LArPix-Control Software Documentation

Here is the documentation for LArPix Control.

LArPix Control Core

Controllers

class larpix.controller.Controller[source]

Controls a collection of LArPix Chip objects.

Reading data:

The specific interface for reading data is selected by specifying the io attribute. These objects all have similar behavior for reading in new data. On initialization, the object will discard any LArPix packets sent from ASICs. To begin saving incoming packets, call start_listening(). Data will then build up in some form of internal register or queue. The queue can be emptied with a call to read(), which empties the queue and returns a list of Packet objects that were in the queue. The io object will still be listening for new packets during and after this process. If the queue/register fills up, data may be discarded/lost. To stop saving incoming packets and retrieve any packets still in the queue, call stop_listening(). While the Controller is listening, packets can be sent using the appropriate methods without interrupting the incoming data stream.

With the the LArPix v2 asic, a network io structure is used. To keep track of this network and to insure the proper bring-up procedure is followed. The controller has a network attribute. This is an ordered dict with multiple layers corresponding to the chip key layers. It assumes that each hydra network is distinct on a given io channel. On a given io channel, the hydra network is represented as three directed graphs miso_us, miso_ds, and mosi.:

controller.network[1] # Represents all networks on io group 1
controller.network[1][1] # Represents the network on io group 1, io channel 1
controller.network[1][1]['mosi'] # directed graph representing mosi links

Nodes within the network are added automatically whenever you add a chip to the controller:

list(controller.network[1][1]['mosi'].nodes()) # chip ids of known mosi nodes
list(controller.network[1][1]['miso_us'].nodes()) # chip ids of known miso_us nodes
list(controller.network[1][1]['miso_ds'].nodes()) # chip ids of known miso_ds nodes
controller.network[1][1]['miso_us'].nodes[5] # attributes associated with node 5
controller.add_chip('1-1-6', version=2, root=True)
list(controller.network[1][1]['miso_us'].nodes()) # [5, 6]

The ‘root’ node is used to indicate which chips should be brought up first when initializing the network.

Accessing connections between nodes is done via edges:

list(controller.network[1][1]['miso_us'].edges()) # []
controller.add_network_link(1,1,'miso_us',(6,5),0) # link chips 6 -> 5 in the miso_us graph via chip 6's uart channel 0
list(controller.network[1][1]['miso_us'].edges()) # [(6,5)] direction indicates the data flow direction
controller.network[1][1]['miso_us'].edges[(6,5)] # attributes associated with link ('uart': 0)

In order to set up a ‘working’ network, you’ll need to add the proper links in the miso_ds and mosi graphs as well.:

controller.add_network_link(1,1,'miso_ds',(5,6),2)
controller.add_network_link(1,1,'mosi',(6,5),0)
controller.add_network_link(1,1,'mosi',(5,6),2)

External systems (e.g. the fpga you are using to communicate with the chips) are conventionally called 'ext0', 'ext1', ... and shouldn’t be forgotten in the network configuration! These nodes are used to determine the miso/mosi configuration for the linked chips.:

controller.add_network_link(1,1,'mosi',('ext',6),1) # link chip 6 to 'ext' via chip 6's uart channel 0
controller.add_network_link(1,1,'miso_ds',(6,'ext'),1) # same for miso_ds
list(controller.network[1][1]['miso_ds'].edges())
list(controller.network[1][1]['mosi'].edges())

To then initialize a component on the network, run controller.init_network(1,1,6). This will modify the correct registers of chip 1-1-6 and send the configuration commands to the system.:

controller.init_network(1,1,6)
controller.init_network(1,1,5)

Keep in mind, the order in which you initialize the network is important (e.g. chip 6 needs to be initialized before chip 5 since it is upstream from chip 6).

You may also reset a particular node with reset_network(<io_group>,<io_channel>,<chip_id>) which resets the network configuration of a particular node.:

controller.reset_network(1,1,5)
controller.reset_network(1,1,6)

This is all rather tedious to do manually, so there a few shortcuts to make declaring and configuring the network easier. If you don’t want to initialize or reset each node in order, you may allow the controller to figure out the proper order (based on the root nodes) and configure all of the chips.:

controller.init_network(1,1) # configure the 1-1 network
controller.reset_network(1,1) # revert the 1-1 network to it's original state

In the event that you need to access the chip keys of a network in the order of their depth within the network, use:

controller.get_network_keys(1,1) # get a list of chip keys starting with the root node and descending into the network
controller.get_network_keys(1,1,root_first_traversal=False) # get a list of chip keys starting with the chips deepest in the network and ascending

You may also specify a network configuration file and use this to create all of the necessary network links and chips. See <https://larpix-control.readthedocs.io/en/stable/api/configs/controller.html> for how to create one of these files. This is the generally recommended means of creating and loading a Hydra io network.:

# as an example for bringing up a hydra network from a config file
controller.load('<network config file>.json') # load your network and chips
for io_group, io_channels in controller.network.items():
    for io_channel in io_channels:
        controller.init_network(io_group, io_channel) # update configurations and write to chips

Properties and attributes:

  • chips: the Chip objects that the controller controls
  • reads: list of all the PacketCollections that have been sent back to this controller. PacketCollections are created by run, write_configuration, read_configuration, multi_write_configuration, multi_read_configuration, and store_packets.
  • network: a collection of networkx directed graph objects representing the miso_us, miso_ds, and mosi connections between chips (not applicable for v1 asics)
add_chip(chip_key, version=2, config=None, root=False)[source]

Add a specified chip to the Controller chips.

Parameters:
  • chip_key – chip key to specify unique chip
  • version – asic version of chip
  • config – configuration to assign chip when creating (otherwise uses default)
  • root – specifies if this is a root node as used by the hydra io network
Returns:

Chip that was added

Adds a link within the specified network (mosi, miso_ds, or miso_us) on the specified uart. Directionality is important: first key represents the tail (where packets are coming from) and the second is the head (where packets are going). The uart channel refers to the tail’s uart channel (for 'miso_*') and to the head’s uart channel for ('mosi'). Links can be formed with non-key objects to allow for network communications with objects that are not larpix chips (e.g. an external fpga).

For example to specify a miso downstream link between chips '1-1-3' and '1-1-2' on chip '1-1-3'’s uart 0, the arguments should be:

controller.add_network_link('miso_ds', 1, 1, (3,2), 0)

This represents a link where chip '1-1-3' will transfer packets out of its uart 0 to a destination of chip '1-1-2' (unspecified uart).

No network validation is performed, so use with caution!

Parameters:
  • network_namestr from ('miso_us','miso_ds','mosi')
  • io_group – io group to add network link in
  • io_channel – io channel to add network link in
  • chip_idstuple of two chip ids to link (order is important – first is ‘tail’ second is ‘head’, data flows from the ‘tail’ to the ‘head’ in all networks)
  • uartint referring to which uart channel this link occurs over, for 'miso_*' networks the uart channel refers to the uart on the sender (i.e. the ‘tail’ of the edge in the directed graph), but for 'mosi' networks the uart channel refers to the uart on the receiver (i.e. the ‘head’ of the edge in the directed graph)
add_network_node(io_group, io_channel, network_names, chip_id, root=False)[source]

Adds a node to the specified network (mosi, miso_ds, or miso_us) with no links. Generally, this is not needed as network nodes are added automatically with the controller.add_chip() method. ‘Special’ (i.e. non-key) nodes can be specified to insert nodes that do not represent larpix chips (e.g. an external fpga). A node can be declared as a root node, which is used as a flag to select the starting node during initialization.

Parameters:
  • network_names – list of networks or name of single network to create a node in
  • io_group – io group to create node within
  • io_channel – io channel to create node within
  • chip_id – chip id to associate with node (note that all chip ids must be unique on a network)
  • root – specifies if this node should be a root node (default=False)
get_network_ids(io_group, io_channel, root_first_traversal=True)[source]

Returns a list of chip ids in order of depth within the miso_us network

Parameters:
  • io_group – io group of network
  • io_channel – io channel of network
  • root_first_traversalTrue to traverse network starting from root nodes then increasing in network depth, False to traverse network starting from nodes furthest from root nodes and then decreasing in network depth
get_network_keys(io_group, io_channel, root_first_traversal=True)[source]

Returns a list of chip ids in order of depth within the miso_us network

Parameters:
  • io_group – io group of network
  • io_channel – io channel of network
  • root_first_traversalTrue to traverse network starting from root nodes then increasing in network depth, False to traverse network starting from nodes furthest from root nodes and then decreasing in network depth
remove_chip(chip_key)[source]

Remove a specified chip from the Controller chips.

Parameters:chip_key – chip key to specify unique chip
load(filename)[source]

Loads the specified file that describes the chip ids and IO network

Parameters:filename – File path to configuration file
load_network(filename, version=2)[source]

Loads the specified file using the hydra io network configuration format with either a miso_us_uart_map/miso_ds_uart_map/mosi_uart_map specification or a miso_uart_map/mosi_uart_map/usds_uart_map specification.

After loading the network, running controller.init_network(<io group>, <io channel>) will configure the chips with specified chip ids in the order declared in file

Parameters:filename – File path to configuration file
load_controller(filename)[source]

Loads the specified file using the basic key, chip format

The chip key is the Controller access key that gets communicated to/from the io object when sending and receiving packets.

Parameters:filename – File path to configuration file
grow_network(io_group, io_channel, chip_id, miso_uart_map=[3, 0, 1, 2], mosi_uart_map=[0, 1, 2, 3], usds_link_map=[2, 3, 0, 1], chip_id_generator=<function Controller._default_chip_id_generator>, timeout=0.01, modify_mosi=False, differential=True, version=2)[source]

Recurisve algorithm to auto-complete a network from a stub. It works by attempting to link to each available upstream node in succession, keeping links that are verified. Repeats on each newly generated node until no possible links remain.

To use with a completely unconfigured network you must first configure the root node representing the control system:

controller.add_network_node(io_group, io_channel, controller.network_names, 'ext', root=True)

You can then grow the network from this stub:

controller.grow_network(io_group, io_channel, 'ext')

This algorithim is limited to a regular geometry defined by the same miso_uart_map/mosi_uart_map/usds_link_map for each chip.

Parameters:
  • io_group – the io group designation for the network
  • io_channel – the io channel designation for the network
  • chip_id – the chip id of the chip to start growth from
  • miso_uart_map – a length 4 iterable indicating the miso channel used to send data to a chip at position i relative to the active chip
  • mosi_uart_map – a length 4 iterable indicating the mosi channel used to receive data from a chip at position i relative to the active chip
  • usds_link_map – a length 4 iterable indicating the relative position of the active chip from the perspective of the chip at position i
  • chip_id_generator – a function that takes a controller, io_group, and io_channel and returns a unique chip id for that network
  • timeout – the time duration in seconds to wait for a response from each configured node
  • modify_mosi – flag to configure each chip’s mosi, if set to True algorithm will also write the mosi configuration when probing chips, this will almost certainly leave you with deaf nodes and is not what you want. Leave at default False
  • differentialTrue to also enable differential signalling
Returns:

the generated ‘miso_us’, ‘miso_ds’, and ‘mosi’ networks as a dict

init_network_and_verify(io_group=1, io_channel=1, chip_id=None, timeout=0.2, retries=10, modify_mosi=True, differential=True)[source]

Runs init network, verifying that registers are updated properly at each step Will exit if any chip network configuration cannot be set correctly after retries attempts

init_network(io_group=1, io_channel=1, chip_id=None, modify_mosi=True, differential=True, tx_slices=15, i_tx_diff=0)[source]

Configure a Hydra io node specified by chip_id, if none are specified, load complete network To configure a Hydra io network, the following steps are followed:

  • Enable miso_us of parent chip
  • Enable mosi of parent chip
  • Write chip_id to chip on io group + io channel (assuming chip id 1)
  • Write enable_piso_downstream to chip chip_id (also enable differential if desired)
  • Write enable_posi to chip chip_id (optional)
reset_network(io_group=1, io_channel=1, chip_id=None)[source]

Resets the hydra IO network To reset a Hydra io network node, the following steps are followed:

  • Write enable_posi [1,1,1,1] to chip
  • Write enable_piso_downstream [0,0,0,0] to chip
  • Write chip_id 1 to chip
  • Disable miso_us channel of parent chip

If no chip_id is specified, network is reset in reverse order (starting from chips with no outgoing miso_us connections, working up the miso_us tree)

send(packets)[source]

Send the specified packets to the LArPix ASICs.

start_listening()[source]

Listen for packets to arrive.

stop_listening()[source]

Stop listening for new packets to arrive.

read()[source]

Read any packets that have arrived and return (packets, bytestream) where bytestream is the bytes that were received.

The returned list will contain packets that arrived since the last call to read or start_listening, whichever was most recent.

write_configuration(chip_key, registers=None, write_read=0, message=None, connection_delay=0.2)[source]

Send the configurations stored in chip.config to the LArPix ASIC.

By default, sends all registers. If registers is an int, then only that register is sent. If registers is a string, then the sent registers will set by looking at the configuration register map. If registers is an iterable, then all of the registers in the iterable are sent.

If write_read == 0 (default), the configurations will be sent and the current listening state will not be affected. If the controller is currently listening, then the listening state will not change and the value of write_read will be ignored. If write_read > 0 and the controller is not currently listening, then the controller will listen for write_read seconds beginning immediately before the packets are sent out, read the io queue, and save the packets into the reads data member. Note that the controller will only read the queue once, so if a lot of data is expected, you should handle the reads manually and set write_read to 0 (default).

read_configuration(chip_key, registers=None, timeout=1, message=None, connection_delay=0.2)[source]

Send “configuration read” requests to the LArPix ASIC.

By default, request all registers. If registers is an int, then only that register is reqeusted. If registers is an iterable, then all of the registers in the iterable are requested.

If the controller is currently listening, then the requests will be sent and no change to the listening state will occur. (The value of timeout will be ignored.) If the controller is not currently listening, then the controller will listen for timeout seconds beginning immediately before the first packet is sent out, and will save any received packets in the reads data member.

multi_write_configuration(chip_reg_pairs, write_read=0, message=None, connection_delay=0.2)[source]

Send multiple write configuration commands at once.

chip_reg_pairs should be a list/iterable whose elements are an valid arguments to Controller.write_configuration, excluding the write_read argument. Just like in the single Controller.write_configuration, setting write_read > 0 will have the controller read data during and after it writes, for however many seconds are specified.

