
Lazydog Documentation
Release 0.1.1

Clément Warneys

May 03, 2018

Contents

1 Lazydog 1
1.1 Getting Started . 1
1.2 Get it installed, the contributor way . 3
1.3 Tests . 4
1.4 Documentation . 5
1.5 Contributing . 6
1.6 Versioning and release notes . 7
1.7 Authors and contributors . 7
1.8 License . 7
1.9 Special thanks . 7

2 Lazydog code documentation 9
2.1 Lazydog . 9
2.2 Revised Watchdog . 22

Python Module Index 27

i

ii

CHAPTER 1

Lazydog

Python module monitoring user-level file system events like Creation, Modification, Move, Copy, and Deletion of
files and folders. Lazydog tries to aggregate low-level events between them in order to emit a minimum number of
high-level events (actually one event per user action). Lazydog uses python Watchdog API to detect low-level events.

1.1 Getting Started

1.1.1 How to install it

The easiest way:

$ pip3 install lazydog

1.1.2 How to use it

Where the watchdog module would throw dozen of events after each user event, lazydog only throws one. For example,
ask lazidog to watch any existing directory:

$ lazydog /the/directory/you/want/to/watch

And just move a file in the watched directory (here from /watched/directory/move_test.txt to /
watched/directory/move_test_2.txt), and wait 2 seconds. You will get something like this in the console:

INFO -
INFO - LIST OF THE LAST EVENTS:
INFO - moved: '/move_test.txt' to '/move_test_2.txt' mtime[1512151173.0] size[5]
INFO -

Try to copy the same file, and you will get somthiing like this:

1

Lazydog Documentation, Release 0.1.1

INFO -
INFO - LIST OF THE LAST EVENTS:
INFO - copied: '/move_test_2.txt' to '/move_test_2 - Copie.txt' mtime[1512151173.0]
→˓size[5]
INFO -

Only one event per user action. You can try it with other type of action (Deletion, Creation, Modification), and also
with directories.

1.1.3 How to use in in third-part apps

Below is an example on how to rapidly initialize the high-level lazydog event handler, and log every new event in the
console (using logging module). The watched directory is the current one (using os.getcwd()).

Please note that once installed, using the $ lazydog command in the console does just the same.

import logging
import os

from lazydog.handlers import HighlevelEventHandler

LOG
create logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
create console handler with a higher log level
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
add the handlers to the logger
logger.addHandler(console_handler)

INITIALIZE
get dir in parameter else current dir
watched_dir = directory if len(directory) > 1 else os.getcwd()
initializing a new HighlevelEventHandler
highlevel_handler = HighlevelEventHandler.get_instance(watched_dir)
starting it (since it is a thread)
highlevel_handler.start()
log first message
logging.info('LISTENING EVENTS IN DIR: \'%s\'' % watched_dir)

OPERATING
try:

while True:

The following loop check every 1 second if any new event.
time.sleep(1)
local_events = highlevel_handler.get_available_events()

If any, it logs it directly in the console.
for e in local_events:

logging.info(e)

Keyboard <CTRL+C> interrupts the loop

2 Chapter 1. Lazydog

Lazydog Documentation, Release 0.1.1

except KeyboardInterrupt:
highlevel_handler.stop()

1.1.4 Getting further

Please find full code documentation in an HTML format on ReadTheDocs.org: http://lazydog.readthedocs.io/

1.1.5 Miscellaneous. . .

Watchdog uses inotify by default on Linux to monitor directories for changes. It’s not uncommon to encounter a
system limit on the number of files you can monitor (for example 8192 directories). You can get your current inotify
file watch limit by executing:

$ cat /proc/sys/fs/inotify/max_user_watches
8192

When this limit is not enough to monitor all files inside a directory, the limit must be increased for Lazydog to work
properly. You can set a new limit temporary with:

$ sudo sysctl fs.inotify.max_user_watches=524288
$ sudo sysctl -p

If you like to make your limit permanent, use:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf
$ sudo sysctl -p

1.2 Get it installed, the contributor way

These instructions will get you a copy of the project up and running on your local machine for development and testing
purposes.

1.2.1 Prerequisites

Main dependency of lazydog, is the python watchdog API. You can install it using the following command:

$ pip3 install watchdog

Please read the official documentation for any question about this project: https://pypi.org/project/watchdog/

1.2.2 Installing development environment

Just clone the repository in your local working directory (or fork it).

$ git clone https://github.com/warniiiz/Lazydog

In order to contribute, you will need pytest for testing purpose (or refer to the pytest documentation).

1.2. Get it installed, the contributor way 3

http://lazydog.readthedocs.io/
https://pypi.org/project/watchdog/
https://docs.pytest.org/en/latest/getting-started.html

Lazydog Documentation, Release 0.1.1

$ pip3 install pytest

You will also need Sphinx package for documentation purpose (or refer to the Sphinx documentation).

$ apt-get install python-sphinx

1.3 Tests

1.3.1 Module testing

The different python module are in the /lazydog directory. Each of them has attached test functions, that are in the
/lazydog/test directory. You can launch tests unitary like this (for example for testing the events module):

$ pytest lazydog/test/test_events.py

Kind of results:

================================= test session starts
→˓=================================
platform linux -- Python 3.4.2, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /media/maxtor/media/Python/Lazydog, inifile:
plugins: cov-2.5.1
collected 16 items

lazydog/test/test_events.py [100%]

============================== 16 passed in 0.51 seconds
→˓==============================

You can also test the whole package (assuming you are in the developpement directory):

$ pytest

1.3.2 Test coverage

Check the test coverage:

$ py.test --cov lazydog

Test coverage is > 90%. The metric is not very relevant about the test quality, but at least you will be reasssured there
are some tests ;)

========================== test session starts ===========================
platform linux -- Python 3.4.2, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /media/maxtor/media/Python/Lazydog, inifile:
plugins: cov-2.5.1
collected 58 items

lazydog/test/test_events.py [27%]
lazydog/test/test_handlers.py [65%]
lazydog/test/test_queues.py .. [68%]
lazydog/test/test_states.py [100%]

4 Chapter 1. Lazydog

http://www.sphinx-doc.org/en/stable/install.html

Lazydog Documentation, Release 0.1.1

----------- coverage: platform linux, python 3.4.2-final-0 -----------
Name Stmts Miss Cover
--
lazydog/__init__.py 0 0 100%
lazydog/dropbox_content_hasher.py 66 14 79%
lazydog/events.py 249 7 97%
lazydog/handlers.py 214 29 86%
lazydog/lazydog.py 39 39 0%
lazydog/queues.py 18 0 100%
lazydog/revised_watchdog/__init__.py 0 0 100%
lazydog/revised_watchdog/events.py 31 1 97%
lazydog/revised_watchdog/observers/__init__.py 0 0 100%
lazydog/revised_watchdog/observers/inotify.py 49 6 88%
lazydog/revised_watchdog/observers/inotify_buffer.py 12 0 100%
lazydog/revised_watchdog/observers/inotify_c.py 72 22 69%
lazydog/states.py 109 1 99%
lazydog/test/test_events.py 261 2 99%
lazydog/test/test_handlers.py 355 3 99%
lazydog/test/test_queues.py 31 0 100%
lazydog/test/test_states.py 172 0 100%
--
TOTAL 1678 124 93%

====================== 58 passed in 30.15 seconds ========================

1.4 Documentation

1.4.1 Full code documentation

Please find full code documentation in an HTML format on ReadTheDocs.org: http://lazydog.readthedocs.io/

This documentation is automatically updated each time an update is made no GitHub.

