0.1), W_hid=lasagne.init.Normal(0.1),
W_cell=lasagne.init.Normal(0.1), b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.sigmoid)

Simple class to hold the parameters for a gate connection. We define a gate loosely as something which computes
the linear mix of two inputs, optionally computes an element-wise product with a third, adds a bias, and applies
a nonlinearity.

56 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Parameters W_in : Theano shared variable, numpy array or callable

Initializer for input-to-gate weight matrix.

W_hid : Theano shared variable, numpy array or callable

Initializer for hidden-to-gate weight matrix.

W_cell : Theano shared variable, numpy array, callable, or None

Initializer for cell-to-gate weight vector. If None, no cell-to-gate weight vector will be
stored.

b : Theano shared variable, numpy array or callable

Initializer for input gate bias vector.

nonlinearity : callable or None

The nonlinearity that is applied to the input gate activation. If None is provided, no
nonlinearity will be applied.

References

[R58]

Examples

For LSTMLayer the bias of the forget gate is often initialized to a large positive value to encourage the layer
initially remember the cell value, see e.g. [R58] page 15.

>>> import lasagne
>>> forget_gate = Gate(b=lasagne.init.Constant(5.0))
>>> l_lstm = LSTMLayer((10, 20, 30), num_units=10,
... forgetgate=forget_gate)

Noise layers

class lasagne.layers.DropoutLayer(incoming, p=0.5, rescale=True, shared_axes=(), **kwargs)
Dropout layer

Sets values to zero with probability p. See notes for disabling dropout during testing.

Parameters incoming : a Layer instance or a tuple

the layer feeding into this layer, or the expected input shape

p : float or scalar tensor

The probability of setting a value to zero

rescale : bool

If True (the default), scale the input by 1 / (1 - p) when dropout is enabled, to
keep the expected output mean the same.

shared_axes : tuple of int

2.1. lasagne.layers 57

lasagne Documentation, Release 0.2.dev1

Axes to share the dropout mask over. By default, each value can be dropped
individually. shared_axes=(0,) uses the same mask across the batch.
shared_axes=(2, 3) uses the same mask across the spatial dimensions of 2D
feature maps.

See also:

dropout_channels Drops full channels of feature maps

spatial_dropout Alias for dropout_channels()

dropout_locations Drops full pixels or voxels of feature maps

Notes

The dropout layer is a regularizer that randomly sets input values to zero; see [R37], [R38] for why this might
improve generalization.

The behaviour of the layer depends on the deterministic keyword argument passed to lasagne.
layers.get_output(). If True, the layer behaves deterministically, and passes on the input un-
changed. If False or not specified, dropout (and possibly scaling) is enabled. Usually, you would use
deterministic=False at train time and deterministic=True at test time.

References

[R37], [R38]

lasagne.layers.dropout
alias of DropoutLayer

lasagne.layers.dropout_channels(incoming, *args, **kwargs)
Convenience function to drop full channels of feature maps.

Adds a DropoutLayer that sets feature map channels to zero, across all locations, with probability p. For
convolutional neural networks, this may give better results than independent dropout [R39].

Parameters incoming : a Layer instance or a tuple

the layer feeding into this layer, or the expected input shape

*args, **kwargs

Any additional arguments and keyword arguments are passed on to the
DropoutLayer constructor, except for shared_axes.

Returns layer : DropoutLayer instance

The dropout layer with shared_axes set to drop channels.

References

[R39]

lasagne.layers.spatial_dropout(incoming, *args, **kwargs)
alias of dropout_channels()

58 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

lasagne.layers.dropout_locations(incoming, *args, **kwargs)
Convenience function to drop full locations of feature maps.

Adds a DropoutLayer that sets feature map locations (i.e., pixels or voxels) to zero, across all channels, with
probability p.

Parameters incoming : a Layer instance or a tuple

the layer feeding into this layer, or the expected input shape

*args, **kwargs

Any additional arguments and keyword arguments are passed on to the
DropoutLayer constructor, except for shared_axes.

Returns layer : DropoutLayer instance

The dropout layer with shared_axes set to drop locations.

class lasagne.layers.GaussianNoiseLayer(incoming, sigma=0.1, **kwargs)
Gaussian noise layer.

Add zero-mean Gaussian noise of given standard deviation to the input [R40].

Parameters incoming : a Layer instance or a tuple

the layer feeding into this layer, or the expected input shape

sigma : float or tensor scalar

Standard deviation of added Gaussian noise

Notes

The Gaussian noise layer is a regularizer. During training you should set deterministic to false and during testing
you should set deterministic to true.

References

[R40]

get_output_for(input, deterministic=False, **kwargs)

Parameters input : tensor

output from the previous layer

deterministic : bool

If true noise is disabled, see notes

Shape layers

class lasagne.layers.ReshapeLayer(incoming, shape, **kwargs)
A layer reshaping its input tensor to another tensor of the same total number of elements.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

shape : tuple

2.1. lasagne.layers 59

lasagne Documentation, Release 0.2.dev1

The target shape specification. Each element can be one of:

• i, a positive integer directly giving the size of the dimension

• [i], a single-element list of int, denoting to use the size of the i th input dimension

• -1, denoting to infer the size for this dimension to match the total number of elements
in the input tensor (cannot be used more than once in a specification)

• TensorVariable directly giving the size of the dimension

Notes

The tensor elements will be fetched and placed in C-like order. That is, reshaping [1,2,3,4,5,6] to shape (2,3)
will result in a matrix [[1,2,3],[4,5,6]], not in [[1,3,5],[2,4,6]] (Fortran-like order), regardless of the memory
layout of the input tensor. For C-contiguous input, reshaping is cheap, for others it may require copying the
data.

Examples

>>> from lasagne.layers import InputLayer, ReshapeLayer
>>> l_in = InputLayer((32, 100, 20))
>>> l1 = ReshapeLayer(l_in, ((32, 50, 40)))
>>> l1.output_shape
(32, 50, 40)
>>> l_in = InputLayer((None, 100, 20))
>>> l1 = ReshapeLayer(l_in, ([0], [1], 5, -1))
>>> l1.output_shape
(None, 100, 5, 4)

lasagne.layers.reshape
alias of ReshapeLayer

class lasagne.layers.FlattenLayer(incoming, outdim=2, **kwargs)
A layer that flattens its input. The leading outdim-1 dimensions of the output will have the same shape as the
input. The remaining dimensions are collapsed into the last dimension.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

outdim : int

The number of dimensions in the output.

See also:

flatten Shortcut

lasagne.layers.flatten
alias of FlattenLayer

class lasagne.layers.DimshuffleLayer(incoming, pattern, **kwargs)
A layer that rearranges the dimension of its input tensor, maintaining the same same total number of elements.

Parameters incoming : a Layer instance or a tuple

the layer feeding into this layer, or the expected input shape

60 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

pattern : tuple

The new dimension order, with each element giving the index of the dimension in the
input tensor or ‘x’ to broadcast it. For example (3,2,1,0) will reverse the order of a 4-
dimensional tensor. Use ‘x’ to broadcast, e.g. (3,2,1,’x’,0) will take a 4 tensor of shape
(2,3,5,7) as input and produce a tensor of shape (7,5,3,1,2) with the 4th dimension being
broadcast-able. In general, all dimensions in the input tensor must be used to generate
the output tensor. Omitting a dimension attempts to collapse it; this can only be done
to broadcast-able dimensions, e.g. a 5-tensor of shape (7,5,3,1,2) with the 4th being
broadcast-able can be shuffled with the pattern (4,2,1,0) collapsing the 4th dimension
resulting in a tensor of shape (2,3,5,7).

Examples

>>> from lasagne.layers import InputLayer, DimshuffleLayer
>>> l_in = InputLayer((2, 3, 5, 7))
>>> l1 = DimshuffleLayer(l_in, (3, 2, 1, 'x', 0))
>>> l1.output_shape
(7, 5, 3, 1, 2)
>>> l2 = DimshuffleLayer(l1, (4, 2, 1, 0))
>>> l2.output_shape
(2, 3, 5, 7)

lasagne.layers.dimshuffle
alias of DimshuffleLayer

class lasagne.layers.PadLayer(incoming, width, val=0, batch_ndim=2, **kwargs)
Pad all dimensions except the first batch_ndim with width zeros on both sides, or with another value
specified in val. Individual padding for each dimension or edge can be specified using a tuple or list of tuples
for width.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

width : int, iterable of int, or iterable of tuple

Padding width. If an int, pads each axis symmetrically with the same amount in the
beginning and end. If an iterable of int, defines the symmetric padding width separately
for each axis. If an iterable of tuples of two ints, defines a seperate padding width for
each beginning and end of each axis.

val : float

Value used for padding

batch_ndim : int

Dimensions up to this value are not padded. For padding convolutional layers this
should be set to 2 so the sample and filter dimensions are not padded

lasagne.layers.pad
alias of PadLayer

class lasagne.layers.SliceLayer(incoming, indices, axis=-1, **kwargs)
Slices the input at a specific axis and at specific indices.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

2.1. lasagne.layers 61

lasagne Documentation, Release 0.2.dev1

indices : int or slice instance

If an int, selects a single element from the given axis, dropping the axis. If a slice,
selects all elements in the given range, keeping the axis.

axis : int

Specifies the axis from which the indices are selected.

Examples

>>> from lasagne.layers import SliceLayer, InputLayer
>>> l_in = InputLayer((2, 3, 4))
>>> SliceLayer(l_in, indices=0, axis=1).output_shape
... # equals input[:, 0]
(2, 4)
>>> SliceLayer(l_in, indices=slice(0, 1), axis=1).output_shape
... # equals input[:, 0:1]
(2, 1, 4)
>>> SliceLayer(l_in, indices=slice(-2, None), axis=-1).output_shape
... # equals input[..., -2:]
(2, 3, 2)

Merge layers

class lasagne.layers.ConcatLayer(incomings, axis=1, cropping=None, **kwargs)
Concatenates multiple inputs along the specified axis. Inputs should have the same shape except for the dimen-
sion specified in axis, which can have different sizes.

Parameters incomings : a list of Layer instances or tuples

The layers feeding into this layer, or expected input shapes

axis : int

Axis which inputs are joined over

cropping : None or [crop]

Cropping for each input axis. Cropping is described in the docstring for autocrop().
Cropping is always disabled for axis.

lasagne.layers.concat
alias of ConcatLayer

class lasagne.layers.ElemwiseMergeLayer(incomings, merge_function, cropping=None,
**kwargs)

This layer performs an elementwise merge of its input layers. It requires all input layers to have the same output
shape.

Parameters incomings : a list of Layer instances or tuples

the layers feeding into this layer, or expected input shapes, with all incoming shapes
being equal

merge_function : callable

the merge function to use. Should take two arguments and return the updated value.
Some possible merge functions are theano.tensor: mul, add, maximum and
minimum.

62 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

cropping : None or [crop]

Cropping for each input axis. Cropping is described in the docstring for autocrop()

See also:

ElemwiseSumLayer Shortcut for sum layer.

class lasagne.layers.ElemwiseSumLayer(incomings, coeffs=1, cropping=None, **kwargs)
This layer performs an elementwise sum of its input layers. It requires all input layers to have the same output
shape.

Parameters incomings : a list of Layer instances or tuples

the layers feeding into this layer, or expected input shapes, with all incoming shapes
being equal

coeffs: list or scalar

A same-sized list of coefficients, or a single coefficient that is to be applied to all in-
stances. By default, these will not be included in the learnable parameters of this layer.

cropping : None or [crop]

Cropping for each input axis. Cropping is described in the docstring for autocrop()

Notes

Depending on your architecture, this can be used to avoid the more costly ConcatLayer. For example, instead
of concatenating layers before a DenseLayer, insert separate DenseLayer instances of the same number
of output units and add them up afterwards. (This avoids the copy operations in concatenation, but splits up the
dot product.)

Normalization layers

The LocalResponseNormalization2DLayer implementation contains code from pylearn2, which is covered
by the following license:

Copyright (c) 2011–2014, Université de Montréal All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

2.1. lasagne.layers 63

http://github.com/lisa-lab/pylearn2

lasagne Documentation, Release 0.2.dev1

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

class lasagne.layers.LocalResponseNormalization2DLayer(incoming, alpha=0.0001, k=2,
beta=0.75, n=5, **kwargs)

Cross-channel Local Response Normalization for 2D feature maps.

Aggregation is purely across channels, not within channels, and performed “pixelwise”.

If the value of the 𝑖 th channel is 𝑥𝑖, the output is

𝑥𝑖 =
𝑥𝑖

(𝑘 + (𝛼
∑︀

𝑗 𝑥
2
𝑗))

𝛽

where the summation is performed over this position on 𝑛 neighboring channels.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. Must follow BC01 layout,
i.e., (batchsize, channels, rows, columns).

alpha : float scalar

coefficient, see equation above

k : float scalar

offset, see equation above

beta : float scalar

exponent, see equation above

n : int

number of adjacent channels to normalize over, must be odd

Notes

This code is adapted from pylearn2. See the module docstring for license information.

class lasagne.layers.BatchNormLayer(incoming, axes=’auto’, epsilon=1e-4, al-
pha=0.1, beta=lasagne.init.Constant(0),
gamma=lasagne.init.Constant(1),
mean=lasagne.init.Constant(0),
inv_std=lasagne.init.Constant(1), **kwargs)

Batch Normalization

This layer implements batch normalization of its inputs, following [R41]:

𝑦 =
𝑥− 𝜇√
𝜎2 + 𝜖

𝛾 + 𝛽

That is, the input is normalized to zero mean and unit variance, and then linearly transformed. The crucial part
is that the mean and variance are computed across the batch dimension, i.e., over examples, not per example.

During training, 𝜇 and 𝜎2 are defined to be the mean and variance of the current input mini-batch 𝑥, and during
testing, they are replaced with average statistics over the training data. Consequently, this layer has four stored
parameters: 𝛽, 𝛾, and the averages 𝜇 and 𝜎2 (nota bene: instead of 𝜎2, the layer actually stores 1/

√
𝜎2 + 𝜖,

for compatibility to cuDNN). By default, this layer learns the average statistics as exponential moving averages

64 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

computed during training, so it can be plugged into an existing network without any changes of the training
procedure (see Notes).

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

axes : ‘auto’, int or tuple of int

The axis or axes to normalize over. If 'auto' (the default), normalize over all axes ex-
cept for the second: this will normalize over the minibatch dimension for dense layers,
and additionally over all spatial dimensions for convolutional layers.

epsilon : scalar

Small constant 𝜖 added to the variance before taking the square root and dividing by it,
to avoid numerical problems

alpha : scalar

Coefficient for the exponential moving average of batch-wise means and standard devi-
ations computed during training; the closer to one, the more it will depend on the last
batches seen

beta : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for 𝛽. Must match the incoming shape, skipping
all axes in axes. Set to None to fix it to 0.0 instead of learning it. See lasagne.
utils.create_param() for more information.

gamma : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for 𝛾. Must match the incoming shape, skipping
all axes in axes. Set to None to fix it to 1.0 instead of learning it. See lasagne.
utils.create_param() for more information.

mean : Theano shared variable, expression, numpy array, or callable

Initial value, expression or initializer for 𝜇. Must match the incoming shape, skipping
all axes in axes. See lasagne.utils.create_param() for more information.

inv_std : Theano shared variable, expression, numpy array, or callable

Initial value, expression or initializer for 1/
√
𝜎2 + 𝜖. Must match the incoming shape,

skipping all axes in axes. See lasagne.utils.create_param() for more infor-
mation.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

See also:

batch_norm Convenience function to apply batch normalization to a layer

Notes

This layer should be inserted between a linear transformation (such as a DenseLayer, or Conv2DLayer)
and its nonlinearity. The convenience function batch_norm() modifies an existing layer to insert batch
normalization in front of its nonlinearity.

