
Layer Linter Documentation
Release 0.12.3

David Seddon

Jul 25, 2022

Contents:

1 Outline 3

2 Overview 5

3 Quick start 7
3.1 Installation . 8
3.2 Usage . 9
3.3 Core concepts . 10
3.4 Contributing . 14
3.5 Credits . 14
3.6 History . 15
3.7 Migrating to Import Linter . 17

i

ii

Layer Linter Documentation, Release 0.12.3

Layer Linter has been deprecated in favour of Import Linter.

Import Linter does everything Layer Linter does, but with more features and a slightly different API. If you’re already
using Layer Linter, migrating to Import Linter is simple: there is a guide here.

Contents: 1

https://pypi.python.org/pypi/layer_linter
http://pypi.python.org/pypi/layer-linter/
https://travis-ci.org/seddonym/layer_linter
https://codecov.io/gh/seddonym/layer_linter
https://layer-linter.readthedocs.io/en/latest/?badge=latest
https://github.com/seddonym/import-linter
https://layer-linter.readthedocs.io/en/latest/migrating-to-import-linter.html

Layer Linter Documentation, Release 0.12.3

2 Contents:

CHAPTER 1

Outline

Layer Linter checks that your project follows a custom-defined layered architecture, based on its internal dependencies
(i.e. the imports between its modules).

• Free software: BSD license

• Documentation: https://layer-linter.readthedocs.io.

3

https://layer-linter.readthedocs.io

Layer Linter Documentation, Release 0.12.3

4 Chapter 1. Outline

CHAPTER 2

Overview

Layer Linter is a command line tool to check that you are following a self-imposed architecture within your Python
project. It does this by analysing the internal imports between all the modules in your code base, and compares this
against a set of simple rules that you provide in a layers.yml file.

For example, you can use it to check that no modules inside myproject.foo import from any modules inside
myproject.bar, even indirectly.

This is particularly useful if you are working on a complex codebase within a team, when you want to enforce a
particular architectural style. In this case you can add Layer Linter to your deployment pipeline, so that any code that
does not follow the architecture will fail tests.

5

Layer Linter Documentation, Release 0.12.3

6 Chapter 2. Overview

CHAPTER 3

Quick start

Install Layer Linter:

pip install layer-linter

Decide on the dependency flows you wish to check. In this example, we have organised our project into three sub-
packages, myproject.high, myproject.medium and myproject.low. These subpackages are known as
layers. Note: layers must have the same parent package (i.e. all be in the same directory). This parent is known as a
container.

Create a layers.yml in the root of your project. For example:

My Layers Contract:
containers:
- myproject

layers:
- high
- medium
- low

(This contract tells Layer Linter that the order of the layers runs from low at the bottom to high at the top. Layers
higher up can import ones lower down, but not the other way around.)

Note that the container is an absolute name of a Python package, while the layers are relative to the container.

Now, from your project root, run:

layer-lint myproject

If your code violates the contract, you will see an error message something like this:

============
Layer Linter
============

(continues on next page)

7

Layer Linter Documentation, Release 0.12.3

(continued from previous page)

Contracts

Analyzed 23 files, 44 dependencies.

My layer contract BROKEN

Contracts: 0 kept, 1 broken.

Broken contracts

My layer contract

1. myproject.low.x imports myproject.high.y:

myproject.low.x <-
myproject.utils <-
myproject.high.y

For more details, see Usage.

3.1 Installation

3.1.1 Requirements

Layer Linter currently only supports Python 3.6 - 3.7.

3.1.2 Stable release

To install Layer Linter, run this command in your terminal:

$ pip install layer-linter

This is the preferred method to install Layer Linter, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

3.1.3 Development version

The sources for Layer Linter can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/seddonym/layer_linter

Or download the tarball:

8 Chapter 3. Quick start

https://layer-linter.readthedocs.io/en/latest/usage.html
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/seddonym/layer_linter
https://github.com/seddonym/layer_linter/tarball/master

Layer Linter Documentation, Release 0.12.3

$ curl -OL https://github.com/seddonym/layer_linter/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

3.2 Usage

Before use, you will probably want to read Core concepts.

3.2.1 Defining your contracts

Your layers contracts are defined in a YAML file named layers.yml. This may exist anywhere, but a good place is
in your project root.

The file contains one or more contracts, in the following format:

Contract name:
containers:

- mypackage.container
...

layers:
- layerone
- layertwo
...

whitelisted_paths:
- mypackage.container.layertwo.module <- mypackage.container.layerone.module
...