1.4.2 Maintaining documentation up-to-date

Please document each change. If you want to check the result before publishing, you can run the following after each
documentation modification:

$ cd docs # first go in the /docs subdirectory.
$ make html # recompute the sphinx documentation

The resulted documentation is then in the local relative folder /docs/_build/html/index.html.

Note that if you did not modify local file from /docs subdirectory, the changes will not be taken. . . you can use the
following command to force recomputing all the changes:

$ touch autodoc.rst; make html

Last thing. If you modified the main README.md, and you want the changes to appear in the documentation (and not
only on github), you have to convert the .md file to a .rst one. You can use the pandoc app to do thiss conversion, using
the following command (after installing Pandoc, please refer to Pandoc documentation for more information):

pandoc --from=markdown --to=rst --output=README.rst ../README.md # Assuming you
→˓are in the /docs subdirectory.

1.4. Documentation 5

http://lazydog.readthedocs.io/
https://pandoc.org/installing.html

Lazydog Documentation, Release 0.1.1

Then don’t forget to run the previous command again to recompute the whole documentation.

1.5 Contributing

For lazydog to be a truly great project, third-party code contributions are important. If you want to enhance lazydog,
spot bugs or fix them, or just ask for new enhancements, you are so much welcome! Below is a list of things that might
help you in contributing to lazydog.

1.5.1 Check the current issues

The list of the current bugs, issues, new enhancement proposals, etc. are all grouped on GitHub Issues’ tab:

• Issue tracker

For more information about GitHub, please check the followings:

• General GitHub documentation

• GitHub pull request documentation

1.5.2 Getting Started

To get involved in code enhancement:

• Make sure you have a GitHub account

• Get the latest version, by either way cloning of forking this repository (depending on what you want to do)

• Install the requirements via pip: pip install -r requirements.txt

• Submit an issue directly on GitHub:

• For bugs, clearly describe the issue including steps to reproduce

• For enhancement proposals, be sure to indicate if you’re willing to work on implementing the enhancement

If you do not have GitHub account and you just want to notify for a new bug, please report me by e-mail.

1.5.3 Making Changes

• lazydog does not use any git Workflow until now. This will remains until the volume of changes and contri-
bution needs a clearer workflow.

• Make commits of logical units.

• Check for unnecessary whitespace with git diff --check before committing.

• Make sure you have added the necessary tests for your changes.

• Run python setup.py test to make sure your tests pass

• Run coverage run --source=lazydog setup.py test if you have the coverage package in-
stalled to generate coverage data

• Check your coverage by running coverage report

• Please correctly document the code you wrote, and ensure it is readable once HTML generated

• Update main documentation files (README.md, etc.) when necessary.

6 Chapter 1. Lazydog

https://github.com/warniiiz/Lazydog/issues
http://help.github.com/
http://help.github.com/send-pull-requests/
https://github.com/signup/free

Lazydog Documentation, Release 0.1.1

1.5.4 Submitting Changes

• Push your changes to the feature branch in your fork of the repository.

• Submit a pull request to the main repository

1.6 Versioning and release notes

We use SemVer for versioning. Please read RELEASE-NOTES.md for details about each releases.

1.7 Authors and contributors

• Clément Warneys - Initial work - warniiiz

1.8 License

This project is licensed under the Apache License Version 2.0. Please see the LICENSE.md file for details.

1.9 Special thanks

Thanks to Jeff Knupp for this general guidelines for open sourcing a python project (which helped me a lot since it is
my first open source project I deliver):

1.6. Versioning and release notes 7

http://semver.org/
https://github.com/warniiiz/Lazydog/blob/master/RELEASE-NOTES.md
https://github.com/warniiiz
https://github.com/warniiiz/Lazydog/blob/master/LICENSE.md
https://jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/

Lazydog Documentation, Release 0.1.1

8 Chapter 1. Lazydog

CHAPTER 2

Lazydog code documentation

2.1 Lazydog

package lazydog

synopsis File system user-level events monitoring.

author Clément Warneys <clement.warneys@gmail.com>

This is the main package of the lazydog library. It relies on another sub-package revised_watchdog which is a
modified version of watchdog package.

As a summary, watchdog is a “python API and shell utilities to monitor file system events”. As such, watchdog is
monitoring and emitting every tiny local event on the file system, which often means 5 or more watchdog events per
user event. For example, when a user is creating a new file, you will get 1 creation event, multiple modification events
(some of them for the content modification, others for metadata mosification), and 1 or more modification event for
the directory of the file.

The goal of lazydog is to emit only 1 event per user event. This kind of event will sometimes be call high-level
event, compared to low-level event which are emitted by the watchdog API. To do so, lazydog is waiting a little
amount of time in order to correlate different watchdog events between them, and to aggregate them when related.
This mechanism results in some delays between the user action and the event emission. The total delay depends on
the watchdog observer class. For example, if you use an InotifyObserver observer, you only need a 2-seconds
delay. But if you use a more basic observer as the PollingObserver observer (which is more compatible between
different system), then you need a greater delay such as 10-seconds.

The lazydog package contains the following modules:

• lazydog is a sample module that show how to use the package, by logging the high-level events in the console.
The main function of this module is called when calling $ lazidog in the console.

• handlers is the main module of the library with the aggregation algorithms.

• events defines the high-level lazydog events, based on the low-level watchdog ones, which are now aggregable
and also convertible to copy or move events.

• queues bufferizes lazydog events pending for a possible aggregation with other simultaneous events.

9

mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

• states keeps track of the current state of the watched local directory. The idea is to save computational time,
avoiding recomputing file hashes or getting size and time of each watched files (depending on the requested
method), thus facilitating identification of copy events.

• dropbox_content_hasher is the default hash function to get a hash of a file. Based on the hash function
of the Dropbox API.

2.1.1 lazydog.lazydog

module lazydog.lazidog

synopsis An sample module that show how to use the package, by logging the high-level lazydog events
in the console. The main function of this module is executed by calling $ lazidog in the system
console.

author Clément Warneys <clement.warneys@gmail.com>

Please read the source code for more information. Below is an example on how to initialize the high-level lazydog
event handler, and log every new event in the console (using logging module). The watched directory is the current
one (using os.getcwd()).

