

Welcome to Lazydog’s documentation!

	Lazydog
	Getting Started

	Get it installed, the contributor way

	Tests

	Documentation

	Contributing

	Versioning and release notes

	Authors and contributors

	License

	Special thanks

	Lazydog code documentation
	Lazydog

	Revised Watchdog

Lazydog

Python module monitoring user-level file system events like Creation,
Modification, Move, Copy, and Deletion of files and folders. Lazydog
tries to aggregate low-level events between them in order to emit a
minimum number of high-level events (actually one event per user
action). Lazydog uses python Watchdog API to detect low-level events.

Getting Started

How to install it

The easiest way:

$ pip3 install lazydog

How to use it

Where the watchdog module would throw dozen of events after each user
event, lazydog only throws one. For example, ask lazidog to watch any
existing directory:

$ lazydog /the/directory/you/want/to/watch

And just move a file in the watched directory (here from
/watched/directory/move_test.txt to
/watched/directory/move_test_2.txt), and wait 2 seconds. You will
get something like this in the console:

INFO -
INFO - LIST OF THE LAST EVENTS:
INFO - moved: '/move_test.txt' to '/move_test_2.txt' mtime[1512151173.0] size[5]
INFO -

Try to copy the same file, and you will get somthiing like this:

INFO -
INFO - LIST OF THE LAST EVENTS:
INFO - copied: '/move_test_2.txt' to '/move_test_2 - Copie.txt' mtime[1512151173.0] size[5]
INFO -

Only one event per user action. You can try it with other type of action
(Deletion, Creation, Modification), and also with directories.

How to use in in third-part apps

Below is an example on how to rapidly initialize the high-level lazydog
event handler, and log every new event in the console (using logging
module). The watched directory is the current one (using
os.getcwd()).

Please note that once installed, using the $ lazydog command in the
console does just the same.

import logging
import os

from lazydog.handlers import HighlevelEventHandler

LOG
create logger
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
create console handler with a higher log level
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
add the handlers to the logger
logger.addHandler(console_handler)

INITIALIZE
get dir in parameter else current dir
watched_dir = directory if len(directory) > 1 else os.getcwd()
initializing a new HighlevelEventHandler
highlevel_handler = HighlevelEventHandler.get_instance(watched_dir)
starting it (since it is a thread)
highlevel_handler.start()
log first message
logging.info('LISTENING EVENTS IN DIR: \'%s\'' % watched_dir)

OPERATING
try:
 while True:

 # The following loop check every 1 second if any new event.
 time.sleep(1)
 local_events = highlevel_handler.get_available_events()

 # If any, it logs it directly in the console.
 for e in local_events:
 logging.info(e)

 # Keyboard <CTRL+C> interrupts the loop
 except KeyboardInterrupt:
 highlevel_handler.stop()

Getting further

Please find full code documentation in an HTML format on
ReadTheDocs.org: http://lazydog.readthedocs.io/

Miscellaneous…

Watchdog uses inotify by default on Linux to monitor directories for
changes. It’s not uncommon to encounter a system limit on the number of
files you can monitor (for example 8192 directories). You can get your
current inotify file watch limit by executing:

$ cat /proc/sys/fs/inotify/max_user_watches
8192

When this limit is not enough to monitor all files inside a directory,
the limit must be increased for Lazydog to work properly. You can set a
new limit temporary with:

$ sudo sysctl fs.inotify.max_user_watches=524288
$ sudo sysctl -p

If you like to make your limit permanent, use:

$ echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf
$ sudo sysctl -p

Get it installed, the contributor way

These instructions will get you a copy of the project up and running on
your local machine for development and testing purposes.

Prerequisites

Main dependency of lazydog, is the python watchdog API. You can install
it using the following command:

$ pip3 install watchdog

Please read the official documentation for any question about this
project: https://pypi.org/project/watchdog/

Installing development environment

Just clone the repository in your local working directory (or fork it).

$ git clone https://github.com/warniiiz/Lazydog

In order to contribute, you will need pytest for testing purpose (or
refer to the pytest
documentation [https://docs.pytest.org/en/latest/getting-started.html]
).

$ pip3 install pytest

You will also need Sphinx package for documentation purpose (or refer to
the Sphinx
documentation [http://www.sphinx-doc.org/en/stable/install.html]).

$ apt-get install python-sphinx

Tests

Module testing

The different python module are in the /lazydog directory. Each of
them has attached test functions, that are in the /lazydog/test
directory. You can launch tests unitary like this (for example for
testing the events module):

$ pytest lazydog/test/test_events.py

Kind of results:

================================= test session starts =================================
platform linux -- Python 3.4.2, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /media/maxtor/media/Python/Lazydog, inifile:
plugins: cov-2.5.1
collected 16 items

lazydog/test/test_events.py [100%]

============================== 16 passed in 0.51 seconds ==============================

You can also test the whole package (assuming you are in the
developpement directory):

$ pytest

Test coverage

Check the test coverage:

$ py.test --cov lazydog

Test coverage is > 90%. The metric is not very relevant about the test
quality, but at least you will be reasssured there are some tests ;)

========================== test session starts ===========================
platform linux -- Python 3.4.2, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /media/maxtor/media/Python/Lazydog, inifile:
plugins: cov-2.5.1
collected 58 items

lazydog/test/test_events.py [27%]
lazydog/test/test_handlers.py [65%]
lazydog/test/test_queues.py .. [68%]
lazydog/test/test_states.py [100%]

----------- coverage: platform linux, python 3.4.2-final-0 -----------
Name Stmts Miss Cover
--
lazydog/__init__.py 0 0 100%
lazydog/dropbox_content_hasher.py 66 14 79%
lazydog/events.py 249 7 97%
lazydog/handlers.py 214 29 86%
lazydog/lazydog.py 39 39 0%
lazydog/queues.py 18 0 100%
lazydog/revised_watchdog/__init__.py 0 0 100%
lazydog/revised_watchdog/events.py 31 1 97%
lazydog/revised_watchdog/observers/__init__.py 0 0 100%
lazydog/revised_watchdog/observers/inotify.py 49 6 88%
lazydog/revised_watchdog/observers/inotify_buffer.py 12 0 100%
lazydog/revised_watchdog/observers/inotify_c.py 72 22 69%
lazydog/states.py 109 1 99%
lazydog/test/test_events.py 261 2 99%
lazydog/test/test_handlers.py 355 3 99%
lazydog/test/test_queues.py 31 0 100%
lazydog/test/test_states.py 172 0 100%
--
TOTAL 1678 124 93%

====================== 58 passed in 30.15 seconds ========================

Documentation

Full code documentation

Please find full code documentation in an HTML format on
ReadTheDocs.org: http://lazydog.readthedocs.io/

This documentation is automatically updated each time an update is made
no GitHub.

Maintaining documentation up-to-date

Please document each change. If you want to check the result before
publishing, you can run the following after each documentation
modification:

$ cd docs # first go in the /docs subdirectory.
$ make html # recompute the sphinx documentation

The resulted documentation is then in the local relative folder
/docs/_build/html/index.html.