The behavior can be controlled by passing keyword arguments to lasagne.layers.get_output()when
building the output expression of any network containing this layer.

2.1. lasagne.layers 65

lasagne Documentation, Release 0.2.dev1

During training, [R41] normalize each input mini-batch by its statistics and update an exponential moving
average of the statistics to be used for validation. This can be achieved by passing deterministic=False.
For validation, [R41] normalize each input mini-batch by the stored statistics. This can be achieved by passing
deterministic=True.

For more fine-grained control, batch_norm_update_averages can be passed to update the exponential
moving averages (True) or not (False), and batch_norm_use_averages can be passed to use the expo-
nential moving averages for normalization (True) or normalize each mini-batch by its own statistics (False).
These settings override deterministic.

Note that for testing a model after training, [R41] replace the stored exponential moving average statistics by
fixing all network weights and re-computing average statistics over the training data in a layerwise fashion. This
is not part of the layer implementation.

In case you set axes to not include the batch dimension (the first axis, usually), normalization is
done per example, not across examples. This does not require any averages, so you can pass
batch_norm_update_averages and batch_norm_use_averages as False in this case.

References

[R41]

lasagne.layers.batch_norm(layer, **kwargs)
Apply batch normalization to an existing layer. This is a convenience function modifying an existing layer
to include batch normalization: It will steal the layer’s nonlinearity if there is one (effectively introducing
the normalization right before the nonlinearity), remove the layer’s bias if there is one (because it would be
redundant), and add a BatchNormLayer and NonlinearityLayer on top.

Parameters layer : A Layer instance

The layer to apply the normalization to; note that it will be irreversibly modified as
specified above

**kwargs

Any additional keyword arguments are passed on to the BatchNormLayer construc-
tor.

Returns BatchNormLayer or NonlinearityLayer instance

A batch normalization layer stacked on the given modified layer, or a nonlinearity layer
stacked on top of both if layer was nonlinear.

Examples

Just wrap any layer into a batch_norm() call on creating it:

>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))

This introduces batch normalization right before its nonlinearity:

>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']

66 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Embedding layers

class lasagne.layers.EmbeddingLayer(incoming, input_size, output_size, W=lasagne.init.Normal(),
**kwargs)

A layer for word embeddings. The input should be an integer type Tensor variable.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

input_size: int

The Number of different embeddings. The last embedding will have index input_size -
1.

output_size : int

The size of each embedding.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the embedding matrix. This should be
a matrix with shape (input_size, output_size). See lasagne.utils.
create_param() for more information.

Examples

>>> from lasagne.layers import EmbeddingLayer, InputLayer, get_output
>>> import theano
>>> x = T.imatrix()
>>> l_in = InputLayer((3,))
>>> W = np.arange(3*5).reshape((3, 5)).astype('float32')
>>> l1 = EmbeddingLayer(l_in, input_size=3, output_size=5, W=W)
>>> output = get_output(l1, x)
>>> f = theano.function([x], output)
>>> x_test = np.array([[0, 2], [1, 2]]).astype('int32')
>>> f(x_test)
array([[[0., 1., 2., 3., 4.],

[10., 11., 12., 13., 14.]],

[[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.]]], dtype=float32)

Special-purpose layers

class lasagne.layers.NonlinearityLayer(incoming, nonlinearity=lasagne.nonlinearities.rectify,
**kwargs)

A layer that just applies a nonlinearity.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

2.1. lasagne.layers 67

lasagne Documentation, Release 0.2.dev1

class lasagne.layers.BiasLayer(incoming, b=lasagne.init.Constant(0), shared_axes=’auto’,
**kwargs)

A layer that just adds a (trainable) bias term.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the layer will have
no biases and pass through its input unchanged. Otherwise, the bias shape must match
the incoming shape, skipping those axes the biases are shared over (see the example
below). See lasagne.utils.create_param() for more information.

shared_axes : ‘auto’, int or tuple of int

The axis or axes to share biases over. If 'auto' (the default), share over all axes except
for the second: this will share biases over the minibatch dimension for dense layers, and
additionally over all spatial dimensions for convolutional layers.

Notes

The bias parameter dimensionality is the input dimensionality minus the number of axes the biases are shared
over, which matches the bias parameter conventions of DenseLayer or Conv2DLayer. For example:

>>> layer = BiasLayer((20, 30, 40, 50), shared_axes=(0, 2))
>>> layer.b.get_value().shape
(30, 50)

class lasagne.layers.ScaleLayer(incoming, scales=lasagne.init.Constant(1), shared_axes=’auto’,
**kwargs)

A layer that scales its inputs by learned coefficients.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

scales : Theano shared variable, expression, numpy array, or callable

Initial value, expression or initializer for the scale. The scale shape must match the
incoming shape, skipping those axes the scales are shared over (see the example below).
See lasagne.utils.create_param() for more information.

shared_axes : ‘auto’, int or tuple of int

The axis or axes to share scales over. If 'auto' (the default), share over all axes except
for the second: this will share scales over the minibatch dimension for dense layers, and
additionally over all spatial dimensions for convolutional layers.

Notes

The scales parameter dimensionality is the input dimensionality minus the number of axes the scales are shared
over, which matches the bias parameter conventions of DenseLayer or Conv2DLayer. For example:

>>> layer = ScaleLayer((20, 30, 40, 50), shared_axes=(0, 2))
>>> layer.scales.get_value().shape
(30, 50)

68 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

lasagne.layers.standardize(layer, offset, scale, shared_axes=’auto’)
Convenience function for standardizing inputs by applying a fixed offset and scale. This is usually useful
when you want the input to your network to, say, have zero mean and unit standard deviation over the feature
dimensions. This layer allows you to include the appropriate statistics to achieve this normalization as part
of your network, and applies them to its input. The statistics are supplied as the offset and scale parameters,
which are applied to the input by subtracting offset and dividing by scale, sharing dimensions as specified by
the shared_axes argument.

Parameters layer : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

offset : Theano shared variable or numpy array

The offset to apply (via subtraction) to the axis/axes being standardized.

scale : Theano shared variable or numpy array

The scale to apply (via division) to the axis/axes being standardized.

shared_axes : ‘auto’, int or tuple of int

The axis or axes to share the offset and scale over. If 'auto' (the default), share over
all axes except for the second: this will share scales over the minibatch dimension for
dense layers, and additionally over all spatial dimensions for convolutional layers.

Examples

Assuming your training data exists in a 2D numpy ndarray called training_data, you can use this function
to scale input features to the [0, 1] range based on the training set statistics like so:

>>> import lasagne
>>> import numpy as np
>>> training_data = np.random.standard_normal((100, 20))
>>> input_shape = (None, training_data.shape[1])
>>> l_in = lasagne.layers.InputLayer(input_shape)
>>> offset = training_data.min(axis=0)
>>> scale = training_data.max(axis=0) - training_data.min(axis=0)
>>> l_std = standardize(l_in, offset, scale, shared_axes=0)

Alternatively, to z-score your inputs based on training set statistics, you could set offset =
training_data.mean(axis=0) and scale = training_data.std(axis=0) instead.

class lasagne.layers.ExpressionLayer(incoming, function, output_shape=None, **kwargs)
This layer provides boilerplate for a custom layer that applies a simple transformation to the input.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

function : callable

A function to be applied to the output of the previous layer.

output_shape : None, callable, tuple, or ‘auto’

Specifies the output shape of this layer. If a tuple, this fixes the output shape for any
input shape (the tuple can contain None if some dimensions may vary). If a callable,
it should return the calculated output shape given the input shape. If None, the output
shape is assumed to be the same as the input shape. If ‘auto’, an attempt will be made
to automatically infer the correct output shape.

2.1. lasagne.layers 69

lasagne Documentation, Release 0.2.dev1

Notes

An ExpressionLayer that does not change the shape of the data (i.e., is constructed with the default setting
of output_shape=None) is functionally equivalent to a NonlinearityLayer.

Examples

>>> from lasagne.layers import InputLayer, ExpressionLayer
>>> l_in = InputLayer((32, 100, 20))
>>> l1 = ExpressionLayer(l_in, lambda X: X.mean(-1), output_shape='auto')
>>> l1.output_shape
(32, 100)

class lasagne.layers.InverseLayer(incoming, layer, **kwargs)
The InverseLayer class performs inverse operations for a single layer of a neural network by applying the
partial derivative of the layer to be inverted with respect to its input: transposed layer for a DenseLayer,
deconvolutional layer for Conv2DLayer, Conv1DLayer; or an unpooling layer for MaxPool2DLayer.

It is specially useful for building (convolutional) autoencoders with tied parameters.

Note that if the layer to be inverted contains a nonlinearity and/or a bias, the InverseLayer will include the
derivative of that in its computation.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape.

layer : a Layer instance or a tuple

The layer with respect to which the instance of the InverseLayer is inverse to.

Examples

>>> import lasagne
>>> from lasagne.layers import InputLayer, Conv2DLayer, DenseLayer
>>> from lasagne.layers import InverseLayer
>>> l_in = InputLayer((100, 3, 28, 28))
>>> l1 = Conv2DLayer(l_in, num_filters=16, filter_size=5)
>>> l2 = DenseLayer(l1, num_units=20)
>>> l_u2 = InverseLayer(l2, l2) # backprop through l2
>>> l_u1 = InverseLayer(l_u2, l1) # backprop through l1

class lasagne.layers.TransformerLayer(incoming, localization_network, downsample_factor=1,
**kwargs)

Spatial transformer layer

The layer applies an affine transformation on the input. The affine transformation is parameterized with six
learned parameters [R59]. The output is interpolated with a bilinear transformation.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

localization_network : a Layer instance

70 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

The network that calculates the parameters of the affine transformation. See the example
for how to initialize to the identity transform.

downsample_factor : float or iterable of float

A float or a 2-element tuple specifying the downsample factor for the output image (in
both spatial dimensions). A value of 1 will keep the original size of the input. Values
larger than 1 will downsample the input. Values below 1 will upsample the input.

References

[R59]

Examples

Here we set up the layer to initially do the identity transform, similarly to [R59]. Note that you will want to use
a localization with linear output. If the output from the localization networks is [t1, t2, t3, t4, t5, t6] then t1 and
t5 determines zoom, t2 and t4 determines skewness, and t3 and t6 move the center position.

>>> import numpy as np
>>> import lasagne
>>> b = np.zeros((2, 3), dtype='float32')
>>> b[0, 0] = 1
>>> b[1, 1] = 1
>>> b = b.flatten() # identity transform
>>> W = lasagne.init.Constant(0.0)
>>> l_in = lasagne.layers.InputLayer((None, 3, 28, 28))
>>> l_loc = lasagne.layers.DenseLayer(l_in, num_units=6, W=W, b=b,
... nonlinearity=None)
>>> l_trans = lasagne.layers.TransformerLayer(l_in, l_loc)

class lasagne.layers.TPSTransformerLayer(incoming, localization_network, downsam-
ple_factor=1, control_points=16, precom-
pute_grid=’auto’, **kwargs)

Spatial transformer layer

The layer applies a thin plate spline transformation [R62] on the input as in [R61]. The thin plate spline
transform is determined based on the movement of some number of control points. The starting positions for
these control points are fixed. The output is interpolated with a bilinear transformation.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

localization_network : a Layer instance

The network that calculates the parameters of the thin plate spline transformation as
the x and y coordinates of the destination offsets of each control point. The output
of the localization network should be a 2D tensor, with shape (batch_size, 2 *
num_control_points)

downsample_factor : float or iterable of float

A float or a 2-element tuple specifying the downsample factor for the output image (in
both spatial dimensions). A value of 1 will keep the original size of the input. Values
larger than 1 will downsample the input. Values below 1 will upsample the input.

2.1. lasagne.layers 71

lasagne Documentation, Release 0.2.dev1

control_points : integer

The number of control points to be used for the thin plate spline transformation. These
points will be arranged as a grid along the image, so the value must be a perfect square.
Default is 16.

precompute_grid : ‘auto’ or boolean

Flag to precompute the U function [R62] for the grid and source points. If ‘auto’, will
be set to true as long as the input height and width are specified. If true, the U function
is computed when the layer is constructed for a fixed input shape. If false, grid will be
computed as part of the Theano computational graph, which is substantially slower as
this computation scales with num_pixels*num_control_points. Default is ‘auto’.

References

[R61], [R62]

Examples

Here, we’ll implement an identity transform using a thin plate spline transform. First we’ll create the destination
control point offsets. To make everything invariant to the shape of the image, the x and y range of the image
is normalized to [-1, 1] as in ref [R61]. To replicate an identity transform, we’ll set the bias to have all offsets
be 0. More complicated transformations can easily be implemented using different x and y offsets (importantly,
each control point can have it’s own pair of offsets).

>>> import numpy as np
>>> import lasagne
>>>
>>> # Create the network
>>> # we'll initialize the weights and biases to zero, so it starts
>>> # as the identity transform (all control point offsets are zero)
>>> W = b = lasagne.init.Constant(0.0)
>>>
>>> # Set the number of points
>>> num_points = 16
>>>
>>> l_in = lasagne.layers.InputLayer((None, 3, 28, 28))
>>> l_loc = lasagne.layers.DenseLayer(l_in, num_units=2*num_points,
... W=W, b=b, nonlinearity=None)
>>> l_trans = lasagne.layers.TPSTransformerLayer(l_in, l_loc,
... control_points=num_points)

class lasagne.layers.ParametricRectifierLayer(incoming, alpha=init.Constant(0.25),
shared_axes=’auto’, **kwargs)

A layer that applies parametric rectify nonlinearity to its input following [R63].

Equation for the parametric rectifier linear unit: 𝜙(𝑥) = max(𝑥, 0) + 𝛼min(𝑥, 0)

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

alpha : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the alpha values. The shape must match the
incoming shape, skipping those axes the alpha values are shared over (see the example
below). See lasagne.utils.create_param() for more information.

72 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

shared_axes : ‘auto’, ‘all’, int or tuple of int

The axes along which the parameters of the rectifier units are going to be shared. If
'auto' (the default), share over all axes except for the second - this will share the pa-
rameter over the minibatch dimension for dense layers, and additionally over all spatial
dimensions for convolutional layers. If 'all', share over all axes, which corresponds
to a single scalar parameter.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The alpha parameter dimensionality is the input dimensionality minus the number of axes it is shared over,
which matches the same convention as the BiasLayer.

>>> layer = ParametricRectifierLayer((20, 3, 28, 28), shared_axes=(0, 3))
>>> layer.alpha.get_value().shape
(3, 28)

References

[R63]

lasagne.layers.prelu(layer, **kwargs)
Convenience function to apply parametric rectify to a given layer’s output. Will set the layer’s nonlinearity to
identity if there is one and will apply the parametric rectifier instead.

Parameters layer: a :class:‘Layer‘ instance

The Layer instance to apply the parametric rectifier layer to; note that it will be irre-
versibly modified as specified above

**kwargs

Any additional keyword arguments are passed to the
ParametericRectifierLayer

Examples

Note that this function modifies an existing layer, like this:

>>> from lasagne.layers import InputLayer, DenseLayer, prelu
>>> layer = InputLayer((32, 100))
>>> layer = DenseLayer(layer, num_units=200)
>>> layer = prelu(layer)

In particular, prelu() can not be passed as a nonlinearity.

class lasagne.layers.RandomizedRectifierLayer(incoming, lower=0.3, upper=0.8,
shared_axes=’auto’, **kwargs)

A layer that applies a randomized leaky rectify nonlinearity to its input.

The randomized leaky rectifier was first proposed and used in the Kaggle NDSB Competition, and later evaluated
in [R64]. Compared to the standard leaky rectifier leaky_rectify(), it has a randomly sampled slope for
negative input during training, and a fixed slope during evaluation.

