

 Navigation

 	
 index

 	
 next |

 	lcfos 0.1 documentation

Welcome to lcfos’s documentation!

	About

	OS

About

Project goals

	To write a microkernel based OS

	Write the kernel in the c3 language

	Create a c3 compiler in python

Directory structure

‘kernel’ contains the microkernel.
‘python’ contains the python utilities.

How to run this?

Install required software:

	python3.3

	(optional) pyqt5, pyqt4 or pyside

Checkout the code:

hg clone https://bitbucket.org/windel/lcfos
cd lcfos

Run some unit tests:

cd test
python3 run_tests.py

Weblinks

Docs are located here:
http://lcfos.readthedocs.org/en/latest/

Sources are located here:
https://bitbucket.org/windel/lcfos

here:
http://hg.assembla.com/lcfOS/

and here:
https://pikacode.com/windel/lcfos/

The project is contains tests which are run continuously at drone.io.

[image: https://drone.io/bitbucket.org/windel/lcfos/status.png]
https://drone.io/bitbucket.org/windel/lcfos

Repository metrics:

[image: https://www.ohloh.net/p/lcfos/widgets/project_thin_badge.gif]
http://www.ohloh.net/p/lcfos

Live demo is at redhat openshift:

http://lcfos-windel.rhcloud.com/

Unit test results:

	testB (testdiagrameditor.DiagramEditorTestCase)
	SKIP

	testScenario1 (testdiagrameditor.DiagramEditorTestCase)
	SKIP

	testemulation (unittest.loader.ModuleImportFailure)
	FAIL

 Copyright 2013, Windel Bouwman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	lcfos 0.1 documentation

About

Project goals

	To write a microkernel based OS

	Write the kernel in the c3 language

	Create a c3 compiler in python

Directory structure

‘kernel’ contains the microkernel.
‘python’ contains the python utilities.

How to run this?

Install required software:

	python3.3

	(optional) pyqt5, pyqt4 or pyside

Checkout the code:

hg clone https://bitbucket.org/windel/lcfos
cd lcfos

Run some unit tests:

cd test
python3 run_tests.py

Weblinks

Docs are located here:
http://lcfos.readthedocs.org/en/latest/

Sources are located here:
https://bitbucket.org/windel/lcfos

here:
http://hg.assembla.com/lcfOS/

and here:
https://pikacode.com/windel/lcfos/

The project is contains tests which are run continuously at drone.io.

[image: https://drone.io/bitbucket.org/windel/lcfos/status.png]
https://drone.io/bitbucket.org/windel/lcfos

Repository metrics:

[image: https://www.ohloh.net/p/lcfos/widgets/project_thin_badge.gif]
http://www.ohloh.net/p/lcfos

Live demo is at redhat openshift:

http://lcfos-windel.rhcloud.com/

 Copyright 2013, Windel Bouwman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	lcfos 0.1 documentation

OS

Implementation

Arm

Vexpress-a9

For the first implementation the qemu arm system vexpress-a9 machine was
targeted.

To launch this machine with a kernel use:

qemu-system-arm -M vexpress-a9 -m 128M -kernel kernel/kernel_arm.bin \
 -serial stdio

The memory layout of this image is as follows:

	0x00000000

	0x10000000 : hardware.

	0x10009000 : pl011 –> the uart peripheral

	0x60000000 : bootloader of qemu itself.

	0x60010000 : main memory, where kernel is loaded by the bootloader.

Design

Processes / threads

Processes are completely seperated and fully pre-emptive.
This means a process can be unscheduled at any moment.

Threads are co-operative. This means they yield control
voluntary. This means that mutexes and locks are not required.
This is done with the built-in language feature called tasks.

If some heavy duty task must be performed, either way spawn
a new process, or yield frequently from this hard labour.

tasks

Consider the following:

function int insanemath(int a)
{
 while (a > 0)
 {
 a = a -1;
 resume agent1;
 }
 return a - 1;
}

task agent1()
{
 start agent2;
}

task agent2()
{
 insanemath(55);
 insanemath(44);
}

task main()
{
 start agent1;
 join agent1;
}

Say to tasks are running in concurrent / parallel.

Stack layout for tasks.
||
||
/
+———+
| return address
| locals
|
+——
| return address
| locals
|
+—

Assembly code for the functions above:

.code
insanemath:
L1:
load r0, sp - 4
cmp r0, 0
jl L2
dec r0
store r0, sp - 4
jmp L1
L2:
ret

agent1:
hlt?

agent2:
hlt?

main:
jmp agent1

.data
agent1_task:
dd 0
agent2_task:
dd 0

 Copyright 2013, Windel Bouwman.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	lcfos 0.1 documentation

Index

 Copyright 2013, Windel Bouwman.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		lcfos 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Windel Bouwman.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