Note that if you did not modify local file from /docs subdirectory,
the changes will not be taken… you can use the following command to
force recomputing all the changes:

$ touch autodoc.rst; make html

Last thing. If you modified the main README.md, and you want the
changes to appear in the documentation (and not only on github), you
have to convert the .md file to a .rst one. You can use the pandoc app
to do thiss conversion, using the following command (after installing
Pandoc, please refer to Pandoc
documentation [https://pandoc.org/installing.html] for more
information):

pandoc --from=markdown --to=rst --output=README.rst ../README.md # Assuming you are in the /docs subdirectory.

Then don’t forget to run the previous command again to recompute the
whole documentation.

Contributing

For lazydog to be a truly great project, third-party code
contributions are important. If you want to enhance lazydog, spot bugs
or fix them, or just ask for new enhancements, you are so much welcome!
Below is a list of things that might help you in contributing to
lazydog.

Check the current issues

The list of the current bugs, issues, new enhancement proposals, etc.
are all grouped on GitHub Issues’ tab:

	Issue tracker [https://github.com/warniiiz/Lazydog/issues]

For more information about GitHub, please check the followings:

	General GitHub documentation [http://help.github.com/]

	GitHub pull request
documentation [http://help.github.com/send-pull-requests/]

Getting Started

To get involved in code enhancement:

	Make sure you have a GitHub
account [https://github.com/signup/free]

	Get the latest version, by either way cloning of forking this
repository (depending on what you want to do)

	Install the requirements via pip: pip install -r requirements.txt

	Submit an issue directly on GitHub:

	For bugs, clearly describe the issue including steps to reproduce

	For enhancement proposals, be sure to indicate if you’re willing to
work on implementing the enhancement

If you do not have GitHub account and you just want to notify for a new
bug, please report me by e-mail.

Making Changes

	lazydog does not use any git Workflow until now. This will
remains until the volume of changes and contribution needs a clearer
workflow.

	Make commits of logical units.

	Check for unnecessary whitespace with git diff --check before
committing.

	Make sure you have added the necessary tests for your changes.

	Run python setup.py test to make sure your tests pass

	Run coverage run --source=lazydog setup.py test if you have the
coverage package installed to generate coverage data

	Check your coverage by running coverage report

	Please correctly document the code you wrote, and ensure it is
readable once HTML generated

	Update main documentation files (README.md, etc.) when necessary.

Submitting Changes

	Push your changes to the feature branch in your fork of the
repository.

	Submit a pull request to the main repository

Versioning and release notes

We use SemVer [http://semver.org/] for versioning. Please read
RELEASE-NOTES.md [https://github.com/warniiiz/Lazydog/blob/master/RELEASE-NOTES.md]
for details about each releases.

Authors and contributors

	Clément Warneys - Initial work -
warniiiz [https://github.com/warniiiz]

License

This project is licensed under the Apache License Version 2.0. Please
see the
LICENSE.md [https://github.com/warniiiz/Lazydog/blob/master/LICENSE.md]
file for details.

Special thanks

Thanks to Jeff Knupp for this general guidelines for open sourcing a
python
project [https://jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/]
(which helped me a lot since it is my first open source project I
deliver):

Lazydog code documentation

Lazydog

	package

	lazydog

	synopsis

	File system user-level events monitoring.

	author

	Clément Warneys <clement.warneys@gmail.com>

This is the main package of the lazydog library. It relies on another
sub-package revised_watchdog which is a modified version of watchdog
package.

As a summary, watchdog is a “python API and shell utilities to monitor file
system events”. As such, watchdog is monitoring and emitting every tiny
local event on the file system, which often means 5 or more watchdog events per
user event. For example, when a user is creating a new file, you will get 1 creation
event, multiple modification events (some of them for the content modification, others
for metadata mosification), and 1 or more modification event for the directory of
the file.

The goal of lazydog is to emit only 1 event per user event. This kind of event
will sometimes be call high-level event, compared to low-level event
which are emitted by the watchdog API. To do so, lazydog is waiting a little
amount of time in order to correlate different watchdog events between them, and to
aggregate them when related. This mechanism results in some delays between the user action
and the event emission. The total delay depends on the watchdog observer class. For
example, if you use an InotifyObserver observer, you only need a 2-seconds delay. But if you use
a more basic observer as the PollingObserver observer (which is more compatible between different
system), then you need a greater delay such as 10-seconds.

The lazydog package contains the following modules:

	lazydog is a sample module that show how to use the package, by logging the high-level events in the console. The main function of this module is called when calling $ lazidog in the console.

	handlers is the main module of the library with the aggregation algorithms.

	events defines the high-level lazydog events, based on the low-level watchdog ones, which are now aggregable and also convertible to copy or move events.

	queues bufferizes lazydog events pending for a possible aggregation with other simultaneous events.

	states keeps track of the current state of the watched local directory. The idea is to save computational time, avoiding recomputing file hashes or getting size and time of each watched files (depending on the requested method), thus facilitating identification of copy events.

	dropbox_content_hasher is the default hash function to get a hash of a file. Based on the hash function of the Dropbox API.

lazydog.lazydog

	module

	lazydog.lazidog

	synopsis

	An sample module that show how to use the package, by logging the high-level lazydog events in the console. The main function of this module is executed by calling $ lazidog in the system console.

	author

	Clément Warneys <clement.warneys@gmail.com>

Please read the source code for more information. Below is an example on
how to initialize the high-level lazydog event handler, and log every
new event in the console (using logging module). The watched directory
is the current one (using os.getcwd()).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 import logging
 import os

 from lazydog.handlers import HighlevelEventHandler

 # LOG
 # create logger
 logger = logging.getLogger()
 logger.setLevel(logging.INFO)
 # create console handler with a higher log level
 console_handler = logging.StreamHandler()
 console_handler.setLevel(logging.INFO)
 # create formatter and add it to the handlers
 formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
 console_handler.setFormatter(formatter)
 # add the handlers to the logger
 logger.addHandler(console_handler)

 # INITIALIZE
 # get dir in parameter else current dir
 watched_dir = directory if len(directory) > 1 else os.getcwd()
 # initializing a new HighlevelEventHandler
 highlevel_handler = HighlevelEventHandler.get_instance(watched_dir)
 # starting it (since it is a thread)
 highlevel_handler.start()
 # log first message
 logging.info('LISTENING EVENTS IN DIR: '%s'' % watched_dir)

 # OPERATING
 try:
 while True:

 # The following loop check every 1 second if any new event.
 time.sleep(1)
 local_events = highlevel_handler.get_available_events()

 # If any, it logs it directly in the console.
 for e in local_events:
 logging.info(e)

 # Keyboard <CTRL+C> interrupts the loop
 except KeyboardInterrupt:
 highlevel_handler.stop()

lazydog.handlers

	module

	lazydog.handlers

	synopsis

	Main module of lazydog including the aggregation logics.

	author

	Clément Warneys <clement.warneys@gmail.com>

	
class lazydog.handlers.HighlevelEventHandler(lowlevel_event_queue: lazydog.queues.DatedlocaleventQueue, local_states: lazydog.states.LocalState)

	Post-treats the low level events to suggest only high-level ones.