2.1. lasagne.layers 73

lasagne Documentation, Release 0.2.dev1

Equation for the randomized rectifier linear unit during training: 𝜙(𝑥) = max((∼ 𝑈(𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟)) · 𝑥, 𝑥)

During evaluation, the factor is fixed to the arithmetic mean of lower and upper.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

lower : Theano shared variable, expression, or constant

The lower bound for the randomly chosen slopes.

upper : Theano shared variable, expression, or constant

The upper bound for the randomly chosen slopes.

shared_axes : ‘auto’, ‘all’, int or tuple of int

The axes along which the random slopes of the rectifier units are going to be shared.
If 'auto' (the default), share over all axes except for the second - this will share the
random slope over the minibatch dimension for dense layers, and additionally over all
spatial dimensions for convolutional layers. If 'all', share over all axes, thus using a
single random slope.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

References

[R64]

get_output_for(input, deterministic=False, **kwargs)

Parameters input : tensor

output from the previous layer

deterministic : bool

If true, the arithmetic mean of lower and upper are used for the leaky slope.

lasagne.layers.rrelu(layer, **kwargs)
Convenience function to apply randomized rectify to a given layer’s output. Will set the layer’s nonlinearity to
identity if there is one and will apply the randomized rectifier instead.

Parameters layer: a :class:‘Layer‘ instance

The Layer instance to apply the randomized rectifier layer to; note that it will be irre-
versibly modified as specified above

**kwargs

Any additional keyword arguments are passed to the
RandomizedRectifierLayer

Examples

Note that this function modifies an existing layer, like this:

74 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

>>> from lasagne.layers import InputLayer, DenseLayer, rrelu
>>> layer = InputLayer((32, 100))
>>> layer = DenseLayer(layer, num_units=200)
>>> layer = rrelu(layer)

In particular, rrelu() can not be passed as a nonlinearity.

lasagne.layers.corrmm

This module houses layers that require a GPU to work. Its layers are not automatically imported into the lasagne.
layers namespace: To use these layers, you need to import lasagne.layers.corrmm explicitly.

class lasagne.layers.corrmm.Conv2DMMLayer(incoming, num_filters, filter_size,
stride=(1, 1), pad=0, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
flip_filters=False, **kwargs)

2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. This
is an alternative implementation which uses theano.sandbox.cuda.blas.GpuCorrMM directly.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 2-element tuple specifying the stride of the convolution operation.

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

A single integer results in symmetric zero-padding of the given size on all borders, a
tuple of two integers allows different symmetric padding per dimension.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

2.1. lasagne.layers 75

lasagne Documentation, Release 0.2.dev1

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 4D
tensor with shape (num_filters, num_input_channels, filter_rows,
filter_columns). See lasagne.utils.create_param() for more infor-
mation.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: False)

Whether to flip the filters and perform a convolution, or not to flip them and perform
a correlation. Flipping adds a bit of overhead, so it is disabled by default. In most
cases this does not make a difference anyway because the filters are learnt. However,
flip_filters should be set to True if weights are loaded into it that were learnt
using a regular lasagne.layers.Conv2DLayer, for example.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Attributes

W (Theano shared variable) Variable representing the filter weights.
b (Theano shared variable) Variable representing the biases.

lasagne.layers.cuda_convnet

This module houses layers that require pylearn2 <https://deeplearning.net/software/pylearn2> to work. Its layers
are not automatically imported into the lasagne.layers namespace: To use these layers, you need to import
lasagne.layers.cuda_convnet explicitly.

class lasagne.layers.cuda_convnet.Conv2DCCLayer(incoming, num_filters, fil-
ter_size, stride=(1, 1), pad=0,
untie_biases=False, W=None,
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
dimshuffle=True, flip_filters=False,
partial_sum=1, **kwargs)

2D convolutional layer

76 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity.
This is an alternative implementation which uses the cuda-convnet wrappers from pylearn2: pylearn2.
sandbox.cuda_convnet.filter_acts.FilterActs.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. This layer expects
a 4D tensor as its input, with shape (batch_size, num_input_channels,
input_rows, input_columns). If automatic dimshuffling is disabled
(see notes), the shape should be (num_input_channels, input_rows,
input_columns, batch_size) instead (c01b axis order).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 2-element tuple specifying the size of the filters. This layer does not
support non-square filters.

stride : int or iterable of int

An integer or a 2-element tuple specifying the stride of the convolution operation. This
layer does not support using different strides along both axes.

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

A single integer results in symmetric zero-padding of the given size on all borders.
This layer does not support using different amounts of padding along both axes, but for
compatibility to other layers you can still specify the padding as a tuple of two same-
valued integers.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 4D ten-
sor with shape (num_filters, num_input_channels, filter_rows,
filter_columns). If automatic dimshuffling is disabled (see notes), the shape
should be (num_input_channels, input_rows, input_columns,

2.1. lasagne.layers 77

lasagne Documentation, Release 0.2.dev1

num_filters) instead (c01b axis order). See lasagne.utils.
create_param() for more information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

dimshuffle : bool (default: True)

If True, the layer will automatically apply the necessary dimshuffle operations to deal
with the fact that the cuda-convnet implementation uses c01b (batch-size-last) axis order
instead of bc01 (batch-size-first), which is the Lasagne/Theano default. This makes the
layer interoperable with other Lasagne layers.

If False, this automatic dimshuffling is disabled and the layer will expect its in-
put and parameters to have c01b axis order. It is up to the user to ensure this.
ShuffleBC01ToC01BLayer and ShuffleC01BToBC01Layer can be used to
convert between bc01 and c01b axis order.

flip_filters : bool (default: False)

Whether to flip the filters and perform a convolution, or not to flip them and perform
a correlation. Flipping adds a bit of overhead, so it is disabled by default. In most
cases this does not make a difference anyway because the filters are learnt. However,
flip_filters should be set to True if weights are loaded into it that were learnt
using a regular lasagne.layers.Conv2DLayer, for example.

partial_sum : int or None (default: 1)

This value tunes the trade-off between memory usage and performance. You can specify
any positive integer that is a divisor of the output feature map size (i.e. output rows
times output columns). Higher values decrease memory usage, but also performance.
Specifying 0 or None means the highest possible value will be used. The Lasagne
default of 1 gives the best performance, but also the highest memory usage.

More information about this parameter can be found in the cuda-convnet documenta-
tion.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The cuda-convnet convolution implementation has several limitations:

•only square filters are supported.

•only identical strides in the horizontal and vertical direction are supported.

•the number of filters must be a multiple of 16.

•the number of input channels must be even, or less than or equal to 3.

78 Chapter 2. API Reference

https://code.google.com/p/cuda-convnet/wiki/LayerParams
https://code.google.com/p/cuda-convnet/wiki/LayerParams

lasagne Documentation, Release 0.2.dev1

•if the gradient w.r.t. the input is to be computed, the number of channels must be divisible by 4.

•performance is optimal when the batch size is a multiple of 128 (but other batch sizes are supported).

•this layer only works on the GPU.

The cuda-convnet convolution implementation uses c01b (batch-size-last) axis order by default. The
Theano/Lasagne default is bc01 (batch-size-first). This layer automatically adds the necessary dimshuffle op-
erations for the input and the parameters so that it is interoperable with other layers that assume bc01 axis
order. However, these additional dimshuffle operations may sometimes negatively affect performance. For this
reason, it is possible to disable them by setting dimshuffle=False. In this case, the user is expected to
manually ensure that the input and parameters have the correct axis order. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and c01b axis order.

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

class lasagne.layers.cuda_convnet.MaxPool2DCCLayer(incoming, pool_size, stride=None, ig-
nore_border=False, dimshuffle=True,
**kwargs)

2D max-pooling layer

Performs 2D max-pooling over the two trailing axes of a 4D input tensor (or over axis 1 and 2 if
dimshuffle=False, see notes). This is an alternative implementation which uses the cuda-convnet wrap-
pers from pylearn2: pylearn2.sandbox.cuda_convnet.pool.MaxPool.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

The length of the pooling region in each dimension. If an integer, it is promoted to a
square pooling region. If an iterable, it should have two elements. This layer does not
support non-square pooling regions.

stride : integer, iterable or None

The strides between sucessive pooling regions in each dimension. If None then
stride = pool_size. This layer does not support using different strides along
both axes.

pad : integer or iterable (default: 0)

This implementation does not support custom padding, so this argument must always
be set to 0. It exists only to make sure the interface is compatible with lasagne.
layers.MaxPool2DLayer.

ignore_border : bool (default: False)

This implementation always includes partial pooling regions, so this argument must
always be set to False. It exists only to make sure the interface is compatible with
lasagne.layers.MaxPool2DLayer.

dimshuffle : bool (default: True)

If True, the layer will automatically apply the necessary dimshuffle operations to deal
with the fact that the cuda-convnet implementation uses c01b (batch-size-last) axis order

2.1. lasagne.layers 79

lasagne Documentation, Release 0.2.dev1

instead of bc01 (batch-size-first), which is the Lasagne/Theano default. This makes the
layer interoperable with other Lasagne layers.

If False, this automatic dimshuffling is disabled and the layer will expect its in-
put and parameters to have c01b axis order. It is up to the user to ensure this.
ShuffleBC01ToC01BLayer and ShuffleC01BToBC01Layer can be used to
convert between bc01 and c01b axis order.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The cuda-convnet max-pooling implementation has several limitations:

•only square pooling regions are supported.

•only identical strides in the horizontal and vertical direction are supported.

•only square inputs are supported. (This limitation does not exist for the convolution implementation.)

•partial pooling regions are always included (ignore_border is forced to False).

•custom padding is not supported (pad is forced to 0).

•this layer only works on the GPU.

The cuda-convnet pooling implementation uses c01b (batch-size-last) axis order by default. The
Theano/Lasagne default is bc01 (batch-size-first). This layer automatically adds the necessary dimshuffle op-
erations for the input and the parameters so that it is interoperable with other layers that assume bc01 axis
order. However, these additional dimshuffle operations may sometimes negatively affect performance. For this
reason, it is possible to disable them by setting dimshuffle=False. In this case, the user is expected to
manually ensure that the input and parameters have the correct axis order. ShuffleBC01ToC01BLayer and
ShuffleC01BToBC01Layer can be used to convert between bc01 and c01b axis order.

class lasagne.layers.cuda_convnet.ShuffleBC01ToC01BLayer(incoming, name=None)
shuffle 4D input from bc01 (batch-size-first) order to c01b (batch-size-last) order.

This layer can be used for interoperability between c01b and bc01 layers. For example, MaxPool2DCCLayer
and Conv2DCCLayer operate in c01b mode when they are created with dimshuffle=False.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

lasagne.layers.cuda_convnet.bc01_to_c01b
alias of ShuffleBC01ToC01BLayer

class lasagne.layers.cuda_convnet.ShuffleC01BToBC01Layer(incoming, name=None)
shuffle 4D input from c01b (batch-size-last) order to bc01 (batch-size-first) order.

This layer can be used for interoperability between c01b and bc01 layers. For example, MaxPool2DCCLayer
and Conv2DCCLayer operate in c01b mode when they are created with dimshuffle=False.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

**kwargs

80 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Any additional keyword arguments are passed to the Layer superclass.

lasagne.layers.cuda_convnet.c01b_to_bc01
alias of ShuffleC01BToBC01Layer

class lasagne.layers.cuda_convnet.NINLayer_c01b(incoming, num_units, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlin-
earity=lasagne.nonlinearities.rectify,
**kwargs)

Network-in-network layer with c01b axis ordering.

This is a c01b version of lasagne.layers.NINLayer.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

num_units : int

The number of units of the layer

untie_biases : bool

If False, the network has a single bias vector similar to a dense layer. If True, a
separate bias vector is used for each spatial position.

W : Theano shared variable, numpy array or callable

An initializer for the weights of the layer. If a shared variable or a numpy array is pro-
vided the shape should be (num_units, num_input_channels). See lasagne.utils.
create_param() for more information.

b : Theano shared variable, numpy array, callable or None

An initializer for the biases of the layer. If a shared variable or a numpy array is provided
the correct shape is determined by the untie_biases setting. If untie_biases is False,
then the shape should be (num_units,). If untie_biases is True then the shape
should be (num_units, rows, columns). If None is provided the layer will
have no biases. See lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

lasagne.layers.dnn

This module houses layers that require cuDNN to work. Its layers are not automatically imported into the lasagne.
layers namespace: To use these layers, you need to import lasagne.layers.dnn explicitly.

Note that these layers are not required to use cuDNN: If cuDNN is available, Theano will use it for the default
convolution and pooling layers anyway. However, they allow you to enforce the usage of cuDNN or use features not
available in lasagne.layers.

class lasagne.layers.dnn.Pool2DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0), ig-
nore_border=True, mode=’max’, **kwargs)

2D pooling layer

2.1. lasagne.layers 81

https://developer.nvidia.com/cudnn

lasagne Documentation, Release 0.2.dev1

Performs 2D mean- or max-pooling over the two trailing axes of a 4D input tensor. This is an alternative
implementation which uses theano.sandbox.cuda.dnn.dnn_pool directly.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

The length of the pooling region in each dimension. If an integer, it is promoted to a
square pooling region. If an iterable, it should have two elements.

stride : integer, iterable or None

The strides between sucessive pooling regions in each dimension. If None then
stride = pool_size.

pad : integer or iterable

Number of elements to be added on each side of the input in each dimension. Each
value must be less than the corresponding stride.

ignore_border : bool (default: True)

This implementation never includes partial pooling regions, so this argument must
always be set to True. It exists only to make sure the interface is compatible with
lasagne.layers.MaxPool2DLayer.

mode : string

Pooling mode, one of ‘max’, ‘average_inc_pad’ or ‘average_exc_pad’. Defaults to
‘max’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

This is a drop-in replacement for lasagne.layers.MaxPool2DLayer. Its interface is the same, except
it does not support the ignore_border argument.

class lasagne.layers.dnn.MaxPool2DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0), ig-
nore_border=True, **kwargs)

2D max-pooling layer

Subclass of Pool2DDNNLayer fixing mode='max', provided for compatibility to other
MaxPool2DLayer classes.

class lasagne.layers.dnn.Pool3DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0, 0), ig-
nore_border=True, mode=’max’, **kwargs)

3D pooling layer

Performs 3D mean- or max-pooling over the 3 trailing axes of a 5D input tensor. This is an alternative imple-
mentation which uses theano.sandbox.cuda.dnn.dnn_pool directly.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_size : integer or iterable

82 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

The length of the pooling region in each dimension. If an integer, it is promoted to a
square pooling region. If an iterable, it should have two elements.

stride : integer, iterable or None

The strides between sucessive pooling regions in each dimension. If None then
stride = pool_size.

pad : integer or iterable

Number of elements to be added on each side of the input in each dimension. Each
value must be less than the corresponding stride.

ignore_border : bool (default: True)

This implementation never includes partial pooling regions, so this argument must
always be set to True. It exists only to make sure the interface is compatible with
lasagne.layers.MaxPool2DLayer.

mode : string

Pooling mode, one of ‘max’, ‘average_inc_pad’ or ‘average_exc_pad’. Defaults to
‘max’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each
pooling region always corresponds to some element in the unpadded input region.

class lasagne.layers.dnn.MaxPool3DDNNLayer(incoming, pool_size, stride=None, pad=(0, 0, 0),
ignore_border=True, **kwargs)

3D max-pooling layer

Subclass of Pool3DDNNLayer fixing mode='max', provided for consistency to MaxPool2DLayer
classes.

class lasagne.layers.dnn.Conv2DDNNLayer(incoming, num_filters, filter_size,
stride=(1, 1), pad=0, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, flip_filters=False,
**kwargs)

2D convolutional layer

Performs a 2D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. This
is an alternative implementation which uses theano.sandbox.cuda.dnn.dnn_conv directly.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 4D tensor, with shape (batch_size, num_input_channels,
input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

2.1. lasagne.layers 83

lasagne Documentation, Release 0.2.dev1

An integer or a 2-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 2-element tuple specifying the stride of the convolution operation.