1 import logging
2 import os
3

4 from lazydog.handlers import HighlevelEventHandler
5

6 # LOG
7 # create logger
8 logger = logging.getLogger()
9 logger.setLevel(logging.INFO)

10 # create console handler with a higher log level
11 console_handler = logging.StreamHandler()
12 console_handler.setLevel(logging.INFO)
13 # create formatter and add it to the handlers
14 formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
15 console_handler.setFormatter(formatter)
16 # add the handlers to the logger
17 logger.addHandler(console_handler)
18

19 # INITIALIZE
20 # get dir in parameter else current dir
21 watched_dir = directory if len(directory) > 1 else os.getcwd()
22 # initializing a new HighlevelEventHandler
23 highlevel_handler = HighlevelEventHandler.get_instance(watched_dir)
24 # starting it (since it is a thread)
25 highlevel_handler.start()
26 # log first message
27 logging.info('LISTENING EVENTS IN DIR: '%s'' % watched_dir)
28

29 # OPERATING
30 try:
31 while True:
32

33 # The following loop check every 1 second if any new event.
34 time.sleep(1)
35 local_events = highlevel_handler.get_available_events()
36

37 # If any, it logs it directly in the console.

10 Chapter 2. Lazydog code documentation

mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

38 for e in local_events:
39 logging.info(e)
40

41 # Keyboard <CTRL+C> interrupts the loop
42 except KeyboardInterrupt:
43 highlevel_handler.stop()

2.1.2 lazydog.handlers

module lazydog.handlers

synopsis Main module of lazydog including the aggregation logics.

author Clément Warneys <clement.warneys@gmail.com>

class lazydog.handlers.HighlevelEventHandler(lowlevel_event_queue: lazy-
dog.queues.DatedlocaleventQueue, lo-
cal_states: lazydog.states.LocalState)

Post-treats the low level events to suggest only high-level ones.

To do so, a high-level handler needs a DatedlocaleventQueue (an event queue containing the last lazydog
events and inherited from FileSystemEventHandler so it is compatible with watchdog observers), that
is already populated by a low-level watchdog observer, for example InotifyObserver, that retrieves the
low-level file-system events.

The simplest way to instanciate HighlevelEventHandler is to use the get_instance() method. In
this case, you only need to specify the directory to watch watched_dir. Two other optional parameters
hashing_function and custom_intializing_values respectively allow to use custom hashing
function (which will be use to compute the hashs of each file, in order to correlate copy events) and to ac-
celerate the initialization phase (by providing already computed hash values of the current files in the watched
directory, thus avoiding to compute them at the start). Please see the related methods documentation for more
information.

This class inherits from threading.Thread so it works autonomously. It can be started start() method
(from Thread module, and a stopping order can be send with stop() inner method.

Parameters

• lowlevel_event_queue (DatedlocaleventQueue) – An event queue containing
the last lazydog events. Note that the provided queue shall be already associated with a
low-level watchdog observer that retrieves the low-level file-system events (in order to fill
the queue).

• local_states (LocalState) – The reference state of the local files in the watched
directory. This state will be dynamically updated by the handler, depending on the low-level
events. This state contains also the path of the watched directory.

Returns A non-running high-level lazydog events handler.

Return type HighlevelEventHandler

POSTTREATMENT_TIME_LIMIT = datetime.timedelta(0, 2)
If neither new low-level events nor high-level post-treatments appends during this 2-seconds delay, the cur-
rent events in the queue are ready to be emitted the listener, when using get_available_events()
method.

CREATE_EVENT_TIME_LIMIT_FOR_EMPTY_FILES = datetime.timedelta(0, 2)
Deprecated. At the beginning of the project, empty file creation was more delayed before the handler
emits them. Because empty file are often created and then rapidly renamed and modified. . . The idea was

2.1. Lazydog 11

mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

to limit the number of high-level events that were being sent. But this specific behaviour could generate
unwanted problems for the third-application using this library.

classmethod get_instance(watched_dir: str, hashing_function=None, cus-
tom_intializing_values=None)

This method provides you with the simplest way to instanciate HighlevelEventHandler. You
only need to specify the directory to watch watched_dir. Two other optional parameters
hashing_function and custom_intializing_values respectively allow to use custom hash-
ing function (which will be use to compute the hashs of each file, in order to correlate copy events) and
to accelerate the initialization phase (by providing already computed hash values of the current files in the
watched directory, thus avoiding to compute them at the start).

Parameters

• watched_dir (str) – The path you want to watch.

• hashing_function (function) – Custom hashing function that will be use
to compute the hashs of each file, in order the handler is able to correlate copy
events. The function shall be defined with the same parameters and retrun format than
default_hash_function().

• custom_intializing_values (LocalState) – Providing custom intializing val-
ues accelerate the initialization phase by providing already computed hash values of all
the files currently in the watched directory. The provided dictionary shall cover all the
local files and directory because hash values will not be computed for missing files. If
some reference were missing in the provided dictionary, they can be completed later using
save_locals() method. For more information about the structure of this parameter,
please see the documentation of LocalState.

Returns An already running high-level lazydog events handler.

Return type HighlevelEventHandler

stop()
Set the threading.Event so that the handler thread knows that it has to stop running. Call this method
when you want to preperly stop the handler. The handler will then stop a few seconds afterwards.

posttreat_lowlevel_event(local_event: lazydog.events.LazydogEvent)
Executes the main logics of the High-level Handler. These are all the aggregation rules, depending on the
order of arrival of the low-level event, how to identify the relation between them and when to decide to
aggregate them, or to transform them into a high-level Copied or a Moved event.

Please read directly the commented code for more information about these rules. Here is a summary of the
execution:

• Aggregation rules:

– Using an InotifyObserver, Deleted events arrive backward, which means that if you delete a
directory with some files inside, you will get first a Deleted event for the inside files then another
one for their parent directory. So if we find a Deleted event for a directory, we remove every
children Deleted events previously queued. Note that if a Deleted event arrives after a Modified
event or anything else for the same file or folder, then we just remove (or adapt) the previous
related events.

– Using an InotifyObserver, Moved events are the most simple to post-treat: if you move a
folder with sub-files, you only get one low-level event. So nothing to aggregate here. . . The only
thing is when a Moved event is rapidly succeding a Created event (or anything else), then you
have to adapt the original event in the queue.

– Modified events are easy to aggregate to other ones. They are often meaningless, since a low-
level Whatever event often comes with one or more Modified events, so we often just ignore these

12 Chapter 2. Lazydog code documentation

Lazydog Documentation, Release 0.1.1

Modified events. . . Note that when you copy or create a large file, you will get multiple low-level
Modified events per seconds that you will have to ignore (since you want to do a high-level lazy
observer).

• If the new event is not related to any other already-listed events, thent it is added to the queue as a
new high-level event.

• Transformation of Created events into Copied ones, if one or more potentiel sources have been
found for the Created event. The identification of the sources is based on the file_size, the
file_mtime and the file_hash attributes. The first step concerns only the files. Then at the
end, if any event has been transformed into a Copied one, the _posttreat_copied_folder()
helper method is called.

save_locals(file_path, file_references)
Directly modifies the local state dictionary associated to the handler, by providing new refer-
ence for a file or folder. This method should be use in combination of the optional parameter
custom_intializing_values when calling get_instance(). In the case you rapidly initialize
the handler with some files values, and then you see that some of these values are not good or that some
files are missing, you can adjust by passing new values or new files with this method. The data structure is
the almost the same.

Parameters

• file_path (str) – The relative path of the file or folder you want to add.