Examples:

These first 2 are equivalent and write the full configurations

>>> controller.multi_write_configuration([chip_key1, chip_key2, ...])
>>> controller.multi_write_configuration([(chip_key1, None), chip_key2, ...])

These 2 write the specified registers for the specified chips in the specified order

>>> controller.multi_write_configuration([(chip_key1, 1), (chip_key2, 2), ...])
>>> controller.multi_write_configuration([(chip_key1, range(10)), chip_key2, ...])
differential_write_configuration(chip_config_pairs, write_read=0, message=None, connection_delay=0.2)[source]

Send different configuration registers between configs passed in chip_config_pairs and existing configs. Performs a single multi_write_configuration.

Parameters:chip_config_pairs – list of (chip_key, config_object) pairs to perform differential write against
Returns:list of (chip_key, list_of_registers) pairs
multi_read_configuration(chip_reg_pairs, timeout=1, message=None, connection_delay=0.2)[source]

Send multiple read configuration commands at once.

chip_reg_pairs should be a list/iterable whose elements are chip keys (to read entire configuration) or (chip_key, registers) tuples to read only the specified register(s). Registers could be None (i.e. all), an int for that register only, or an iterable of ints.

Examples:

These first 2 are equivalent and read the full configurations

>>> controller.multi_read_configuration([chip_key1, chip_key2, ...])
>>> controller.multi_read_configuration([(chip_key1, None), chip_key2, ...])

These 2 read the specified registers for the specified chips in the specified order

>>> controller.multi_read_configuration([(chip_key1, 1), (chip_key2, 2), ...])
>>> controller.multi_read_configuration([(chip_key1, range(10)), chip_key2, ...])
run(timelimit, message)[source]

Read data from the LArPix ASICs for the given timelimit and associate the received Packets with the given message.

verify_registers(chip_key_register_pairs, timeout=1, connection_delay=0.02, n=1)[source]

Read chip configuration from specified chip and registers and return True if the read chip configuration matches the current configuration stored in chip instance.

Parameters:
  • chip_key_register_pair – a list of key register pairs as documented in controller.multi_read_configuration
  • timeout – set how long to wait for response in seconds (optional)
  • n – sets maximum recursion depth, will continue to attempt to verify registers until this depth is reached or all registers have responded, a value <1 allows for infinite recursion (optional)
Returns:

2-tuple of a bool representing if all registers match and a dict representing all differences. Differences are specified as {<chip_key>: {<register>: (<expected>, <read>)}}

verify_configuration(chip_keys=None, timeout=1, connection_delay=0.02, n=1)[source]

Read chip configuration from specified chip(s) and return True if the read chip configuration matches the current configuration stored in chip instance. chip_keys can be a single chip key, a list of chip keys, or None. If chip_keys is None all chips will be verified.

Also returns a dict containing the values of registers that are different (read register, stored register)

Parameters:
  • chip_keyslist of chip_keys to verify
  • timeout – how long to wait for response in seconds
  • n – set recursion limit for rechecking non-responding registers
Returns:

2-tuple with same format as controller.verify_registers

verify_network(chip_keys=None, timeout=1)[source]

Read chip network configuration from specified chip(s) and return True if the read chip configurations matches Only valid for v2 chips.

Parameters:
  • chip_keyslist of chip_keys to verify or singe chip_key to verify
  • timeout – how long to wait for response in seconds
Returns:

2-tuple with same format as controller.verify_registers

enforce_registers(chip_key_register_pairs, timeout=1, connection_delay=0.02, n=1, n_verify=1)[source]

Read chip configuration from specified chip and registers and write registers to read chip configurations that do not match the current configuration stored in chip instance.

Parameters:
  • chip_key_register_pair – a list of key register pairs as documented in controller.multi_read_configuration
  • timeout – set how long to wait for response in seconds (optional)
  • n – sets maximum recursion depth, will continue to attempt to enforce registers until this depth is reached or all registers have responded, a value <1 allows for infinite recursion (optional)
  • n_verify – maximum recursion depth for verify registers (optional)
Returns:

2-tuple with same format as controller.verify_registers

enforce_configuration(chip_keys=None, timeout=1, connection_delay=0.02, n=1, n_verify=1)[source]

Read chip configuration from specified chip(s) and write registers to read chip configuration that do not match the current configuration stored in chip instance. chip_keys can be a single chip key, a list of chip keys, or None. If chip_keys is None all chip configs will be enforced.

Also returns a dict containing the values of registers that are different (read register, stored register)

Parameters:
  • chip_keyslist of chip_keys to verify
  • timeout – how long to wait for response in seconds
  • n – set recursion limit for enforcing non-matching registers (optional)
  • n_verify – set recursion limit for verifying registers (optional)
Returns:

2-tuple with same format as controller.verify_registers

enable_analog_monitor(chip_key, channel)[source]

Enable the analog monitor on a single channel on the specified chip. Note: If monitoring a different chip, call disable_analog_monitor first to ensure that the monitor to that chip is disconnected.

disable_analog_monitor(chip_key=None, channel=None)[source]

Disable the analog monitor for a specified chip and channel, if none are specified disable the analog monitor for all chips in self.chips and all channels

enable_testpulse(chip_key, channel_list, start_dac=255)[source]

Prepare chip for pulsing - enable testpulser and set a starting dac value for specified chip/channel

issue_testpulse(chip_key, pulse_dac, min_dac=0, read_time=0.1)[source]

Reduce the testpulser dac by pulse_dac and write_read to chip for read_time seconds

disable_testpulse(chip_key=None, channel_list=None)[source]

Disable testpulser for specified chip/channels. If none specified, disable for all chips/channels

disable(chip_key=None, channel_list=None)[source]

Update channel mask to disable specified chips/channels. If none specified, disable all chips/channels

enable(chip_key=None, channel_list=None)[source]

Update channel mask to enable specified chips/channels. If none specified, enable all chips/channels

store_packets(packets, data, message)[source]

Store the packets in self and in self.chips

sort_packets(collection)[source]

Sort the packets in collection into each chip in self.chips

save_output(filename, message)[source]

Save the data read by each chip to the specified file.

Chips

class larpix.chip.Chip(chip_key, version=2)[source]

Represents one LArPix chip and helps with configuration and packet generation.

is_chip_id_set()[source]

Check if chip id (as specified by unique key) matches the chip id stored in the configuration. Only valid for v2 asics, if v1 asic, will always return True Note: Even if this function returns True, it’s possible the chip ID has not been sent from the larpix-control software onto the ASIC hardware

get_configuration_packets(packet_type, registers=None)[source]

Return a list of Packet objects to read or write (depending on packet_type) the specified configuration registers (or all registers by default).

get_configuration_write_packets(registers=None)[source]

Return a list of Packet objects to write corresponding to the specified configuration registers (all by default)

get_configuration_read_packets(registers=None)[source]

Return a list of Packet objects to write corresponding to the specified configuration registers (all by default)

sync_configuration(index=-1)[source]

Adjust self.config to match whatever config read packets are in self.reads[index].

Defaults to the most recently read PacketCollection. Later packets in the list will overwrite earlier packets. The index parameter could be a slice.

export_reads(only_new_reads=True)[source]

Return a dict of the packets this Chip has received.

If only_new_reads is True (default), then only the packets since the last time this method was called will be in the dict. Otherwise, all of the packets stored in self.reads will be in the dict.

Chip keys

class larpix.key.Key(*args)[source]

A unique specification for routing data to a particular detector sub-system. At the core, a key is represented by 3-unsigned 1-byte integer fields which refer to an id code within a layer of the LArPix DAQ system heirarchy. Field 0 represents the io group id number, field 1 represents the io channel connecting to a MISO/MOSI pair, and field 2 represents the chip id. The io group is the device controlling a set of MOSI/MISO pairs, the io channel is a single MOSI/MISO pair controlling a collection of LArPix asics, and the chip id uniquely identifies a chip on a single MISO/MISO network.

Each field should be a 1-byte unsigned integer (0-255) providing a unique lookup value for each component in the system. The id values of 0 and 255 are reserved for special functionality.

A key can be specified by a string of '<io group>-<io channel>-<chip id>', by io group, io channel, and chip id, or by using other Keys.

Keys are hashed by their string representation and are equivalent to their string representation so:

key = Key(1,1,1) # io group, io channel, chip id
key == Key('1-1-1') # True
key == Key(key) # True

key == '1-1-1' # True
key == (1,1,1) # True

d = { key: 'example' }
d[key] == 'example' # True
d['1-1-1'] == 'example' # True

Keys are “psuedo-immutable”, i.e. you cannot change a Key’s io_group, io_channel, or chip_id after it has been created.

keystring

Key string specifying key io group, io channel, and chip id in the format: '<io group>-<io channel>-<chip id>'

chip_id

1-byte unsigned integer representing the physical chip id (hardwired for v1 ASICs, assigned dynamically for v2 ASICs)

io_channel

1-byte unsigned integer representing the physical io channel. This identifies a single MOSI/MISO pair used to communicate with a single network of up to 254 chips.

io_group

1-byte unsigned integer representing the physical device used to read out up to 254 io channels.

static is_valid_keystring(keystring)[source]

Check if keystring can be interpreted as a larpix.Key

Returns:True if the keystring can be interpreted as a larpix.Key
to_dict()[source]

Convert Key into a dict

Returns:dict with 'io_group', 'io_channel', and 'chip_id'
static from_dict(d)[source]

Convert a dict into a Key object, dict must contain 'io_group', 'io_channel', and 'chip_id'

Returns:Key

Packets

class larpix.packet.packet_v1.Packet_v1(bytestream=None)[source]

A single 54-bit LArPix UART data packet.

LArPix Packet objects have attributes for inspecting and modifying the contents of the packet.

Internally, packets are represented as an array of bits, and the different attributes use Python “properties” to seamlessly convert between the bits representation and a more intuitive integer representation. The bits representation can be inspected with the bits attribute.

Packet objects do not restrict you from adjusting an attribute for an inappropriate packet type. For example, you can create a data packet and then set packet.register_address = 5. This will adjust the packet bits corresponding to a configuration packet’s “register_address” region, which is probably not what you want for your data packet.

Packets have a parity bit which enforces odd parity, i.e. the sum of all the individual bits in a packet must be an odd number. The parity bit can be accessed as above using the parity_bit_value attribute. The correct parity bit can be computed using compute_parity(), and the validity of a packet’s parity can be checked using has_valid_parity(). When constructing a new packet, the correct parity bit can be assigned using assign_parity().

Individual packets can be printed to show a human-readable interpretation of the packet contents. The printed version adjusts its output based on the packet type, so a data packet will show the data word, timestamp, etc., while a configuration packet will show the register address and register data.

bytes()[source]

Construct the bytes that make up the packet.

Byte 0 is the first byte that would be sent out and contains the first 8 bits of the packet (i.e. packet type and part of the chip ID).

Note: The internal bits representation of the packet has a different endian-ness compared to the output of this method.

export()[source]

Return a dict representation of this Packet.

from_dict(d)[source]

Inverse of export - modify packet based on dict

class larpix.packet.packet_v2.Packet_v2(bytestream=None)[source]

Representation of a 64 bit LArPix v2 (or LightPix v1) UART data packet.

Packet_v2 objects are internally represented as bitarrays, but a variety of helper properties allow one to access and set the data stored in the bitarrays in a natural fashion. E.g.:

p = Packet_v2() # initialize a packet of zeros
p.packet_type # fetch packet type bits and convert to uint
p.packet_type = 2 # set the packet type to a config write packet
print(p.bits) # the bits have been updated!

Packet_v2 objects don’t enforce any value validation, so set these fields with caution!

In FIFO diagnostics mode, the bits are to be interpreted in a different way. At this point, there is no way for the Packet_v2 to automatically know if it is in FIFO diagnostics mode. If you are operating the chips in this mode you can manually set Packet_v2.fifo_diagnostics_enabled = True to interpret data packets in this fashion by default, or set packet.fifo_diagnostics_enabled = True for a single packet. Just remember that if you modify packet.fifo_diagnostics_enabled, it will no longer use the default.

bytes()[source]

Create bytes that represent the packet.

Byte 0 is still the first byte to send out and contains bits [0:7]

export()[source]

Return a dict representation of the packet

from_dict(d)[source]

Load from a dict of values, inverse of Packet_v2.export

Note

If there is a disagreement between the bits specified and any of the values, this method has undefined results.

class larpix.packet.timestamp_packet.TimestampPacket(timestamp=None, code=None)[source]

A packet-like object which just contains an integer timestamp.

This class implements many methods used by Packet, so it functions smoothly in lists of packets and in PacketCollection.

If neither timestamp nor code is provided then this TimestampPacket will have a timestamp of None until it is manually set.

Parameters:
  • timestamp – optional, integer timestamp of this packet
  • code – optional, encoded timestamp as a 7-byte unsigned int obtainable from calling the bytes method.
from_dict(d)[source]

Inverse of export - modify packet based on dict

class larpix.packet.message_packet.MessagePacket(message, timestamp)[source]

A packet-like object which contains a string message and timestamp.

Parameters:
  • message – a string message of length less than 64
  • timestamp – the timestamp of the message
from_dict(d)[source]

Inverse of export - modify packet based on dict

class larpix.packet.packet_collection.PacketCollection(packets, bytestream=None, message='', read_id=None, skipped=None)[source]

Represents a group of packets that were sent to or received from LArPix.

Index into the PacketCollection as if it were a list:

>>> collection[0]
Packet(b'')
>>> first_ten = collection[:10]
>>> len(first_ten)
10
>>> type(first_ten)
larpix.larpix.PacketCollection
>>> first_ten.message
'my packets | subset slice(None, 10, None)'

To view the bits representation, add ‘bits’ to the index:

>>> collection[0, 'bits']
'00000000 00000000 00000000 00000000 00000000 00000000 000111'
>>> bits_format_first_10 = collection[:10, 'bits']
>>> type(bits_format_first_10[0])
str
to_dict()[source]

Export the information in this PacketCollection to a dict.

from_dict(d)[source]

Load the information in the dict into this PacketCollection.

extract(*attrs, **selection)[source]

Extract the given attribute(s) from packets specified by selection and return a list.