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

A single integer results in symmetric zero-padding of the given size on all borders, a
tuple of two integers allows different symmetric padding per dimension.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

untie_biases : bool (default: False)

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 3D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be a 4D
tensor with shape (num_filters, num_input_channels, filter_rows,
filter_columns). See lasagne.utils.create_param() for more infor-
mation.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the
layer will have no biases. Otherwise, biases should be a 1D array with shape
(num_filters,) if untied_biases is set to False. If it is set to True, its shape
should be (num_filters, output_rows, output_columns) instead. See
lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: False)

Whether to flip the filters and perform a convolution, or not to flip them and perform
a correlation. Flipping adds a bit of overhead, so it is disabled by default. In most
cases this does not make a difference anyway because the filters are learnt. However,
flip_filters should be set to True if weights are loaded into it that were learnt
using a regular lasagne.layers.Conv2DLayer, for example.

84 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

class lasagne.layers.dnn.Conv3DDNNLayer(incoming, num_filters, filter_size, stride=(1,
1, 1), pad=0, untie_biases=False,
W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinear-
ity=lasagne.nonlinearities.rectify, flip_filters=False,
**kwargs)

3D convolutional layer

Performs a 3D convolution on its input and optionally adds a bias and applies an elementwise nonlinearity. This
implementation uses theano.sandbox.cuda.dnn.dnn_conv3d directly.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape. The output of this
layer should be a 5D tensor, with shape (batch_size, num_input_channels,
input_depth, input_rows, input_columns).

num_filters : int

The number of learnable convolutional filters this layer has.

filter_size : int or iterable of int

An integer or a 3-element tuple specifying the size of the filters.

stride : int or iterable of int

An integer or a 3-element tuple specifying the stride of the convolution operation.

pad : int, iterable of int, ‘full’, ‘same’ or ‘valid’ (default: 0)

By default, the convolution is only computed where the input and the filter fully overlap
(a valid convolution). When stride=1, this yields an output that is smaller than the
input by filter_size - 1. The pad argument allows you to implicitly pad the
input with zeros, extending the output size.

A single integer results in symmetric zero-padding of the given size on all borders, a
tuple of three integers allows different symmetric padding per dimension.

'full' pads with one less than the filter size on both sides. This is equivalent to
computing the convolution wherever the input and the filter overlap by at least one
position.

'same' pads with half the filter size (rounded down) on both sides. When stride=1
this results in an output size equal to the input size. Even filter size is not supported.

'valid' is an alias for 0 (no padding / a valid convolution).

Note that 'full' and 'same' can be faster than equivalent integer values due to
optimizations by Theano.

untie_biases : bool (default: False)

2.1. lasagne.layers 85

lasagne Documentation, Release 0.2.dev1

If False, the layer will have a bias parameter for each channel, which is shared across
all positions in this channel. As a result, the b attribute will be a vector (1D).

If True, the layer will have separate bias parameters for each position in each channel.
As a result, the b attribute will be a 4D tensor.

W : Theano shared variable, expression, numpy array or callable

Initial value, expression or initializer for the weights. These should be
a 5D tensor with shape (num_filters, num_input_channels,
filter_depth, filter_rows, filter_columns). See lasagne.
utils.create_param() for more information.

b : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for the biases. If set to None, the layer will
have no biases. Otherwise, biases should be a 1D array with shape (num_filters,
) if untied_biases is set to False. If it is set to True, its shape should
be (num_filters, output_depth, output_rows, output_columns)
instead. See lasagne.utils.create_param() for more information.

nonlinearity : callable or None

The nonlinearity that is applied to the layer activations. If None is provided, the layer
will be linear.

flip_filters : bool (default: False)

Whether to flip the filters and perform a convolution, or not to flip them and perform a
correlation. Flipping adds a bit of overhead, so it is disabled by default. In most cases
this does not make a difference anyway because the filters are learned, but if you want
to compute predictions with pre-trained weights, take care if they need flipping.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Attributes

W (Theano shared variable or expression) Variable or expression representing the filter weights.
b (Theano shared variable or expression) Variable or expression representing the biases.

class lasagne.layers.dnn.SpatialPyramidPoolingDNNLayer(incoming, pool_dims=[4, 2, 1],
mode=’max’, **kwargs)

Spatial Pyramid Pooling Layer

Performs spatial pyramid pooling (SPP) over the input. It will turn a 2D input of arbitrary size into an output of
fixed dimension. Hence, the convolutional part of a DNN can be connected to a dense part with a fixed number
of nodes even if the dimensions of the input image are unknown.

The pooling is performed over 𝑙 pooling levels. Each pooling level 𝑖 will create 𝑀𝑖 output features. 𝑀𝑖 is given
by 𝑛𝑖 * 𝑛𝑖, with 𝑛𝑖 as the number of pooling operation per dimension in level 𝑖, and we use a list of the 𝑛𝑖‘s as
a parameter for SPP-Layer. The length of this list is the level of the spatial pyramid.

Parameters incoming : a Layer instance or tuple

The layer feeding into this layer, or the expected input shape.

pool_dims : list of integers

The list of 𝑛𝑖‘s that define the output dimension of each pooling level 𝑖. The length of
pool_dims is the level of the spatial pyramid.

86 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

mode : string

Pooling mode, one of ‘max’, ‘average_inc_pad’ or ‘average_exc_pad’. Defaults to
‘max’.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

Notes

This layer should be inserted between the convolutional part of a DNN and its dense part. Convolutions can
be used for arbitrary input dimensions, but the size of their output will depend on their input dimensions. Con-
necting the output of the convolutional to the dense part then usually demands us to fix the dimensions of the
network’s InputLayer. The spatial pyramid pooling layer, however, allows us to leave the network input dimen-
sions arbitrary. The advantage over a global pooling layer is the added robustness against object deformations
due to the pooling on different scales.

References

[R36]

class lasagne.layers.dnn.BatchNormDNNLayer(incoming, axes=’auto’, epsilon=1e-4, al-
pha=0.1, beta=lasagne.init.Constant(0),
gamma=lasagne.init.Constant(1),
mean=lasagne.init.Constant(0),
inv_std=lasagne.init.Constant(1), **kwargs)

Batch Normalization

This layer implements batch normalization of its inputs:

𝑦 =
𝑥− 𝜇√
𝜎2 + 𝜖

𝛾 + 𝛽

This is a drop-in replacement for lasagne.layers.BatchNormLayer that uses cuDNN for improved
performance and reduced memory usage.

Parameters incoming : a Layer instance or a tuple

The layer feeding into this layer, or the expected input shape

axes : ‘auto’, int or tuple of int

The axis or axes to normalize over. If 'auto' (the default), normalize over all axes
except for the second: this will normalize over the minibatch dimension for dense lay-
ers, and additionally over all spatial dimensions for convolutional layers. Only supports
'auto' and the equivalent axes list, or 0 and (0,) to normalize over the minibatch
dimension only.

epsilon : scalar

Small constant 𝜖 added to the variance before taking the square root and dividing by it,
to avoid numerical problems. Must not be smaller than 1e-5.

alpha : scalar

Coefficient for the exponential moving average of batch-wise means and standard devi-
ations computed during training; the closer to one, the more it will depend on the last
batches seen

2.1. lasagne.layers 87

lasagne Documentation, Release 0.2.dev1

beta : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for 𝛽. Must match the incoming shape, skipping
all axes in axes. Set to None to fix it to 0.0 instead of learning it. See lasagne.
utils.create_param() for more information.

gamma : Theano shared variable, expression, numpy array, callable or None

Initial value, expression or initializer for 𝛾. Must match the incoming shape, skipping
all axes in axes. Set to None to fix it to 1.0 instead of learning it. See lasagne.
utils.create_param() for more information.

mean : Theano shared variable, expression, numpy array, or callable

Initial value, expression or initializer for 𝜇. Must match the incoming shape, skipping
all axes in axes. See lasagne.utils.create_param() for more information.

inv_std : Theano shared variable, expression, numpy array, or callable

Initial value, expression or initializer for 1/
√
𝜎2 + 𝜖. Must match the incoming shape,

skipping all axes in axes. See lasagne.utils.create_param() for more infor-
mation.

**kwargs

Any additional keyword arguments are passed to the Layer superclass.

See also:

batch_norm_dnn Convenience function to apply batch normalization

Notes

This layer should be inserted between a linear transformation (such as a DenseLayer, or Conv2DLayer) and
its nonlinearity. The convenience function batch_norm_dnn() modifies an existing layer to insert cuDNN
batch normalization in front of its nonlinearity.

For further information, see lasagne.layers.BatchNormLayer. This implementation is fully compati-
ble, except for restrictions on the axes and epsilon arguments.

lasagne.layers.dnn.batch_norm_dnn(layer, **kwargs)
Apply cuDNN batch normalization to an existing layer. This is a drop-in replacement for lasagne.layers.
batch_norm(); see there for further information.

Parameters layer : A Layer instance

The layer to apply the normalization to; note that it will be modified as specified in
lasagne.layers.batch_norm()

**kwargs

Any additional keyword arguments are passed on to the BatchNormDNNLayer con-
structor.

Returns BatchNormDNNLayer or NonlinearityLayer instance

A batch normalization layer stacked on the given modified layer, or a nonlinearity layer
stacked on top of both if layer was nonlinear.

Helper functions

88 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

get_output Computes the output of the network at one or more given
layers.

get_output_shape Computes the output shape of the network at one or more
given layers.

get_all_layers This function gathers all layers below one or more given
Layer instances, including the given layer(s).

get_all_params Returns a list of Theano shared variables or expressions
that parameterize the layer.

count_params This function counts all parameters (i.e., the number of
scalar values) of all layers below one or more given Layer
instances, including the layer(s) itself.

get_all_param_values This function returns the values of the parameters of all lay-
ers below one or more given Layer instances, including
the layer(s) itself.

set_all_param_values Given a list of numpy arrays, this function sets the parame-
ters of all layers below one or more given Layer instances
(including the layer(s) itself) to the given values.

Layer base classes

Layer The Layer class represents a single layer of a neural net-
work.

MergeLayer This class represents a layer that aggregates input from
multiple layers.

Network input

InputLayer This layer holds a symbolic variable that represents a net-
work input.

Dense layers

DenseLayer A fully connected layer.
NINLayer Network-in-network layer.

Convolutional layers

Conv1DLayer 1D convolutional layer
Conv2DLayer 2D convolutional layer
TransposedConv2DLayer 2D transposed convolution layer
Deconv2DLayer alias of TransposedConv2DLayer
DilatedConv2DLayer 2D dilated convolution layer

Local layers

2.1. lasagne.layers 89

lasagne Documentation, Release 0.2.dev1

LocallyConnected2DLayer 2D locally connected layer

Pooling layers

MaxPool1DLayer 1D max-pooling layer
MaxPool2DLayer 2D max-pooling layer
Pool1DLayer 1D pooling layer
Pool2DLayer 2D pooling layer
Upscale1DLayer 1D upscaling layer
Upscale2DLayer 2D upscaling layer
Upscale3DLayer 3D upscaling layer
GlobalPoolLayer Global pooling layer
FeaturePoolLayer Feature pooling layer
FeatureWTALayer ‘Winner Take All’ layer
SpatialPyramidPoolingLayer Spatial Pyramid Pooling Layer

Recurrent layers

CustomRecurrentLayer A layer which implements a recurrent connection.
RecurrentLayer Dense recurrent neural network (RNN) layer
LSTMLayer A long short-term memory (LSTM) layer.
GRULayer Gated Recurrent Unit (GRU) Layer
Gate Simple class to hold the parameters for a gate connection.

Noise layers

DropoutLayer Dropout layer
dropout alias of DropoutLayer
dropout_channels Convenience function to drop full channels of feature

maps.
spatial_dropout Convenience function to drop full channels of feature

maps.
dropout_locations Convenience function to drop full locations of feature

maps.
GaussianNoiseLayer Gaussian noise layer.

Shape layers

ReshapeLayer A layer reshaping its input tensor to another tensor of the
same total number of elements.

reshape alias of ReshapeLayer
FlattenLayer A layer that flattens its input.
flatten alias of FlattenLayer
DimshuffleLayer A layer that rearranges the dimension of its input tensor,

maintaining the same same total number of elements.
Continued on next page

90 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Table 2.12 – continued from previous page
dimshuffle alias of DimshuffleLayer
PadLayer Pad all dimensions except the first batch_ndim with

width zeros on both sides, or with another value speci-
fied in val.

pad alias of PadLayer
SliceLayer Slices the input at a specific axis and at specific indices.

Merge layers

ConcatLayer Concatenates multiple inputs along the specified axis.
concat alias of ConcatLayer
ElemwiseMergeLayer This layer performs an elementwise merge of its input lay-

ers.
ElemwiseSumLayer This layer performs an elementwise sum of its input layers.

Normalization layers

LocalResponseNormalization2DLayer Cross-channel Local Response Normalization for 2D fea-
ture maps.

BatchNormLayer Batch Normalization
batch_norm Apply batch normalization to an existing layer.

Embedding layers

EmbeddingLayer A layer for word embeddings.

Special-purpose layers

NonlinearityLayer A layer that just applies a nonlinearity.
BiasLayer A layer that just adds a (trainable) bias term.
ScaleLayer A layer that scales its inputs by learned coefficients.
standardize Convenience function for standardizing inputs by applying

a fixed offset and scale.
ExpressionLayer This layer provides boilerplate for a custom layer that ap-

plies a simple transformation to the input.
InverseLayer The InverseLayer class performs inverse operations

for a single layer of a neural network by applying the par-
tial derivative of the layer to be inverted with respect to
its input: transposed layer for a DenseLayer, deconvo-
lutional layer for Conv2DLayer, Conv1DLayer; or an
unpooling layer for MaxPool2DLayer.

TransformerLayer Spatial transformer layer
TPSTransformerLayer Spatial transformer layer
ParametricRectifierLayer A layer that applies parametric rectify nonlinearity to its

input following [R30].
Continued on next page

2.1. lasagne.layers 91

lasagne Documentation, Release 0.2.dev1

Table 2.16 – continued from previous page
prelu Convenience function to apply parametric rectify to a given

layer’s output.
RandomizedRectifierLayer A layer that applies a randomized leaky rectify nonlinearity

to its input.
rrelu Convenience function to apply randomized rectify to a

given layer’s output.

lasagne.layers.corrmm

corrmm.Conv2DMMLayer 2D convolutional layer

lasagne.layers.cuda_convnet

cuda_convnet.Conv2DCCLayer 2D convolutional layer
cuda_convnet.MaxPool2DCCLayer 2D max-pooling layer
cuda_convnet.ShuffleBC01ToC01BLayer shuffle 4D input from bc01 (batch-size-first) order to c01b
cuda_convnet.bc01_to_c01b alias of ShuffleBC01ToC01BLayer
cuda_convnet.ShuffleC01BToBC01Layer shuffle 4D input from c01b (batch-size-last) order to bc01
cuda_convnet.c01b_to_bc01 alias of ShuffleC01BToBC01Layer
cuda_convnet.NINLayer_c01b Network-in-network layer with c01b axis ordering.

lasagne.layers.dnn

dnn.Conv2DDNNLayer 2D convolutional layer
dnn.Conv3DDNNLayer 3D convolutional layer
dnn.MaxPool2DDNNLayer 2D max-pooling layer
dnn.Pool2DDNNLayer 2D pooling layer
dnn.MaxPool3DDNNLayer 3D max-pooling layer
dnn.Pool3DDNNLayer 3D pooling layer
dnn.SpatialPyramidPoolingDNNLayer Spatial Pyramid Pooling Layer
dnn.BatchNormDNNLayer Batch Normalization
dnn.batch_norm_dnn Apply cuDNN batch normalization to an existing layer.

lasagne.updates

Functions to generate Theano update dictionaries for training.