• file_references (list) – A list of 3 values in the following order: file_hash,
file_size, file_mtime

Returns None

get_available_events()→ list
Returns a list of high-level post-treated and ready events. Ready in the sense that the
POSTTREATMENT_TIME_LIMIT has been reached without any new low-level events coming. . .

run()
Threading module method, that is executed when calling start() method. The thread is running in a
loop until you call the stop()method. Until then, it just check regularly if there is any new queued events
emitted by the watchdog oberver. If any, it post-treats it calling the posttreat_lowlevel_event()
method.

2.1.3 lazydog.events

module lazydog.events

synopsis Definitions of the high-level lazydog events, based on the low-level watchdog ones, which are
now aggregable and also convertible to copy or move events.

author Clément Warneys <clement.warneys@gmail.com>

Possible type of lazydog events:

• EVENT_TYPE_CREATED for the creation of a file or folder

• EVENT_TYPE_MODIFIED for the creation of a file or folder (whatever the modification concerns: metadata
or content)

• EVENT_TYPE_MOVED for the move of a file or folder

• EVENT_TYPE_COPIED for the copy of a file or folder

• EVENT_TYPE_DELETED for the deletion of a file or folder

2.1. Lazydog 13

mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

Note: Some kind of events such as Moved and Copied have 2 path attributes: path for the origin path, and to_path
for the destination path. Other kinds have only the path attribute.

The ref_path attribute always refers to the current location of the file (to_path if any, else path). All the paths
are always relative to the main watched directory.

Lazydog has the ability to aggregate related low-level events. For example, in the case of multiple deletion events,
each of one under the same parent directory, the lazydog handler will emit only one deletion event, with the path of
the common parent directory.

Lazydog is also able to correlate almost simultaneous deletion and creation events into a unique moved event, if the
low-level events are related. Or mutiple creation events into a unique copied event, if the new files and folders were
already existing elsewhere in the main watched folder.

All these correlations are mainly done by the HighlevelEventHandler class,
but some helper methods are defined in the LazydogEvent class such as
add_source_paths_and_transforms_into_copied_event() or update_main_event().

class lazydog.events.LazydogEvent(event: watchdog.events.FileSystemEvent, local_states: lazy-
dog.states.LocalState)

Main class of lazydog.events module. Initialization with a low-level watchdog event that is then converted
into high-level lazydog event.

Note: The local path of the event is referenced as a relative path starting from the absolute path of the watched
directory. For this mechanism, the Lazydog event needs a reference, which is given at the initialisation with a
LocalState reference.

Parameters

• event (FileSystemEvent) – A low-level watchdog event.

• local_states (LocalState) – The reference state of the local files in the watched
directory. Including the absolute path of the watched directory, thus allowing to manage
high-level event with relative path.

Returns A high-level lazydog event (converted from low-level watchdog event).

Return type LazydogEvent

EVENT_TYPE_CREATED = 'created'
Created event type, imported from watchdog module

EVENT_TYPE_DELETED = 'deleted'
Deleted event type, imported from watchdog module

EVENT_TYPE_MOVED = 'moved'
Moved event type, imported from watchdog module

EVENT_TYPE_C_MODIFIED = 'modified'
Content modified event type, imported from lazydog.revised_watchdog module

EVENT_TYPE_M_MODIFIED = 'metadata'
Metadata modified event type, imported from lazydog.revised_watchdog module

EVENT_TYPE_COPIED = 'copied'
New kind of event, that does not exist in watchdog python module. Copied event can only be obtained by
transforming Created events. The transformation decision is made by the HighlevelEventHandler
and is based on the existing files or folders in the watched directory.

14 Chapter 2. Lazydog code documentation

Lazydog Documentation, Release 0.1.1

path
Origin path of the event.

to_path
Destination path of the event, if any, else None.

ref_path
Refers to the current location of the file or the event, which is to_path if any, else path.

parent_rp
Refers to the directory name of the event. If the directory name is already the main watched directory,
None is returned.

basename
Returns the filename or directory name of the related file or dir.

absolute_ref_path
Returns the absolute path of the current location of the file or dir.

is_directory()→ bool
Returns True if the event is related to a directory.

is_moved_event()→ bool
Returns True if the event is a file or dir move.

is_dir_moved_event()→ bool
Returns True if the event is a dir move.

is_deleted_event()→ bool
Returns True if the event is a file or dir deletion.

is_dir_deleted_event()→ bool
Returns True if the event is a dir deletion.

is_created_event()→ bool
Returns True if the event is a file or dir creation.

is_dir_created_event()→ bool
Returns True if the event is a dir creation.

is_file_created_event()→ bool
Returns True if the event is a file creation.

is_copied_event()→ bool
Returns True if the event is a file or dir copy.

is_modified_event()→ bool
Returns True if the event is a file or dir modification.

is_meta_modified_event()→ bool
Returns True if the event is a file or dir modification of the metadata only.

is_data_modified_event()→ bool
Returns True if the event is a file or dir modification of the content.

is_file_modified_event()→ bool
Returns True if the event is a file modification.

is_meta_file_modified_event()→ bool
Returns True if the event is a file modification of the metadata only.

is_data_file_modified_event()→ bool
Returns True if the event is a file modification of the content.

2.1. Lazydog 15

Lazydog Documentation, Release 0.1.1

is_dir_modified_event()→ bool
Returns True if the event is a dir modification.

has_dest()→ bool
Returns True if the event has a destination path (i.e. if it’s a Moved or Copied event).

has_same_mtime_than(previous_event)→ bool
Returns True if the event has the same modification time than the event in parameter.

has_same_size_than(event)→ bool
Returns True if the event has the same size than the event in parameter.

has_same_path_than(event)→ bool
Returns True if the event has the same ref_path than the event in parameter.

If both events have destination path, source paths are compared too.

has_same_src_path_than(event)→ bool
Returns True if the path of event is the same than the ref_path of the event in parameter.

static p1_comes_after_p2(p1: str, p2: str)→ bool
p1 and p2 are both paths (str format). This method is a basic comparison method to check if the first
parameter p1 is striclty a parent path of the second parameter p2.

Returns False if both paths are identical.

static p1_comes_before_p2(p1: str, p2: str)→ bool
Same than p1_comes_after_p2() method, but opposite result.

comes_before(event)→ bool
Same than comes_after() method, but opposite result.

same_or_comes_before(event)→ bool
Same than comes_before() method, but also True when both events have identical paths.

comes_after(event, complete_check: bool = True)→ bool
Same result than p1_comes_after_p2(), comparing current event ref_path path (as p1), to the
ref_path path of the event in parameter (as p2).

If both events have a destination path, source paths are compared too.

Returns False if both paths are identical.

same_or_comes_after(event)→ bool
Same than comes_after() method, but also True when both events have identical paths.

static datetime_difference_from_now(dt: datetime.datetime)→ datetime.datetime
Returns datetime.datetime object representing time difference between the datetime in parameter,
and now.

idle_time()→ datetime.datetime
Returns time difference between last time this event has been updated and now.

Note: Event updates occur when the event is aggregated to another related event, or also when the event
is transformed into a copied or a moved one. . .

file_hash
Returns the file hash of the file related to the event if any, else None. File hash value is saved into a private
variable, in order to avoid useless computation time. . .