Any attribute of a Packet is a valid attribute or selection

Usage:

>>> # Return a list of adc counts from any data packets
>>> dataword = collection.extract('dataword', packet_type=0)
>>> # Return a list of timestamps from chip 2 data
>>> timestamps = collection.extract('timestamp', chip_id=2, packet_type=Packet_v2.DATA_PACKET)
>>> # Return the most recently read global threshold from chip 5
>>> threshold = collection.extract('register_value', register_address=32, packet_type=3, chip_id=5)[-1]
>>> # Return multiple attributes
>>> chip_keys, channel_ids = zip(*collection.extract('chip_key','channel_id'))

Note

selecting on timestamp will also select TimestampPacket values.

origin()[source]

Return the original PacketCollection that this PacketCollection derives from.

with_chip_key(chip_key)[source]

Return packets with the specified chip key.

by_chip_key()[source]

Return a dict of { chip_key: PacketCollection }.

with_chipid(chipid)[source]

Return packets with the specified chip ID.

by_chipid()[source]

Return a dict of { chipid: PacketCollection }.

LArPix ASIC Configuration Registers

Below are links to the auto-generated python representations of the LArPix ASIC registers.

LArPix v1 ASIC Configuration Registers

Configuration.register_names = ['pixel_trim_dac', 'threshold_global', 'csa_gain', 'csa_bypass_enable', 'bypass_caps_en', 'csa_enable', 'ibias_tdac', 'ibias_comp', 'ibias_buffer', 'ibias_csa', 'ibias_vref_buffer', 'ibias_vcm_buffer', 'ibias_tpulse', 'ref_current_trim', 'override_ref', 'ref_kickstart', 'vref_dac', 'vcm_dac', 'csa_bypass_select', 'csa_monitor_select', 'csa_testpulse_enable', 'csa_testpulse_dac', 'current_monitor_bank0', 'current_monitor_bank1', 'current_monitor_bank2', 'current_monitor_bank3', 'voltage_monitor_bank0', 'voltage_monitor_bank1', 'voltage_monitor_bank2', 'voltage_monitor_bank3', 'voltage_monitor_refgen', 'digital_monitor_enable', 'digital_monitor_select', 'digital_monitor_chan', 'slope_control0', 'slope_control1', 'slope_control2', 'slope_control3', 'chip_id', 'load_config_defaults', 'enable_fifo_diagnostics', 'clk_ctrl', 'enable_miso_upstream', 'enable_miso_downstream', 'enable_miso_differential', 'enable_mosi', 'test_mode_uart0', 'test_mode_uart1', 'test_mode_uart2', 'test_mode_uart3', 'enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto', 'adc_hold_delay', 'adc_burst_length', 'channel_mask', 'external_trigger_mask', 'cross_trigger_mask', 'periodic_trigger_mask', 'periodic_reset_cycles', 'periodic_trigger_cycles', 'enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'reset_length', 'mark_first_packet', 'reset_threshold', 'min_delta_adc', 'digital_threshold']
class larpix.configuration.configuration_v1.Configuration_v1[source]

Represents the desired configuration state of a LArPix v1 chip.

register_names = ['pixel_trim_thresholds', 'global_threshold', 'csa_gain', 'csa_bypass', 'internal_bypass', 'csa_bypass_select', 'csa_monitor_select', 'csa_testpulse_enable', 'csa_testpulse_dac_amplitude', 'test_mode', 'cross_trigger_mode', 'periodic_reset', 'fifo_diagnostic', 'sample_cycles', 'test_burst_length', 'adc_burst_length', 'channel_mask', 'external_trigger_mask', 'reset_cycles']

This attribute lists the names of all available configuration registers. Each register name is available as its own attribute for inspecting and setting the value of the corresponding register.

Certain configuration values are set channel-by-channel. These are represented by a list of values. For example:

>>> conf.pixel_trim_thresholds[2:5]
[16, 16, 16]
>>> conf.channel_mask[20] = 1
>>> conf.external_trigger_mask = [0] * 32

Additionally, other configuration values take up more than or less than one complete register. These are still set by referencing the appropriate name. For example, cross_trigger_mode shares a register with a few other values, and adjusting the value of the cross_trigger_mode attribute will leave the other values unchanged.

enable_channels(list_of_channels=None)[source]

Shortcut for changing the channel mask for the given channels to “enable” (i.e. 0).

disable_channels(list_of_channels=None)[source]

Shortcut for changing the channel mask for the given channels to “disable” (i.e. 1).

enable_external_trigger(list_of_channels=None)[source]

Shortcut for enabling the external trigger functionality for the given channels. (I.e. disabling the mask.)

disable_external_trigger(list_of_channels=None)[source]

Shortcut for disabling the external trigger functionality for the given channels. (I.e. enabling the mask.)

enable_testpulse(list_of_channels=None)[source]

Shortcut for enabling the test pulser for the given channels.

disable_testpulse(list_of_channels=None)[source]

Shortcut for disabling the test pulser for the given channels.

enable_analog_monitor(channel)[source]

Shortcut for enabling the analog monitor on the given channel.

disable_analog_monitor()[source]

Shortcut for disabling the analog monitor (on all channels).

from_dict_registers(d, **kwargs)[source]

Load in the configuration specified by a dict of (register, value) pairs.

LArPix v2 ASIC Configuration Registers

class larpix.configuration.configuration_v2.Configuration_v2[source]

Represents the desired configuration state of a LArPix v2 chip.

Each register name is available as its own attribute for inspecting and setting the value of the corresponding register.

Certain configuration values are set channel-by-channel. These are represented by a list of values. For example:

>>> conf.pixel_trim_dac[2:5]
[16, 16, 16]
>>> conf.channel_mask[20] = 1
>>> conf.external_trigger_mask = [0] * 64

Additionally, other configuration values take up more than or less than one complete register. These are still set by referencing the appropriate name. For example, cross_trigger_mode shares a register with a few other values, and adjusting the value of the cross_trigger_mode attribute will leave the other values unchanged.

Each register name can cover more than one ‘physical’ register depending on the size of the data it holds. You can see which physical registers a given register name corresponds to by using the register_map attribute, e.g.:

>>> conf.register_map['digital_threshold']  # 64 registers, 1 per channel
range(173, 237)
>>> conf.register_map['enable_dynamic_reset']  # Register 170
range(170, 171)
>>> conf.register_map['enable_min_delta_adc']  # Shares register 170
range(170, 171)
adc_burst_length

simple value property

registers: range(130, 131)

valid types: <class 'int'>

value range: 0 to 255

adc_hold_delay

simple value property

registers: range(129, 130)

valid types: <class 'int'>

value range: 0 to 15

bypass_caps_en

compound property

registers: range(65, 66)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'csa_bypass_enable']

channel_mask

list-like property

list length: 64

registers: range(131, 139)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

chip_id

simple value property

registers: range(122, 123)

valid types: <class 'int'>

value range: 0 to 255

clk_ctrl

compound property

registers: range(123, 124)

bits: [3, 4]

valid types: <class 'int'>

value range: 0 to 2

shares a register with: ['load_config_defaults', 'enable_fifo_diagnostics']

cross_trigger_mask

list-like property

list length: 64

registers: range(147, 155)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_bypass_enable

compound property

registers: range(65, 66)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'bypass_caps_en']

csa_bypass_select

list-like property

list length: 64

registers: range(84, 92)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_enable

list-like property

list length: 64

registers: range(66, 74)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_gain

compound property

registers: range(65, 66)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_bypass_enable', 'bypass_caps_en']

csa_monitor_select

list-like property

list length: 64

registers: range(92, 100)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_testpulse_dac

simple value property

registers: range(108, 109)

valid types: <class 'int'>

value range: 0 to 255

csa_testpulse_enable

list-like property

list length: 64

registers: range(100, 108)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank0

list-like property

list length: 4

registers: range(109, 110)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank1

list-like property

list length: 4

registers: range(110, 111)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank2

list-like property

list length: 4

registers: range(111, 112)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank3

list-like property

list length: 4

registers: range(112, 113)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

digital_monitor_chan

simple value property

registers: range(119, 120)

valid types: <class 'int'>

value range: 0 to 63

digital_monitor_enable

compound property

registers: range(118, 119)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['digital_monitor_select']

digital_monitor_select

compound property

registers: range(118, 119)

bits: [1, 2, 3, 4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 10

shares a register with: ['digital_monitor_enable']

digital_threshold

list-like property

list length: 64

registers: range(173, 237)

element valid types: <class 'int'>

element value range: 0 to 255

enable_cross_trigger

compound property

registers: range(128, 129)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_dynamic_reset

compound property

registers: range(170, 171)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_min_delta_adc', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_fifo_diagnostics

compound property

registers: range(123, 124)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['load_config_defaults', 'clk_ctrl']

enable_hit_veto

compound property

registers: range(128, 129)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto']

enable_min_delta_adc

compound property

registers: range(170, 171)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_miso_differential

compound list-like property

list length: 4

registers: range(125, 126)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

shares a register with: ['enable_miso_downstream']

enable_miso_downstream

compound list-like property

list length: 4

registers: range(125, 126)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

shares a register with: ['enable_miso_differential']

enable_miso_upstream

list-like property

list length: 4

registers: range(124, 125)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_mosi

list-like property

list length: 4

registers: range(126, 127)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_periodic_reset

compound property

registers: range(128, 129)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger

compound property

registers: range(128, 129)

bits: [3]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger_veto

compound property

registers: range(128, 129)

bits: [5]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_hit_veto']

enable_rolling_periodic_reset

compound property

registers: range(128, 129)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_rolling_periodic_trigger

compound property

registers: range(128, 129)

bits: [4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

external_trigger_mask

list-like property

list length: 64

registers: range(139, 147)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

ibias_buffer

simple value property

registers: range(76, 77)

valid types: <class 'int'>

value range: 0 to 15

ibias_comp

simple value property

registers: range(75, 76)

valid types: <class 'int'>

value range: 0 to 15

ibias_csa

simple value property

registers: range(77, 78)

valid types: <class 'int'>

value range: 0 to 15

ibias_tdac

simple value property

registers: range(74, 75)

valid types: <class 'int'>

value range: 0 to 15

ibias_tpulse

simple value property

registers: range(80, 81)

valid types: <class 'int'>

value range: 0 to 15

ibias_vcm_buffer

simple value property

registers: range(79, 80)

valid types: <class 'int'>

value range: 0 to 15

ibias_vref_buffer

simple value property

registers: range(78, 79)

valid types: <class 'int'>

value range: 0 to 15

load_config_defaults

compound property

registers: range(123, 124)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_fifo_diagnostics', 'clk_ctrl']

mark_first_packet

compound property

registers: range(170, 171)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'reset_length']

min_delta_adc

simple value property

registers: range(172, 173)

valid types: <class 'int'>

value range: 0 to 255

override_ref

compound property

registers: range(81, 82)

bits: [5]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'ref_kickstart']

periodic_reset_cycles

simple value property

registers: range(163, 166)

valid types: <class 'int'>

value range: 0 to 16777215

periodic_trigger_cycles

simple value property

registers: range(166, 170)

valid types: <class 'int'>

value range: 0 to 4294967295

periodic_trigger_mask

list-like property

list length: 64

registers: range(155, 163)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

pixel_trim_dac

list-like property

list length: 64

registers: range(0, 64)

element valid types: <class 'int'>

element value range: 0 to 31

ref_current_trim

compound property

registers: range(81, 82)

bits: [0, 1, 2, 3, 4]

valid types: <class 'int'>

value range: 0 to 31

shares a register with: ['override_ref', 'ref_kickstart']

ref_kickstart

compound property

registers: range(81, 82)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'override_ref']

reset_length

compound property

registers: range(170, 171)

bits: [3, 4, 5]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'mark_first_packet']

reset_threshold

simple value property

registers: range(171, 172)

valid types: <class 'int'>

value range: 0 to 255

slope_control0

compound property

registers: range(120, 121)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control1']

slope_control1

compound property

registers: range(120, 121)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control0']

slope_control2

compound property

registers: range(121, 122)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control3']

slope_control3

compound property

registers: range(121, 122)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control2']

test_mode_uart0

compound property

registers: range(127, 128)

bits: [0, 1]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart1', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart1

compound property

registers: range(127, 128)

bits: [2, 3]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart2

compound property

registers: range(127, 128)

bits: [4, 5]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart3']

test_mode_uart3

compound property

registers: range(127, 128)

bits: [6, 7]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart2']

threshold_global

simple value property

registers: range(64, 65)

valid types: <class 'int'>

value range: 0 to 255

threshold_polarity

compound property

registers: range(170, 171)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'reset_length', 'mark_first_packet']

vcm_dac

simple value property

registers: range(83, 84)

valid types: <class 'int'>

value range: 0 to 255

voltage_monitor_bank0

list-like property

list length: 3

registers: range(113, 114)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank1

list-like property

list length: 3

registers: range(114, 115)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank2

list-like property

list length: 3

registers: range(115, 116)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank3

list-like property

list length: 3

registers: range(116, 117)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_refgen

list-like property

list length: 8

registers: range(117, 118)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

vref_dac

simple value property

registers: range(82, 83)

valid types: <class 'int'>

value range: 0 to 255

LightPix ASIC Configuration Registers

class larpix.configuration.configuration_lightpix_v1.Configuration_Lightpix_v1[source]

Represents the desired configuration state of a LightPix v1 chip.