The update functions implement different methods to control the learning rate for use with stochastic gradient descent.

Update functions take a loss expression or a list of gradient expressions and a list of parameters as input and return an
ordered dictionary of updates:

sgd Stochastic Gradient Descent (SGD) updates
momentum Stochastic Gradient Descent (SGD) updates with momen-

tum
Continued on next page

92 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Table 2.20 – continued from previous page
nesterov_momentum Stochastic Gradient Descent (SGD) updates with Nesterov

momentum
adagrad Adagrad updates
rmsprop RMSProp updates
adadelta Adadelta updates
adam Adam updates
adamax Adamax updates

Two functions can be used to further modify the updates to include momentum:

apply_momentum Returns a modified update dictionary including momentum
apply_nesterov_momentum Returns a modified update dictionary including Nesterov

momentum

Finally, we provide two helper functions to constrain the norm of tensors:

norm_constraint Max weight norm constraints and gradient clipping
total_norm_constraint Rescales a list of tensors based on their combined norm

norm_constraint() can be used to constrain the norm of parameters (as an alternative to weight decay), or for a
form of gradient clipping. total_norm_constraint() constrain the total norm of a list of tensors. This is often
used when training recurrent neural networks.

Examples

>>> import lasagne
>>> import theano.tensor as T
>>> import theano
>>> from lasagne.nonlinearities import softmax
>>> from lasagne.layers import InputLayer, DenseLayer, get_output
>>> from lasagne.updates import sgd, apply_momentum
>>> l_in = InputLayer((100, 20))
>>> l1 = DenseLayer(l_in, num_units=3, nonlinearity=softmax)
>>> x = T.matrix('x') # shp: num_batch x num_features
>>> y = T.ivector('y') # shp: num_batch
>>> l_out = get_output(l1, x)
>>> params = lasagne.layers.get_all_params(l1)
>>> loss = T.mean(T.nnet.categorical_crossentropy(l_out, y))
>>> updates_sgd = sgd(loss, params, learning_rate=0.0001)
>>> updates = apply_momentum(updates_sgd, params, momentum=0.9)
>>> train_function = theano.function([x, y], updates=updates)

Update functions

lasagne.updates.sgd(loss_or_grads, params, learning_rate)
Stochastic Gradient Descent (SGD) updates

Generates update expressions of the form:

•param := param - learning_rate * gradient

2.2. lasagne.updates 93

lasagne Documentation, Release 0.2.dev1

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

Returns OrderedDict

A dictionary mapping each parameter to its update expression

lasagne.updates.momentum(loss_or_grads, params, learning_rate, momentum=0.9)
Stochastic Gradient Descent (SGD) updates with momentum

Generates update expressions of the form:

•velocity := momentum * velocity - learning_rate * gradient

•param := param + velocity

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

momentum : float or symbolic scalar, optional

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Returns OrderedDict

A dictionary mapping each parameter to its update expression

See also:

apply_momentum Generic function applying momentum to updates

nesterov_momentum Nesterov’s variant of SGD with momentum

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by 1 - momentum.

lasagne.updates.nesterov_momentum(loss_or_grads, params, learning_rate, momentum=0.9)
Stochastic Gradient Descent (SGD) updates with Nesterov momentum

Generates update expressions of the form:

•velocity := momentum * velocity - learning_rate * gradient

•param := param + momentum * velocity - learning_rate * gradient

94 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

momentum : float or symbolic scalar, optional

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Returns OrderedDict

A dictionary mapping each parameter to its update expression

See also:

apply_nesterov_momentum Function applying momentum to updates

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient to be
evaluated at the predicted next position in parameter space. Here, we use the formulation described at https:
//github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617, which allows the gradient to be evaluated at
the current parameters.

lasagne.updates.adagrad(loss_or_grads, params, learning_rate=1.0, epsilon=1e-06)
Adagrad updates

Scale learning rates by dividing with the square root of accumulated squared gradients. See [R84] for further
description.

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

epsilon : float or symbolic scalar

Small value added for numerical stability

Returns OrderedDict

A dictionary mapping each parameter to its update expression

2.2. lasagne.updates 95

https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617

lasagne Documentation, Release 0.2.dev1

Notes

Using step size eta Adagrad calculates the learning rate for feature i at time step t as:

𝜂𝑡,𝑖 =
𝜂√︁∑︀𝑡

𝑡′ 𝑔
2
𝑡′,𝑖 + 𝜖

𝑔𝑡,𝑖

as such the learning rate is monotonically decreasing.

Epsilon is not included in the typical formula, see [R85].

References

[R84], [R85]

lasagne.updates.rmsprop(loss_or_grads, params, learning_rate=1.0, rho=0.9, epsilon=1e-06)
RMSProp updates

Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See [R86]
for further description.

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

rho : float or symbolic scalar

Gradient moving average decay factor

epsilon : float or symbolic scalar

Small value added for numerical stability

Returns OrderedDict

A dictionary mapping each parameter to its update expression

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value
close to 0 will decay the moving average fast.

Using the step size 𝜂 and a decay factor 𝜌 the learning rate 𝜂𝑡 is calculated as:

𝑟𝑡 = 𝜌𝑟𝑡−1 + (1− 𝜌) * 𝑔2

𝜂𝑡 =
𝜂√

𝑟𝑡 + 𝜖

96 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

References

[R86]

lasagne.updates.adadelta(loss_or_grads, params, learning_rate=1.0, rho=0.95, epsilon=1e-06)
Adadelta updates

Scale learning rates by the ratio of accumulated gradients to accumulated updates, see [R87] and notes for
further description.

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float or symbolic scalar

The learning rate controlling the size of update steps

rho : float or symbolic scalar

Squared gradient moving average decay factor

epsilon : float or symbolic scalar

Small value added for numerical stability

Returns OrderedDict

A dictionary mapping each parameter to its update expression

Notes

rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a value close
to 0 will decay the moving average fast.

rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST,
speech).

In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value. epsilon
is important for the very first update (so the numerator does not become 0).

Using the step size eta and a decay factor rho the learning rate is calculated as:

𝑟𝑡 = 𝜌𝑟𝑡−1 + (1− 𝜌) * 𝑔2

𝜂𝑡 = 𝜂

√
𝑠𝑡−1 + 𝜖√
𝑟𝑡 + 𝜖

𝑠𝑡 = 𝜌𝑠𝑡−1 + (1− 𝜌) * (𝜂𝑡 * 𝑔)2

References

[R87]

lasagne.updates.adam(loss_or_grads, params, learning_rate=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-08)

Adam updates

Adam updates implemented as in [R88].

2.2. lasagne.updates 97

lasagne Documentation, Release 0.2.dev1

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float

Learning rate

beta1 : float

Exponential decay rate for the first moment estimates.

beta2 : float

Exponential decay rate for the second moment estimates.

epsilon : float

Constant for numerical stability.

Returns OrderedDict

A dictionary mapping each parameter to its update expression

Notes

The paper [R88] includes an additional hyperparameter lambda. This is only needed to prove convergence of
the algorithm and has no practical use (personal communication with the authors), it is therefore omitted here.

References

[R88]

lasagne.updates.adamax(loss_or_grads, params, learning_rate=0.002, beta1=0.9, beta2=0.999,
epsilon=1e-08)

Adamax updates

Adamax updates implemented as in [R89]. This is a variant of of the Adam algorithm based on the infinity
norm.

Parameters loss_or_grads : symbolic expression or list of expressions

A scalar loss expression, or a list of gradient expressions

params : list of shared variables

The variables to generate update expressions for

learning_rate : float

Learning rate

beta1 : float

Exponential decay rate for the first moment estimates.

beta2 : float

Exponential decay rate for the weighted infinity norm estimates.

epsilon : float

98 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Constant for numerical stability.

Returns OrderedDict

A dictionary mapping each parameter to its update expression

References

[R89]

Update modification functions

lasagne.updates.apply_momentum(updates, params=None, momentum=0.9)
Returns a modified update dictionary including momentum

Generates update expressions of the form:

•velocity := momentum * velocity + updates[param] - param

•param := param + velocity

Parameters updates : OrderedDict

A dictionary mapping parameters to update expressions

params : iterable of shared variables, optional

The variables to apply momentum to. If omitted, will apply momentum to all up-
dates.keys().

momentum : float or symbolic scalar, optional

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Returns OrderedDict

A copy of updates with momentum updates for all params.

See also:

momentum Shortcut applying momentum to SGD updates

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by 1 - momentum.

lasagne.updates.apply_nesterov_momentum(updates, params=None, momentum=0.9)
Returns a modified update dictionary including Nesterov momentum

Generates update expressions of the form:

•velocity := momentum * velocity + updates[param] - param

•param := param + momentum * velocity + updates[param] - param

Parameters updates : OrderedDict

A dictionary mapping parameters to update expressions

2.2. lasagne.updates 99

lasagne Documentation, Release 0.2.dev1

params : iterable of shared variables, optional

The variables to apply momentum to. If omitted, will apply momentum to all up-
dates.keys().

momentum : float or symbolic scalar, optional

The amount of momentum to apply. Higher momentum results in smoothing over more
update steps. Defaults to 0.9.

Returns OrderedDict

A copy of updates with momentum updates for all params.

See also:

nesterov_momentum Shortcut applying Nesterov momentum to SGD updates

Notes

Higher momentum also results in larger update steps. To counter that, you can optionally scale your learning
rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient to be
evaluated at the predicted next position in parameter space. Here, we use the formulation described at https:
//github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617, which allows the gradient to be evaluated at
the current parameters.

Helper functions

lasagne.updates.norm_constraint(tensor_var, max_norm, norm_axes=None, epsilon=1e-07)
Max weight norm constraints and gradient clipping

This takes a TensorVariable and rescales it so that incoming weight norms are below a specified constraint value.
Vectors violating the constraint are rescaled so that they are within the allowed range.

Parameters tensor_var : TensorVariable

Theano expression for update, gradient, or other quantity.

max_norm : scalar

This value sets the maximum allowed value of any norm in tensor_var.

norm_axes : sequence (list or tuple)

The axes over which to compute the norm. This overrides the default norm axes defined
for the number of dimensions in tensor_var. When this is not specified and tensor_var
is a matrix (2D), this is set to (0,). If tensor_var is a 3D, 4D or 5D tensor, it is set to
a tuple listing all axes but axis 0. The former default is useful for working with dense
layers, the latter is useful for 1D, 2D and 3D convolutional layers. (Optional)

epsilon : scalar, optional

Value used to prevent numerical instability when dividing by very small or zero norms.

Returns TensorVariable

Input tensor_var with rescaling applied to weight vectors that violate the specified con-
straints.

100 Chapter 2. API Reference

https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617
https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617

lasagne Documentation, Release 0.2.dev1

Notes

When norm_axes is not specified, the axes over which the norm is computed depend on the dimensionality of
the input variable. If it is 2D, it is assumed to come from a dense layer, and the norm is computed over axis 0. If
it is 3D, 4D or 5D, it is assumed to come from a convolutional layer and the norm is computed over all trailing
axes beyond axis 0. For other uses, you should explicitly specify the axes over which to compute the norm using
norm_axes.

Examples

>>> param = theano.shared(
... np.random.randn(100, 200).astype(theano.config.floatX))
>>> update = param + 100
>>> update = norm_constraint(update, 10)
>>> func = theano.function([], [], updates=[(param, update)])
>>> # Apply constrained update
>>> _ = func()
>>> from lasagne.utils import compute_norms
>>> norms = compute_norms(param.get_value())
>>> np.isclose(np.max(norms), 10)
True

lasagne.updates.total_norm_constraint(tensor_vars, max_norm, epsilon=1e-07, re-
turn_norm=False)

Rescales a list of tensors based on their combined norm

If the combined norm of the input tensors exceeds the threshold then all tensors are rescaled such that the
combined norm is equal to the threshold.

Scaling the norms of the gradients is often used when training recurrent neural networks [R90].

Parameters tensor_vars : List of TensorVariables.

Tensors to be rescaled.

max_norm : float

Threshold value for total norm.

epsilon : scalar, optional

Value used to prevent numerical instability when dividing by very small or zero norms.

return_norm : bool

If true the total norm is also returned.

Returns tensor_vars_scaled : list of TensorVariables

The scaled tensor variables.

norm : Theano scalar

The combined norms of the input variables prior to rescaling, only returned if
return_norms=True.

Notes

The total norm can be used to monitor training.

2.2. lasagne.updates 101

lasagne Documentation, Release 0.2.dev1

References

[R90]

Examples

>>> from lasagne.layers import InputLayer, DenseLayer
>>> import lasagne
>>> from lasagne.updates import sgd, total_norm_constraint
>>> x = T.matrix()
>>> y = T.ivector()
>>> l_in = InputLayer((5, 10))
>>> l1 = DenseLayer(l_in, num_units=7, nonlinearity=T.nnet.softmax)
>>> output = lasagne.layers.get_output(l1, x)
>>> cost = T.mean(T.nnet.categorical_crossentropy(output, y))
>>> all_params = lasagne.layers.get_all_params(l1)
>>> all_grads = T.grad(cost, all_params)
>>> scaled_grads = total_norm_constraint(all_grads, 5)
>>> updates = sgd(scaled_grads, all_params, learning_rate=0.1)

lasagne.init

Functions to create initializers for parameter variables.

Examples

>>> from lasagne.layers import DenseLayer
>>> from lasagne.init import Constant, GlorotUniform
>>> l1 = DenseLayer((100,20), num_units=50,
... W=GlorotUniform('relu'), b=Constant(0.0))

Initializers

Constant([val]) Initialize weights with constant value.
Normal([std, mean]) Sample initial weights from the Gaussian distribution.
Uniform([range, std, mean]) Sample initial weights from the uniform distribution.
Glorot(initializer[, gain, c01b]) Glorot weight initialization.
GlorotNormal([gain, c01b]) Glorot with weights sampled from the Normal distribution.
GlorotUniform([gain, c01b]) Glorot with weights sampled from the Uniform distribu-

tion.
He(initializer[, gain, c01b]) He weight initialization.
HeNormal([gain, c01b]) He initializer with weights sampled from the Normal dis-

tribution.
HeUniform([gain, c01b]) He initializer with weights sampled from the Uniform dis-

tribution.
Orthogonal([gain]) Intialize weights as Orthogonal matrix.
Sparse([sparsity, std]) Initialize weights as sparse matrix.

102 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Detailed description

class lasagne.init.Initializer
Base class for parameter tensor initializers.

The Initializer class represents a weight initializer used to initialize weight parameters in a neural network
layer. It should be subclassed when implementing new types of weight initializers.

sample(shape)
Sample should return a theano.tensor of size shape and data type theano.config.floatX.

Parameters shape : tuple or int

Integer or tuple specifying the size of the returned matrix.

returns : theano.tensor

Matrix of size shape and dtype theano.config.floatX.

class lasagne.init.Constant(val=0.0)
Initialize weights with constant value.

Parameters val : float

Constant value for weights.

class lasagne.init.Normal(std=0.01, mean=0.0)
Sample initial weights from the Gaussian distribution.

Initial weight parameters are sampled from N(mean, std).

Parameters std : float

Std of initial parameters.

mean : float

Mean of initial parameters.

class lasagne.init.Uniform(range=0.01, std=None, mean=0.0)
Sample initial weights from the uniform distribution.

Parameters are sampled from U(a, b).

Parameters range : float or tuple

When std is None then range determines a, b. If range is a float the weights are sampled
from U(-range, range). If range is a tuple the weights are sampled from U(range[0],
range[1]).

std : float or None

If std is a float then the weights are sampled from U(mean - np.sqrt(3) * std, mean +
np.sqrt(3) * std).

mean : float

see std for description.

class lasagne.init.Glorot(initializer, gain=1.0, c01b=False)
Glorot weight initialization.

This is also known as Xavier initialization [R4].