To do so, a high-level handler needs a DatedlocaleventQueue
(an event queue containing the last lazydog events and inherited from
FileSystemEventHandler so it is compatible
with watchdog observers), that is already populated by a low-level watchdog observer,
for example InotifyObserver, that retrieves
the low-level file-system events.

The simplest way to instanciate HighlevelEventHandler
is to use the get_instance() method. In this case, you only need to specify the
directory to watch watched_dir. Two other optional parameters hashing_function
and custom_intializing_values respectively allow to use custom hashing function
(which will be use to compute the hashs of each file, in order to correlate copy events)
and to accelerate the initialization phase (by providing already computed hash values of the
current files in the watched directory, thus avoiding to compute them at the start). Please see
the related methods documentation for more information.

This class inherits from threading.Thread so it works autonomously. It can be started
start() method (from Thread module, and a stopping order can be send with stop()
inner method.

	Parameters

	
	lowlevel_event_queue (DatedlocaleventQueue) – An event queue containing the last lazydog events. Note that the provided queue
shall be already associated with a low-level watchdog observer that retrieves
the low-level file-system events (in order to fill the queue).

	local_states (LocalState) – The reference state of the local files in the watched directory. This state will be
dynamically updated by the handler, depending on the low-level events. This state
contains also the path of the watched directory.

	Returns

	A non-running high-level lazydog events handler.

	Return type

	HighlevelEventHandler

	
POSTTREATMENT_TIME_LIMIT = datetime.timedelta(0, 2)

	If neither new low-level events nor high-level post-treatments appends
during this 2-seconds delay, the current events in the queue are ready to be
emitted the listener, when using get_available_events() method.

	
CREATE_EVENT_TIME_LIMIT_FOR_EMPTY_FILES = datetime.timedelta(0, 2)

	Deprecated. At the beginning of the project, empty file creation was more delayed before
the handler emits them. Because empty file are often created and then
rapidly renamed and modified… The idea was to limit the number of high-level
events that were being sent. But this specific behaviour could generate unwanted
problems for the third-application using this library.

	
classmethod get_instance(watched_dir: str, hashing_function=None, custom_intializing_values=None)

	This method provides you with the simplest way to instanciate
HighlevelEventHandler. You only need to specify the
directory to watch watched_dir. Two other optional parameters hashing_function
and custom_intializing_values respectively allow to use custom hashing function
(which will be use to compute the hashs of each file, in order to correlate copy events)
and to accelerate the initialization phase (by providing already computed hash values of the
current files in the watched directory, thus avoiding to compute them at the start).

	Parameters

	
	watched_dir (str) – The path you want to watch.

	hashing_function (function) – Custom hashing function that will be use to compute the hashs of each file,
in order the handler is able to correlate copy events. The function shall be defined
with the same parameters and retrun format than
default_hash_function().

	custom_intializing_values (LocalState) – Providing custom intializing values accelerate the initialization phase
by providing already computed hash values of all the files currently in
the watched directory. The provided dictionary shall cover all the local
files and directory because hash values will not be computed for
missing files. If some reference were missing in the provided dictionary,
they can be completed later using save_locals()
method. For more information about the structure of this parameter,
please see the documentation of LocalState.

	Returns

	An already running high-level lazydog events handler.

	Return type

	HighlevelEventHandler

	
stop()

	Set the threading.Event so that the handler thread
knows that it has to stop running. Call this method when you want
to preperly stop the handler. The handler will then stop a few seconds
afterwards.

	
posttreat_lowlevel_event(local_event: lazydog.events.LazydogEvent)

	Executes the main logics of the High-level Handler. These are all the aggregation
rules, depending on the order of arrival of the low-level event, how to identify
the relation between them and when to decide to aggregate them, or to transform
them into a high-level Copied or a Moved event.

Please read directly the commented code for more information about these rules. Here is
a summary of the execution:

	Aggregation rules:

	Using an InotifyObserver, Deleted events arrive backward, which means that if you delete a directory with some files inside, you will get first a Deleted event for the inside files then another one for their parent directory. So if we find a Deleted event for a directory, we remove every children Deleted events previously queued. Note that if a Deleted event arrives after a Modified event or anything else for the same file or folder, then we just remove (or adapt) the previous related events.

	Using an InotifyObserver, Moved events are the most simple to post-treat: if you move a folder with sub-files, you only get one low-level event. So nothing to aggregate here… The only thing is when a Moved event is rapidly succeding a Created event (or anything else), then you have to adapt the original event in the queue.

	Modified events are easy to aggregate to other ones. They are often meaningless, since a low-level Whatever event often comes with one or more Modified events, so we often just ignore these Modified events… Note that when you copy or create a large file, you will get multiple low-level Modified events per seconds that you will have to ignore (since you want to do a high-level lazy observer).

	If the new event is not related to any other already-listed events, thent it is added to the queue as a new high-level event.

	Transformation of Created events into Copied ones, if one or more potentiel sources have been found for the Created event. The identification of the sources is based on the file_size, the file_mtime and the file_hash attributes. The first step concerns only the files. Then at the end, if any event has been transformed into a Copied one, the _posttreat_copied_folder() helper method is called.

	
save_locals(file_path, file_references)

	Directly modifies the local state dictionary associated to the handler, by providing
new reference for a file or folder. This method should be use in combination of
the optional parameter custom_intializing_values when calling get_instance().
In the case you rapidly initialize the handler with some files values, and then
you see that some of these values are not good or that some files are missing,
you can adjust by passing new values or new files with this method. The data structure
is the almost the same.

	Parameters

	
	file_path (str) – The relative path of the file or folder you want to add.

	file_references (list) – A list of 3 values in the following order: file_hash, file_size, file_mtime

	Returns

	None

	
get_available_events() → list

	Returns a list of high-level post-treated and ready events. Ready in the sense
that the POSTTREATMENT_TIME_LIMIT has been reached without any new
low-level events coming…

	
run()

	Threading module method, that is executed when calling start() method.
The thread is running in a loop until you call the stop() method. Until
then, it just check regularly if there is any new queued events emitted by the watchdog
oberver. If any, it post-treats it calling the
posttreat_lowlevel_event() method.

lazydog.events

	module

	lazydog.events

	synopsis

	Definitions of the high-level lazydog events, based on the low-level watchdog ones, which are now aggregable and also convertible to copy or move events.

	author

	Clément Warneys <clement.warneys@gmail.com>

Possible type of lazydog events:

	EVENT_TYPE_CREATED for the creation of a file or folder

	EVENT_TYPE_MODIFIED for the creation of a file or folder (whatever the modification concerns: metadata or content)

	EVENT_TYPE_MOVED for the move of a file or folder

	EVENT_TYPE_COPIED for the copy of a file or folder

	EVENT_TYPE_DELETED for the deletion of a file or folder

Note

Some kind of events such as Moved and Copied have 2 path attributes:
path for the origin path, and
to_path for the destination path. Other kinds have only
the path attribute.