16 Chapter 2. Lazydog code documentation

Lazydog Documentation, Release 0.1.1

static count_files_in(absolute_dir_path: str)→ int
Counts all non-empty (file size > 0) files in absolute_dir_path directory and all its sub-directories.
Returns None if the absolute_dir_path is not a directory.

Note: Be careful: absolute_dir_path has to represent absolute path (not a relative one).

dir_files_qty
Counts all non-empty (file size > 0) files in the related path of the event, and all its sub-directories. Returns
None if the event is not related to a directory.

static get_file_size(absolute_file_path: str)→ int
Returns the size of the file at the specified absolute path if any, else None.

file_size
Size of the file related to the event if any, else None. File size value is saved in a private variable, in order
to avoid useless sollicitation of file-system.

is_empty()→ bool
Returns True if the event is related to an empty directory, or if the event is related to an empty file (size =
0).

file_mtime
Last modification time of the file related to the event if any, else None. File modification time value is
saved in a private variable, in order to avoid useless sollicitation of file-system.

file_inode
Inode of the file related to the event if any, else None. Inode value is saved in a private variable, in order
to avoid useless sollicitation of file-system.

Note: This property seems now useless, and could be deprecated.

update_main_event(main_event)
High level helper method to facilitate the work of the HighlevelEventHandler. When different
events are identified as related ones, this method is merging the current event in the main one (in parame-
ter).

General idea is to update paramters of the main event, such as file_inode, file_mtime,
file_size, file_hash, and also the dates of occurence (which are needed to manage an aggrega-
tion time limit).

Each related events, including the main event itself, are all listed in related_events list, to keep track
of them.

add_source_paths_and_transforms_into_copied_event(src_paths: set)
High level helper method to facilitate the work of the HighlevelEventHandler. When a creation
event is actually identified as a copied one, this method is transforming the current event in a copied one.

The old path attribute is converted into a to_path one. And the path id filled with one of the identified
possible source paths (this identification is the job of the HighlevelEventHandler).

To get prepared to potential future aggregation of multiple copied events (for example in the case of a
copied directory), we need to keep track of all the possible source paths which are then saved into a
possible_src_paths attribute.

2.1. Lazydog 17

Lazydog Documentation, Release 0.1.1

2.1.4 lazydog.queues

module lazydog.queues

synopsis Bufferizes lazydog events pending for a possible aggregation with other simultaneous events.

author Clément Warneys <clement.warneys@gmail.com>

class lazydog.queues.DatedlocaleventQueue(local_states: lazydog.states.LocalState)
Basically accumulates all the events emited by a watchdog oberver. It inherits from
FileSystemEventHandler, so it is compatible with watchdog oberver. The on_any_event()
catches the low-level event and adds them to the queue, after transorming them to LazydogEvent, which
will further allow them to be post-treated by a HighlevelEventHandler.

The DatedlocaleventQueue has to be initialized with a LocalState object.

on_any_event(event)
Catch-all event handler.

Parameters event (watchdog.events.FileSystemEvent) – The event object repre-
senting the file system event.

next()
Provides with the oldest event that has been queued, removing it from the queue in the same time.

size()
Returns an integer corresponding to the current size of the queue.

is_empty()
True if the queue size is 0.

2.1.5 lazydog.states

module lazydog.states

synopsis Keeps track of the current state of the watched local directory. The idea is to save computational
time, avoiding recomputing file hashes or getting size and modification time of each watched files
(depending on the requested method), thus accelerating identification of copy events.

author Clément Warneys <clement.warneys@gmail.com>

class lazydog.states.DualAccessMemory
Helper class, used by LocalState. Sort of double-entry dictionary. When you save one tuple {key, value},
you can then access it both way:

• either from the key, using get(), or using accessor object[key]

• or from value, using get_by_value(). In this case, you will get a set of all the corresponding keys that
references to this specific value.

To register a new key, you can either use save() method, or the accessor object[key] = value.

Finally you can check if a key is existing using the accessor key in object.

get(key)
Returns the value corresponding to the key in parameter, same behaviour as a dictionary. None if key is
unknowned. You can also access it with object[key].

get_by_value(value)→ set
Returns a set of key corresponding to the value in parameter. Empty set() if value is not referenced.

18 Chapter 2. Lazydog code documentation

mailto:clement.warneys@gmail.com
mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

save(key: str, value)
Registers the tuple {key, value} in order it is easily accessible both way. If key already exists with another
value, the value is first removed, before registering the new one.

delete(delete_key: str)
Considering the DualAccessMemory has been designed to handle path key, this method not only
deletes the delete_key in parameter, but it also deletes every children keys corresponding to the chil-
dren paths of the parameter path delete_key.

move(src_key: str, dst_key: str)
Considering the DualAccessMemory has been designed to handle path key, this method not only moves
the src_key in parameter to dst_key key, but it also moves every children keys corresponding to the
children paths of the parameter path src_key to the related children path under the parameter path
dst_key.

class lazydog.states.LocalState(absolute_root_folder, custom_hash_function=None, cus-
tom_intializing_values: dict = None)

Keeps track of the current state of the watched local directory, by listing every sub-files and sub-directories, and
associating each of them with their size, modification time, and hash values.

When managing large directory, it can become very long to retrieves this information. But we need it very fast
in order to be able to correlate Created event into Copied ones. Indeed, for this kind of correlation, we need to
rapidly find every other file or folder that are having the same characteristics (that will then be eligible to be the
source file or folder).

LocalState is keeping tracks of files with two DualAccessMemory objects. The first one keeping tracks
of couple (size, modification time), and the second one of single hash value.

Hash values are computed depending on a default hashing function. This default method is based on the Dropbox
hashing algorithm, but you can define your own one. You only have to respect the same parameter and return.
See _default_hashing_function() method to see the needed parameters names and types and the
return type.

In order to accelerate the initialization of LocalState when watching large diectory, you can initialize it with
pre-computed initializing values of your own (that you have to know in the first place, for example by keeping
track of them in a hard backup file, or if you already have to compute them in other place of your application,
no need that the hash values have to be computed again. . . just send them at the initialization). Please looke at
the custom_intializing_values parameter for more information.

Parameters

• absolute_root_folder (str) – Absolute path of the folder you need to keep track
of. Note that ever sub-file and sub-folder will then be referenced with relative paths.

• custom_hash_function (function) – Optional. Default value is
_default_hashing_function() is used, which is based on the Dropbox hashing
algorithm. But you can also provides your own hashing function, as long as your respect
the format of the default one.

• custom_intializing_values (dict) – Optional. If not provided or None, all sub-
folders will be browsed at initialization, and for each file and folder, the file size, file modifi-
cation time and file hash will be retrieves and computed (this operation can take a long time,
depending on the number and size of the files, and on the hashing function). To accelerate
this initialization process, you can provide __init__ method with pre-computed initializ-
ing values under a dictionary format with key=file_path and value=[file_hash,
file_size, file_time]. You do not need to know the exact content of the main
directory at the initialization, and if you later notice unexpected modifications compared to
the initial values you sent, you can still correct each of them using the save() method.

Returns An initialized object representing local state of the aimed folder.

2.1. Lazydog 19

Lazydog Documentation, Release 0.1.1

Return type LocalState

DEFAULT_DIRECTORY_VALUE = 'DIR'
Default hash value for directory (since directory are not hashed, and that we want to reserve None value
to non existing directories).

absolute_local_path(relative_path: str)→ str
Computes the absolute local path from a relative one.