This is a small extension of the LArPix v2 configuration register space to include the additional registers associated with LightPix, see the v2 configuration class for a more detailed description of the implementation.

adc_burst_length

simple value property

registers: range(130, 131)

valid types: <class 'int'>

value range: 0 to 255

adc_hold_delay

simple value property

registers: range(129, 130)

valid types: <class 'int'>

value range: 0 to 15

bypass_caps_en

compound property

registers: range(65, 66)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'csa_bypass_enable']

channel_mask

list-like property

list length: 64

registers: range(131, 139)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

chip_id

simple value property

registers: range(122, 123)

valid types: <class 'int'>

value range: 0 to 255

clk_ctrl

compound property

registers: range(123, 124)

bits: [3, 4]

valid types: <class 'int'>

value range: 0 to 2

shares a register with: ['load_config_defaults', 'enable_fifo_diagnostics']

cross_trigger_mask

list-like property

list length: 64

registers: range(147, 155)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_bypass_enable

compound property

registers: range(65, 66)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'bypass_caps_en']

csa_bypass_select

list-like property

list length: 64

registers: range(84, 92)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_enable

list-like property

list length: 64

registers: range(66, 74)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_gain

compound property

registers: range(65, 66)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_bypass_enable', 'bypass_caps_en']

csa_monitor_select

list-like property

list length: 64

registers: range(92, 100)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_testpulse_dac

simple value property

registers: range(108, 109)

valid types: <class 'int'>

value range: 0 to 255

csa_testpulse_enable

list-like property

list length: 64

registers: range(100, 108)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank0

list-like property

list length: 4

registers: range(109, 110)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank1

list-like property

list length: 4

registers: range(110, 111)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank2

list-like property

list length: 4

registers: range(111, 112)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank3

list-like property

list length: 4

registers: range(112, 113)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

digital_monitor_chan

simple value property

registers: range(119, 120)

valid types: <class 'int'>

value range: 0 to 63

digital_monitor_enable

compound property

registers: range(118, 119)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['digital_monitor_select']

digital_monitor_select

compound property

registers: range(118, 119)

bits: [1, 2, 3, 4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 10

shares a register with: ['digital_monitor_enable']

digital_threshold

list-like property

list length: 64

registers: range(173, 237)

element valid types: <class 'int'>

element value range: 0 to 255

enable_cross_trigger

compound property

registers: range(128, 129)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_dynamic_reset

compound property

registers: range(170, 171)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_min_delta_adc', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_fifo_diagnostics

compound property

registers: range(123, 124)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['load_config_defaults', 'clk_ctrl']

enable_hit_veto

compound property

registers: range(128, 129)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto']

enable_min_delta_adc

compound property

registers: range(170, 171)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_miso_differential

compound list-like property

list length: 4

registers: range(125, 126)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

shares a register with: ['enable_miso_downstream']

enable_miso_downstream

compound list-like property

list length: 4

registers: range(125, 126)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

shares a register with: ['enable_miso_differential']

enable_miso_upstream

list-like property

list length: 4

registers: range(124, 125)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_mosi

list-like property

list length: 4

registers: range(126, 127)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_periodic_reset

compound property

registers: range(128, 129)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger

compound property

registers: range(128, 129)

bits: [3]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger_veto

compound property

registers: range(128, 129)

bits: [5]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_hit_veto']

enable_rolling_periodic_reset

compound property

registers: range(128, 129)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_rolling_periodic_trigger

compound property

registers: range(128, 129)

bits: [4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

external_trigger_mask

list-like property

list length: 64

registers: range(139, 147)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

hit_threshold

compound property

registers: range(237, 238)

bits: [1, 2, 3, 4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 127

shares a register with: ['lightpix_mode']

ibias_buffer

simple value property

registers: range(76, 77)

valid types: <class 'int'>

value range: 0 to 15

ibias_comp

simple value property

registers: range(75, 76)

valid types: <class 'int'>

value range: 0 to 15

ibias_csa

simple value property

registers: range(77, 78)

valid types: <class 'int'>

value range: 0 to 15

ibias_tdac

simple value property

registers: range(74, 75)

valid types: <class 'int'>

value range: 0 to 15

ibias_tpulse

simple value property

registers: range(80, 81)

valid types: <class 'int'>

value range: 0 to 15

ibias_vcm_buffer

simple value property

registers: range(79, 80)

valid types: <class 'int'>

value range: 0 to 15

ibias_vref_buffer

simple value property

registers: range(78, 79)

valid types: <class 'int'>

value range: 0 to 15

lightpix_mode

compound property

registers: range(237, 238)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['hit_threshold']

load_config_defaults

compound property

registers: range(123, 124)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_fifo_diagnostics', 'clk_ctrl']

mark_first_packet

compound property

registers: range(170, 171)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'reset_length']

min_delta_adc

simple value property

registers: range(172, 173)

valid types: <class 'int'>

value range: 0 to 255

override_ref

compound property

registers: range(81, 82)

bits: [5]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'ref_kickstart']

periodic_reset_cycles

simple value property

registers: range(163, 166)

valid types: <class 'int'>

value range: 0 to 16777215

periodic_trigger_cycles

simple value property

registers: range(166, 170)

valid types: <class 'int'>

value range: 0 to 4294967295

periodic_trigger_mask

list-like property

list length: 64

registers: range(155, 163)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

pixel_trim_dac

list-like property

list length: 64

registers: range(0, 64)

element valid types: <class 'int'>

element value range: 0 to 31

ref_current_trim

compound property

registers: range(81, 82)

bits: [0, 1, 2, 3, 4]

valid types: <class 'int'>

value range: 0 to 31

shares a register with: ['override_ref', 'ref_kickstart']

ref_kickstart

compound property

registers: range(81, 82)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'override_ref']

reset_length

compound property

registers: range(170, 171)

bits: [3, 4, 5]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'mark_first_packet']

reset_threshold

simple value property

registers: range(171, 172)

valid types: <class 'int'>

value range: 0 to 255

slope_control0

compound property

registers: range(120, 121)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control1']

slope_control1

compound property

registers: range(120, 121)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control0']

slope_control2

compound property

registers: range(121, 122)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control3']

slope_control3

compound property

registers: range(121, 122)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['slope_control2']

test_mode_uart0

compound property

registers: range(127, 128)

bits: [0, 1]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart1', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart1

compound property

registers: range(127, 128)

bits: [2, 3]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart2

compound property

registers: range(127, 128)

bits: [4, 5]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart3']

test_mode_uart3

compound property

registers: range(127, 128)

bits: [6, 7]

valid types: <class 'int'>

value range: 0 to 4

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart2']

threshold_global

simple value property

registers: range(64, 65)

valid types: <class 'int'>

value range: 0 to 255

threshold_polarity

compound property

registers: range(170, 171)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'reset_length', 'mark_first_packet']

timeout

simple value property

registers: range(238, 239)

valid types: <class 'int'>

value range: 0 to 255

vcm_dac

simple value property

registers: range(83, 84)

valid types: <class 'int'>

value range: 0 to 255

voltage_monitor_bank0

list-like property

list length: 3

registers: range(113, 114)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank1

list-like property

list length: 3

registers: range(114, 115)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank2

list-like property

list length: 3

registers: range(115, 116)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank3

list-like property

list length: 3

registers: range(116, 117)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_refgen

list-like property

list length: 8

registers: range(117, 118)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

vref_dac

simple value property

registers: range(82, 83)

valid types: <class 'int'>

value range: 0 to 255

LArPix v2b ASIC Configuration Registers

class larpix.configuration.configuration_v2b.Configuration_v2b[source]

Represents the desired configuration state of a LArPix v2b chip.

Each register name is available as its own attribute for inspecting and setting the value of the corresponding register.

Certain configuration values are set channel-by-channel. These are represented by a list of values. For example:

>>> conf.pixel_trim_dac[2:5]
[16, 16, 16]
>>> conf.channel_mask[20] = 1
>>> conf.external_trigger_mask = [0] * 64

Additionally, other configuration values take up more than or less than one complete register. These are still set by referencing the appropriate name. For example, cross_trigger_mode shares a register with a few other values, and adjusting the value of the cross_trigger_mode attribute will leave the other values unchanged.

Each register name can cover more than one ‘physical’ register depending on the size of the data it holds. You can see which physical registers a given register name corresponds to by using the register_map attribute, e.g.:

>>> conf.register_map['digital_threshold']  # 64 registers, 1 per channel
range(173, 237)
>>> conf.register_map['enable_dynamic_reset']  # Register 170
range(170, 171)
>>> conf.register_map['enable_min_delta_adc']  # Shares register 170
range(170, 171)
RESERVED

simple value property

registers: range(237, 239)

valid types: <class 'int'>

value range: 0 to 0

adc_burst_length

simple value property

registers: range(130, 131)

valid types: <class 'int'>

value range: 0 to 255

adc_hold_delay

simple value property

registers: range(120, 122)

valid types: <class 'int'>

value range: 0 to 65535

bypass_caps_en

compound property

registers: range(65, 66)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'csa_bypass_enable']

channel_mask

list-like property

list length: 64

registers: range(131, 139)

element valid types: <class 'int'>

element value range: 0 to 1

chip_id

simple value property

registers: range(122, 123)

valid types: <class 'int'>

value range: 0 to 255

clk_ctrl

compound property

registers: range(123, 124)

bits: [3, 4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 3

shares a register with: ['enable_tx_dynamic_powerdown', 'load_config_defaults', 'enable_fifo_diagnostics', 'tx_dynamic_powerdown_cycles']

cross_trigger_mask

list-like property

list length: 64

registers: range(147, 155)

element valid types: <class 'int'>

element value range: 0 to 1

csa_bypass_enable

compound property

registers: range(65, 66)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_gain', 'bypass_caps_en']

csa_bypass_select

list-like property

list length: 64

registers: range(84, 92)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_enable

list-like property

list length: 64

registers: range(66, 74)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_gain

compound property

registers: range(65, 66)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['csa_bypass_enable', 'bypass_caps_en']

csa_monitor_select

list-like property

list length: 64

registers: range(92, 100)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

csa_testpulse_dac

simple value property

registers: range(108, 109)

valid types: <class 'int'>

value range: 0 to 255

csa_testpulse_enable

list-like property

list length: 64

registers: range(100, 108)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank0

list-like property

list length: 4

registers: range(109, 110)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank1

list-like property

list length: 4

registers: range(110, 111)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank2

list-like property

list length: 4

registers: range(111, 112)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

current_monitor_bank3

list-like property

list length: 4

registers: range(112, 113)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

digital_monitor_chan

simple value property

registers: range(119, 120)

valid types: <class 'int'>

value range: 0 to 63

digital_monitor_enable

compound property

registers: range(118, 119)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['digital_monitor_select']

digital_monitor_select

compound property

registers: range(118, 119)

bits: [1, 2, 3, 4]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 10

shares a register with: ['digital_monitor_enable']

digital_threshold

list-like property

list length: 64

registers: range(173, 237)

element valid types: <class 'int'>

element value range: 0 to 255

enable_cross_trigger

compound property

registers: range(128, 129)

bits: [0]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_dynamic_reset

compound property

registers: range(170, 171)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_min_delta_adc', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_fifo_diagnostics

compound property

registers: range(123, 124)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_tx_dynamic_powerdown', 'load_config_defaults', 'clk_ctrl', 'tx_dynamic_powerdown_cycles']

enable_hit_veto

compound property

registers: range(128, 129)

bits: [6]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto']

enable_min_delta_adc

compound property

registers: range(170, 171)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'threshold_polarity', 'reset_length', 'mark_first_packet']

enable_periodic_reset

compound property

registers: range(128, 129)

bits: [1]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger

compound property

registers: range(128, 129)

bits: [3]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_periodic_trigger_veto

compound property

registers: range(128, 129)

bits: [5]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_hit_veto']

enable_piso_downstream

list-like property

list length: 4

registers: range(125, 126)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_piso_upstream

list-like property

list length: 4

registers: range(124, 125)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_posi

list-like property

list length: 4

registers: range(126, 127)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

enable_rolling_periodic_reset

compound property

registers: range(128, 129)

bits: [2]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_periodic_trigger', 'enable_rolling_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_rolling_periodic_trigger

compound property

registers: range(128, 129)

bits: [4]

valid types: <class 'int'>

value range: 0 to 1

shares a register with: ['enable_cross_trigger', 'enable_periodic_reset', 'enable_rolling_periodic_reset', 'enable_periodic_trigger', 'enable_periodic_trigger_veto', 'enable_hit_veto']

enable_tx_dynamic_powerdown

compound property

registers: range(123, 124)

bits: [0]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['load_config_defaults', 'enable_fifo_diagnostics', 'clk_ctrl', 'tx_dynamic_powerdown_cycles']

external_trigger_mask

list-like property

list length: 64

registers: range(139, 147)

element valid types: <class 'int'>

element value range: 0 to 1

i_rx0

compound property

registers: range(243, 244)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx1']

i_rx1

compound property

registers: range(243, 244)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx0']

i_rx2

compound property

registers: range(244, 245)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx3']

i_rx3

compound property

registers: range(244, 245)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx2']

i_rx_clk

compound property

registers: range(245, 246)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx_rst']

i_rx_ext_trig

simple value property

registers: range(246, 247)

valid types: <class 'int'>

value range: 0 to 15

i_rx_rst

compound property

registers: range(245, 246)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_rx_clk']

i_tx_diff0

compound property

registers: range(241, 242)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_tx_diff1']

i_tx_diff1

compound property

registers: range(241, 242)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_tx_diff0']

i_tx_diff2

compound property

registers: range(242, 243)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_tx_diff3']

i_tx_diff3

compound property

registers: range(242, 243)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['i_tx_diff2']

ibias_buffer

simple value property

registers: range(76, 77)

valid types: <class 'int'>

value range: 0 to 15

ibias_comp

simple value property

registers: range(75, 76)

valid types: <class 'int'>

value range: 0 to 15

ibias_csa

simple value property

registers: range(77, 78)

valid types: <class 'int'>

value range: 0 to 15

ibias_tdac

simple value property

registers: range(74, 75)

valid types: <class 'int'>

value range: 0 to 15

ibias_tpulse

simple value property

registers: range(80, 81)

valid types: <class 'int'>

value range: 0 to 15

ibias_vcm_buffer

simple value property

registers: range(79, 80)

valid types: <class 'int'>

value range: 0 to 15

ibias_vref_buffer

simple value property

registers: range(78, 79)

valid types: <class 'int'>

value range: 0 to 15

load_config_defaults

compound property

registers: range(123, 124)

bits: [1]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_tx_dynamic_powerdown', 'enable_fifo_diagnostics', 'clk_ctrl', 'tx_dynamic_powerdown_cycles']

mark_first_packet

compound property

registers: range(170, 171)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'reset_length']

min_delta_adc

simple value property

registers: range(172, 173)

valid types: <class 'int'>

value range: 0 to 255

override_ref

compound property

registers: range(81, 82)

bits: [5]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'ref_kickstart']

periodic_reset_cycles

simple value property

registers: range(163, 166)

valid types: <class 'int'>

value range: 0 to 16777215

periodic_trigger_cycles

simple value property

registers: range(166, 170)

valid types: <class 'int'>

value range: 0 to 4294967295

periodic_trigger_mask

list-like property

list length: 64

registers: range(155, 163)

element valid types: <class 'int'>

element value range: 0 to 1

pixel_trim_dac

list-like property

list length: 64

registers: range(0, 64)