The ref_path attribute always refers
to the current location of the file (to_path if any,
else path). All the paths are always relative to the
main watched directory.

Lazydog has the ability to aggregate related low-level events. For example, in
the case of multiple deletion events, each of one under the same parent directory,
the lazydog handler will emit only one deletion event, with the path of the common
parent directory.

Lazydog is also able to correlate almost simultaneous deletion and creation events
into a unique moved event, if the low-level events are related. Or mutiple creation events
into a unique copied event, if the new files and folders were already existing
elsewhere in the main watched folder.

All these correlations are mainly done by the HighlevelEventHandler
class, but some helper methods are defined in the LazydogEvent
class such as add_source_paths_and_transforms_into_copied_event()
or update_main_event().

	
class lazydog.events.LazydogEvent(event: watchdog.events.FileSystemEvent, local_states: lazydog.states.LocalState)

	Main class of lazydog.events module. Initialization with a
low-level watchdog event that is then converted into
high-level lazydog event.

Note

The local path of the event is referenced as a relative path
starting from the absolute path of the watched directory. For this
mechanism, the Lazydog event needs a reference, which is given
at the initialisation with a LocalState reference.

	Parameters

	
	event (FileSystemEvent) – A low-level watchdog event.

	local_states (LocalState) – The reference state of the local files in the watched directory.
Including the absolute path of the watched directory, thus allowing to
manage high-level event with relative path.

	Returns

	A high-level lazydog event (converted from low-level watchdog event).

	Return type

	LazydogEvent

	
EVENT_TYPE_CREATED = 'created'

	Created event type, imported from watchdog module

	
EVENT_TYPE_DELETED = 'deleted'

	Deleted event type, imported from watchdog module

	
EVENT_TYPE_MOVED = 'moved'

	Moved event type, imported from watchdog module

	
EVENT_TYPE_C_MODIFIED = 'modified'

	Content modified event type, imported from lazydog.revised_watchdog module

	
EVENT_TYPE_M_MODIFIED = 'metadata'

	Metadata modified event type, imported from lazydog.revised_watchdog module

	
EVENT_TYPE_COPIED = 'copied'

	New kind of event, that does not exist in watchdog python module.
Copied event can only be obtained by transforming Created events.
The transformation decision is made by the
HighlevelEventHandler and is based on
the existing files or folders in the watched directory.

	
path

	Origin path of the event.

	
to_path

	Destination path of the event, if any, else None.

	
ref_path

	Refers to the current location of the file or the event,
which is to_path if any, else path.

	
parent_rp

	Refers to the directory name of the event.
If the directory name is already the main watched
directory, None is returned.

	
basename

	Returns the filename or directory name of the related file or dir.

	
absolute_ref_path

	Returns the absolute path of the current location of the file or dir.

	
is_directory() → bool

	Returns True if the event is related to a directory.

	
is_moved_event() → bool

	Returns True if the event is a file or dir move.

	
is_dir_moved_event() → bool

	Returns True if the event is a dir move.

	
is_deleted_event() → bool

	Returns True if the event is a file or dir deletion.

	
is_dir_deleted_event() → bool

	Returns True if the event is a dir deletion.

	
is_created_event() → bool

	Returns True if the event is a file or dir creation.

	
is_dir_created_event() → bool

	Returns True if the event is a dir creation.

	
is_file_created_event() → bool

	Returns True if the event is a file creation.

	
is_copied_event() → bool

	Returns True if the event is a file or dir copy.

	
is_modified_event() → bool

	Returns True if the event is a file or dir modification.

	
is_meta_modified_event() → bool

	Returns True if the event is a file or dir modification of the metadata only.

	
is_data_modified_event() → bool

	Returns True if the event is a file or dir modification of the content.

	
is_file_modified_event() → bool

	Returns True if the event is a file modification.

	
is_meta_file_modified_event() → bool

	Returns True if the event is a file modification of the metadata only.

	
is_data_file_modified_event() → bool

	Returns True if the event is a file modification of the content.

	
is_dir_modified_event() → bool

	Returns True if the event is a dir modification.

	
has_dest() → bool

	Returns True if the event has a destination path
(i.e. if it’s a Moved or Copied event).

	
has_same_mtime_than(previous_event) → bool

	Returns True if the event has the same modification time than the event in parameter.

	
has_same_size_than(event) → bool

	Returns True if the event has the same size than the event in parameter.

	
has_same_path_than(event) → bool

	Returns True if the event has the same ref_path
than the event in parameter.

If both events have destination path, source paths
are compared too.

	
has_same_src_path_than(event) → bool

	Returns True if the path of event is the same
than the ref_path of the event in parameter.

	
static p1_comes_after_p2(p1: str, p2: str) → bool

	p1 and p2 are both paths (str format). This method is
a basic comparison method to check if the first parameter p1
is striclty a parent path of the second parameter p2.

Returns False if both paths are identical.

	
static p1_comes_before_p2(p1: str, p2: str) → bool

	Same than p1_comes_after_p2() method, but opposite result.

	
comes_before(event) → bool

	Same than comes_after() method, but opposite result.

	
same_or_comes_before(event) → bool

	Same than comes_before() method, but also True when both events have identical paths.

	
comes_after(event, complete_check: bool = True) → bool

	Same result than p1_comes_after_p2(),
comparing current event ref_path path (as p1), to the
ref_path path of the event in parameter (as p2).

If both events have a destination path, source paths
are compared too.

Returns False if both paths are identical.

	
same_or_comes_after(event) → bool

	Same than comes_after() method, but also True when both events have identical paths.

	
static datetime_difference_from_now(dt: datetime.datetime) → datetime.datetime

	Returns datetime.datetime object representing time difference
between the datetime in parameter, and now.

	
idle_time() → datetime.datetime

	Returns time difference between last time this event has been updated
and now.

Note

Event updates occur when the event is aggregated to another
related event, or also when the event is transformed into a copied
or a moved one…

	
file_hash

	Returns the file hash of the file related to the event if any, else None.
File hash value is saved into a private variable, in order to avoid useless
computation time…

	
static count_files_in(absolute_dir_path: str) → int

	Counts all non-empty (file size > 0) files in absolute_dir_path
directory and all its sub-directories. Returns None if
the absolute_dir_path is not a directory.

Note

Be careful: absolute_dir_path has to represent
absolute path (not a relative one).

	
dir_files_qty

	Counts all non-empty (file size > 0) files in the related path
of the event, and all its sub-directories. Returns None
if the event is not related to a directory.

	
static get_file_size(absolute_file_path: str) → int

	Returns the size of the file at the specified absolute path if any, else None.

	
file_size

	Size of the file related to the event if any, else None.
File size value is saved in a private variable, in order to avoid useless
sollicitation of file-system.

	
is_empty() → bool

	Returns True if the event is related to an empty directory,
or if the event is related to an empty file (size = 0).

	
file_mtime

	Last modification time of the file related to the event if any, else None.
File modification time value is saved in a private variable, in order to avoid useless
sollicitation of file-system.

	
file_inode

	Inode of the file related to the event if any, else None.
Inode value is saved in a private variable, in order to avoid useless
sollicitation of file-system.