Parameters relative_path (str) – Relative local path of the file or folder.

Returns Absolute local path of the same file or folder

Return type str

relative_local_path(absolute_path: str)→ str
Same as absolute_local_path(), but opposite.

get_hash(key: str, compute_if_none: bool = True)→ str
Gets the file_hash value of the file at the key relative path. If the file is unknown (and so the hash
value is not yet computed), by default the hash value will be computed. This behaviour can be cancelled
using compute_if_none parameter.

Parameters

• key (str) – Relative local path of the file or folder.

• compute_if_none (boolean) – Optional. True by default, which means that if the
file is unknown (and so it is for the hash value), the hash value will be computed. Use
False if you want to cancel this bahaviour, so the returned value will be None.

Returns File or directory hash value, if path exists, else None.

Return type str

get_files_by_hash_key(hash_key: str)→ set
Returns a set of every file or directory paths for which the hash value corresponds to the hash_key
parameter.

get_sizetime(key: str, compute_if_none: bool = True)
Gets the couple (file_size, file_modification_time) value of the file at the key relative
path. Same behaviour than get_hash() method.

Parameters

• key (str) – Relative local path of the file or folder.

• compute_if_none (boolean) – Optional. True by default, which means that if the
file is unknown (and so it is for the file size and modification time value), the values will
be computed. Use False if you want to cancel this bahaviour, so the returned value will
be None.

Returns File or directory couple (file_size, file_modification_time) value, if path exists, else
None.

Return type str

get_files_by_sizetime_key(sizetime_key)→ set
Returns a set of every file or directory paths for which the couple (file_size, file_modification_time) value
corresponds to the sizetime_key parameter.

save(key: str, file_hash, file_size, file_mtime)
Allows an external object to add a new file or folder reference to the local state object, by giving already

20 Chapter 2. Lazydog code documentation

Lazydog Documentation, Release 0.1.1

computed hash, size and modification time values. Note that the values will not be neither checked nor
recomputed.

If you prefer that the LocalState class computes these values itself, and add the file or folder reference,
you can just call the get_hash() or get_sizetime() method. Note that then the LocalState
object just compute the needed values: it can compute the hash value without having any reference in its
sizetime dictionary. These one will only be computed when calling the related method.

Parameters

• key (str) – Relative local path of the file or folder.

• file_hash (str) – File hash value of the file or folder.

• file_size (int) – File size value of the file or folder. For information the size is
computed with os.path.getsize() method, so the size is the number of bytes of the
file.

• file_mtime (int) – File modification time value of the file or folder. For information
the modification time is computed with os.path.getmtime() method, rounded to
the third decimal, so the time is a number giving the number of seconds since the epoch,
precise at the millisecond.

Returns None

delete(delete_key: str)
Deletes key recursively. This method can be called internally when detecting a file or folder does not exists
anymore, or by an external objects, that do not need to keep track of this path anymore.

move(src_key: str, dst_key: str)
Moves key recursively. This method can be called by an external object, when you know a file or folder
has been moved and that you want to keep the already computed values in reference, without recomputing
them all.

2.1.6 lazydog.dropbox_content_hasher

module lazydog.dropbox_content_hasher

synopsis Function to get hash of a file, based on dropbox api hasher.

author Dropbox, Inc.

author Clément Warneys <clement.warneys@gmail.com>

lazydog.dropbox_content_hasher.default_hash_function(absolute_path: str, de-
fault_directory_hash: str
= ’DIR’)

Main function in this module that returns the dropbox-like hash of any local file. If the local path does not exist,
None is returned. If the local path is a directory, the default_directory_hash parameter is returned, or
the default string “DIR”.

Parameters

• absolute_path (str) – The absolute local path of the file or directory.

• default_directory_hash – Optional. The returned value in case the absolute path
is a directory.

Returns The hash of the file or directory located in absolute_path. The hash is computed based
on the default Dropbox API hasher. None if absolute local path does not exist.

Return type str

2.1. Lazydog 21

mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

class lazydog.dropbox_content_hasher.DropboxContentHasher
Computes a hash using the same algorithm that the Dropbox API uses for the the “content_hash” metadata field.

The digest() method returns a raw binary representation of the hash. The hexdigest() convenience method returns
a hexadecimal-encoded version, which is what the “content_hash” metadata field uses.

How to use it:

hasher = DropboxContentHasher()
with open('some-file', 'rb') as f:

while True:
chunk = f.read(1024) # or whatever chunk size you want
if len(chunk) == 0:

break
hasher.update(chunk)

print(hasher.hexdigest())

2.2 Revised Watchdog

This inner package is overloading the original watchdog package by revising and completing it, resolving the current
situation where the useful watchdog package is not maintained anymore. . .

Please read original watchdog project documentation for more information: https://pypi.org/project/watchdog/

2.2.1 revised_watchdog.events

module revised_watchdog.events

synopsis File system events and event handlers.

author yesudeep@google.com (Yesudeep Mangalapilly)

author Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.events module by revising and completing it. Please read
original watchdog project documentation for more information: https://github.com/gorakhargosh/watchdog

This module imports some definitions of watchdog.events and keeps them unchanged:

• FileModifiedEvent

• DirModifiedEvent

• FileSystemEvent

• FileSystemEventHandler

• EVENT_TYPE_MOVED

• EVENT_TYPE_CREATED

• EVENT_TYPE_DELETED

It adds the following definitions, in order to add some granularity in the watchdog.events.ModifiedEvent
definition, thus differentiating content modification from only metadata (access date, owner, etc.) modification:

• MetaFileModifiedEvent

• TrueFileModifiedEvent

• MetaDirModifiedEvent

22 Chapter 2. Lazydog code documentation

https://pypi.org/project/watchdog/
mailto:yesudeep@google.com
mailto:clement.warneys@gmail.com
https://github.com/gorakhargosh/watchdog

Lazydog Documentation, Release 0.1.1

• TrueDirModifiedEvent

• EVENT_TYPE_C_MODIFIED

• EVENT_TYPE_M_MODIFIED

Finally, it overloads the FileSystemEventHandler class, in order to manage the new granularity of modified events:

• FileSystemEventHandler

class lazydog.revised_watchdog.events.MetaFileModifiedEvent(src_path)
File system event representing metadata file modification on the file system.

class lazydog.revised_watchdog.events.TrueFileModifiedEvent(src_path)
File system event representing true file content modification on the file system.

class lazydog.revised_watchdog.events.MetaDirModifiedEvent(src_path)
File system event representing metadata directory modification on the file system.

class lazydog.revised_watchdog.events.TrueDirModifiedEvent(src_path)
File system event representing true directory content modification on the file system.

class lazydog.revised_watchdog.events.FileSystemEventHandler
Base file system event handler that you can override methods from. With modified dispatch method, added
on_data_modified() and on_meta_modified() methods, thus covering specific needs of lazydog.

dispatch(event)
Dispatches events to the appropriate methods.

Parameters event (FileSystemEvent) – The event object representing the file system
event.

on_data_modified(event)
Called when a file or directory true content is modified.