Parameters initializer : lasagne.init.Initializer

2.3. lasagne.init 103

lasagne Documentation, Release 0.2.dev1

Initializer used to sample the weights, must accept std in its constructor to sample from
a distribution with a given standard deviation.

gain : float or ‘relu’

Scaling factor for the weights. Set this to 1.0 for linear and sigmoid units, to ‘relu’
or sqrt(2) for rectified linear units, and to sqrt(2/(1+alpha**2)) for leaky
rectified linear units with leakiness alpha. Other transfer functions may need different
factors.

c01b : bool

For a lasagne.layers.cuda_convnet.Conv2DCCLayer constructed with
dimshuffle=False, c01b must be set to True to compute the correct fan-in and
fan-out.

See also:

GlorotNormal Shortcut with Gaussian initializer.

GlorotUniform Shortcut with uniform initializer.

Notes

For a DenseLayer, if gain='relu' and initializer=Uniform, the weights are initialized as

𝑎 =

√︂
12

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡

𝑊 ∼ 𝑈 [−𝑎, 𝑎]

If gain=1 and initializer=Normal, the weights are initialized as

𝜎 =

√︂
2

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡

𝑊 ∼ 𝑁(0, 𝜎)

References

[R4]

class lasagne.init.GlorotNormal(gain=1.0, c01b=False)
Glorot with weights sampled from the Normal distribution.

See Glorot for a description of the parameters.

class lasagne.init.GlorotUniform(gain=1.0, c01b=False)
Glorot with weights sampled from the Uniform distribution.

See Glorot for a description of the parameters.

class lasagne.init.He(initializer, gain=1.0, c01b=False)
He weight initialization.

Weights are initialized with a standard deviation of 𝜎 = 𝑔𝑎𝑖𝑛
√︁

1
𝑓𝑎𝑛𝑖𝑛

[R5].

Parameters initializer : lasagne.init.Initializer

Initializer used to sample the weights, must accept std in its constructor to sample from
a distribution with a given standard deviation.

104 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

gain : float or ‘relu’

Scaling factor for the weights. Set this to 1.0 for linear and sigmoid units, to ‘relu’
or sqrt(2) for rectified linear units, and to sqrt(2/(1+alpha**2)) for leaky
rectified linear units with leakiness alpha. Other transfer functions may need different
factors.

c01b : bool

For a lasagne.layers.cuda_convnet.Conv2DCCLayer constructed with
dimshuffle=False, c01b must be set to True to compute the correct fan-in and
fan-out.

See also:

HeNormal Shortcut with Gaussian initializer.

HeUniform Shortcut with uniform initializer.

References

[R5]

class lasagne.init.HeNormal(gain=1.0, c01b=False)
He initializer with weights sampled from the Normal distribution.

See He for a description of the parameters.

class lasagne.init.HeUniform(gain=1.0, c01b=False)
He initializer with weights sampled from the Uniform distribution.

See He for a description of the parameters.

class lasagne.init.Orthogonal(gain=1.0)
Intialize weights as Orthogonal matrix.

Orthogonal matrix initialization [R6]. For n-dimensional shapes where n > 2, the n-1 trailing axes are flattened.
For convolutional layers, this corresponds to the fan-in, so this makes the initialization usable for both dense
and convolutional layers.

Parameters gain : float or ‘relu’

Scaling factor for the weights. Set this to 1.0 for linear and sigmoid units, to ‘relu’
or sqrt(2) for rectified linear units, and to sqrt(2/(1+alpha**2)) for leaky
rectified linear units with leakiness alpha. Other transfer functions may need different
factors.

References

[R6]

class lasagne.init.Sparse(sparsity=0.1, std=0.01)
Initialize weights as sparse matrix.

Parameters sparsity : float

Exact fraction of non-zero values per column. Larger values give less sparsity.

std : float

Non-zero weights are sampled from N(0, std).

2.3. lasagne.init 105

lasagne Documentation, Release 0.2.dev1

lasagne.nonlinearities

Non-linear activation functions for artificial neurons.

sigmoid(x) Sigmoid activation function 𝜙(𝑥) = 1
1+𝑒−𝑥

softmax(x) Softmax activation function 𝜙(x)𝑗 = 𝑒x𝑗∑︀𝐾
𝑘=1 𝑒x𝑘

where 𝐾

is the total number of neurons in the layer.
tanh(x) Tanh activation function 𝜙(𝑥) = tanh(𝑥)
ScaledTanH([scale_in, scale_out]) Scaled tanh 𝜙(𝑥) = tanh(𝛼 · 𝑥) · 𝛽
rectify(x) Rectify activation function 𝜙(𝑥) = max(0, 𝑥)
LeakyRectify([leakiness]) Leaky rectifier 𝜙(𝑥) = max(𝛼 · 𝑥, 𝑥)
leaky_rectify(x) Instance of LeakyRectify with leakiness 𝛼 = 0.01
very_leaky_rectify(x) Instance of LeakyRectify with leakiness 𝛼 = 1/3
elu(x) Exponential Linear Unit 𝜙(𝑥) = (𝑥 > 0)?𝑥 : 𝑒𝑥 − 1
softplus(x) Softplus activation function 𝜙(𝑥) = log(1 + 𝑒𝑥)
linear(x) Linear activation function 𝜙(𝑥) = 𝑥
identity(x) Linear activation function 𝜙(𝑥) = 𝑥

Detailed description

lasagne.nonlinearities.sigmoid(x)
Sigmoid activation function 𝜙(𝑥) = 1

1+𝑒−𝑥

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 in [0, 1]

The output of the sigmoid function applied to the activation.

lasagne.nonlinearities.softmax(x)
Softmax activation function 𝜙(x)𝑗 = 𝑒x𝑗∑︀𝐾

𝑘=1 𝑒x𝑘
where 𝐾 is the total number of neurons in the layer. This

activation function gets applied row-wise.

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 where the sum of the row is 1 and each single value is in [0, 1]

The output of the softmax function applied to the activation.

lasagne.nonlinearities.tanh(x)
Tanh activation function 𝜙(𝑥) = tanh(𝑥)

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32 in [-1, 1]

The output of the tanh function applied to the activation.

class lasagne.nonlinearities.ScaledTanH(scale_in=1, scale_out=1)
Scaled tanh 𝜙(𝑥) = tanh(𝛼 · 𝑥) · 𝛽

This is a modified tanh function which allows to rescale both the input and the output of the activation.

106 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Scaling the input down will result in decreasing the maximum slope of the tanh and as a result it will be in the
linear regime in a larger interval of the input space. Scaling the input up will increase the maximum slope of the
tanh and thus bring it closer to a step function.

Scaling the output changes the output interval to [−𝛽, 𝛽].

Parameters scale_in : float32

The scale parameter 𝛼 for the input

scale_out : float32

The scale parameter 𝛽 for the output

Notes

LeCun et al. (in [R71], Section 4.4) suggest scale_in=2./3 and scale_out=1.7159, which has
𝜙(±1) = ±1, maximum second derivative at 1, and an effective gain close to 1.

By carefully matching 𝛼 and 𝛽, the nonlinearity can also be tuned to preserve the mean and variance of its input:

•scale_in=0.5, scale_out=2.4: If the input is a random normal variable, the output will have zero
mean and unit variance.

•scale_in=1, scale_out=1.6: Same property, but with a smaller linear regime in input space.

•scale_in=0.5, scale_out=2.27: If the input is a uniform normal variable, the output will have
zero mean and unit variance.

•scale_in=1, scale_out=1.48: Same property, but with a smaller linear regime in input space.

References

[R71], [R72]

Examples

In contrast to other activation functions in this module, this is a class that needs to be instantiated to obtain a
callable:

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((None, 100))
>>> from lasagne.nonlinearities import ScaledTanH
>>> scaled_tanh = ScaledTanH(scale_in=0.5, scale_out=2.27)
>>> l1 = DenseLayer(l_in, num_units=200, nonlinearity=scaled_tanh)

Methods

__call__(x) Apply the scaled tanh function to the activation x.

lasagne.nonlinearities.ScaledTanh
alias of ScaledTanH

lasagne.nonlinearities.rectify(x)
Rectify activation function 𝜙(𝑥) = max(0, 𝑥)

2.4. lasagne.nonlinearities 107

lasagne Documentation, Release 0.2.dev1

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the rectify function applied to the activation.

class lasagne.nonlinearities.LeakyRectify(leakiness=0.01)
Leaky rectifier 𝜙(𝑥) = max(𝛼 · 𝑥, 𝑥)

The leaky rectifier was introduced in [R73]. Compared to the standard rectifier rectify(), it has a nonzero
gradient for negative input, which often helps convergence.

Parameters leakiness : float

Slope for negative input, usually between 0 and 1. A leakiness of 0 will lead to the
standard rectifier, a leakiness of 1 will lead to a linear activation function, and any value
in between will give a leaky rectifier.

See also:

leaky_rectify Instance with default leakiness of 0.01, as in [R73].

very_leaky_rectify Instance with high leakiness of 1/3, as in [R74].

References

[R73], [R74]

Examples

In contrast to other activation functions in this module, this is a class that needs to be instantiated to obtain a
callable:

>>> from lasagne.layers import InputLayer, DenseLayer
>>> l_in = InputLayer((None, 100))
>>> from lasagne.nonlinearities import LeakyRectify
>>> custom_rectify = LeakyRectify(0.1)
>>> l1 = DenseLayer(l_in, num_units=200, nonlinearity=custom_rectify)

Alternatively, you can use the provided instance for leakiness=0.01:

>>> from lasagne.nonlinearities import leaky_rectify
>>> l2 = DenseLayer(l_in, num_units=200, nonlinearity=leaky_rectify)

Or the one for a high leakiness of 1/3:

>>> from lasagne.nonlinearities import very_leaky_rectify
>>> l3 = DenseLayer(l_in, num_units=200, nonlinearity=very_leaky_rectify)

Methods

__call__(x) Apply the leaky rectify function to the activation x.

lasagne.nonlinearities.leaky_rectify(x)
Instance of LeakyRectify with leakiness 𝛼 = 0.01

108 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

lasagne.nonlinearities.very_leaky_rectify(x)
Instance of LeakyRectify with leakiness 𝛼 = 1/3

lasagne.nonlinearities.elu(x)
Exponential Linear Unit 𝜙(𝑥) = (𝑥 > 0)?𝑥 : 𝑒𝑥 − 1

The Exponential Linear Unit (ELU) was introduced in [R75]. Compared to the linear rectifier rectify(),
it has a mean activation closer to zero and nonzero gradient for negative input, which can help convergence.
Compared to the leaky rectifier LeakyRectify , it saturates for highly negative inputs.

Parameters x : float32

The activation (the summed, weighed input of a neuron).

Returns float32

The output of the exponential linear unit for the activation.

Notes

In [R75], an additional parameter 𝛼 controls the (negative) saturation value for negative inputs, but is set to 1
for all experiments. It is omitted here.

References

[R75]

lasagne.nonlinearities.softplus(x)
Softplus activation function 𝜙(𝑥) = log(1 + 𝑒𝑥)

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the softplus function applied to the activation.

lasagne.nonlinearities.linear(x)
Linear activation function 𝜙(𝑥) = 𝑥

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the identity applied to the activation.

lasagne.nonlinearities.identity(x)
Linear activation function 𝜙(𝑥) = 𝑥

Parameters x : float32

The activation (the summed, weighted input of a neuron).

Returns float32

The output of the identity applied to the activation.

2.4. lasagne.nonlinearities 109

lasagne Documentation, Release 0.2.dev1

lasagne.objectives

Provides some minimal help with building loss expressions for training or validating a neural network.

Five functions build element- or item-wise loss expressions from network predictions and targets:

binary_crossentropy Computes the binary cross-entropy between predictions
and targets.

categorical_crossentropy Computes the categorical cross-entropy between predic-
tions and targets.

squared_error Computes the element-wise squared difference between
two tensors.

binary_hinge_loss Computes the binary hinge loss between predictions and
targets.

multiclass_hinge_loss Computes the multi-class hinge loss between predictions
and targets.

A convenience function aggregates such losses into a scalar expression suitable for differentiation:

aggregate Aggregates an element- or item-wise loss to a scalar loss.

Note that these functions only serve to write more readable code, but are completely optional. Essentially, any differ-
entiable scalar Theano expression can be used as a training objective.

Finally, two functions compute evaluation measures that are useful for validation and testing only, not for training:

binary_accuracy Computes the binary accuracy between predictions and tar-
gets.

categorical_accuracy Computes the categorical accuracy between predictions
and targets.

Those can also be aggregated into a scalar expression if needed.

Examples

Assuming you have a simple neural network for 3-way classification:

>>> from lasagne.layers import InputLayer, DenseLayer, get_output
>>> from lasagne.nonlinearities import softmax, rectify
>>> l_in = InputLayer((100, 20))
>>> l_hid = DenseLayer(l_in, num_units=30, nonlinearity=rectify)
>>> l_out = DenseLayer(l_hid, num_units=3, nonlinearity=softmax)

And Theano variables representing your network input and targets:

>>> import theano
>>> data = theano.tensor.matrix('data')
>>> targets = theano.tensor.matrix('targets')

You’d first construct an element-wise loss expression:

110 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

>>> from lasagne.objectives import categorical_crossentropy, aggregate
>>> predictions = get_output(l_out, data)
>>> loss = categorical_crossentropy(predictions, targets)

Then aggregate it into a scalar (you could also just call mean() on it):

>>> loss = aggregate(loss, mode='mean')

Finally, this gives a loss expression you can pass to any of the update methods in lasagne.updates. For validation
of a network, you will usually want to repeat these steps with deterministic network output, i.e., without dropout or
any other nondeterministic computation in between:

>>> test_predictions = get_output(l_out, data, deterministic=True)
>>> test_loss = categorical_crossentropy(test_predictions, targets)
>>> test_loss = aggregate(test_loss)

This gives a loss expression good for monitoring validation error.

Loss functions

lasagne.objectives.binary_crossentropy(predictions, targets)
Computes the binary cross-entropy between predictions and targets.

𝐿 = −𝑡 log(𝑝)− (1− 𝑡) log(1− 𝑝)

Parameters predictions : Theano tensor

Predictions in (0, 1), such as sigmoidal output of a neural network.

targets : Theano tensor

Targets in [0, 1], such as ground truth labels.

Returns Theano tensor

An expression for the element-wise binary cross-entropy.

Notes

This is the loss function of choice for binary classification problems and sigmoid output units.

lasagne.objectives.categorical_crossentropy(predictions, targets)
Computes the categorical cross-entropy between predictions and targets.

𝐿𝑖 = −
∑︁
𝑗

𝑡𝑖,𝑗 log(𝑝𝑖,𝑗)

Parameters predictions : Theano 2D tensor

Predictions in (0, 1), such as softmax output of a neural network, with data points in
rows and class probabilities in columns.

targets : Theano 2D tensor or 1D tensor

Either targets in [0, 1] matching the layout of predictions, or a vector of int giving the
correct class index per data point.

Returns Theano 1D tensor

An expression for the item-wise categorical cross-entropy.

2.5. lasagne.objectives 111

lasagne Documentation, Release 0.2.dev1

Notes

This is the loss function of choice for multi-class classification problems and softmax output units. For hard
targets, i.e., targets that assign all of the probability to a single class per data point, providing a vector of int for
the targets is usually slightly more efficient than providing a matrix with a single 1.0 per row.

lasagne.objectives.squared_error(a, b)
Computes the element-wise squared difference between two tensors.

𝐿 = (𝑝− 𝑡)2

Parameters a, b : Theano tensor

The tensors to compute the squared difference between.

Returns Theano tensor

An expression for the element-wise squared difference.

Notes

This is the loss function of choice for many regression problems or auto-encoders with linear output units.

lasagne.objectives.binary_hinge_loss(predictions, targets, delta=1, log_odds=None, bi-
nary=True)

Computes the binary hinge loss between predictions and targets.