Note

This property seems now useless, and could be deprecated.

	
update_main_event(main_event)

	High level helper method to facilitate the work of the
HighlevelEventHandler.
When different events are identified as related ones, this method
is merging the current event in the main one (in parameter).

General idea is to update paramters of the main event, such as
file_inode, file_mtime, file_size,
file_hash, and also the dates of occurence (which are needed
to manage an aggregation time limit).

Each related events, including the main event itself, are all listed
in related_events list, to keep track of them.

	
add_source_paths_and_transforms_into_copied_event(src_paths: set)

	High level helper method to facilitate the work of the
HighlevelEventHandler.
When a creation event is actually identified as a copied one,
this method is transforming the current event in a copied one.

The old path attribute is converted into a to_path
one. And the path id filled with one of the identified possible
source paths (this identification is the job of the
HighlevelEventHandler).

To get prepared to potential future aggregation of multiple copied
events (for example in the case of a copied directory), we need to keep
track of all the possible source paths which are then saved into
a possible_src_paths attribute.

lazydog.queues

	module

	lazydog.queues

	synopsis

	Bufferizes lazydog events pending for a possible aggregation with other simultaneous events.

	author

	Clément Warneys <clement.warneys@gmail.com>

	
class lazydog.queues.DatedlocaleventQueue(local_states: lazydog.states.LocalState)

	Basically accumulates all the events emited by a watchdog oberver.
It inherits from FileSystemEventHandler, so it
is compatible with watchdog oberver. The on_any_event() catches the
low-level event and adds them to the queue, after transorming them
to LazydogEvent, which will further allow them
to be post-treated by a HighlevelEventHandler.

The DatedlocaleventQueue has to be initialized
with a LocalState object.

	
on_any_event(event)

	Catch-all event handler.

	Parameters

	event (watchdog.events.FileSystemEvent) – The event object representing the file system event.

	
next()

	Provides with the oldest event that has been queued, removing it
from the queue in the same time.

	
size()

	Returns an integer corresponding to the current size of the queue.

	
is_empty()

	True if the queue size is 0.

lazydog.states

	module

	lazydog.states

	synopsis

	Keeps track of the current state of the watched local directory. The idea is to save computational time, avoiding recomputing file hashes or getting size and modification time of each watched files (depending on the requested method), thus accelerating identification of copy events.

	author

	Clément Warneys <clement.warneys@gmail.com>

	
class lazydog.states.DualAccessMemory

	Helper class, used by LocalState. Sort of double-entry dictionary.
When you save one tuple {key, value}, you can then access it both way:

	either from the key, using get(), or using accessor object[key]

	or from value, using get_by_value(). In this case, you will get a set of all the corresponding keys that references to this specific value.

To register a new key, you can either use save() method,
or the accessor object[key] = value.

Finally you can check if a key is existing using the accessor key in object.

	
get(key)

	Returns the value corresponding to the key in parameter, same behaviour as a dictionary.
None if key is unknowned. You can also access it with object[key].

	
get_by_value(value) → set

	Returns a set of key corresponding to the value in parameter.
Empty set() if value is not referenced.

	
save(key: str, value)

	Registers the tuple {key, value} in order it is easily accessible both way.
If key already exists with another value, the value is first removed,
before registering the new one.

	
delete(delete_key: str)

	Considering the DualAccessMemory
has been designed to handle path key, this method not only deletes the
delete_key in parameter, but it also deletes every children keys corresponding to the children paths
of the parameter path delete_key.

	
move(src_key: str, dst_key: str)

	Considering the DualAccessMemory
has been designed to handle path key, this method not only moves the
src_key in parameter to dst_key key, but it also moves every
children keys corresponding to the children paths
of the parameter path src_key to the related children path under
the parameter path dst_key.

	
class lazydog.states.LocalState(absolute_root_folder, custom_hash_function=None, custom_intializing_values: dict = None)

	Keeps track of the current state of the watched local directory, by listing
every sub-files and sub-directories, and associating each of them with their
size, modification time, and hash values.

When managing large directory, it can become very long to retrieves this
information. But we need it very fast in order to be able to correlate
Created event into Copied ones. Indeed, for this kind of correlation,
we need to rapidly find every other file or folder that are having the
same characteristics (that will then be eligible to be the source file
or folder).

LocalState is keeping tracks of files with two
DualAccessMemory objects. The first one keeping tracks of
couple (size, modification time), and the second one of single
hash value.

Hash values are computed depending on a default hashing function. This
default method is based on the Dropbox hashing algorithm, but you can
define your own one. You only have to respect the same parameter and return.
See _default_hashing_function() method to see the needed parameters
names and types and the return type.

In order to accelerate the initialization of LocalState when
watching large diectory, you can initialize it with pre-computed initializing
values of your own (that you have to know in the first place, for example by
keeping track of them in a hard backup file, or if you already have to compute them
in other place of your application, no need that the hash values have to
be computed again… just send them at the initialization). Please looke
at the custom_intializing_values parameter for more information.

	Parameters

	
	absolute_root_folder (str) – Absolute path of the folder you need to keep track of. Note that
ever sub-file and sub-folder will then be referenced with
relative paths.

	custom_hash_function (function) – Optional. Default value is _default_hashing_function() is used,
which is based on the Dropbox hashing algorithm. But you can also
provides your own hashing function, as long as your respect the format
of the default one.

	custom_intializing_values (dict) – Optional. If not provided or None, all sub-folders will be browsed
at initialization, and for each file and folder, the file size, file
modification time and file hash will be retrieves and computed (this operation
can take a long time, depending on the number and size of the files, and on
the hashing function). To accelerate this initialization process, you can provide
__init__ method with pre-computed initializing values under a dictionary format with
key=file_path and value=[file_hash, file_size, file_time].
You do not need to know the exact content of the main directory at the initialization,
and if you later notice unexpected modifications compared to the initial values you sent,
you can still correct each of them using the save() method.

	Returns

	An initialized object representing local state of the aimed folder.

	Return type

	LocalState

	
DEFAULT_DIRECTORY_VALUE = 'DIR'

	Default hash value for directory (since directory are not hashed,
and that we want to reserve None value to non existing directories).

	
absolute_local_path(relative_path: str) → str

	Computes the absolute local path from a relative one.

	Parameters

	relative_path (str) – Relative local path of the file or folder.

	Returns

	Absolute local path of the same file or folder

	Return type

	str

	
relative_local_path(absolute_path: str) → str

	Same as absolute_local_path(), but opposite.

	
get_hash(key: str, compute_if_none: bool = True) → str

	Gets the file_hash value of the file at the key relative path. If the file is unknown
(and so the hash value is not yet computed), by default the hash value will
be computed. This behaviour can be cancelled using compute_if_none parameter.

