

Welcome to LazyGrid

[image: Travis (.org)] [https://travis-ci.org/glubbdubdrib/lazygrid]
[image: Codecov] [https://codecov.io/gh/glubbdubdrib/lazygrid]

[image: PyPI license] [https://pypi.python.org/pypi/lazygrid/]
[image: PyPI] [https://pypi.python.org/pypi/lazygrid/]

LazyGrid is a python package providing an automatic, efficient and
flexible implementation of complex machine
learning pipeline generation and cross-validation.

Before fitting a model or a pipeline step, LazyGrid checks inside an internal
SQLite database if the model has already been fitted. If the model is found,
it won’t be fitted again.

Quick start

You can install LazyGrid along with all its dependencies from
PyPI [https://pypi.org/project/lazygrid/]:

$ pip install -r requirements.txt lazygrid

Source

The source code and minimal working examples can be found on
GitHub [https://github.com/glubbdubdrib/lazygrid].

User Guide

	Installation

	Tutorial
	Environment setup

	Model generation

	Model comparison

	Data set APIs

	Contributing to LazyGrid
	How Can I Contribute?

	Coding Style

	Running tests

API Reference

	Database

	Datasets

	Grid

	Plotter

	Statistics

	Lazy Estimator

Copyright

	Authors

	Apache License

Indices and tables

	Index

	Module Index

	Search Page

Installation

You can install LazyGrid along with all its dependencies from
PyPI [https://pypi.org/project/lazygrid/]:

$ pip install -r requirements.txt lazygrid

or from source code:

$ git clone https://github.com/glubbdubdrib/lazygrid.git
$ cd ./lazygrid
$ pip install -r requirements.txt .

LazyGrid is compatible with Python 3.5 and above.

Tutorial

LazyGrid has three main features:

	it can generate all possible pipelines given a set of steps
(Pipeline generation) or all possible models
given a grid of parameters (Grid search)

	it can compare the performance of a list of models using cross-validation
and statistical tests (Model comparison), and

	it follows the
memoization paradigm [https://en.wikipedia.org/wiki/Memoization],
avoiding fitting a model or a pipeline step twice.

Environment setup

Input data

In order to make each LazyPipeline transformer unique for different
cross-validation splits, you must provide input data as
DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]
objects. The easiest way to transform numpy arrays into DataFrame
data structures is the following:

import pandas as pd
...
X, y = ...
X = pd.DataFrame(X)

Organizing data sets and databases

If you are using more than one data set in your project, it is highly
recommended to generate a hierarchy of database directories
so that models fitted on different data sets can be easily identified:

import os
...
database_root_dir = "database"
data_set_name = "foo"
database_dir = os.path.join(database_root_dir, data_set_name)
if not os.path.isdir(database_dir):
 os.makedirs(database_dir)

This code will generate a directory structure as the following:

database
+-- foo
| +-- database.sqlite
+-- baz
| +-- database.sqlite
+-- ...

Model generation

Pipeline generation

In order to generate all possible pipelines given a set of steps, you
should define a list of elements, which in turn are lists of pipeline
steps, i.e. preprocessors, feature selectors, classifiers, etc. Each
step could be either a sklearn object or a keras model.

Once you have defined the pipeline elements, the generate_grid
method will return a list of models of type
lazygrid.lazy_estimator.LazyPipeline.

The LazyPipeline class extends the sklearn.pipeline.Pipeline class
by providing an interface to SQLite databases.

from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.preprocessing import RobustScaler, StandardScaler
import lazygrid as lg

preprocessors = [StandardScaler(), RobustScaler()]
feature_selectors = [SelectKBest(score_func=f_classif, k=1), SelectKBest(score_func=f_classif, k=2)]
classifiers = [RandomForestClassifier(random_state=42), SVC(random_state=42)]

elements = [preprocessors, feature_selectors, classifiers]

list_of_models = lg.grid.generate_grid(elements)

Grid search

LazyGrid implements a useful functionality to emulate the grid search
algorithm by generating all possible models given the model structure
and its parameters.

In this case, you should define a dictionary of arguments for the model
constructor and a dictionary of arguments for the fit method. The
generate_grid_search method will return the list of all possible
models.

The following example illustrates how to use this functionality to
compare keras models with different optimizers and fit parameters.