Parameters event (DirModifiedEvent or FileModifiedEvent) – Event represent-
ing file or directory modification.

on_meta_modified(event)
Called when a file or directory metadata is modified.

Parameters event (DirModifiedEvent or FileModifiedEvent) – Event represent-
ing file or directory modification.

2.2.2 revised_watchdog.observers.inotify

module revised_watchdog.observers.inotify

synopsis inotify(7) based emitter implementation, enhanced implementation of original watchdog
one.

author Sebastien Martini <seb@dbzteam.org>

author Luke McCarthy <luke@iogopro.co.uk>

author yesudeep@google.com (Yesudeep Mangalapilly)

author Tim Cuthbertson <tim+github@gfxmonk.net>

author Clément Warneys <clement.warneys@gmail.com>

platforms Linux 2.6.13+.

2.2. Revised Watchdog 23

mailto:seb@dbzteam.org
mailto:luke@iogopro.co.uk
mailto:yesudeep@google.com
mailto:tim+github@gfxmonk.net
mailto:clement.warneys@gmail.com

Lazydog Documentation, Release 0.1.1

This module is overloading the original watchdog.observers.inotify module by revising and completing
it. Please read original watchdog project documentation for more information: https://github.com/gorakhargosh/
watchdog

The main changes concern some methods in the InotifyEmitter class:

• on_thread_start() This method now uses revised InotifyBuffer.

• queue_events() This method has been simplified in order to reduce the number of emitted low-level events,
in comparison with original watchdog module.

class lazydog.revised_watchdog.observers.inotify.InotifyEmitter(event_queue,
watch, time-
out=1)

inotify(7)-based event emitter. Revised package mainly concerns queue_events() method, thus covering
specific needs of lazydog package.

Parameters

• event_queue (watchdog.events.EventQueue) – The event queue to fill with
events.

• watch (watchdog.observers.api.ObservedWatch) – A watch object represent-
ing the directory to monitor.

• timeout (float) – Read events blocking timeout (in seconds).

queue_events(timeout, full_events=False)
This method is classifying the events received from Inotify into watchdog events type (defined in
watchdog.events module).

Parameters

• timeout (float) – Unused param (from watchdog original package).

• full_events (boolean) – If True, then the method will report unmatched move
events as separate events. This means that if True, a file move event from out-
side the watched directory will result in a watchdog.events.FileMovedEvent
event, with no origin. Else (if False), it will result in a watchdog.events.
FileCreatedEvent event. This behavior is by default only called by a
InotifyFullEmitter.

class lazydog.revised_watchdog.observers.inotify.InotifyObserver(timeout=1,
gener-
ate_full_events=False)

Observer thread that schedules watching directories and dispatches calls to event handlers.

Please note that his class remains unmodified in revised_watchdog package. Only the __init__() method is
overided in order it uses the new definition of InotifyEmitter class.

2.2.3 revised_watchdog.observers.inotify_c

module revised_watchdog.observers.inotify_c

author yesudeep@google.com (Yesudeep Mangalapilly)

author Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.observers.inotify_c module by revising and completing
it. Please read original watchdog project documentation for more information: https://github.com/gorakhargosh/
watchdog

24 Chapter 2. Lazydog code documentation

https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog
mailto:yesudeep@google.com
mailto:clement.warneys@gmail.com
https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog

Lazydog Documentation, Release 0.1.1

Fundamental changes and corrections have been brought to the original Inotify class, whose behaviour was not
correct when moving or deleting sub-directories.

class lazydog.revised_watchdog.observers.inotify_c.Inotify(path, recursive=False,
event_mask=33556422)

Linux inotify(7) API wrapper class.

With modified read_events() method, and added _remove_watch_bookkeeping() method, thus
covering specifics needs of lazydog.

Parameters

• path (bytes) – The directory path for which we want an inotify object.

• recursive (boolean) – True if subdirectories should be monitored. False otherwise.

read_events(event_buffer_size=81920)
Reads events from inotify and yields them to the Inotify buffer. This method has been largely modified
from original watchdog module. . . Thus preventing from unwanted behaviour.

2.2.4 revised_watchdog.observers.inotify_buffer

module revised_watchdog.observers.inotify_c

author Thomas Amland <thomas.amland@gmail.com>

author Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.observers.inotify_buffer module by revising and
completing it. Please read original watchdog project documentation for more information: https://github.com/
gorakhargosh/watchdog

The main change is in the InotifyBuffer class, whose InotifyBuffer.__init__() method now uses
revised watchdog Inotify class.

class lazydog.revised_watchdog.observers.inotify_buffer.InotifyBuffer(path,
recur-
sive=False)

A wrapper for Inotify that holds events for delay seconds. During this time, IN_MOVED_FROM and
IN_MOVED_TO events are paired.

Please note that his class remains unmodified in revised_watchdog package. Only the __init__() method is
overrided in order it uses the new definition of Inotify class.

2.2. Revised Watchdog 25

mailto:thomas.amland@gmail.com
mailto:clement.warneys@gmail.com
https://github.com/gorakhargosh/watchdog
https://github.com/gorakhargosh/watchdog

Lazydog Documentation, Release 0.1.1

26 Chapter 2. Lazydog code documentation

Python Module Index

l
lazydog, 9
lazydog.dropbox_content_hasher, 21
lazydog.events, 13
lazydog.handlers, 11
lazydog.lazydog, 10
lazydog.queues, 18
lazydog.revised_watchdog.events, 22
lazydog.revised_watchdog.observers.inotify,

23
lazydog.revised_watchdog.observers.inotify_buffer,

25
lazydog.revised_watchdog.observers.inotify_c,

24
lazydog.states, 18

r
revised_watchdog, 22

27

Lazydog Documentation, Release 0.1.1

28 Python Module Index

Index

A
absolute_local_path() (lazydog.states.LocalState

method), 20
absolute_ref_path (lazydog.events.LazydogEvent at-

tribute), 15
add_source_paths_and_transforms_into_copied_event()

(lazydog.events.LazydogEvent method), 17

B
basename (lazydog.events.LazydogEvent attribute), 15

C
comes_after() (lazydog.events.LazydogEvent method),

16
comes_before() (lazydog.events.LazydogEvent method),

16
count_files_in() (lazydog.events.LazydogEvent static

method), 16
CREATE_EVENT_TIME_LIMIT_FOR_EMPTY_FILES

(lazydog.handlers.HighlevelEventHandler at-
tribute), 11

D
DatedlocaleventQueue (class in lazydog.queues), 18
datetime_difference_from_now() (lazy-

dog.events.LazydogEvent static method),
16

DEFAULT_DIRECTORY_VALUE (lazy-
dog.states.LocalState attribute), 20

default_hash_function() (in module lazy-
dog.dropbox_content_hasher), 21

delete() (lazydog.states.DualAccessMemory method), 19
delete() (lazydog.states.LocalState method), 21
dir_files_qty (lazydog.events.LazydogEvent attribute), 17
dispatch() (lazydog.revised_watchdog.events.FileSystemEventHandler