𝐿𝑖 = max(0, 𝛿 − 𝑡𝑖𝑝𝑖)

Parameters predictions : Theano tensor

Predictions in (0, 1), such as sigmoidal output of a neural network (or log-odds of
predictions depending on log_odds).

targets : Theano tensor

Targets in {0, 1} (or in {-1, 1} depending on binary), such as ground truth labels.

delta : scalar, default 1

The hinge loss margin

log_odds : bool, default None

False if predictions are sigmoid outputs in (0, 1), True if predictions are sigmoid
inputs, or log-odds. If None, will assume True, but warn that the default will change
to False.

binary : bool, default True

True if targets are in {0, 1}, False if they are in {-1, 1}

Returns Theano tensor

An expression for the element-wise binary hinge loss

Notes

This is an alternative to the binary cross-entropy loss for binary classification problems.

112 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Note that it is a drop-in replacement only when giving log_odds=False. Otherwise, it requires log-odds
rather than sigmoid outputs. Be aware that depending on the Theano version, log_odds=False with a
sigmoid output layer may be less stable than log_odds=True with a linear layer.

lasagne.objectives.multiclass_hinge_loss(predictions, targets, delta=1)
Computes the multi-class hinge loss between predictions and targets.

𝐿𝑖 = max
𝑗 ̸=𝑝𝑖

(0, 𝑡𝑗 − 𝑡𝑝𝑖
+ 𝛿)

Parameters predictions : Theano 2D tensor

Predictions in (0, 1), such as softmax output of a neural network, with data points in
rows and class probabilities in columns.

targets : Theano 2D tensor or 1D tensor

Either a vector of int giving the correct class index per data point or a 2D tensor of one-
hot encoding of the correct class in the same layout as predictions (non-binary targets
in [0, 1] do not work!)

delta : scalar, default 1

The hinge loss margin

Returns Theano 1D tensor

An expression for the item-wise multi-class hinge loss

Notes

This is an alternative to the categorical cross-entropy loss for multi-class classification problems

Aggregation functions

lasagne.objectives.aggregate(loss, weights=None, mode=’mean’)
Aggregates an element- or item-wise loss to a scalar loss.

Parameters loss : Theano tensor

The loss expression to aggregate.

weights : Theano tensor, optional

The weights for each element or item, must be broadcastable to the same shape as loss
if given. If omitted, all elements will be weighted the same.

mode : {‘mean’, ‘sum’, ‘normalized_sum’}

Whether to aggregate by averaging, by summing or by summing and dividing by the
total weights (which requires weights to be given).

Returns Theano scalar

A scalar loss expression suitable for differentiation.

2.5. lasagne.objectives 113

lasagne Documentation, Release 0.2.dev1

Notes

By supplying binary weights (i.e., only using values 0 and 1), this function can also be used for masking out
particular entries in the loss expression. Note that masked entries still need to be valid values, not-a-numbers
(NaNs) will propagate through.

When applied to batch-wise loss expressions, setting mode to 'normalized_sum' ensures that the loss per
batch is of a similar magnitude, independent of associated weights. However, it means that a given data point
contributes more to the loss when it shares a batch with low-weighted or masked data points than with high-
weighted ones.

Evaluation functions

lasagne.objectives.binary_accuracy(predictions, targets, threshold=0.5)
Computes the binary accuracy between predictions and targets.

𝐿𝑖 = I(𝑡𝑖 = I(𝑝𝑖 ≥ 𝛼))

Parameters predictions : Theano tensor

Predictions in [0, 1], such as a sigmoidal output of a neural network, giving the proba-
bility of the positive class

targets : Theano tensor

Targets in {0, 1}, such as ground truth labels.

threshold : scalar, default: 0.5

Specifies at what threshold to consider the predictions being of the positive class

Returns Theano tensor

An expression for the element-wise binary accuracy in {0, 1}

Notes

This objective function should not be used with a gradient calculation; its gradient is zero everywhere. It is
intended as a convenience for validation and testing, not training.

To obtain the average accuracy, call theano.tensor.mean() on the result, passing dtype=theano.
config.floatX to compute the mean on GPU.

lasagne.objectives.categorical_accuracy(predictions, targets, top_k=1)
Computes the categorical accuracy between predictions and targets.

𝐿𝑖 = I(𝑡𝑖 = argmax𝑐 𝑝𝑖,𝑐)

Can be relaxed to allow matches among the top 𝑘 predictions:

𝐿𝑖 = I(𝑡𝑖 ∈ argsort𝑐(−𝑝𝑖,𝑐):𝑘)

Parameters predictions : Theano 2D tensor

Predictions in (0, 1), such as softmax output of a neural network, with data points in
rows and class probabilities in columns.

targets : Theano 2D tensor or 1D tensor

114 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

Either a vector of int giving the correct class index per data point or a 2D tensor of 1 hot
encoding of the correct class in the same layout as predictions

top_k : int

Regard a prediction to be correct if the target class is among the top_k largest class
probabilities. For the default value of 1, a prediction is correct only if the target class is
the most probable.

Returns Theano 1D tensor

An expression for the item-wise categorical accuracy in {0, 1}

Notes

This is a strictly non differential function as it includes an argmax. This objective function should never be used
with a gradient calculation. It is intended as a convenience for validation and testing not training.

To obtain the average accuracy, call theano.tensor.mean() on the result, passing dtype=theano.
config.floatX to compute the mean on GPU.

lasagne.regularization

Functions to apply regularization to the weights in a network.

We provide functions to calculate the L1 and L2 penalty. Penalty functions take a tensor as input and calculate the
penalty contribution from that tensor:

l1 Computes the L1 norm of a tensor
l2 Computes the squared L2 norm of a tensor

A helper function can be used to apply a penalty function to a tensor or a list of tensors:

apply_penalty Computes the total cost for applying a specified penalty to
a tensor or group of tensors.

Finally we provide two helper functions for applying a penalty function to the parameters in a layer or the parameters
in a group of layers:

regularize_layer_params_weighted Computes a regularization cost by applying a penalty to
the parameters of a layer or group of layers, weighted by a
coefficient for each layer.

regularize_network_params Computes a regularization cost by applying a penalty to the
parameters of all layers in a network.

Examples

>>> import lasagne
>>> import theano.tensor as T
>>> import theano
>>> from lasagne.nonlinearities import softmax
>>> from lasagne.layers import InputLayer, DenseLayer, get_output

2.6. lasagne.regularization 115

lasagne Documentation, Release 0.2.dev1

>>> from lasagne.regularization import regularize_layer_params_weighted, l2, l1
>>> from lasagne.regularization import regularize_layer_params
>>> layer_in = InputLayer((100, 20))
>>> layer1 = DenseLayer(layer_in, num_units=3)
>>> layer2 = DenseLayer(layer1, num_units=5, nonlinearity=softmax)
>>> x = T.matrix('x') # shp: num_batch x num_features
>>> y = T.ivector('y') # shp: num_batch
>>> l_out = get_output(layer2, x)
>>> loss = T.mean(T.nnet.categorical_crossentropy(l_out, y))
>>> layers = {layer1: 0.1, layer2: 0.5}
>>> l2_penalty = regularize_layer_params_weighted(layers, l2)
>>> l1_penalty = regularize_layer_params(layer2, l1) * 1e-4
>>> loss = loss + l2_penalty + l1_penalty

Helper functions

lasagne.regularization.apply_penalty(tensor_or_tensors, penalty, **kwargs)
Computes the total cost for applying a specified penalty to a tensor or group of tensors.

Parameters tensor_or_tensors : Theano tensor or list of tensors

penalty : callable

**kwargs

keyword arguments passed to penalty.

Returns Theano scalar

a scalar expression for the total penalty cost

lasagne.regularization.regularize_layer_params(layer, penalty, tags={‘regularizable’:
True}, **kwargs)

Computes a regularization cost by applying a penalty to the parameters of a layer or group of layers.

Parameters layer : a Layer instances or list of layers.

penalty : callable

tags: dict

Tag specifications which filter the parameters of the layer or layers. By default, only
parameters with the regularizable tag are included.

**kwargs

keyword arguments passed to penalty.

Returns Theano scalar

a scalar expression for the cost

lasagne.regularization.regularize_layer_params_weighted(layers, penalty,
tags={‘regularizable’:
True}, **kwargs)

Computes a regularization cost by applying a penalty to the parameters of a layer or group of layers, weighted
by a coefficient for each layer.

Parameters layers : dict

A mapping from Layer instances to coefficients.

116 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

penalty : callable

tags: dict

Tag specifications which filter the parameters of the layer or layers. By default, only
parameters with the regularizable tag are included.

**kwargs

keyword arguments passed to penalty.

Returns Theano scalar

a scalar expression for the cost

lasagne.regularization.regularize_network_params(layer, penalty, tags={‘regularizable’:
True}, **kwargs)

Computes a regularization cost by applying a penalty to the parameters of all layers in a network.

Parameters layer : a Layer instance.

Parameters of this layer and all layers below it will be penalized.

penalty : callable

tags: dict

Tag specifications which filter the parameters of the layer or layers. By default, only
parameters with the regularizable tag are included.

**kwargs

keyword arguments passed to penalty.

Returns Theano scalar

a scalar expression for the cost

Penalty functions

lasagne.regularization.l1(x)
Computes the L1 norm of a tensor

Parameters x : Theano tensor

Returns Theano scalar

l1 norm (sum of absolute values of elements)

lasagne.regularization.l2(x)
Computes the squared L2 norm of a tensor

Parameters x : Theano tensor

Returns Theano scalar

squared l2 norm (sum of squared values of elements)

lasagne.random

A module with a package-wide random number generator, used for weight initialization and seeding noise layers. This
can be replaced by a numpy.random.RandomState instance with a particular seed to facilitate reproducibility.

2.7. lasagne.random 117

lasagne Documentation, Release 0.2.dev1

lasagne.random.get_rng()
Get the package-level random number generator.

Returns numpy.random.RandomState instance

The numpy.random.RandomState instance passed to the most recent call of
set_rng(), or numpy.random if set_rng() has never been called.

lasagne.random.set_rng(new_rng)
Set the package-level random number generator.

Parameters new_rng : numpy.random or a numpy.random.RandomState instance

The random number generator to use.

lasagne.utils

lasagne.utils.floatX(arr)
Converts data to a numpy array of dtype theano.config.floatX.

Parameters arr : array_like

The data to be converted.

Returns numpy ndarray

The input array in the floatX dtype configured for Theano. If arr is an ndarray of
correct dtype, it is returned as is.

lasagne.utils.shared_empty(dim=2, dtype=None)
Creates empty Theano shared variable.

Shortcut to create an empty Theano shared variable with the specified number of dimensions.

Parameters dim : int, optional

The number of dimensions for the empty variable, defaults to 2.

dtype : a numpy data-type, optional

The desired dtype for the variable. Defaults to the Theano floatX dtype.

Returns Theano shared variable

An empty Theano shared variable of dtype dtype with dim dimensions.

lasagne.utils.as_theano_expression(input)
Wrap as Theano expression.

Wraps the given input as a Theano constant if it is not a valid Theano expression already. Useful to transparently
handle numpy arrays and Python scalars, for example.

Parameters input : number, numpy array or Theano expression

Expression to be converted to a Theano constant.

Returns Theano symbolic constant

Theano constant version of input.

lasagne.utils.collect_shared_vars(expressions)
Returns all shared variables the given expression(s) depend on.

Parameters expressions : Theano expression or iterable of Theano expressions

118 Chapter 2. API Reference

lasagne Documentation, Release 0.2.dev1

The expressions to collect shared variables from.

Returns list of Theano shared variables

All shared variables the given expression(s) depend on, in fixed order (as found by a
left-recursive depth-first search). If some expressions are shared variables themselves,
they are included in the result.

lasagne.utils.one_hot(x, m=None)
One-hot representation of integer vector.

Given a vector of integers from 0 to m-1, returns a matrix with a one-hot representation, where each row
corresponds to an element of x.

Parameters x : integer vector

The integer vector to convert to a one-hot representation.

m : int, optional

The number of different columns for the one-hot representation. This needs to be strictly
greater than the maximum value of x. Defaults to max(x) + 1.

Returns Theano tensor variable

A Theano tensor variable of shape (n, m), where n is the length of x, with the one-hot
representation of x.

Notes

If your integer vector represents target class memberships, and you wish to compute the cross-entropy between
predictions and the target class memberships, then there is no need to use this function, since the function
lasagne.objectives.categorical_crossentropy() can compute the cross-entropy from the in-
teger vector directly.

lasagne.utils.unique(l)
Filters duplicates of iterable.

Create a new list from l with duplicate entries removed, while preserving the original order.

Parameters l : iterable

Input iterable to filter of duplicates.

Returns list

A list of elements of l without duplicates and in the same order.

lasagne.utils.compute_norms(array, norm_axes=None)
Compute incoming weight vector norms.

Parameters array : numpy array or Theano expression

Weight or bias.

norm_axes : sequence (list or tuple)

The axes over which to compute the norm. This overrides the default norm axes defined
for the number of dimensions in array. When this is not specified and array is a 2D
array, this is set to (0,). If array is a 3D, 4D or 5D array, it is set to a tuple listing all
axes but axis 0. The former default is useful for working with dense layers, the latter
is useful for 1D, 2D and 3D convolutional layers. Finally, in case array is a vector,
norm_axes is set to an empty tuple, and this function will simply return the absolute

2.8. lasagne.utils 119

lasagne Documentation, Release 0.2.dev1

value for each element. This is useful when the function is applied to all parameters of
the network, including the bias, without distinction. (Optional)

Returns norms : 1D array or Theano vector (1D)

1D array or Theano vector of incoming weight/bias vector norms.

Examples

>>> array = np.random.randn(100, 200)
>>> norms = compute_norms(array)
>>> norms.shape
(200,)

>>> norms = compute_norms(array, norm_axes=(1,))
>>> norms.shape
(100,)

lasagne.utils.create_param(spec, shape, name=None)
Helper method to create Theano shared variables for layer parameters and to initialize them.

Parameters spec : scalar number, numpy array, Theano expression, or callable

Either of the following:

• a scalar or a numpy array with the initial parameter values

• a Theano expression or shared variable representing the parameters

• a function or callable that takes the desired shape of the parameter array as its sin-
gle argument and returns a numpy array, a Theano expression, or a shared variable
representing the parameters.

shape : iterable of int

a tuple or other iterable of integers representing the desired shape of the parameter array.

name : string, optional

The name to give to the parameter variable. Ignored if spec is or returns a Theano
expression or shared variable that already has a name.

Returns Theano shared variable or Theano expression

A Theano shared variable or expression representing layer parameters. If a scalar or
a numpy array was provided, a shared variable is initialized to contain this array. If
a shared variable or expression was provided, it is simply returned. If a callable was
provided, it is called, and its output is used to initialize a shared variable.

Notes

This function is called by Layer.add_param() in the constructor of most Layer subclasses. This enables
those layers to support initialization with scalars, numpy arrays, existing Theano shared variables or expressions,
and callables for generating initial parameter values, Theano expressions, or shared variables.

120 Chapter 2. API Reference

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

121

lasagne Documentation, Release 0.2.dev1

122 Chapter 3. Indices and tables

Bibliography

[Hinton2012] Improving neural networks by preventing co-adaptation of feature detectors. http://arxiv.org/abs/1207.
0580

[R35] Lin, Min, Qiang Chen, and Shuicheng Yan (2013): Network in network. arXiv preprint arXiv:1312.4400.

[R33] Vincent Dumoulin, Francesco Visin (2016): A guide to convolution arithmetic for deep learning. arXiv. http:
//arxiv.org/abs/1603.07285, https://github.com/vdumoulin/conv_arithmetic

[R34] Fisher Yu, Vladlen Koltun (2016), Multi-Scale Context Aggregation by Dilated Convolutions. ICLR 2016.
http://arxiv.org/abs/1511.07122, https://github.com/fyu/dilation

[R42] He, Kaiming et al (2015): Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
http://arxiv.org/pdf/1406.4729.pdf.