	Parameters

	
	key (str) – Relative local path of the file or folder.

	compute_if_none (boolean) – Optional. True by default, which means that if the file is unknown
(and so it is for the hash value), the hash value will be computed. Use
False if you want to cancel this bahaviour, so the returned value
will be None.

	Returns

	File or directory hash value, if path exists, else None.

	Return type

	str

	
get_files_by_hash_key(hash_key: str) → set

	Returns a set of every file or directory paths for which the
hash value corresponds to the hash_key parameter.

	
get_sizetime(key: str, compute_if_none: bool = True)

	Gets the couple (file_size, file_modification_time) value of the file
at the key relative path. Same behaviour than get_hash() method.

	Parameters

	
	key (str) – Relative local path of the file or folder.

	compute_if_none (boolean) – Optional. True by default, which means that if the file is unknown
(and so it is for the file size and modification time value), the values
will be computed. Use False if you want to cancel this bahaviour, so the
returned value will be None.

	Returns

	File or directory couple (file_size, file_modification_time) value,
if path exists, else None.

	Return type

	str

	
get_files_by_sizetime_key(sizetime_key) → set

	Returns a set of every file or directory paths for which the
couple (file_size, file_modification_time) value corresponds
to the sizetime_key parameter.

	
save(key: str, file_hash, file_size, file_mtime)

	Allows an external object to add a new file or folder reference to the local state object,
by giving already computed hash, size and modification time values. Note that the values
will not be neither checked nor recomputed.

If you prefer that the LocalState class computes these values itself, and add
the file or folder reference, you can just call the get_hash() or
get_sizetime() method. Note that then the LocalState object just compute
the needed values: it can compute the hash value without having any reference
in its sizetime dictionary. These one will only be computed when calling the
related method.

	Parameters

	
	key (str) – Relative local path of the file or folder.

	file_hash (str) – File hash value of the file or folder.

	file_size (int) – File size value of the file or folder. For information
the size is computed with os.path.getsize()
method, so the size is the number of bytes of the file.

	file_mtime (int) – File modification time value of the file or folder. For information
the modification time is computed with os.path.getmtime()
method, rounded to the third decimal, so the time is a number giving
the number of seconds since the epoch, precise at the millisecond.

	Returns

	None

	
delete(delete_key: str)

	Deletes key recursively. This method can be called internally
when detecting a file or folder does not exists anymore, or
by an external objects, that do not need to keep track of
this path anymore.

	
move(src_key: str, dst_key: str)

	Moves key recursively. This method can be called by an
external object, when you know a file or folder has been moved
and that you want to keep the already computed values in
reference, without recomputing them all.

lazydog.dropbox_content_hasher

	module

	lazydog.dropbox_content_hasher

	synopsis

	Function to get hash of a file, based on dropbox api hasher.

	author

	Dropbox, Inc.

	author

	Clément Warneys <clement.warneys@gmail.com>

	
lazydog.dropbox_content_hasher.default_hash_function(absolute_path: str, default_directory_hash: str = 'DIR')

	Main function in this module that returns the
dropbox-like hash of any local file. If the local path does not exist,
None is returned. If the local path is a directory, the
default_directory_hash parameter is returned, or the default
string “DIR”.

	Parameters

	
	absolute_path (str) – The absolute local path of the file or directory.

	default_directory_hash – Optional. The returned value in case the absolute path is a directory.

	Returns

	The hash of the file or directory located in absolute_path.
The hash is computed based on the default Dropbox API hasher.
None if absolute local path does not exist.

	Return type

	str

	
class lazydog.dropbox_content_hasher.DropboxContentHasher

	Computes a hash using the same algorithm that the Dropbox API uses for the
the “content_hash” metadata field.

The digest() method returns a raw binary representation of the hash. The
hexdigest() convenience method returns a hexadecimal-encoded version, which
is what the “content_hash” metadata field uses.

How to use it:

hasher = DropboxContentHasher()
with open('some-file', 'rb') as f:
 while True:
 chunk = f.read(1024) # or whatever chunk size you want
 if len(chunk) == 0:
 break
 hasher.update(chunk)
print(hasher.hexdigest())

Revised Watchdog

This inner package is overloading the original watchdog package
by revising and completing it, resolving the current situation
where the useful watchdog package is not maintained anymore…

Please read original watchdog project documentation for more information:
https://pypi.org/project/watchdog/

revised_watchdog.events

	module

	revised_watchdog.events

	synopsis

	File system events and event handlers.

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.events module
by revising and completing it. Please read original watchdog project
documentation for more information: https://github.com/gorakhargosh/watchdog

This module imports some definitions of watchdog.events and keeps them unchanged:

	FileModifiedEvent

	DirModifiedEvent

	FileSystemEvent

	FileSystemEventHandler

	EVENT_TYPE_MOVED

	EVENT_TYPE_CREATED

	EVENT_TYPE_DELETED

It adds the following definitions, in order to add some granularity in the
watchdog.events.ModifiedEvent definition, thus differentiating content modification
from only metadata (access date, owner, etc.) modification:

	MetaFileModifiedEvent

	TrueFileModifiedEvent

	MetaDirModifiedEvent

	TrueDirModifiedEvent

	EVENT_TYPE_C_MODIFIED

	EVENT_TYPE_M_MODIFIED

Finally, it overloads the FileSystemEventHandler class, in order
to manage the new granularity of modified events:

	FileSystemEventHandler

	
class lazydog.revised_watchdog.events.MetaFileModifiedEvent(src_path)

	File system event representing metadata file modification on the file system.

	
class lazydog.revised_watchdog.events.TrueFileModifiedEvent(src_path)

	File system event representing true file content modification on the file system.

	
class lazydog.revised_watchdog.events.MetaDirModifiedEvent(src_path)

	File system event representing metadata directory modification on the file system.

	
class lazydog.revised_watchdog.events.TrueDirModifiedEvent(src_path)

	File system event representing true directory content modification on the file system.

	
class lazydog.revised_watchdog.events.FileSystemEventHandler

	Base file system event handler that you can override methods from.
With modified dispatch method, added on_data_modified()
and on_meta_modified() methods, thus covering specific
needs of lazydog.

	
dispatch(event)

	Dispatches events to the appropriate methods.

	Parameters

	event (FileSystemEvent) – The event object representing the file system event.

	
on_data_modified(event)

	Called when a file or directory true content is modified.

	Parameters

	event (DirModifiedEvent or FileModifiedEvent) – Event representing file or directory modification.

	
on_meta_modified(event)

	Called when a file or directory metadata is modified.

	Parameters

	event (DirModifiedEvent or FileModifiedEvent) – Event representing file or directory modification.

revised_watchdog.observers.inotify

	module

	revised_watchdog.observers.inotify

	synopsis

	inotify(7) based emitter implementation, enhanced implementation of original watchdog one.

	author

	Sebastien Martini <seb@dbzteam.org>

	author

	Luke McCarthy <luke@iogopro.co.uk>

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	Tim Cuthbertson <tim+github@gfxmonk.net>

	author

	Clément Warneys <clement.warneys@gmail.com>

	platforms

	Linux 2.6.13+.