element valid types: <class 'int'>

element value range: 0 to 31

r_term0

simple value property

registers: range(247, 248)

valid types: <class 'int'>

value range: 0 to 31

r_term1

simple value property

registers: range(248, 249)

valid types: <class 'int'>

value range: 0 to 31

r_term2

simple value property

registers: range(249, 250)

valid types: <class 'int'>

value range: 0 to 31

r_term3

simple value property

registers: range(250, 251)

valid types: <class 'int'>

value range: 0 to 31

r_term_clk

simple value property

registers: range(251, 252)

valid types: <class 'int'>

value range: 0 to 31

r_term_ext_trig

simple value property

registers: range(253, 254)

valid types: <class 'int'>

value range: 0 to 31

r_term_reset

simple value property

registers: range(252, 253)

valid types: <class 'int'>

value range: 0 to 31

ref_current_trim

compound property

registers: range(81, 82)

bits: [0, 1, 2, 3, 4]

valid types: <class 'int'>

value range: 0 to 31

shares a register with: ['override_ref', 'ref_kickstart']

ref_kickstart

compound property

registers: range(81, 82)

bits: [6]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['ref_current_trim', 'override_ref']

reset_length

compound property

registers: range(170, 171)

bits: [3, 4, 5]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'threshold_polarity', 'mark_first_packet']

reset_threshold

simple value property

registers: range(171, 172)

valid types: <class 'int'>

value range: 0 to 255

shadow_reset_length

simple value property

registers: range(129, 130)

valid types: <class 'int'>

value range: 0 to 255

test_mode_uart0

compound property

registers: range(127, 128)

bits: [0, 1]

valid types: <class 'int'>

value range: 0 to 3

shares a register with: ['test_mode_uart1', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart1

compound property

registers: range(127, 128)

bits: [2, 3]

valid types: <class 'int'>

value range: 0 to 3

shares a register with: ['test_mode_uart0', 'test_mode_uart2', 'test_mode_uart3']

test_mode_uart2

compound property

registers: range(127, 128)

bits: [4, 5]

valid types: <class 'int'>

value range: 0 to 3

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart3']

test_mode_uart3

compound property

registers: range(127, 128)

bits: [6, 7]

valid types: <class 'int'>

value range: 0 to 3

shares a register with: ['test_mode_uart0', 'test_mode_uart1', 'test_mode_uart2']

threshold_global

simple value property

registers: range(64, 65)

valid types: <class 'int'>

value range: 0 to 255

threshold_polarity

compound property

registers: range(170, 171)

bits: [2]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 1

shares a register with: ['enable_dynamic_reset', 'enable_min_delta_adc', 'reset_length', 'mark_first_packet']

tx_dynamic_powerdown_cycles

compound property

registers: range(123, 124)

bits: [5, 6, 7]

valid types: (<class 'int'>, <class 'bool'>)

value range: 0 to 7

shares a register with: ['enable_tx_dynamic_powerdown', 'load_config_defaults', 'enable_fifo_diagnostics', 'clk_ctrl']

tx_slices0

compound property

registers: range(239, 240)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['tx_slices1']

tx_slices1

compound property

registers: range(239, 240)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['tx_slices0']

tx_slices2

compound property

registers: range(240, 241)

bits: [0, 1, 2, 3]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['tx_slices3']

tx_slices3

compound property

registers: range(240, 241)

bits: [4, 5, 6, 7]

valid types: <class 'int'>

value range: 0 to 15

shares a register with: ['tx_slices2']

v_cm_lvds_tx0

compound property

registers: range(254, 255)

bits: [0, 1, 2]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: []

v_cm_lvds_tx1

compound property

registers: range(254, 255)

bits: [4, 5, 6]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['v_cm_lvds_tx0', 'v_cm_lvds_tx0']

v_cm_lvds_tx2

compound property

registers: range(255, 256)

bits: [0, 1, 2]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['v_cm_lvds_tx3']

v_cm_lvds_tx3

compound property

registers: range(255, 256)

bits: [4, 5, 6]

valid types: <class 'int'>

value range: 0 to 7

shares a register with: ['v_cm_lvds_tx2']

vcm_dac

simple value property

registers: range(83, 84)

valid types: <class 'int'>

value range: 0 to 255

voltage_monitor_bank0

list-like property

list length: 3

registers: range(113, 114)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank1

list-like property

list length: 3

registers: range(114, 115)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank2

list-like property

list length: 3

registers: range(115, 116)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_bank3

list-like property

list length: 3

registers: range(116, 117)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

voltage_monitor_refgen

list-like property

list length: 8

registers: range(117, 118)

element valid types: (<class 'int'>, <class 'bool'>)

element value range: 0 to 1

vref_dac

simple value property

registers: range(82, 83)

valid types: <class 'int'>

value range: 0 to 255

Index

LArPix Configuration Files

Here is the documentation for the configuration files.

Chip configuration files

This module contains chip configuration files. They are formatted as standard JSON files with the following fields: "_config_type", "class", and "register_values". The _config_type field should always be set to "chip" and is used for validation when loading the configuration. An optional "_include" field can be used to specify other configurations to inherit configuration values from. Configuration inheritance occurs in the order specified in the list so if a conflict is encountered, fields from a file later in the list will overwrite fields from a file earlier in the list.

Additionally, the class field provides additional validation. There are two configuration classes: "Configuration_v1", "Configuration_v2", and "Configuration_Lightpix_v1", each corresponding to its respective larpix.configuration class. Attempting to load a Configuration_v1 config file to a Configuration_v2 object and vice versa will raise a runtime error.

The register_values field is a dict of the register name and the value to use. All non-default fields should be specified, but it is recommended to use no more than the minimum required. The following is an example of a partially-specified v2 configuration file, which will maintain the current configuration except for the specified fields:

{
      "_config_type": "chip",
      "_include": []
      "class": "Configuration_v2",
      "register_values": {
            "enable_periodic_reset": 1,
            "enable_periodic_trigger": 1,
            "enable_rolling_periodic_trigger": 1,
            "periodic_trigger_cycles": 100000
      }
}

Here is an example using the configuration file inheritance:

{
      "_config_type": "chip",
      "_include": ["chip/default_v2.json"]
}

Which will be expanded to be the equivalent of:

{
      "_config_type": "chip",
      "_include": [],
      "class": "Configuration_v2",
      "register_values": {
            "pixel_trim_dac": [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16],
            "threshold_global": 255,
            "csa_gain": 1,
            "csa_bypass_enable": 0,
            "bypass_caps_en": 1,
            "csa_enable": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "ibias_tdac": 8,
            "ibias_comp": 8,
            "ibias_buffer": 8,
            "ibias_csa": 8,
            "ibias_vref_buffer": 8,
            "ibias_vcm_buffer": 8,
            "ibias_tpulse": 6,
            "ref_current_trim": 16,
            "override_ref": 0,
            "ref_kickstart": 0,
            "vref_dac": 219,
            "vcm_dac": 77,
            "csa_bypass_select": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            "csa_monitor_select": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            "csa_testpulse_enable": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "csa_testpulse_dac": 0,
            "current_monitor_bank0": [0, 0, 0, 0],
            "current_monitor_bank1": [0, 0, 0, 0],
            "current_monitor_bank2": [0, 0, 0, 0],
            "current_monitor_bank3": [0, 0, 0, 0],
            "voltage_monitor_bank0": [0, 0, 0],
            "voltage_monitor_bank1": [0, 0, 0],
            "voltage_monitor_bank2": [0, 0, 0],
            "voltage_monitor_bank3": [0, 0, 0],
            "voltage_monitor_refgen": [0, 0, 0, 0, 0, 0, 0, 0],
            "digital_monitor_enable": 1,
            "digital_monitor_select": 0,
            "digital_monitor_chan": 0,
            "slope_control0": 0,
            "slope_control1": 0,
            "slope_control2": 0,
            "slope_control3": 0,
            "chip_id": 1,
            "load_config_defaults": 0,
            "enable_fifo_diagnostics": 0,
            "clk_ctrl": 0,
            "enable_miso_upstream": [0, 0, 0, 0],
            "enable_miso_downstream": [0, 0, 0, 0],
            "enable_miso_differential": [0, 0, 0, 0],
            "enable_mosi": [0, 0, 0, 0],
            "test_mode_uart0": 0,
            "test_mode_uart1": 0,
            "test_mode_uart2": 0,
            "test_mode_uart3": 0,
            "enable_cross_trigger": 0,
            "enable_periodic_reset": 0,
            "enable_rolling_periodic_reset": 0,
            "enable_periodic_trigger": 0,
            "enable_rolling_periodic_trigger": 0,
            "enable_periodic_trigger_veto": 1,
            "enable_hit_veto": 1,
            "adc_hold_delay": 0,
            "adc_burst_length": 0,
            "channel_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "external_trigger_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "cross_trigger_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "periodic_trigger_mask": [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
            "periodic_reset_cycles": 4096,
            "periodic_trigger_cycles": 0,
            "enable_dynamic_reset": 0,
            "enable_min_delta_adc": 0,
            "threshold_parity": 1,
            "reset_length": 1,
            "mark_first_packet": 1,
            "reset_threshold": 0,
            "min_delta_adc": 0,
            "digital_threshold": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
      }
}

Controller configuration files

This module contains controller configuration files, used to specify the physical asics present and their network structure

V2 Configuration

The v2 configuration file is a standard JSON file structured as follows:

{
    "_config_type": "controller",
    "_include": [<optional list of files to inherit from>],
    "name": <string identifier for configuration ID, e.g. "pcb-3", or "acube-2x2">,
    "layout": <string identifier for layout version, e.g. "1.2.0">,
    "asic_version": 2,
    "network": {
        "miso_uart_map": [<uart channel for position in array, required>, ...],
        "mosi_uart_map": [<uart channel for position in array, required>, ...],
        "usds_link_map": [<position of chip relative to neighbor, required>, ...],
        "<io_group>": {
            "miso_uart_map": [<uart channels for io_group, optional>, ...],
            ...
            "<io_channel>": {
                "miso_uart_map": [<uart channels for io_group, optional>, ...],
                ...
                "nodes": [
                    {
                        "chip_id": <chip id of first chip to load into network>,
                        "miso_us": [<chip_ids of upstream chips, null if no upstream chip, optional>],
                        "miso_ds": [<chip_ids of downstream chips, optional>],
                        "mosi": [<chip_ids of chips to listen to, optional>],
                        "root": <bool indicating if this is a root node, optional>,
                        "miso_uart_map": [<uart channels for chip, optional>, ...],
                        ...
                    },
                    ...
                ]
            },
            ...
        },
        ...
    }
}

The structure allows for a lot of flexibility in the network configuration, while maintaining a relatively terse format for simple configurations. Generally, a Hydra network can be described using three directed graphs which we call miso upstream (miso_us), miso downstream (miso_ds), and mosi (mosi). The miso_us graph represents the flow of outgoing upstream packets (i.e. the direction of configuration write packets). The miso_ds graph represents the flow of outgoing downstream packet (i.e. the direction of configuration read and data packets). The mosi graph represents the flow of incoming packets of either type. The overall LArPix network is then defined with a collection of Hydra networks, each associated with a specific io_group and io_channel. The io_group, io_channel pair must be unique for each Hydra network.

For the configuration file, the basic requirement for each hydra network is that for each node in the network, you must specify a chip id. The chip id must be an integer between 2 and 254 for an ASIC, but other systems (i.e. an FPGA that can interpret the LArPix UART protocol) can be specified by a string. Each chip id must be unique within each io_group, io_channel sub-network.

To specify links within the 3 directed graphs (miso_us, miso_ds, and mosi), a 4-item array is used. Each 4-item array indicates the chip id of the neighboring nodes that should be connected to the given chip. So for example:

{
    "chip_id": 23,
    "miso_us": [24,null,null,null],
    "miso_ds": [null,22,null,null],
    "mosi":    [24,22,null,null]
}

will create a miso_us graph where data flows from chip 23 to chip 24, a miso_ds graph where data flows from chip 23 to chip 22, and a mosi graph where data flows from chip 24 to 23 and chip 22 to 23 (note the opposite convention for the mosi graph).

The position of the chip id within the 4-item array indicates the relative physical location of the neighboring chip. A suggested ordering might be [<top>,<left>,<down>,<right>], thus the previous example indicates that the current chip should be linked to chip 24 which is above the current chip. The definition of <top>, <left>, <down>, and <right> is fixed by which of the four LArPix UARTs is used to communicate to a chip in that position. This is declared with the "miso_uart_map" and "mosi_uart_map" definitions. As an example, the upper left corner of the LArPix ASIC is UART 0 and the upper right corner of the chip is UART 3, thus we can define <top> as the first position in each array by declaring "miso_uart_map": [3,X,X,X] and "mosi_uart_map": [0,X,X,X] which will read packets in on UART 0 and send packets out on UART 3. It doesn’t matter where in the array <top> is defined, as long as you have a consistent convention between the miso_uart_map, mosi_uart_map, and each of your network node’s (miso_us, miso_ds, and mosi).

It would become very tedious and difficult to debug if for every node you had to specify all of the links on all three of the graphs, so the configuration parser is smarter than that. Most of the time, the networks that you’ll want to specify have the same upstream and downstream connections (albeit with the directions flipped), so if the "miso_ds" field is not explicitly defined, it will be inferred based on the miso_us network that was created. Likewise, usually the mosi connections should be the same as the upstream and downstream connections. Thus, if this field is not set explicitly it will be inferred automatically based on the miso_us graph and the miso_ds graph.

However, in order for the auto-parsing methods to work, they need some information about how the chips are oriented with respect to each other. This is defined by the "usds_link_map". This field is also a 4-item array, however the value now represents the position of the given chip from the perspective of the neighbor.

So, following the example from above, we can define two directions <top> and <bottom> with "miso_uart_map": [3,X,1,X] and "mosi_uart_map": [0,X,2,X]. If we have two chips (let’s say 22 and 23 with chip 23 above chip 22), to determine the "usds_link_map" we have to consider both where chip 23 is from the perspective of chip 22 (<top>, or index 0 from our definition) and where chip 22 is from the perspective of chip 23 (<bottom>, or index 2 from out definition). This means that the "usds_link_map" for chip 22 should be [2,X,X,X], or in other words, the chip (23) that is in the direction of <top> (index 0) from the current chip (22) sees the current chip (22) in the direction of <down> (index 2). Likewise the "usds_link_map" for chip 23 should be [X,X,0,X]. Now as long as you maintain the same definitions of <top> and <bottom> for all of the chips in the network, you can set "usds_link_map" at the top level to be [2,X,0,X] you don’t need to worry about figuring this out for each node in the network… phew.