1. Contract name: A string to describe your contract.

2. Containers: Absolute names of any Python package that contains the layers as immediate children. One or
more containers are allowed in this list.

3. Layers: Names of the Python module relative to each container listed in containers. Modules lower down
the list must not import modules higher up. (Remember, a Python module can either be a .py file or a directory
with an __init__.py file inside.)

4. Whitelisted paths (optional): If you wish certain import paths not to break in the contract, you can optionally
whitelist them. The modules should be listed as absolute names, with the importing module first, and the
imported module second.

For some examples, see Core concepts.

3.2.2 Additional syntax

Optional layers

You may specify certain layers as optional, by enclosing the name in parentheses.

By default, Layer Linter will error if it cannot find the module for a particular layer. Take the following contract:

3.2. Usage 9

Layer Linter Documentation, Release 0.12.3

My contract:
containers:

- mypackage.foo
- mypackage.bar

layers:
- one
- two

If the module mypackage.foo.two is missing, the contract will be broken. If you want the contract to pass despite
this, you can enclose the layer name in parentheses:

My contract:
containers:

- mypackage.foo
- mypackage.bar

layers:
- one
- (two)

Layer two is now optional, which means the contract will pass even though mypackage.bar.two is missing.

3.2.3 Running the linter

Layer Linter provides a single command: layer-lint.

Running this will check that your project adheres to the contracts in your layers.yml.

• Positional arguments:

– package_name: The name of the top-level Python package to validate (required).

• Optional arguments:

– --config: The YAML file describing your layer contract(s). If not supplied, Layer Linter will look for
a file called layers.yml in the current directory.

– --quiet: Do not output anything if the contracts are all adhered to.

– --verbose (or -v): Output a more verbose report.

– --debug: Output debug messages when running the linter. No parameters required.

Default usage:;

layer-lint myproject

Using a different filename or location instead of layers.yml:

layer-lint myproject --config path/to/alternative.yml

3.3 Core concepts

3.3.1 The Dependency Graph

At the heart of Layer Linter is a graph of internal dependencies within a Python code base. This is a graph in a
mathematical sense: a collection of items with relationships between them. In this case, the items are Python modules,
and the relationships are imports between them.

10 Chapter 3. Quick start

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Layer Linter Documentation, Release 0.12.3

For example, a project named pets with two modules, where pets.dogs imports pets.cats, would have a
graph like this:

Note the direction of the arrow, which we’ll use throughout: the arrow points from the imported module into the
importing module.

If the project was larger, it would have a more complex graph:

When you run Layer Linter, it statically analyses all of your code to produce a graph like this. (Note: these are just
visual representations of the underlying data structure; Layer Linter has no visual output.)

3.3. Core concepts 11

Layer Linter Documentation, Release 0.12.3

3.3.2 Layers

Layers are a concept used in software architecture. They describe an application organized into distinct sections, or
layers.

In such an architecture, lower layers should be ignorant of higher ones. This means that code in a higher layer can use
utilities provided in a lower layer, but not the other way around. In other words, there is a dependency flow from low
to high.

Layers in Python

In Python, you can think of a layer as a single .py file, or a package containing multiple .py files. This layer is
grouped with other layers, all sharing a common parent package: in other words, a group of layers will all be in the
same directory, at the same level. Layer Linter calls this common parent a container.

Within a single group of layers, any file within a higher up layer may import from any file lower down, but not the
other way around - even indirectly.

The above example shows a single group consisting of three layers. Their container is the top level package, pets. Ac-
cording to the constraints imposed by layers, pets.cats.purring may import pets.rabbits but not pets.
dogs.walkies. pets.dogs.walkies may import any other module, as it is in the highest layer.

(For further reading on Layers, see the Wikipedia page on Multitier Architecture).

3.3.3 Contracts

Contracts are how you describe your architecture to Layer Linter. You write them in a layers.yml file. Each
Contract contains two lists, layers and containers.

• layers takes the form of an ordered list with the name of each layer module, relative to its parent package.
The order is from high level layer to low level layer.

• containers lists the parent modules of the layers, as absolute names that you could import, such as
mypackage.foo. If you have only one set of layers, there will be only one container: the top level pack-

12 Chapter 3. Quick start

https://en.wikipedia.org/wiki/Multitier_architecture

Layer Linter Documentation, Release 0.12.3

age. However, you could choose to have a repeating pattern of layers across multiple subpackages; in which
case, you would include each of those subpackages in the containers list.