This module is overloading the original watchdog.observers.inotify module
by revising and completing it. Please read original watchdog project
documentation for more information: https://github.com/gorakhargosh/watchdog

The main changes concern some methods in the InotifyEmitter class:

	on_thread_start() This method now uses revised InotifyBuffer.

	queue_events() This method has been simplified in order to reduce the number of emitted low-level events, in comparison with original watchdog module.

	
class lazydog.revised_watchdog.observers.inotify.InotifyEmitter(event_queue, watch, timeout=1)

	inotify(7)-based event emitter. Revised package mainly
concerns queue_events() method, thus covering
specific needs of lazydog package.

	Parameters

	
	event_queue (watchdog.events.EventQueue) – The event queue to fill with events.

	watch (watchdog.observers.api.ObservedWatch) – A watch object representing the directory to monitor.

	timeout (float) – Read events blocking timeout (in seconds).

	
queue_events(timeout, full_events=False)

	This method is classifying the events received from Inotify into
watchdog events type (defined in watchdog.events module).

	Parameters

	
	timeout (float) – Unused param (from watchdog original package).

	full_events (boolean) – If True, then the method will report unmatched move
events as separate events. This means that if
True, a file move event from outside the watched directory
will result in a watchdog.events.FileMovedEvent event, with no origin. Else
(if False), it will result in a watchdog.events.FileCreatedEvent event.
This behavior is by default only called by a InotifyFullEmitter.

	
class lazydog.revised_watchdog.observers.inotify.InotifyObserver(timeout=1, generate_full_events=False)

	Observer thread that schedules watching directories and dispatches
calls to event handlers.

Please note that his class remains unmodified
in revised_watchdog package. Only the __init__() method is overided
in order it uses the new definition of InotifyEmitter class.

revised_watchdog.observers.inotify_c

	module

	revised_watchdog.observers.inotify_c

	author

	yesudeep@google.com (Yesudeep Mangalapilly)

	author

	Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.observers.inotify_c module
by revising and completing it. Please read original watchdog project
documentation for more information: https://github.com/gorakhargosh/watchdog

Fundamental changes and corrections have been brought to the original Inotify
class, whose behaviour was not correct when moving or deleting sub-directories.

	
class lazydog.revised_watchdog.observers.inotify_c.Inotify(path, recursive=False, event_mask=33556422)

	Linux inotify(7) API wrapper class.

With modified read_events() method,
and added _remove_watch_bookkeeping() method,
thus covering specifics needs of lazydog.

	Parameters

	
	path (bytes) – The directory path for which we want an inotify object.

	recursive (boolean) – True if subdirectories should be monitored. False otherwise.

	
read_events(event_buffer_size=81920)

	Reads events from inotify and yields them to the Inotify buffer.
This method has been largely modified from original watchdog module…
Thus preventing from unwanted behaviour.

revised_watchdog.observers.inotify_buffer

	module

	revised_watchdog.observers.inotify_c

	author

	Thomas Amland <thomas.amland@gmail.com>

	author

	Clément Warneys <clement.warneys@gmail.com>

This module is overloading the original watchdog.observers.inotify_buffer module
by revising and completing it. Please read original watchdog project
documentation for more information: https://github.com/gorakhargosh/watchdog

The main change is in the InotifyBuffer class, whose InotifyBuffer.__init__()
method now uses revised watchdog Inotify class.

	
class lazydog.revised_watchdog.observers.inotify_buffer.InotifyBuffer(path, recursive=False)

	A wrapper for Inotify that holds events for delay seconds. During
this time, IN_MOVED_FROM and IN_MOVED_TO events are paired.

Please note that his class remains unmodified
in revised_watchdog package. Only the __init__() method is overrided
in order it uses the new definition of Inotify class.

 Python Module Index

 l |
 r

 		 	

 		
 l	

 	[image: -]
 	
 lazydog	

 	
 	
 lazydog.dropbox_content_hasher	

 	
 	
 lazydog.events	

 	
 	
 lazydog.handlers	

 	
 	
 lazydog.lazydog	

 	
 	
 lazydog.queues	

 	
 	
 lazydog.revised_watchdog.events	

 	
 	
 lazydog.revised_watchdog.observers.inotify	

 	
 	
 lazydog.revised_watchdog.observers.inotify_buffer	

 	
 	
 lazydog.revised_watchdog.observers.inotify_c	

 	
 	
 lazydog.states	

 		 	

 		
 r	

 	
 	
 revised_watchdog	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	absolute_local_path() (lazydog.states.LocalState method)

 	
 	absolute_ref_path (lazydog.events.LazydogEvent attribute)

 	add_source_paths_and_transforms_into_copied_event() (lazydog.events.LazydogEvent method)

B

 	
 	basename (lazydog.events.LazydogEvent attribute)

C

 	
 	comes_after() (lazydog.events.LazydogEvent method)

 	comes_before() (lazydog.events.LazydogEvent method)

 	
 	count_files_in() (lazydog.events.LazydogEvent static method)

 	CREATE_EVENT_TIME_LIMIT_FOR_EMPTY_FILES (lazydog.handlers.HighlevelEventHandler attribute)

D

 	
 	DatedlocaleventQueue (class in lazydog.queues)

 	datetime_difference_from_now() (lazydog.events.LazydogEvent static method)

 	DEFAULT_DIRECTORY_VALUE (lazydog.states.LocalState attribute)

 	default_hash_function() (in module lazydog.dropbox_content_hasher)

 	delete() (lazydog.states.DualAccessMemory method)

 	(lazydog.states.LocalState method)

 	
 	dir_files_qty (lazydog.events.LazydogEvent attribute)

 	dispatch() (lazydog.revised_watchdog.events.FileSystemEventHandler method)

 	DropboxContentHasher (class in lazydog.dropbox_content_hasher)

 	DualAccessMemory (class in lazydog.states)

E

 	
 	EVENT_TYPE_C_MODIFIED (lazydog.events.LazydogEvent attribute)

 	EVENT_TYPE_COPIED (lazydog.events.LazydogEvent attribute)

 	EVENT_TYPE_CREATED (lazydog.events.LazydogEvent attribute)

 	
 	EVENT_TYPE_DELETED (lazydog.events.LazydogEvent attribute)

 	EVENT_TYPE_M_MODIFIED (lazydog.events.LazydogEvent attribute)

 	EVENT_TYPE_MOVED (lazydog.events.LazydogEvent attribute)

F

 	
 	file_hash (lazydog.events.LazydogEvent attribute)

 	file_inode (lazydog.events.LazydogEvent attribute)

 	
 	file_mtime (lazydog.events.LazydogEvent attribute)

 	file_size (lazydog.events.LazydogEvent attribute)

 	FileSystemEventHandler (class in lazydog.revised_watchdog.events)