method), 23
DropboxContentHasher (class in lazy-

dog.dropbox_content_hasher), 21
DualAccessMemory (class in lazydog.states), 18

E
EVENT_TYPE_C_MODIFIED (lazy-

dog.events.LazydogEvent attribute), 14
EVENT_TYPE_COPIED (lazydog.events.LazydogEvent

attribute), 14
EVENT_TYPE_CREATED (lazy-

dog.events.LazydogEvent attribute), 14
EVENT_TYPE_DELETED (lazy-

dog.events.LazydogEvent attribute), 14
EVENT_TYPE_M_MODIFIED (lazy-

dog.events.LazydogEvent attribute), 14
EVENT_TYPE_MOVED (lazydog.events.LazydogEvent

attribute), 14

F
file_hash (lazydog.events.LazydogEvent attribute), 16
file_inode (lazydog.events.LazydogEvent attribute), 17
file_mtime (lazydog.events.LazydogEvent attribute), 17
file_size (lazydog.events.LazydogEvent attribute), 17
FileSystemEventHandler (class in lazy-

dog.revised_watchdog.events), 23

G
get() (lazydog.states.DualAccessMemory method), 18
get_available_events() (lazy-

dog.handlers.HighlevelEventHandler method),
13

get_by_value() (lazydog.states.DualAccessMemory
method), 18

get_file_size() (lazydog.events.LazydogEvent static
method), 17

get_files_by_hash_key() (lazydog.states.LocalState
method), 20

get_files_by_sizetime_key() (lazydog.states.LocalState
method), 20

get_hash() (lazydog.states.LocalState method), 20
get_instance() (lazydog.handlers.HighlevelEventHandler

class method), 12
get_sizetime() (lazydog.states.LocalState method), 20

29

Lazydog Documentation, Release 0.1.1

H
has_dest() (lazydog.events.LazydogEvent method), 16
has_same_mtime_than() (lazydog.events.LazydogEvent

method), 16
has_same_path_than() (lazydog.events.LazydogEvent

method), 16
has_same_size_than() (lazydog.events.LazydogEvent

method), 16
has_same_src_path_than() (lazy-

dog.events.LazydogEvent method), 16
HighlevelEventHandler (class in lazydog.handlers), 11

I
idle_time() (lazydog.events.LazydogEvent method), 16
Inotify (class in lazy-

dog.revised_watchdog.observers.inotify_c),
25

InotifyBuffer (class in lazy-
dog.revised_watchdog.observers.inotify_buffer),
25

InotifyEmitter (class in lazy-
dog.revised_watchdog.observers.inotify),
24

InotifyObserver (class in lazy-
dog.revised_watchdog.observers.inotify),
24

is_copied_event() (lazydog.events.LazydogEvent
method), 15

is_created_event() (lazydog.events.LazydogEvent
method), 15

is_data_file_modified_event() (lazy-
dog.events.LazydogEvent method), 15

is_data_modified_event() (lazydog.events.LazydogEvent
method), 15

is_deleted_event() (lazydog.events.LazydogEvent
method), 15

is_dir_created_event() (lazydog.events.LazydogEvent
method), 15

is_dir_deleted_event() (lazydog.events.LazydogEvent
method), 15

is_dir_modified_event() (lazydog.events.LazydogEvent
method), 15

is_dir_moved_event() (lazydog.events.LazydogEvent
method), 15

is_directory() (lazydog.events.LazydogEvent method), 15
is_empty() (lazydog.events.LazydogEvent method), 17
is_empty() (lazydog.queues.DatedlocaleventQueue

method), 18
is_file_created_event() (lazydog.events.LazydogEvent

method), 15
is_file_modified_event() (lazydog.events.LazydogEvent

method), 15
is_meta_file_modified_event() (lazy-

dog.events.LazydogEvent method), 15

is_meta_modified_event() (lazydog.events.LazydogEvent
method), 15

is_modified_event() (lazydog.events.LazydogEvent
method), 15

is_moved_event() (lazydog.events.LazydogEvent
method), 15

L
lazydog (module), 9
lazydog.dropbox_content_hasher (module), 21
lazydog.events (module), 13
lazydog.handlers (module), 11
lazydog.lazydog (module), 10
lazydog.queues (module), 18
lazydog.revised_watchdog.events (module), 22
lazydog.revised_watchdog.observers.inotify (module), 23
lazydog.revised_watchdog.observers.inotify_buffer

(module), 25
lazydog.revised_watchdog.observers.inotify_c (module),

24
lazydog.states (module), 18
LazydogEvent (class in lazydog.events), 14
LocalState (class in lazydog.states), 19

M
MetaDirModifiedEvent (class in lazy-

dog.revised_watchdog.events), 23
MetaFileModifiedEvent (class in lazy-

dog.revised_watchdog.events), 23
move() (lazydog.states.DualAccessMemory method), 19
move() (lazydog.states.LocalState method), 21

N
next() (lazydog.queues.DatedlocaleventQueue method),

18

O
on_any_event() (lazydog.queues.DatedlocaleventQueue

method), 18
on_data_modified() (lazy-

dog.revised_watchdog.events.FileSystemEventHandler
method), 23

on_meta_modified() (lazy-
dog.revised_watchdog.events.FileSystemEventHandler
method), 23

P
p1_comes_after_p2() (lazydog.events.LazydogEvent

static method), 16
p1_comes_before_p2() (lazydog.events.LazydogEvent

static method), 16
parent_rp (lazydog.events.LazydogEvent attribute), 15
path (lazydog.events.LazydogEvent attribute), 15

30 Index

Lazydog Documentation, Release 0.1.1

posttreat_lowlevel_event() (lazy-
dog.handlers.HighlevelEventHandler method),
12

POSTTREATMENT_TIME_LIMIT (lazy-
dog.handlers.HighlevelEventHandler attribute),
11

Q
queue_events() (lazydog.revised_watchdog.observers.inotify.InotifyEmitter

method), 24

R
read_events() (lazydog.revised_watchdog.observers.inotify_c.Inotify

method), 25
ref_path (lazydog.events.LazydogEvent attribute), 15
relative_local_path() (lazydog.states.LocalState method),

20
revised_watchdog (module), 22
run() (lazydog.handlers.HighlevelEventHandler method),

13

S
same_or_comes_after() (lazydog.events.LazydogEvent

method), 16
same_or_comes_before() (lazydog.events.LazydogEvent

method), 16
save() (lazydog.states.DualAccessMemory method), 18
save() (lazydog.states.LocalState method), 20
save_locals() (lazydog.handlers.HighlevelEventHandler

method), 13
size() (lazydog.queues.DatedlocaleventQueue method),

18
stop() (lazydog.handlers.HighlevelEventHandler

method), 12

T
to_path (lazydog.events.LazydogEvent attribute), 15
TrueDirModifiedEvent (class in lazy-

dog.revised_watchdog.events), 23
TrueFileModifiedEvent (class in lazy-

dog.revised_watchdog.events), 23

U
update_main_event() (lazydog.events.LazydogEvent

method), 17

Index 31

	Lazydog
	Getting Started
	Get it installed, the contributor way
	Tests
	Documentation
	Contributing
	Versioning and release notes
	Authors and contributors
	License
	Special thanks

	Lazydog code documentation
	Lazydog
	Revised Watchdog

	Python Module Index