[R52] Graves, Alex: “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

[R53] Graves, Alex: “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

[R54] Graves, Alex: “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

[R55] Cho, Kyunghyun, et al: On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259 (2014).

[R56] Chung, Junyoung, et al.: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv preprint arXiv:1412.3555 (2014).

[R57] Graves, Alex: “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).

[R58] Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. “Learning to forget: Continual prediction with
LSTM.” Neural computation 12.10 (2000): 2451-2471.

[R37] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. R. (2012): Improving neural net-
works by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

[R38] Srivastava Nitish, Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2014): Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 5(Jun)(2), 1929-1958.

[R39] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, C. Bregler (2014): Efficient Object Localization Using Convolu-
tional Networks. https://arxiv.org/abs/1411.4280

[R40] K.-C. Jim, C. Giles, and B. Horne (1996): An analysis of noise in recurrent neural networks: convergence and
generalization. IEEE Transactions on Neural Networks, 7(6):1424-1438.

123

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic
http://arxiv.org/abs/1511.07122
https://github.com/fyu/dilation
http://arxiv.org/pdf/1406.4729.pdf
https://arxiv.org/abs/1411.4280

lasagne Documentation, Release 0.2.dev1

[R41] Ioffe, Sergey and Szegedy, Christian (2015): Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. http://arxiv.org/abs/1502.03167.

[R59] Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu (2015): Spatial Transformer Net-
works. NIPS 2015, http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf

[R61] Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu (2015): Spatial Transformer Net-
works. NIPS 2015, http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf

[R62] Fred L. Bookstein (1989): Principal warps: thin-plate splines and the decomposition of deformations. IEEE
Transactions on Pattern Analysis and Machine Intelligence. http://doi.org/10.1109/34.24792

[R63] K He, X Zhang et al. (2015): Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification, http://arxiv.org/abs/1502.01852

[R64] Bing Xu, Naiyan Wang et al. (2015): Empirical Evaluation of Rectified Activations in Convolutional Network,
http://arxiv.org/abs/1505.00853

[R36] He, Kaiming et al (2015): Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
http://arxiv.org/pdf/1406.4729.pdf.

[R84] Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic
optimization. JMLR, 12:2121-2159.

[R85] Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf

[R86] Tieleman, T. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5 - rmsprop. Coursera.
http://www.youtube.com/watch?v=O3sxAc4hxZU (formula @5:20)

[R87] Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701.

[R88] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

[R89] Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

[R90] Sutskever, I., Vinyals, O., & Le, Q. V. (2014): Sequence to sequence learning with neural networks. In Ad-
vances in Neural Information Processing Systems (pp. 3104-3112).

[R4] Xavier Glorot and Yoshua Bengio (2010): Understanding the difficulty of training deep feedforward neural
networks. International conference on artificial intelligence and statistics.

[R5] Kaiming He et al. (2015): Delving deep into rectifiers: Surpassing human-level performance on imagenet clas-
sification. arXiv preprint arXiv:1502.01852.

[R6] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. “Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks.” arXiv preprint arXiv:1312.6120 (2013).

[R71] LeCun, Yann A., et al. (1998): Efficient BackProp, http://link.springer.com/chapter/10.1007/3-540-49430-8_2,
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

[R72] Masci, Jonathan, et al. (2011): Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction, http:
//link.springer.com/chapter/10.1007/978-3-642-21735-7_7, http://people.idsia.ch/~ciresan/data/icann2011.pdf

[R73] Maas et al. (2013): Rectifier Nonlinearities Improve Neural Network Acoustic Models, http://web.stanford.
edu/~awni/papers/relu_hybrid_icml2013_final.pdf

[R74] Graham, Benjamin (2014): Spatially-sparse convolutional neural networks, http://arxiv.org/abs/1409.6070

[R75] Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter (2015): Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs), http://arxiv.org/abs/1511.07289

124 Bibliography

http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://doi.org/10.1109/34.24792
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1505.00853
http://arxiv.org/pdf/1406.4729.pdf
http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
http://www.youtube.com/watch?v=O3sxAc4hxZU
http://link.springer.com/chapter/10.1007/3-540-49430-8_2
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://link.springer.com/chapter/10.1007/978-3-642-21735-7_7
http://link.springer.com/chapter/10.1007/978-3-642-21735-7_7
http://people.idsia.ch/~ciresan/data/icann2011.pdf
http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
http://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
http://arxiv.org/abs/1409.6070
http://arxiv.org/abs/1511.07289

Python Module Index

l
lasagne.init, 102
lasagne.layers, 23
lasagne.layers.base, 28
lasagne.layers.conv, 33
lasagne.layers.corrmm, 75
lasagne.layers.cuda_convnet, 76
lasagne.layers.dense, 31
lasagne.layers.dnn, 81
lasagne.layers.embedding, 67
lasagne.layers.helper, 23
lasagne.layers.input, 31
lasagne.layers.local, 40
lasagne.layers.merge, 62
lasagne.layers.noise, 57
lasagne.layers.normalization, 63
lasagne.layers.pool, 42
lasagne.layers.recurrent, 48
lasagne.layers.shape, 59
lasagne.layers.special, 67
lasagne.nonlinearities, 106
lasagne.objectives, 110
lasagne.random, 117
lasagne.regularization, 115
lasagne.updates, 92
lasagne.utils, 118

125

lasagne Documentation, Release 0.2.dev1

126 Python Module Index

Index

A
adadelta() (in module lasagne.updates), 97
adagrad() (in module lasagne.updates), 95
adam() (in module lasagne.updates), 97
adamax() (in module lasagne.updates), 98
add_param() (lasagne.layers.Layer method), 28
aggregate() (in module lasagne.objectives), 113
apply_momentum() (in module lasagne.updates), 99
apply_nesterov_momentum() (in module

lasagne.updates), 99
apply_penalty() (in module lasagne.regularization), 116
as_theano_expression() (in module lasagne.utils), 118

B
batch_norm() (in module lasagne.layers), 66
batch_norm_dnn() (in module lasagne.layers.dnn), 88
BatchNormDNNLayer (class in lasagne.layers.dnn), 87
BatchNormLayer (class in lasagne.layers), 64
bc01_to_c01b (in module lasagne.layers.cuda_convnet),

80
BiasLayer (class in lasagne.layers), 67
binary_accuracy() (in module lasagne.objectives), 114
binary_crossentropy() (in module lasagne.objectives),

111
binary_hinge_loss() (in module lasagne.objectives), 112

C
c01b_to_bc01 (in module lasagne.layers.cuda_convnet),

81
categorical_accuracy() (in module lasagne.objectives),

114
categorical_crossentropy() (in module

lasagne.objectives), 111
collect_shared_vars() (in module lasagne.utils), 118
compute_norms() (in module lasagne.utils), 119
concat (in module lasagne.layers), 62
ConcatLayer (class in lasagne.layers), 62
Constant (class in lasagne.init), 103
Conv1DLayer (class in lasagne.layers), 33

Conv2DCCLayer (class in lasagne.layers.cuda_convnet),
76

Conv2DDNNLayer (class in lasagne.layers.dnn), 83
Conv2DLayer (class in lasagne.layers), 35
Conv2DMMLayer (class in lasagne.layers.corrmm), 75
Conv3DDNNLayer (class in lasagne.layers.dnn), 85
count_params() (in module lasagne.layers), 26
create_param() (in module lasagne.utils), 120
CustomRecurrentLayer (class in lasagne.layers), 48

D
Deconv2DLayer (in module lasagne.layers), 38
DenseLayer (class in lasagne.layers), 31
DilatedConv2DLayer (class in lasagne.layers), 38
dimshuffle (in module lasagne.layers), 61
DimshuffleLayer (class in lasagne.layers), 60
dropout (in module lasagne.layers), 58
dropout_channels() (in module lasagne.layers), 58
dropout_locations() (in module lasagne.layers), 58
DropoutLayer (class in lasagne.layers), 57

E
ElemwiseMergeLayer (class in lasagne.layers), 62
ElemwiseSumLayer (class in lasagne.layers), 63
elu() (in module lasagne.nonlinearities), 109
EmbeddingLayer (class in lasagne.layers), 67
ExpressionLayer (class in lasagne.layers), 69

F
FeaturePoolLayer (class in lasagne.layers), 46
FeatureWTALayer (class in lasagne.layers), 46
flatten (in module lasagne.layers), 60
FlattenLayer (class in lasagne.layers), 60
floatX() (in module lasagne.utils), 118

G
Gate (class in lasagne.layers), 56
GaussianNoiseLayer (class in lasagne.layers), 59
get_all_layers() (in module lasagne.layers), 24

127

lasagne Documentation, Release 0.2.dev1

get_all_param_values() (in module lasagne.layers), 26
get_all_params() (in module lasagne.layers), 25
get_output() (in module lasagne.layers), 23
get_output_for() (lasagne.layers.CustomRecurrentLayer

method), 51
get_output_for() (lasagne.layers.GaussianNoiseLayer

method), 59
get_output_for() (lasagne.layers.GRULayer method), 56
get_output_for() (lasagne.layers.Layer method), 29
get_output_for() (lasagne.layers.LSTMLayer method),

54
get_output_for() (lasagne.layers.MergeLayer method), 30
get_output_for() (lasagne.layers.RandomizedRectifierLayer

method), 74
get_output_shape() (in module lasagne.layers), 24
get_output_shape_for() (lasagne.layers.Layer method),

29
get_output_shape_for() (lasagne.layers.MergeLayer

method), 30
get_params() (lasagne.layers.Layer method), 29
get_rng() (in module lasagne.random), 117
GlobalPoolLayer (class in lasagne.layers), 46
Glorot (class in lasagne.init), 103
GlorotNormal (class in lasagne.init), 104
GlorotUniform (class in lasagne.init), 104
GRULayer (class in lasagne.layers), 54

H
He (class in lasagne.init), 104
HeNormal (class in lasagne.init), 105
HeUniform (class in lasagne.init), 105

I
identity() (in module lasagne.nonlinearities), 109
Initializer (class in lasagne.init), 103
InputLayer (class in lasagne.layers), 31
InverseLayer (class in lasagne.layers), 70

L
l1() (in module lasagne.regularization), 117
l2() (in module lasagne.regularization), 117
lasagne.init (module), 102
lasagne.layers (module), 23
lasagne.layers.base (module), 28
lasagne.layers.conv (module), 33
lasagne.layers.corrmm (module), 75
lasagne.layers.cuda_convnet (module), 76
lasagne.layers.dense (module), 31
lasagne.layers.dnn (module), 81
lasagne.layers.embedding (module), 67
lasagne.layers.helper (module), 23
lasagne.layers.input (module), 31
lasagne.layers.local (module), 40
lasagne.layers.merge (module), 62

lasagne.layers.noise (module), 57
lasagne.layers.normalization (module), 63
lasagne.layers.pool (module), 42
lasagne.layers.recurrent (module), 48
lasagne.layers.shape (module), 59
lasagne.layers.special (module), 67
lasagne.nonlinearities (module), 106
lasagne.objectives (module), 110
lasagne.random (module), 117
lasagne.regularization (module), 115
lasagne.updates (module), 92
lasagne.utils (module), 118
Layer (class in lasagne.layers), 28
leaky_rectify() (in module lasagne.nonlinearities), 108
LeakyRectify (class in lasagne.nonlinearities), 108
linear() (in module lasagne.nonlinearities), 109
LocallyConnected2DLayer (class in lasagne.layers), 40
LocalResponseNormalization2DLayer (class in

lasagne.layers), 64
LSTMLayer (class in lasagne.layers), 52

M
MaxPool1DLayer (class in lasagne.layers), 42
MaxPool2DCCLayer (class in

lasagne.layers.cuda_convnet), 79
MaxPool2DDNNLayer (class in lasagne.layers.dnn), 82
MaxPool2DLayer (class in lasagne.layers), 42
MaxPool3DDNNLayer (class in lasagne.layers.dnn), 83
MergeLayer (class in lasagne.layers), 30
momentum() (in module lasagne.updates), 94
multiclass_hinge_loss() (in module lasagne.objectives),

113

N
nesterov_momentum() (in module lasagne.updates), 94
NINLayer (class in lasagne.layers), 32
NINLayer_c01b (class in lasagne.layers.cuda_convnet),

81
NonlinearityLayer (class in lasagne.layers), 67
norm_constraint() (in module lasagne.updates), 100
Normal (class in lasagne.init), 103

O
one_hot() (in module lasagne.utils), 119
Orthogonal (class in lasagne.init), 105

P
pad (in module lasagne.layers), 61
PadLayer (class in lasagne.layers), 61
ParametricRectifierLayer (class in lasagne.layers), 72
Pool1DLayer (class in lasagne.layers), 43
Pool2DDNNLayer (class in lasagne.layers.dnn), 81
Pool2DLayer (class in lasagne.layers), 44

128 Index

lasagne Documentation, Release 0.2.dev1

Pool3DDNNLayer (class in lasagne.layers.dnn), 82
prelu() (in module lasagne.layers), 73

R
RandomizedRectifierLayer (class in lasagne.layers), 73
rectify() (in module lasagne.nonlinearities), 107
RecurrentLayer (class in lasagne.layers), 51
regularize_layer_params() (in module

lasagne.regularization), 116
regularize_layer_params_weighted() (in module

lasagne.regularization), 116
regularize_network_params() (in module

lasagne.regularization), 117
reshape (in module lasagne.layers), 60
ReshapeLayer (class in lasagne.layers), 59
rmsprop() (in module lasagne.updates), 96
rrelu() (in module lasagne.layers), 74

S
sample() (lasagne.init.Initializer method), 103
ScaledTanH (class in lasagne.nonlinearities), 106
ScaledTanh (in module lasagne.nonlinearities), 107
ScaleLayer (class in lasagne.layers), 68
set_all_param_values() (in module lasagne.layers), 27
set_rng() (in module lasagne.random), 118
sgd() (in module lasagne.updates), 93
shared_empty() (in module lasagne.utils), 118
ShuffleBC01ToC01BLayer (class in

lasagne.layers.cuda_convnet), 80
ShuffleC01BToBC01Layer (class in

lasagne.layers.cuda_convnet), 80
sigmoid() (in module lasagne.nonlinearities), 106
SliceLayer (class in lasagne.layers), 61
softmax() (in module lasagne.nonlinearities), 106
softplus() (in module lasagne.nonlinearities), 109
Sparse (class in lasagne.init), 105
spatial_dropout() (in module lasagne.layers), 58
SpatialPyramidPoolingDNNLayer (class in

lasagne.layers.dnn), 86
SpatialPyramidPoolingLayer (class in lasagne.layers), 47
squared_error() (in module lasagne.objectives), 112
standardize() (in module lasagne.layers), 68

T
tanh() (in module lasagne.nonlinearities), 106
total_norm_constraint() (in module lasagne.updates), 101
TPSTransformerLayer (class in lasagne.layers), 71
TransformerLayer (class in lasagne.layers), 70
TransposedConv2DLayer (class in lasagne.layers), 36

U
Uniform (class in lasagne.init), 103
unique() (in module lasagne.utils), 119

Upscale1DLayer (class in lasagne.layers), 44
Upscale2DLayer (class in lasagne.layers), 45
Upscale3DLayer (class in lasagne.layers), 45

V
very_leaky_rectify() (in module lasagne.nonlinearities),

109

Index 129

	User Guide
	Installation
	Tutorial
	Layers
	Creating custom layers
	Development

	API Reference
	lasagne.layers
	lasagne.updates
	lasagne.init
	lasagne.nonlinearities
	lasagne.objectives
	lasagne.regularization
	lasagne.random
	lasagne.utils

	Indices and tables
	Bibliography
	Python Module Index