G

 	
 	get() (lazydog.states.DualAccessMemory method)

 	get_available_events() (lazydog.handlers.HighlevelEventHandler method)

 	get_by_value() (lazydog.states.DualAccessMemory method)

 	get_file_size() (lazydog.events.LazydogEvent static method)

 	
 	get_files_by_hash_key() (lazydog.states.LocalState method)

 	get_files_by_sizetime_key() (lazydog.states.LocalState method)

 	get_hash() (lazydog.states.LocalState method)

 	get_instance() (lazydog.handlers.HighlevelEventHandler class method)

 	get_sizetime() (lazydog.states.LocalState method)

H

 	
 	has_dest() (lazydog.events.LazydogEvent method)

 	has_same_mtime_than() (lazydog.events.LazydogEvent method)

 	has_same_path_than() (lazydog.events.LazydogEvent method)

 	
 	has_same_size_than() (lazydog.events.LazydogEvent method)

 	has_same_src_path_than() (lazydog.events.LazydogEvent method)

 	HighlevelEventHandler (class in lazydog.handlers)

I

 	
 	idle_time() (lazydog.events.LazydogEvent method)

 	Inotify (class in lazydog.revised_watchdog.observers.inotify_c)

 	InotifyBuffer (class in lazydog.revised_watchdog.observers.inotify_buffer)

 	InotifyEmitter (class in lazydog.revised_watchdog.observers.inotify)

 	InotifyObserver (class in lazydog.revised_watchdog.observers.inotify)

 	is_copied_event() (lazydog.events.LazydogEvent method)

 	is_created_event() (lazydog.events.LazydogEvent method)

 	is_data_file_modified_event() (lazydog.events.LazydogEvent method)

 	is_data_modified_event() (lazydog.events.LazydogEvent method)

 	is_deleted_event() (lazydog.events.LazydogEvent method)

 	is_dir_created_event() (lazydog.events.LazydogEvent method)

 	
 	is_dir_deleted_event() (lazydog.events.LazydogEvent method)

 	is_dir_modified_event() (lazydog.events.LazydogEvent method)

 	is_dir_moved_event() (lazydog.events.LazydogEvent method)

 	is_directory() (lazydog.events.LazydogEvent method)

 	is_empty() (lazydog.events.LazydogEvent method)

 	(lazydog.queues.DatedlocaleventQueue method)

 	is_file_created_event() (lazydog.events.LazydogEvent method)

 	is_file_modified_event() (lazydog.events.LazydogEvent method)

 	is_meta_file_modified_event() (lazydog.events.LazydogEvent method)

 	is_meta_modified_event() (lazydog.events.LazydogEvent method)

 	is_modified_event() (lazydog.events.LazydogEvent method)

 	is_moved_event() (lazydog.events.LazydogEvent method)

L

 	
 	lazydog (module)

 	lazydog.dropbox_content_hasher (module)

 	lazydog.events (module)

 	lazydog.handlers (module)

 	lazydog.lazydog (module)

 	lazydog.queues (module)

 	
 	lazydog.revised_watchdog.events (module)

 	lazydog.revised_watchdog.observers.inotify (module)

 	lazydog.revised_watchdog.observers.inotify_buffer (module)

 	lazydog.revised_watchdog.observers.inotify_c (module)

 	lazydog.states (module)

 	LazydogEvent (class in lazydog.events)

 	LocalState (class in lazydog.states)

M

 	
 	MetaDirModifiedEvent (class in lazydog.revised_watchdog.events)

 	MetaFileModifiedEvent (class in lazydog.revised_watchdog.events)

 	
 	move() (lazydog.states.DualAccessMemory method)

 	(lazydog.states.LocalState method)

N

 	
 	next() (lazydog.queues.DatedlocaleventQueue method)

O

 	
 	on_any_event() (lazydog.queues.DatedlocaleventQueue method)

 	
 	on_data_modified() (lazydog.revised_watchdog.events.FileSystemEventHandler method)

 	on_meta_modified() (lazydog.revised_watchdog.events.FileSystemEventHandler method)

P

 	
 	p1_comes_after_p2() (lazydog.events.LazydogEvent static method)

 	p1_comes_before_p2() (lazydog.events.LazydogEvent static method)

 	parent_rp (lazydog.events.LazydogEvent attribute)

 	
 	path (lazydog.events.LazydogEvent attribute)

 	posttreat_lowlevel_event() (lazydog.handlers.HighlevelEventHandler method)

 	POSTTREATMENT_TIME_LIMIT (lazydog.handlers.HighlevelEventHandler attribute)

Q

 	
 	queue_events() (lazydog.revised_watchdog.observers.inotify.InotifyEmitter method)

R

 	
 	read_events() (lazydog.revised_watchdog.observers.inotify_c.Inotify method)

 	ref_path (lazydog.events.LazydogEvent attribute)

 	
 	relative_local_path() (lazydog.states.LocalState method)

 	revised_watchdog (module)

 	run() (lazydog.handlers.HighlevelEventHandler method)

S

 	
 	same_or_comes_after() (lazydog.events.LazydogEvent method)

 	same_or_comes_before() (lazydog.events.LazydogEvent method)

 	save() (lazydog.states.DualAccessMemory method)

 	(lazydog.states.LocalState method)

 	
 	save_locals() (lazydog.handlers.HighlevelEventHandler method)

 	size() (lazydog.queues.DatedlocaleventQueue method)

 	stop() (lazydog.handlers.HighlevelEventHandler method)

T

 	
 	to_path (lazydog.events.LazydogEvent attribute)

 	
 	TrueDirModifiedEvent (class in lazydog.revised_watchdog.events)

 	TrueFileModifiedEvent (class in lazydog.revised_watchdog.events)

U

 	
 	update_main_event() (lazydog.events.LazydogEvent method)

 nav.xhtml

 Table of Contents

 		
 Welcome to Lazydog’s documentation!

 		
 Lazydog

 		
 Getting Started

 		
 How to install it

 		
 How to use it

 		
 How to use in in third-part apps

 		
 Getting further

 		
 Miscellaneous…

 		
 Get it installed, the contributor way

 		
 Prerequisites

 		
 Installing development environment

 		
 Tests

 		
 Module testing

 		
 Test coverage

 		
 Documentation

 		
 Full code documentation

 		
 Maintaining documentation up-to-date

 		
 Contributing

 		
 Check the current issues

 		
 Getting Started

 		
 Making Changes

 		
 Submitting Changes

 		
 Versioning and release notes

 		
 Authors and contributors

 		
 License

 		
 Special thanks

 		
 Lazydog code documentation

 		
 Lazydog

 		
 lazydog.lazydog

 		
 lazydog.handlers

 		
 lazydog.events

 		
 lazydog.queues

 		
 lazydog.states

 		
 lazydog.dropbox_content_hasher

 		
 Revised Watchdog

 		
 revised_watchdog.events

 		
 revised_watchdog.observers.inotify

 		
 revised_watchdog.observers.inotify_c

 		
 revised_watchdog.observers.inotify_buffer

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