The final necessary component of the configuration is to declare some nodes as root nodes. These are special nodes which are used to indicate the first node to be configured during the initialization of the network. Typically, the placeholder node representing the external system is set as the root node.

Putting all of this together, a simple example of a complete network configuration is provided below:

"network": {
    "1": {
        "2": {
            "nodes": [
                {
                    "chip_id": "ext",
                    "miso_us": [null,null,2,null],
                    "root": true
                }
                {
                    "chip_id": 2,
                    "miso_us": [null,3,null,null]
                },
                {
                    "chip_id": 3
                }
            ]
        }
    }
    "miso_uart_map": [3,0,1,2],
    "mosi_uart_map": [0,1,2,3],
    "usds_link_map": [2,3,0,1]
}

In this example, we define a single 2-chip Hydra network with io_group=1 and io_channel=2. The "nodes" array is filled with dict``s representing each node in the network. Globally, we've defined our "directions" with the ``miso_uart_map and mosi_uart_map, and we’ve set up the usds_link_map so that the auto-parsing algorithm can work. Within the "nodes" array, we specify three nodes (ext, 2, 3); two of which represent chips (2, 3), and one of which represents the external FPGA used to communicate with the network (ext). The external FPGA is set as the root node so that the initialization of the network starts from there. We’ve declared miso_us links for the ext and 2 nodes, but because we have not specified any miso_ds or mosi links, the auto-parsing algorithm with generate the following graphs:

miso_us: 'ext'  -> 2  -> 3
miso_ds: 'ext' <-  2 <-  3
mosi:    'ext' <-> 2 <-> 3

with the active uarts:

miso_us: 1    -> 0    -> X
miso_ds: X   <-  3   <-  2
mosi:    2,0 <-> 1,3 <-> 3

Or, assuming you are using our definition above for <top>, <bottom>, etc.:

   ext
    v
3 < 2

The top-level "_include" field can be used to specify files to inherit from. All fields of the configuration down to the "nodes" array level can be inherited. A standard use for this would be to specify each hydra network for a given channel independently, and inherit from all of the files in a single configuration file. E.g.:

{
    "_config_type": "controller",
    "_include": [
        "network-1-1.json",
        "network-1-2.json",
        "network-1-3.json",
        "network-1-4.json",
        "network-2-1.json",
        "network-2-2.json",
        "network-2-3.json",
        "network-2-4.json"
        ],
    "name": "multi-io-group-network"
}

LightPix Configuration

LightPix uses the same interface as LArPix v2 but with:

"asic_version": "lightpix-v1.0"

V1 Configuration

The v1 configuration file is a standard JSON file structured as follows:

{
    "name": <string identifier for PCB ID, e.g. "pcb-3">,
    "layout": <string identifier for layout version, e.g. "1.2.0">,
    "asic_version": 1,
    "chip_list": [<A list of chip keys, one for each chip, in daisy-chain order>]
}

All fields are necessary.

See the larpix-geometry documentation <https://github.com/samkohn/larpix-geometry> for a listing of all the layout versions.

IO configuration files

This module contains io configuration files used by io classes to look up detector components based on the io_group and io_channel contained within chip keys. See the larpix core documentation for more details on larpix.Key objects.

JSON formatting

The format is a standard JSON file structured as follows:

{
    "_config_type": "io",
    "io_class": "<name of io class config should be used with>",
    "io_group": [
        [<io group number>, <assoc. value to be used by io class>],
        ...
    ]
}

Field description

The "_config_type": "io" field is used in loading for validation (so that you don’t accidentally try to load a chip config into your io class. This will always be “io” for io confiugration files.

The "io_class": "<name>" field is used to specify the io class that the configuration is compatible with. Examples are provided for each built-in io class.

The "io_group": [[<group #>, <io class spec.>], ...] list is a list of pairs used to create a map between the io_group number and the internal representation used by the io class. E.g. the MultiZMQ_IO uses the IP address to identify the io_group.

Index

LArPix IO

Implementations

Here is the documentation for various implemented IO classes.

Serial Port IO Interface

The serial port IO interface.

class larpix.io.serialport.SerialPort(port=None, baudrate=1000000, timeout=0)[source]

Wrapper for various serial port interfaces across platforms.

Automatically loads correct driver based on the supplied port name:

  • '/dev/anything' ==> Linux ==> pySerial
  • 'scan-ftdi' ==> MacOS ==> libFTDI
classmethod encode(packets)[source]

Encodes a list of packets into a list of bytestream messages

classmethod decode(msgs, leftover_bytes=b'')[source]

Decodes a list of serial port bytestreams to packets

classmethod is_valid_chip_key(key)[source]

Valid chip keys must be strings formatted as: '<io_chain>-<chip_id>'

send(packets)[source]

Format the packets as a bytestream and send it to the FPGA and on to the LArPix ASICs.

start_listening()[source]

Start listening for incoming LArPix data by opening the serial port.

stop_listening()[source]

Stop listening for LArPix data by closing the serial port.

empty_queue()[source]

Empty the incoming data buffer and return (packets, bytestream).

set_larpix_uart_clk_ratio(value)[source]

Sends a special command to modify the larpix uart clk ratio (how many clock cycles correspond to one bit). A value of 2 means 1 uart bit == 2 clk cycles

set_larpix_reset_cnt(value)[source]

Sends a special command to modify the length of the reset signal sent to the larpix chips. The reset will be held low for value + 1 larpix clk rising edges

larpix_reset()[source]

Sends a special command to issue a larpix reset pulse. Pulse length is set by set_larpix_reset_cnt().

set_utility_pulse(pulse_len=None, pulse_rep=None)[source]

Sends a special command to issue set up utility pulser. Pulse length is the number of larpix clk cyles pulse is high, and pulse rep is the number of clk cycles until the next pulse.

enable_utility_pulse()[source]

Sends a special command to enable the utility pulser. Pulse characteristics can be set by set_utility_pulse().

disable_utility_pulse()[source]

Sends a special command to disable the utility pulser. Pulse characteristics can be set by set_utility_pulse().

reset()[source]

Sends a special command to reset FPGA and larpix.

larpix.io.serialport.enable_logger(filename=None)[source]

Enable serial data logger

larpix.io.serialport.disable_logger()[source]

Disable serial data logger

larpix.io.serialport.flush_logger()[source]

Flush serial data logger data to output file

ZeroMQ IO Interface

class larpix.io.zmq_io.ZMQ_IO(config_filepath=None, **kwargs)[source]

The ZMQ_IO object interfaces with the Bern LArPix v2 module using the ZeroMQ communications protocol. This class wraps the io.multizmq_io.MultiZMQ_IO class, and enables a slightly simpler chip key formatting in the special case that you are only interfacing with a single daq board.

This object handles the required communications, and also has extra methods for additional functionality, including system reset, packet count, clock frequency, and more.

load(filepath=None)[source]

Loads a specified IO configuration

Parameters:filepath – path to io configuration file (JSON)
decode(msgs, **kwargs)[source]

Convert a list ZMQ messages into packets

reset()[source]

Send a reset pulse to the LArPix ASICs.

set_clock(freq_khz)[source]

Set the LArPix CLK2X freqency (in kHz).

Parameters:freq_khz – CLK2X freq in khz to set
set_testpulse_freq(divisor)[source]

Set the testpulse frequency, computed by dividing the CLK2X frequency by divisor.

get_packet_count(io_channel)[source]

Get the number of packets received, as determined by the number of UART “start” bits processed.

ping()[source]

Send a ping to the system and return True if the first two bytes of the response are b’OK’.

Multi-ZeroMQ IO Interface

class larpix.io.multizmq_io.MultiZMQ_IO(config_filepath=None, miso_map=None, mosi_map=None)[source]

The MultiZMQ_IO object interfaces with a network of Bern LArPix v2 modules using Igor’s ZeroMQ communications protocol.

This object handles the required communications, and also has extra methods for additional functionality, including system reset, packet count, clock frequency, and more.

By default, when creating a MultiZMQ_IO object, the io/default.json configuration will attempt to be loaded unless otherwise specified. The path relative to the pwd is checked first, followed by the path of the larpix-control installation.

send(packets)[source]

Function for sending larpix packet objects

Parameters:packetslist of larpix Packet objects to send via IO
Returns:None
start_listening()[source]

Function for starting read communications on IO

Returns:None
stop_listening()[source]

Function for halting read communications on IO

Returns:None
decode(msgs, address, **kwargs)[source]

Convert a list ZMQ messages into packets

encode(packets)[source]

Encode a list of packets into ZMQ messages

empty_queue()[source]

Process any awaiting messages from all ZMQ connections. Will continue to read until the hwm is reached or there are no more awaiting messages.

Returns:2-tuple containing a list of received packets and the full bytestream
reset(addresses=None)[source]

Send a reset pulse to the LArPix ASICs.

Parameters:addresseslist of daq board addresses to reset, if None reset all addresses
set_clock(freq_khz, addresses=None)[source]

Set the LArPix CLK2X freqency (in kHz).

Parameters:
  • freq_khz – CLK2X freq in khz to set
  • addresseslist of daq board addresses to change frequency, if None modifies all addresses
set_testpulse_freq(divisor, address)[source]

Set the testpulse frequency, computed by dividing the CLK2X frequency by divisor.

Parameters:
  • divisor – test pulse frequency divisor
  • address – daq board addresses to change test pulse freq
get_packet_count(io_channel, address)[source]

Get the number of packets received, as determined by the number of UART “start” bits processed.

Parameters:
  • io_channel – IO channel to check
  • address – address of daq board
ping(addresses=None)[source]

Send a ping to the system.

Parameters:addresseslist of daq board addresses to ping, if None ping all addresses
Returns:dict with one entry per address. Value is True if first two bytes of the response are b’OK’.
cleanup()[source]

Close the ZMQ objects to prevent a memory leak.

This method is only required if you plan on instantiating a new MultiZMQ_IO object.

FakeIO IO Interface

A module for the FakeIO class.

class larpix.io.fakeio.FakeIO[source]

An IO stand-in that sends output to stdout (i.e. print) and reads input from a data member that can be set in advance.

The queue is implemented as a collections.deque object. Data can be queued up in advance through repeated calls to queue.append(). The first element of the queue will be passed on to the Controller.read method each time it is called. This is a true queue, i.e. first-in, first-out.

The format for an element of the queue is a tuple: ([list_of_Packets], b'corresponding bytes').

Although meaningless in terms of the internal implementation, FakeIO objects contain an internal state determining whether the object is currently “listening,” and will raise a RuntimeError if empty_queue is called when the object is not listening.

classmethod encode(packets)[source]

Placeholder for packet encoding

Returns:packets
classmethod decode(msgs)[source]

Placeholder for message decoding

Returns:msgs
static add_timestamps(packets, positions, timestamps=0)[source]

Insert timestamp packets into a list of packets in the given positions.

Convenience method for modifying lists of packets to add to the FakeIO queue. Modifies the list in-place.

The positions are with respect to the indexes of the original list, so that the inserted element is just before the element that originally had that index. e.g.

>>> add_timestamps([a, b, c, d], [1, 3])
[a, TimestampPacket(...), b, c, TimestampPacket(...), d]

If timestamps is a list, those timestamps will be used for the TimestampPackets. If it is an int, it will be taken as the starting time, and each subsequent packet will be incremented by 1. A default starting time of 0 is assumed.

send(packets)[source]

Print the packets to stdout.

start_listening()[source]

Mock-up of beginning to listen for new packets.

stop_listening()[source]

Mock-up of no longer listening for new packets.

empty_queue()[source]

Read and remove the next item from the internal queue and return it as if it were data that had just been read.

PACMAN IO Interface

class larpix.io.pacman_io.PACMAN_IO(config_filepath=None, hwm=20000, relaxed=True, timeout=-1, raw_directory='./', raw_filename=None)[source]

The PACMAN_IO object interfaces with a network of PACMAN boards each running a pacman-cmdserver and pacman-dataserver.

This object handles the ZMQ messaging protocol to send and receive formatted messages to/from the PACMAN boards. If you want more info on how messages are formatted, see larpix.format.pacman_msg_format.

The PACMAN_IO object has five flags for optimizing communications which you may or may not want to enable:

  • group_packets_by_io_group
  • interleave_packets_by_io_channel
  • double_send_packets
  • enable_raw_file_writing
  • disable_packet_parsing

To enable each option set the flag to True; to disable, set to False.

  • The group_packets_by_io_group option is enabled by default and assembles the packets sent in each call to send into as few messages as possible destined for a single io group. E.g. sending three packets (2 for io_group=1, 1 for io_group=2) will combine the packets for io_group=1 into a single message to transfer over the network. This reduces overhead associated with network latency and allows large data transfers to happen much faster.
  • The interleave_packets_by_io_channel option is enabled by default and interleaves packets within a given message to each io_channel on a given io_group. E.g. 3 packets destined for io_channel=1, io_channel=1, and io_channel=2 will be reordered to io_channel=1, io_channel=2, and io_channel=1. The order of the packets is preserved for each io_channel. This increases the data throughput by about a factor of N, where N is the number of io channels in the message.
  • The double_send_packets option is disabled by default and duplicates each packet sent to the PACMAN by a call to send(). This is potentially useful for working around the 512 bug when you need to insure that a packet reaches a chip, but you don’t care about introducing extra packets into the system (i.e. when configuring chips).
  • The enable_raw_file_writing option will directly dump data to a larpix raw hdf5 formatted file. This is used as a more performant means of logging data (see larpix.format.rawhdf5format). The data file name can be accessed or changed via the raw_filename attribute, or can be set when creating the PACMAN_IO object with the raw_directory and raw_filename keyword args.
  • The disable_packet_parsing option will skip converting PACMAN messages into larpix.packet types. Thus if disable_packet_parsing=True, every call to empty_queue will return [], b''. Typically used in conjunction with enable_raw_file_writing, this allows the PACMAN_IO class to read data much faster.
send(packets)[source]

Sends a request message to PACMAN boards to send designated packets.

start_listening()[source]

Start keeping msgs from data server

stop_listening()[source]

Stop keeping msgs from data server

empty_queue()[source]

Fetch and parse waiting packets on pacman data socket

returns tuple of list of packets, full bytestream of all messages

cleanup()[source]

Close the ZMQ objects to prevent a memory leak.