You can have as many of these contracts as you like, and you give each one a name.

Example: single container contract

The three-layered structure described earlier can be described by the following contract. Note that the layers have
names relative to the single, containing package.

Three-tier contract:
containers:

- pets
layers:

- dogs
- cats
- rabbits

Example: multiple package contract

A more complex architecture might involve the same layers repeated across multiple containers, like this:

In this case, rather than have three contracts, one for each container, you may list all the containers in a single contract.
The order of the containers is not important.

Modular contract:
containers:

- pets.dogs
- pets.cats
- pets.rabbits

layers:
- personality
- traits
- physical

3.3.4 Whitelisting paths

Sometimes, you may wish to tolerate certain dependencies that do not adhere to your contract. To do this, include
them as whitelisted paths in your contract.

Let’s say you have a project that has a utils module that introduces an illegal dependency between two of your
layers. The report might look something like this:

3.3. Core concepts 13

Layer Linter Documentation, Release 0.12.3

Broken contracts

My layer contract

1. pets.cats.whiskers imports pets.dogs.walkies:

pets.cats.whiskers <-
pets.utils <-
pets.dogs.walkies

To suppress this error, you may add one component of the path to the contract like so:

Three-tier contract:
containers:

- pets
layers:

- dogs
- cats
- rabbits

whitelisted_paths:
- pets.cats.whiskers <- pets.utils

Running the linter again will show the contract passing.

There are a few use cases:

• Your project does not completely adhere to the contract, but you want to prevent it getting worse. You can
whitelist any known issues, and gradually fix them.

• You have an exceptional circumstance in your project that you are comfortable with, and don’t wish to fix.

• You want to understand how many dependencies you would need to fix before a project conforms to a particular
architecture. Because Layer Linter only shows the most direct dependency violation, whitelisting paths can
reveal less direct ones.

3.4 Contributing

This package has now been superseded by Import Linter, so we are not considering new features here. If you wish to
contribute, please get involved with that package.

3.5 Credits

3.5.1 Development Lead

• David Seddon <david@seddonym.me>

3.5.2 Contributors

• Thiago Colares https://github.com/colares

14 Chapter 3. Quick start

https://github.com/seddonym/import-linter
mailto:david@seddonym.me
https://github.com/colares

Layer Linter Documentation, Release 0.12.3

• James Cooke https://github.com/jamescooke

• Simon Biggs https://github.com/SimonBiggs

3.5.3 Other credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

3.6 History

3.6.1 0.1.0 (2018-06-20)

• First release on PyPI.

3.6.2 0.2.0 (2018-06-23)

• Look for layers.yml in current working directory.

3.6.3 0.3.0 (2018-06-24)

• Renamed command to layer-lint.

• Changed order of layers in layers.yml to be listed high level to low level.

3.6.4 0.4.0 (2018-07-22)

• Made dependency analysis more efficient and robust.

• Improved report formatting.

• Removed illegal dependencies that were implied by other, more succinct illegal dependencies.

• Added --debug command line argument.

3.6.5 0.5.0 (2018-08-01)

• Added count of analysed files and dependencies to report.

• Fixed issues from running command in a different directory to the package.

• Increased speed of analysis.

• Changed --config_directory command line argument to --config-directory.

3.6.6 0.6.0 (2018-08-07)

• Added ability to whitelist paths.

3.6. History 15

https://github.com/jamescooke
https://github.com/SimonBiggs
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

Layer Linter Documentation, Release 0.12.3

3.6.7 0.6.1 (2018-08-07)

• Added current working directory to path.

3.6.8 0.6.2 (2018-08-17)

• Don’t analyse children of directories that aren’t Python packages.

• Prevented installing incompatible version of Pydeps (1.6).

3.6.9 0.7.0 (2018-09-04)

• Completed rewrite of static analysis used to build dependency graph.

• Added quiet and verbose reporting.

• Added type annotation and mypy.

• Built earlier versions of Python using pybackwards.

• Corrected docs to refer to layers.yml instead of layers.yaml.

3.6.10 0.7.1 (2018-09-04)

• Fixed packaging bug with 0.7.0.

3.6.11 0.7.2 (2018-09-05)

• Fixed bug with not checking all submodules of layer.