import keras
from keras import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.utils import to_categorical
from sklearn.metrics import f1_score
from sklearn.datasets import load_digits
from sklearn.model_selection import StratifiedKFold
import lazygrid as lg
import numpy as np
import pandas as pd
from keras.wrappers.scikit_learn import KerasClassifier

define keras model generator
def create_keras_model(optimizer):

 kmodel = Sequential()
 kmodel.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
 activation='relu',
 input_shape=x_train.shape[1:]))
 kmodel.add(MaxPooling2D(pool_size=(2, 2)))
 kmodel.add(Flatten())
 kmodel.add(Dense(1000, activation='relu'))
 kmodel.add(Dense(n_classes, activation='softmax'))

 kmodel.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=optimizer,
 metrics=['accuracy'])
 return kmodel

load data set
X, y = load_digits(return_X_y=True)
X = pd.DataFrame(X)

skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
list_of_splits = [split for split in skf.split(x, y)]
train_index, val_index = list_of_splits[0]
x_train, x_val = x[train_index], x[val_index]
y_train, y_val = y[train_index], y[val_index]
x_train = np.reshape(x_train, (x_train.shape[0], 8, 8, 1))
x_val = np.reshape(x_val, (x_val.shape[0], 8, 8, 1))
n_classes = len(np.unique(y_train))
if n_classes > 2:
 y_train = to_categorical(y_train)
 y_val = to_categorical(y_val)

cast keras model into sklearn model
kmodel = KerasClassifier(create_keras_model, verbose=1, epochs=0)

define all possible model parameters of the grid
model_params = {"optimizer": ['SGD', 'RMSprop']}
fit_params = {"epochs": [5, 10, 20], "batch_size": [10, 20]}

generate all possible models given the parameters' grid
models, fit_parameters = lg.grid.generate_grid_search(kmodel, model_params, fit_params)

You will find the conclusion of this example in the
plot section.

Model comparison

Optimized cross-validation

LazyPipeline objects can be extremely useful
when a large number of machine learning pipelines need to be compared
through cross-validation techniques.

In fact, once a pipeline step has been fitted, LazyGrid saves the fitted
step into a SQLite [https://www.sqlite.org/index.html] database.
Therefore, should the step be required by another pipeline, LazyGrid
fetches the model that has already been fitted from the database.

This approach may boost the speed of time-consuming steps as recursive
feature elimination techniques, voting classifiers or deep neural networks.

from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.feature_selection import SelectKBest, f_classif, RFE
from sklearn.preprocessing import RobustScaler, StandardScaler
from sklearn.datasets import make_classification
import lazygrid as lg
import pandas as pd

X, y = make_classification(random_state=42)
X = pd.DataFrame(X)

preprocessors = [StandardScaler(), RobustScaler()]
feature_selectors = [RFE(RandomForestClassifier, n_features_to_select=10),
 SelectKBest(score_func=f_classif, k=10)]
classifiers = [RandomForestClassifier(random_state=42), SVC(random_state=42)]

elements = [preprocessors, feature_selectors, classifiers]

models = lg.grid.generate_grid(elements)

for model in models:
 scores = cross_validate(model, X, y, cv=10)

Statistical hypothesis tests

Once you have generated a list of models (or pipelines), LazyGrid
provides friendly APIs to compare models’ performances by using a
cross-validation procedure and by analyzing the outcomes applying
statistical hypothesis tests.

You can collect the cross-validation scores into a single list
and call the find_best_solution method provided by LazyGrid. Such
method applies the following algorithm: it looks for the model having
the highest mean value over its cross-validation scores (“the best
model”); it compares the distribution of the scores of each model
against the distribution of the scores of the best model applying a
statistical hypothesis test.

You can customize the comparison by modifying the statistical hypothesis
test (it should be compatible with scipy.stats) or the significance
level for the test.

...
scores = []
for model in models:
 score = cross_validate(model, X, y, cv=10)
 scores.append(score["test_score"])

best_idx, best_solutions_idx, pvalues = lg.statistics.find_best_solution(scores,
 test=mannwhitneyu,
 alpha=0.05)

Data set APIs

LazyGrid includes a set of easy-to-use APIs to fetch
OpenML [https://www.openml.org/] data sets (NB: OpenML has a
database of more than 20000 data sets).

The fetch_datasets method allows you to smartly handle such data
sets: it looks for OpenML data sets compliant with the requirements
specified; for such data sets, it fetches the characteristics of
their latest version; it saves in a local cache file the properties
of such data sets, so that experiments can be easily reproduced using
the same data sets and versions. You will find the list of downloaded
data sets inside ./data/<datetime>-datalist.csv.

The load_openml_dataset method can then be used to download the
required data set version.

import lazygrid as lg

datasets = lg.datasets.fetch_datasets(task="classification", min_classes=2,
 max_samples=1000, max_features=10)

get the latest (or cached) version of the iris data set
data_id = datasets.loc["iris"].did

x, y, n_classes = lg.datasets.load_openml_dataset(data_id)

Contributing to LazyGrid

First off, thanks for taking the time to contribute! :+1:

How Can I Contribute?

	Obviously source code: patches, as well as completely new files

	Bug report

	Code review

Coding Style

Notez Bien: All these rules are meant to be broken, BUT you need a very good reason AND you must explain it in a comment.

	Names (TL;DR): module_name, package_name, ClassName, method_name, ExceptionName, function_name, GLOBAL_CONSTANT_NAME, global_var_name, instance_var_name, function_parameter_name, local_var_name.

	Start names internal to a module or protected or private within a class with a single underscore (_); don’t dunder (__).