This method is only required if you plan on instantiating a new PACMAN_IO object.

join()[source]

Wait for raw file worker to finish

set_reg(reg, val, io_group=None)[source]

Set a 32-bit register in the pacman PL

get_reg(reg, io_group=None)[source]

Read a 32-bit register from the pacman PL

If no io_group is specified, returns a dict of io_group, reg_value else returns reg_value

ping(io_group=None)[source]

Send a ping message

If no io_group is specified, returns a dict of io_group, response else returns response

get_vddd(io_group=None)[source]

Gets PACMAN VDDD voltage

Returns VDDD and IDDD values from the built-in ADC as a tuple of mV and mA respectively

set_vddd(vddd_dac=54691, io_group=None, settling_time=0.1)[source]

Sets PACMAN VDDD voltage

If no vddd_dac value is specified, sets VDDD to default of ~1.8V

Returns the resulting VDDD and IDDD values from the built-in ADC as a tuple of mV and mA respectively

get_vdda(io_group=None)[source]

Gets PACMAN VDDA voltage

Returns VDDA and IDDA values from the built-in ADC as a tuple of mV and mA respectively

set_vdda(vdda_dac=54691, io_group=None, settling_time=0.1)[source]

Sets PACMAN VDDA voltage

If no vdda_dac value is specified, sets VDDA to default of ~1.8V

Returns the resulting VDDA and IDDA values from the built-in ADC as a tuple of mV and mA respectively

get_vplus(io_group=None)[source]

Gets PACMAN Vplus voltage

Returns Vplus and Iplus values from the built-in ADC as a tuple of mV and mA respectively

enable_tile(tile_indices=None, io_group=None)[source]

Enables the specified pixel tile(s) (first tile is index=0, second tile is index=1, …).

Returns the value of the new tile enable mask

disable_tile(tile_indices=None, io_group=None)[source]

Disables the specified pixel tile(s) (first tile is index=0, second tile is index=1, …).

Returns the value of the new tile enable mask

set_uart_clock_ratio(channel, ratio, io_group=None)[source]

Sets PACMAN UART clock speed relative to the larpix master clock for the specified channel

For a nominal 10MHz clock, a ratio value of 4 results in a 2.5MHz UART clock.

Returns the value of the UART clock register that was set

reset_larpix(length=256, io_group=None)[source]

Issues a reset of the specified length (in larpix MCLK cycles).

If no length specified, issue a hard reset.

Returns the value of the clock/reset control register after the reset

IO Class API

class larpix.io.IO[source]

Base class for IO objects that explicitly describes the necessary functions required by any IO class implementation. Additional functions are not used by the larpix core classes.

__init__()[source]

Declaration of IO object

Variables:is_listening – flag for start_listening and stop_listening
load(filepath=None)[source]

Loads a specified IO configuration

Parameters:filepath – path to io configuration file (JSON)
encode(packets)[source]

Encodes a list of packets into a list of IO message objects

Parameters:packetslist of larpix Packet objects to encode into IO messages
Returns:list of IO messages
decode(msgs, **kwargs)[source]

Decodes a list of IO message objects into respective larpix Packet objects

Parameters:
  • msgslist of IO messages
  • kwargs – additional contextual information required to decode messages (implementation specific)
Returns:

list of larpix Packet objects

send(packets)[source]

Function for sending larpix packet objects

Parameters:packetslist of larpix Packet objects to send via IO
Returns:None
start_listening()[source]

Function for starting read communications on IO

Returns:None
stop_listening()[source]

Function for halting read communications on IO

Returns:None
empty_queue()[source]

Read and remove the current items in the internal queue. The details of the queue implementation is left up to the specific IO class. Generally returns all packets that have been read since last call to start_listening or empty_queue, whichever was most recent.

Returns:tuple of (list of Packet objects, raw bytestream)

Index

LArPix Logger

class larpix.logger.logger.Logger(enabled=False, *args, **kwargs)[source]

Base class for larpix logger objects that explicity describes the necessary functions for a Logger implementation. Additional functions are not built into the larpix core.

WRITE = 0

Flag to indicate packets were sent to ASICs

READ = 1

Flag to indicate packets were received from ASICs

record_configs(chips)[source]

Save specified chip configs to log file (if applicable)

Parameters:configs – list of Chips to log
record(data, direction=0, *args, **kwargs)[source]

Log specified data.

Parameters:
  • datalist of data to be written to log. Valid data types are specified by logger implementation. Raises a ValueError if datatype is invalid.
  • directionLogger.WRITE if packets were sent to ASICs, Logger.READ if packets were received from ASICs. (default: Logger.WRITE)
is_enabled()[source]

Check if logger is enabled, i.e. actively recording data. All data passed into record() between an enable() and disable() command should be reflected in the log.

enable()[source]

Enable logger

disable()[source]

Disable logger

Note

This flushes any data in the buffer before disabling

flush()[source]

Flushes any held data from memory to the destination

Implementations

Here is the documentation for the various LArPix loggers.

Stdout Logger Interface

class larpix.logger.stdout_logger.StdoutLogger(filename=None, buffer_length=0, mode='wa', enabled=False)[source]

The StdoutLogger is logger class that acts as a test logger class. All objects are displayed according to their string representation and routed to stdout.

Parameters:
  • buffer_length – how many data messages to hang on to before flushing buffer to stdout
  • mode – how logger file should be opened (not implemented in StdoutLogger)
record(data, direction=0)[source]

Send the specified data to stdout

Parameters:
  • data – list of data to be written to log
  • direction – 0 if packets were sent to ASICs, 1 if packets were received from ASICs. optional, default=0
record_configs(chips)[source]

Print chips configs to stdout

Parameters:chips – list of chips to print
flush()[source]

Flushes any held data

HDF5 Logger Interface

class larpix.logger.h5_logger.HDF5Logger(filename=None, buffer_length=10000, directory='', version='2.4', enabled=False)[source]

The HDF5Logger is a logger class for logging packets to the LArPix+HDF5 format.

The file format is implemented in larpix.format.hdf5format, which also contains a function to convert back from LArPix+HDF5 to LArPix packets.

Variables:

data_desc_map – specifies the mapping between objects sent to the logger and the specific logger buffer to store them in. As of LArPix+HDF5 version 1.0 and larpix-control version 2.3.0 there is only one buffer called 'packets' which stores all of the data to send to LArPix+HDF5.

Parameters:
  • filename – filename to store data (appended to directory) (optional, default: None)
  • buffer_length – how many data messages to hang on to before flushing buffer to the file (optional, default: 10000)
  • directory – the directory to save the data in (optional, default: ‘’)
  • version – the format version of LArPix+HDF5 to use (optional, default: larpix.format.hdf5format.latest_version)
record_configs(chips)[source]

Write the specified chip configurations to the log file

Note

this method will also flush any data in the buffer to the log file

Parameters:chips – list of chips to record timestamps
record(data, direction=0)[source]

Send the specified data to log file

Note

buffer is flushed after all data is placed in buffer, this means that the buffer size will exceed the set value temporarily

Parameters:
  • data – list of data to be written to log
  • directionLogger.WRITE if packets were sent to ASICs, Logger.READ if packets were received from ASICs. (default: Logger.WRITE)
enable()[source]

Enable the logger and set up output file.

If the file already exists then data will be appended to the end of arrays.

Parameters:enableTrue if you want to enable the logger after initializing (Optional, default=``True``)
flush(block=True)[source]

Flushes any held data from memory to the destination

Index

LArPix Formats

The data formats used for LArPix are:

LArPix+HDF5 Format

This module gives access to the LArPix+HDF5 file format.

File format description

All LArPix+HDF5 files use the HDF5 format so that they can be read and written using any language that has an HDF5 binding. The documentation for the Python h5py binding is at <http://docs.h5py.org>.

The to_file and from_file methods translate between a list of Packet-like objects and an HDF5 data file. from_file can be used to load up the full file all at once or just a subset of rows (supposing the full file was too big to fit in memory). To access the data most efficiently, do not rely on from_file and instead perform analysis directly on the HDF5 data file.

File Header

The file header can be found in the /_header HDF5 group. At a minimum, the header will contain the following HDF5 attributes:

  • version: a string containing the LArPix+HDF5 version
  • created: a Unix timestamp of the file’s creation time
  • modified: a Unix timestamp of the file’s last-modified time
Versions

The LArPix+HDF5 format is self-describing and versioned. This means as the format evolves, the files themselves will identify which version of the format should be used to interpret them. When writing a file with to_file, the format version can be specified, or by default, the latest version is used. When reading a file with from_file, by default, the format version of the actual file is used. If a specific format version is expected or required, that version can be specified, and a RuntimeError will be raised if a different format version is encountered.

The versions are always in the format major.minor and are stored as strings (e.g. '1.0', '1.5', 2.0).

The minor format will increase if a non-breaking change is made, so that a script compatible with a lower minor version will also work with files that have a higher minor version. E.g. a script designed to work with v1.0 will also work with v1.5. The reverse is not necessarily true: a script designed to work with v1.5 may not work with v1.0 files.

The major format will increase if a breaking change is made. This means that a script designed to work with v1.5 will likely not work with v2.0 files, and vice versa.

File Data

The file data is saved in HDF5 datasets, and the specific data format depends on the LArPix+HDF5 version.

Version 2.4 description

For version 2.4, chip configuration objects can be saved to the 'configs' dataset. For compatibility reasons, only 1 type of asic configuration can be stored per hdf5 file.

The configs dataset contains a timestamped entry for each chip config that has been logged

  • Shape: (N,), N >= 0

  • Attrs: asic_version (U25/unicode string): a global asic version to use with this dataset, depending on the asic version a different length datatype is used.

  • Datatype: a compound datatype (called “structured type” in h5py/numpy). Keys/fields:

    • timestamp (u8/unsigned long): a DAQ-system unix timestamp associated with when the config was written to the file
    • io_group (u1/unsigned byte): an id associated with the high-level io group associated with this network node
    • io_channel (u1/unsigned byte): the id associated with the mid-level io channel associated with this network node
    • chip_id (u1/unsigned byte): the id associated with the low-level asic
    • registers ((239,)u1: unsigned byte): the value at each of the asic’s register addresses
Version 2.3 description

For version 2.3, the receipt_timestamp (u4/unsigned int) field has been added to the packets dataset. Additionally, “empty” fields for data/config write/config read/test packets are now filled according to the bit content of the packet. E.g. a row representing a config write packet will still fill the dataword column as though the packet was a data packet. Finally, there are some moderate performance improvements.

Version 2.2 description

For version 2.2, two new packet types have been introduced to store data contained in SyncPacket and TriggerPacket, with type being 6 and 7 respectively.

SyncPacket will fill the timestamp field with the 32-bit timestamp associated with the sync packet, the dataword field with the value of clk_source (if applicable), ant the trigger_type field with the sync type (an unsigned byte).

TriggerPacket will fill the timestamp field with the 32-bit timestamp associated with the trigger packet and the trigger_type field with the trigger bits (an unsigned byte).

Version 2.1 description

For version 2.1, there are two dataset: packets and messages.

The packets dataset contains a list of all of the packets sent and received during a particular time interval.

  • Shape: (N,), N >= 0

  • Datatype: a compound datatype (called “structured type” in h5py/numpy). Not all fields are relevant for each packet. Unused fields are set to a default value of 0 or the empty string. Keys/fields:

    • io_group (u1/unsigned byte): an id associated with the high-level io group associated with this packet
    • io_channel (u1/unsigned byte): the id associated with the mid-level io channel associated with this packet
    • packet_type (u1/unsigned byte): the packet type code, which can be interpreted according to the map stored in the ‘packets’ attribute ‘packet_types’
    • chip_id (u1/unsigned byte): the LArPix chip id
    • parity (u1/unsigned byte): the packet parity bit (0 or 1)
    • valid_parity (u1/unsigned byte): 1 if the packet parity is valid (odd), 0 if it is invalid
    • downstream_marker (u1/unsigned byte): a marker to indicate the hydra io network direction for this packet
    • channel_id (u1/unsigned byte): the ASIC channel
    • timestamp (u8/unsigned 8-byte long int): the timestamp associated with the packet. Caution: this field does “triple duty” as both the ASIC timestamp in data packets (type == 0), as the global timestamp in timestamp packets (type == 4), and as the message timestamp in message packets (type == 5).
    • first_packet (u1/unsigned byte): indicates if this is the packet recieved in a trigger burst (v2.1 or newer only)
    • dataword (u1/unsigned byte): the ADC data word
    • trigger_type (u1/unsigned byte): the trigger type assciated with this packet
    • local_fifo` (``u1/unsigned byte): 1 if the channel FIFO is >50% full, 3 if the channel FIFO is 100% full
    • shared_fifo (u1/unsigned byte): 1 if the chip FIFO is >50% full, 3 if the channel FIFO is 100% full
    • register_address (u1/unsigned byte): the configuration register index
    • register_data (u1/unsigned byte): the configuration register value
    • direction (u1/unsigned byte): 0 if packet was sent to ASICs, 1 if packet was received from ASICs.
    • local_fifo_events (u1/unsigned byte): number of packets in the channel FIFO (only valid if FIFO diagnostics are enabled)
    • shared_fifo_events (u2/unsigned byte): number of packets in the chip FIFO (only valid if FIFO diagnostics are enabled)
    • counter (u4/unsigned 4-byte int): the message index (only valid for message type packets)
    • fifo_diagnostics_enabled (u1/unsigned byte): flag for when fifo diagnostics are enabled (1 if enabled, 0 if not)
  • Packet types lookup: the packets dataset has an attribute 'packet_types' which contains the following lookup table for packets:

    0: 'data',
    1: 'test',
    2: 'config write',
    3: 'config read',
    4: 'timestamp',
    5: 'message',
    

The messages dataset has the full messages referred to by message packets in the packets dataset.

  • Shape: (N,), N >= 0

  • Datatype: a compound datatype with fields:

    • message (S64/64-character string): the message
    • timestamp (u8/unsigned 8-byte long int): the timestamp associated with the message
    • index (u4/unsigned 4-byte int): the message index, which should be equal to the row index in the messages dataset
Version 1.0 description

For version 1.0, there are two dataset: packets and messages.