3.6.12 0.7.3 (2018-09-07)

• Dropped support for Python 3.4 and 3.5 and adjust packaging.

3.6.13 0.7.4 (2018-09-20)

• Tweaked command line error handling.

• Improved README and Core Concepts documentation.

3.6.14 0.8.0 (2018-09-29)

• Replace --config-directory parameter with --config parameter, which takes a file name instead.

3.6.15 0.9.0 (2018-10-13)

• Moved to beta version.

• Improved documentation.

• Better handling of invalid package names passed to command line.

16 Chapter 3. Quick start

Layer Linter Documentation, Release 0.12.3

3.6.16 0.10.0 (2018-10-14)

• Renamed ‘packages’ to ‘containers’ in contracts.

3.6.17 0.10.1 (2018-10-14)

• Improved handling of invalid containers.

3.6.18 0.10.2 (2018-10-17)

• Error if a layer is missing.

3.6.19 0.10.3 (2018-11-2)

• Fixed RST rendering on PyPI.

3.6.20 0.11.0 (2018-11-5)

• Support defining optional layers.

3.6.21 0.11.1 (2019-1-16)

• Updated dependencies, especially switching to a version of PyYAML to address https://nvd.nist.gov/vuln/detail/
CVE-2017-18342.

3.6.22 0.12.0 (2019-1-16)

• Fix parsing of relative imports within __init__.py files.

3.6.23 0.12.1 (2019-2-2)

• Add support for Click 7.x.

3.6.24 0.12.2 (2019-3-20)

• Fix bug with Windows file paths.

3.6.25 0.12.3 (2019-6-8)

• Deprecate Layer Linter in favour of Import Linter.

3.7 Migrating to Import Linter

If you would like to migrate from Layer Linter to Import Linter, you can easily migrate your setup.

3.7. Migrating to Import Linter 17

https://nvd.nist.gov/vuln/detail/CVE-2017-18342
https://nvd.nist.gov/vuln/detail/CVE-2017-18342
https://github.com/seddonym/import-linter

Layer Linter Documentation, Release 0.12.3

3.7.1 Step One - Install

pip install import-linter

3.7.2 Step Two - Configure

Import Linter uses INI instead of YAML to define its contracts. Create an .importlinter file in the same directory
as your layers.yml. This is where your configuration will live.

Converting the format is simple.

Example layers.yml:

Contract one:
containers:

- mypackage
layers:

- api
- utils

Contract two:
This is a comment.
containers:

- mypackage.foo
- mypackage.bar
- mypackage.baz

layers:
- top
- middle
- bottom

whitelisted_paths:
- mypackage.foo.bottom.alpha <- mypackage.foo.middle.beta

Equivalent .importlinter:

[importlinter]
root_package = mypackage

[importlinter:contract:1]
name = Contract one
type = layers
containers=

mypackage
layers=

api
utils

[importlinter:contract:2]
This is a comment.
name = Contract two
type = layers
containers=

mypackage.foo
mypackage.bar

(continues on next page)

18 Chapter 3. Quick start

Layer Linter Documentation, Release 0.12.3

(continued from previous page)

mypackage.baz
layers=

top
middle
bottom

ignore_imports=
mypackage.foo.bottom.alpha -> mypackage.foo.middle.beta

Things to note:

• Import Linter requires the root package to be configured in the file, rather than passed to the command line.

• Each contract requires a type - this is because Import Linter supports other contract types.

• Each contract needs an arbitrary unique identifier in the INI section (in this case, 1 and 2).

• ‘Whitelisted paths’ has have been renamed to ‘ignore imports’. The notation is similar except the arrow is
reversed; the importing package is still listed first, the imported package second.

3.7.3 Step Three - Run

To lint your package, run:

lint-imports

Or, if your configuration file is in a different directory:

lint-imports --config=path/to/.importlinter

3.7.4 Key differences between the packages

• You may notice slight differences in the imports Import Linter picks up on. The main example is that it does not
ignore modules in migrations subpackages, while Layer Linter does.

• Import Linter allows you to use other contract types and even define your own.

• Import Linter allows you to analyse imports of external packages too (though these don’t make sense in the
context of a layers contract).

Further reading can be found in the Import Linter documentation.

3.7. Migrating to Import Linter 19

https://import-linter.readthedocs.io

	Outline
	Overview
	Quick start
	Installation
	Usage
	Core concepts
	Contributing
	Credits
	History
	Migrating to Import Linter

