

    
      Navigation

      
        	
          index

        	
          next |

        	lcfos 0.1 documentation 
 
      

    


    
      
          
            
  
Welcome to lcfos’s documentation!



	About

	OS








About


Project goals


	To write a microkernel based OS

	Write the kernel in the c3 language

	Create a c3 compiler in python






Directory structure

‘kernel’ contains the microkernel.
‘python’ contains the python utilities.




How to run this?

Install required software:


	python3.3

	(optional) pyqt5, pyqt4 or pyside



Checkout the code:

hg clone https://bitbucket.org/windel/lcfos
cd lcfos





Run some unit tests:

cd test
python3 run_tests.py








Weblinks

Docs are located here:
http://lcfos.readthedocs.org/en/latest/

Sources are located here:
https://bitbucket.org/windel/lcfos

here:
http://hg.assembla.com/lcfOS/

and here:
https://pikacode.com/windel/lcfos/

The project is contains tests which are run continuously at drone.io.

[image: https://drone.io/bitbucket.org/windel/lcfos/status.png]
https://drone.io/bitbucket.org/windel/lcfos

Repository metrics:

[image: https://www.ohloh.net/p/lcfos/widgets/project_thin_badge.gif]
http://www.ohloh.net/p/lcfos

Live demo is at redhat openshift:

http://lcfos-windel.rhcloud.com/

Unit test results:







	testB (testdiagrameditor.DiagramEditorTestCase)
	SKIP


	testScenario1 (testdiagrameditor.DiagramEditorTestCase)
	SKIP


	testemulation (unittest.loader.ModuleImportFailure)
	FAIL
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OS


Implementation


Arm

Vexpress-a9

For the first implementation the qemu arm system vexpress-a9 machine was
targeted.

To launch this machine with a kernel use:

qemu-system-arm -M vexpress-a9 -m 128M -kernel kernel/kernel_arm.bin \
  -serial stdio





The memory layout of this image is as follows:


	0x00000000

	0x10000000 : hardware.

	0x10009000 : pl011 –> the uart peripheral

	0x60000000 : bootloader of qemu itself.

	0x60010000 : main memory, where kernel is loaded by the bootloader.








Design


Processes / threads

Processes are completely seperated and fully pre-emptive.
This means a process can be unscheduled at any moment.

Threads are co-operative. This means they yield control
voluntary. This means that mutexes and locks are not required.
This is done with the built-in language feature called tasks.

If some heavy duty task must be performed, either way spawn
a new process, or yield frequently from this hard labour.




tasks

Consider the following:

function int insanemath(int a)
{
    while (a > 0)
    {
       a = a -1;
       resume agent1;
    }
    return a - 1;
}

task agent1()
{
  start agent2;
}

task agent2()
{
   insanemath(55);
   insanemath(44);
}

task main()
{
  start agent1;
  join agent1;
}





Say to tasks are running in concurrent / parallel.

Stack layout for tasks.
||
||
/
+———+
| return address
| locals
|
+——
| return address
| locals
|
+—

Assembly code for the functions above:

.code
insanemath:
L1:
load r0, sp - 4
cmp r0, 0
jl L2
dec r0
store r0, sp - 4
jmp L1
L2:
ret

agent1:
hlt?

agent2:
hlt?

main:
jmp agent1

.data
agent1_task:
dd 0
agent2_task:
dd 0
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