	Use nouns for variables and properties names (y = foo.baz). Use full sentences for functions and methods names (x = foo.calculate_next_bar(previous_bar)); functions returning a boolean value (a.k.a., predicates) should start with the is_ prefix (if is_gargled(quz)).

	Do not implement getters and setters, use properties instead. Whether a function does not need parameters consider using a property (foo.first_bar instead of foo.calculate_first_bar()). However, do not hide complexity: if a task is computationally intensive, use an explicit method (e.g., big_number.get_prime_factors()).

	Do not override __repr__.

	Use assert to check the internal consistency and verify the correct usage of methods, not to check for the occurrence of unexpected events. That is: The optimized bytecode should not waste time verifying the correct invocation of methods or running sanity checks.

	Explain the purpose of all classes and functions in docstrings; be verbose when needed, otherwise use single-line descriptions (note: each verbose description also includes a concise one as its first line). Be terse describing methods, but verbose in the class docstring, possibly including usage examples. Comment public attributes and properties in the Attributes section of the class docstring (even though PyCharm is not supporting it, yet); don’t explain basic customizations (e.g., __str__). Comment __init__ only when its parameters are not obvious.
Use the formats suggested in the Google’s style guide [https://google.github.io/styleguide/pyguide.html]).

	Annotate all functions (refer to PEP-483 [https://www.python.org/dev/peps/pep-0483/]) and PEP-484 [https://www.python.org/dev/peps/pep-0484/]) for details).

	Use English for names, in docstrings and in comments (favor formal language over slang, wit over humor, and American English over British).

	Format source code using Yapf [https://github.com/google/yapf])’s style “{based_on_style: google, column_limit=120, blank_line_before_module_docstring=true}”

	Follow PEP-440 [https://www.python.org/dev/peps/pep-0440/]) for version identification.

	Follow the Google’s style guide [https://google.github.io/styleguide/pyguide.html]) whenever in doubt.

Running tests

You can run all unittests from command line after having
downloaded the source code from
GitHub [https://github.com/glubbdubdrib/lazygrid]:

$ git clone https://github.com/glubbdubdrib/lazygrid.git
$ cd ./lazygrid

You can use either python:

$ python -m unittest discover

or coverage:

$ coverage run -m unittest discover

Database

lazygrid.database

Datasets

lazygrid.datasets

Grid

lazygrid.grid

Plotter

lazygrid.plotter

Statistics

lazygrid.statistics

Lazy Estimator

lazygrid.lazy_estimator

Authors

	Pietro Barbiero - Mathematical engineer - GitHub [https://github.com/pietrobarbiero]

	Giovanni Squillero - Professor of computer science at Politecnico di Torino - GitHub [https://github.com/squillero]

Apache License

	Version

	2.0

	Date

	January 2004

	URL

	http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other
entities that control, are controlled by, or are under common control with that
entity. For the purposes of this definition, “control” means (i) the power,
direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising
permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source, and
configuration files.

“Object” form shall mean any form resulting from mechanical transformation
or translation of a Source form, including but not limited to compiled object
code, generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

“Derivative Works” shall mean any work, whether in Source or Object form,
that is based on (or derived from) the Work and for which the editorial
revisions, annotations, elaborations, or other modifications represent, as a
whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

“Contribution” shall mean any work of authorship, including the original
version of the Work and any modifications or additions to that Work or
Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes
of this definition, “submitted” means any form of electronic, verbal, or
written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf
of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

	You must give any other recipients of the Work or Derivative Works a copy of
this License; and

	You must cause any modified files to carry prominent notices stating that You
changed the files; and

	You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution,
then any Derivative Works that You distribute must include a readable copy of
the attribution notices contained within such NOTICE file, excluding
those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes
only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License. You may add Your own
copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided
Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms
of any separate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an “AS IS”
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License
or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction,
or any and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate
notice, with the fields enclosed by brackets “[]” replaced with your own
identifying information. (Don’t include the brackets!) The text should be
enclosed in the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of purpose be included on
the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to LazyGrid

 		
 Installation

 		
 Tutorial

 		
 Environment setup

 		
 Input data

 		
 Organizing data sets and databases

 		
 Model generation

 		
 Pipeline generation

 		
 Grid search

 		
 Model comparison

 		
 Optimized cross-validation

 		
 Statistical hypothesis tests

 		
 Data set APIs

 		
 Contributing to LazyGrid

 		
 How Can I Contribute?

 		
 Coding Style

 		
 Running tests

 		
 Database

 		
 Datasets

 		
 Grid

 		
 Plotter

 		
 Statistics

 		
 Lazy Estimator

 		
 Authors

 		
 Apache License

 		
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 		
 1. Definitions.

 		
 2. Grant of Copyright License.

 		
 3. Grant of Patent License.

 		
 4. Redistribution.

 		
 5. Submission of Contributions.

 		
 6. Trademarks.

 		
 7. Disclaimer of Warranty.

 		
 8. Limitation of Liability.

 		
 9. Accepting Warranty or Additional Liability.

 		
 APPENDIX: How to apply the Apache License to your work