The packets dataset contains a list of all of the packets sent and received during a particular time interval.

  • Shape: (N,), N >= 0

  • Datatype: a compound datatype (called “structured type” in h5py/numpy). Not all fields are relevant for each packet. Unused fields are set to a default value of 0 or the empty string. Keys/fields:

    • chip_key (S32/32-character string): the chip key identifying the ASIC associated with this packet
    • type (u1/unsigned byte): the packet type code, which can be interpreted according to the map stored in the raw_packet attribute ‘packet_types’
    • chipid (u1/unsigned byte): the LArPix chipid
    • parity (u1/unsigned byte): the packet parity bit (0 or 1)
    • valid_parity (u1/unsigned byte): 1 if the packet parity is valid (odd), 0 if it is invalid
    • channel (u1/unsigned byte): the ASIC channel
    • timestamp (u8/unsigned 8-byte long int): the timestamp associated with the packet. Caution: this field does “triple duty” as both the ASIC timestamp in data packets (type == 0), as the global timestamp in timestamp packets (type == 4), and as the message timestamp in message packets (type == 5).
    • adc_counts (u1/unsigned byte): the ADC data word
    • fifo_half (u1/unsigned byte): 1 if the FIFO half full flag is present, 0 otherwise.
    • fifo_full (u1/unsigned byte): 1 if the FIFO full flag is present, 0 otherwise.
    • register (u1/unsigned byte): the configuration register index
    • value (u1/unsigned byte): the configuration register value
    • counter (u4/unsigned 4-byte int): the test counter value, or the message index. Caution: this field does “double duty” as the counter for test packets (type == 1) and as the message index for message packets (type == 5).
    • direction (u1/unsigned byte): 0 if packet was sent to ASICs, 1 if packet was received from ASICs.
  • Packet types lookup: the packets dataset has an attribute 'packet_types' which contains the following lookup table for packets:

    0: 'data',
    1: 'test',
    2: 'config write',
    3: 'config read',
    4: 'timestamp',
    5: 'message',
    

The messages dataset has the full messages referred to by message packets in the packets dataset.

  • Shape: (N,), N >= 0

  • Datatype: a compound datatype with fields:

    • message (S64/64-character string): the message
    • timestamp (u8/unsigned 8-byte long int): the timestamp associated with the message
    • index (u4/unsigned 4-byte int): the message index, which should be equal to the row index in the messages dataset
Examples

Plot a histogram of ADC counts (selecting packet type to be data packets only)

>>> import matplotlib.pyplot as plt
>>> import h5py
>>> f = h5py.File('output.h5', 'r')
>>> packets = f['packets']
>>> plt.hist(packets['adc_counts'][packets['type'] == 0])
>>> plt.show()

Load the first 10 packets in a file into Packet objects and print any MessagePacket packets to the console

>>> from larpix.format.hdf5format import from_file
>>> from larpix.larpix import MessagePacket
>>> result = from_file('output.h5', end=10)
>>> for packet in result['packets']:
...     if isinstance(packet, MessagePacket):
...         print(packet)
larpix.format.hdf5format.latest_version = '2.4'

The most recent / up-to-date LArPix+HDF5 format version

larpix.format.hdf5format.dtypes

The dtype specification used in the HDF5 files.

Structure: {version: {dset_name: [structured dtype fields]}}

larpix.format.hdf5format.dtype_property_index_lookup

A map between attribute name and “column index” in the structured dtypes.

Structure: {version: {dset_name: {field_name: index}}}

larpix.format.hdf5format.to_file(filename, packet_list=None, chip_list=None, mode='a', version=None, workers=None)[source]

Save the given packets to the given file.

This method can be used to update an existing file.

Parameters:
  • filename – the name of the file to save to
  • packet_list – any iterable of objects of type Packet, TimestampPacket, SyncPacket, or TriggerPacket.
  • chip_list – any iterable of objects of type Chip.
  • mode – optional, the “file mode” to open the data file (default: 'a')
  • version – optional, the LArPix+HDF5 format version to use. If writing a new file and version is unspecified or None, the latest version will be used. If writing an existing file and version is unspecified or None, the existing file’s version will be used. If writing an existing file and version is specified and does not exactly match the existing file’s version, a RuntimeError will be raised. (default: None)
larpix.format.hdf5format.from_file(filename, version=None, start=None, end=None, load_configs=None)[source]

Read the data from the given file into LArPix Packet objects.

Parameters:
  • filename – the name of the file to read
  • version – the format version. Specify this parameter to enforce a version check. When a specific version such as '1.5' is specified, a RuntimeError will be raised if the stored format version number is not an exact match. If a version is prefixed with '~' such as '~1.5', a RuntimeError will be raised if the stored format version is incompatible with the specified version. Compatible versions are those with the same major version and at least the same minor version. E.g. for '~1.5', versions between v1.5 and v2.0 are compatible. If unspecified or None, will use the stored format version.
  • start – the index of the first row to read
  • end – the index after the last row to read (same semantics as Python range)
  • load_configs – a flag to indicate if configs should be fetched from file, a value of True will load all configs and a value of type slice will load the specified subset.
Returns packet_dict:
 

a dict with keys 'packets' containing a list of packet objects; 'configs' containing a list of chip objects; and 'created', 'modified', and 'version', containing the file metadata.

LArPix raw HDF5 Format

This is an alternative to the ``larpix.format.hdf5format``format that allows for much faster conversion to file at the expense of human readability.

To use, pass a list of bytestring messages into the to_rawfile() method:

msgs = [b'this is a test message', b'this is a different message']
to_rawfile('raw.h5', msgs)

To access the data in the file, the inverse method from_rawfile() is used:

rd = from_rawfile('raw.h5')
rd['msgs'] # [b'this is a test message', b'this is a different message']

Messages may be recieved from multiple io_group sources, in this case, a per-message header with io_group can be specified as a list of integers of the same length as the msgs list and passed into the file at the same time:

msgs = [b'message from 1', b'message from 2']
io_groups = [1, 2]
to_rawfile('raw.h5', msgs=msgs, msg_headers={'io_groups': io_groups})

rd = from_rawfile('raw.h5')
rd['msgs'] # [b'message from 1', b'message from 2']
rd['msg_headers']['io_groups'] # [1, 2]

File versioning

Some version validation is included with the file format through the version and io_version file metadata. When creating a new file, a file format version can be provided with the version keyword argument as a string formatted 'major.minor':

to_rawfile('raw_v0_0.h5', version='0.0')

Subsequent writes to the file will only occur if the requested file version and the existing file versions are compatible. Incompatiblity occurs if there is a difference in the major version number or the minor version number is less than the requested file version:

to_rawfile('raw_v0_0.h5', version='0.1') # fails due to minor version incompatibility
to_rawfile('raw_v0_0.h5', version='1.0') # fails due to major version incompatibility

By default, the most recent file version is used.

On the file read side, a version number can be requested and the file will be parsed assuming a specific version:

from_rawfile('raw_v0_0.h5', version='0.0')
from_rawfile('raw_v0_0.h5', version='0.1') # fails due to minor version incompatiblity
from_rawfile('raw_v0_0.h5', version='1.0') # fails due to major version compatibility

The io_version optional metadata marks the version of the io message format that was used to encode the message bytestrings. If present as a keyword argument when writing to the file, an AssertionError will be raised if the io version is incompatible with the existing one stored in metadata:

to_rawfile('raw_io_v0_0.h5', io_version='0.0')
to_rawfile('raw_io_v0_0.h5', io_version='0.1') # fails due to minor version incompatibility
to_rawfile('raw_io_v0_0.h5', io_version='1.0') # fails due to major version incompatibility

A similar mechanism occurs when requesting an io version when reading from the file:

from_rawfile('raw_io_v0_0.h5', io_version='0.1') # fails due to minor version incompatibility
from_rawfile('raw_io_v0_0.h5', io_version='1.0') # fails due to major version
from_rawfile('raw_io_v0_0.h5', io_version='0.0')

I think it is worthwhile to further clarify the io_version and the file version, as this might be confusing. In particular, you might be asking, “What io versions are compatible with what file versions?” The rawhdf5format is a way of wrapping raw binary data into a format that only requires HDF5 to parse. The file version represents this HDF5 structuring (the hdf5 dataset formats, file metadata, what message header data is available). Whereas the io_version represents the formatting of the binary data that the file contains. So the answer to that question is: all file versions are compatible with all io versions.

Converting to other file types

This format was created with a specific application in mind - provide a temporary but fast file format for PACMAN messages. When used in this case, to convert to the standard larpix.format.hdf5format:

from larpix.format.pacman_msg_format import parse
from larpix.format.hdf5format import to_file

rd = from_rawfile('raw.h5')
pkts = list()
for io_group,msg in zip(rd['msg_headers']['io_groups'], rd['msgs']):
    pkts.extend(parse(msg, io_group=io_group))
to_file('new_filename.h5', packet_list=pkts)

but as always, the most efficient means of accessing the data is to operate on the data itself, rather than converting between types.

Metadata (v0.0)

The group meta contains file metadata stored as attributes:

  • created: float, unix timestamp since the 1970 epoch in seconds indicating when file was first created
  • modified: float, unix timestamp since the 1970 epoch in seconds indicating when the file was last written to
  • version: str, file version, formatted as 'major.minor'
  • io_version: str, optional version for message bytestring encoding, formatted as 'major.minor'

Datasets (v0.0)

The hdf5 format contains two datasets msgs and msg_headers:

  • msgs: shape (N,); variable-length uint1 arrays encoding each message bytestring

  • msg_headers: shape (N,); numpy structured array with fields:

    • 'io_group': uint1 representing the io_group associated with each message
larpix.format.rawhdf5format.latest_version = '0.0'

Most up-to-date raw larpix hdf5 format version.

larpix.format.rawhdf5format.dataset_dtypes

Description of the datasets and their dtypes used in each version of the raw larpix hdf5 format.

Structured as dataset_dtypes['<version>']['<dataset>'] = <dtype>.

larpix.format.rawhdf5format.to_rawfile(filename, msgs=None, version=None, msg_headers=None, io_version=None)[source]

Write a list of bytestring messages to an hdf5 file. If the file exists, the messages will appended to the end of the dataset.

Parameters:
  • filename – desired filename for the file to write or update
  • msgs – iterable of variable-length bytestrings to write to the file. If None specified, will only create file and update metadata.
  • version – a string of major.minor version desired. If None specified, will use the latest file format version (if new file) or version in file (if updating an existing file).
  • msg_headers – a dict of iterables to associate with each message header. Iterables must be same length as msgs. If None specified, will use a default value of 0 for each message. Keys are dtype field names specified in dataset_dtypes[version]['msg_headers'].names
  • io_version – optional metadata to associate with file corresponding to the io format version of the bytestring messages. Throws RuntimeError if version incompatibility encountered in an existing file.
larpix.format.rawhdf5format.len_rawfile(filename, attempts=1)[source]

Check the total number of messages in a file

Parameters:
  • filename – filename to check
  • attempts – a parameter only relevant if file is being actively written to by another process, specifies number of refreshes to try if a synchronized state between the datasets is not achieved. A value less than 0 busy blocks until a synchronized state is achieved. A value greater than 0 tries to achieve synchronization a max of attempts before throwing a RuntimeError. And a value of 0 does not attempt to synchronize (not recommended).
Returns:

int number of messages in file

larpix.format.rawhdf5format.from_rawfile(filename, start=None, end=None, version=None, io_version=None, msg_headers_only=False, mask=None, attempts=1)[source]

Read a chunk of bytestring messages from an existing file

Parameters:
  • filename – filename to read bytestrings from
  • start – index for the start position when reading from the file (default = None). If a value less than 0 is specified, index is relative to the end of the file. If None is specified, data is read from the start of the file. If a mask is specified, does nothing.
  • end – index for the end position when reading from the file (default = None). If a value less than 0 is specified, index is relative to the end of the file. If None is specified, data is read until the end of the file. If a mask is specified, does nothing.
  • version – required version compatibility. If None specified, uses the version stored in the file metadata
  • io_version – required io version compatibility. If None specified, does not check the io_version file metadata
  • msg_headers_only – optional flag to only load header information and not message bytestrings ('msgs' value in return dict will be None if msg_headers_only=True)
  • mask – boolean mask alternative to start and end chunk specification to indicate specific file rows to load. Boolean 1D array with length equal to len_rawfile(filename)
  • attempts – a parameter only relevant if file is being actively written to by another process, specifies number of refreshes to try if a synchronized state between the datasets is not achieved. A value less than 0 busy blocks until a synchronized state is achieved. A value greater than 0 tries to achieve synchronization a max of attempts before throwing a RuntimeError. And a value of 0 does not attempt to synchronize (not recommended).
Returns:

dict with keys for 'created', 'modified', 'version', and 'io_version' metadata, along with 'msgs' (a list of bytestring messages) and 'msg_headers' (a dict with message header field name: list of message header field data, 1 per message)

LArPix interface message formats

The module contains all the message formats used by systems that interface with larpix-control:

  • dataserver_message_encode: convert from packets to the data server messaging format
  • dataserver_message_decode: convert from data server messaging format to packets
larpix.format.message_format.dataserver_message_encode(packets, version=(1, 0))[source]

Convert a list of packets to larpix dataserver messages. DAQ board messages are formatted using 8-byte words with the first word being a header word describing the interpretation of other words in the message. These messages are formatted as follows

All messages:
  • byte[0] = major version

  • byte[1] = minor version

  • byte[2] = message type

    • b'D': LArPix data
    • b'T': Timestamp data
    • b'H': Heartbeat
LArPix heartbeat messages:
  • byte[3] = b'H'
  • byte[4] = b'B'
  • byte[5:7] are unused
LArPix data messages:
  • byte[3] = io channel
  • bytes[4:7] are unused
  • bytes[8:] = raw LArPix 7-byte UART words ending in a single null byte
Timestamp data messages:
  • byte[3:7] are unused
  • byte[8:14] = 7-byte Unix timestamp
  • byte[15] is unused

Example usage:

from larpix.larpix import Packet, Key
packet = Packet()
packet.chip_key = Key('1-1-1')
msgs = datserver_message_encode([packet])
msgs[0] # b'\x01\x00D\x01\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00'
msgs[0][:8] # header
msgs[0][8:] # data words
Parameters:
  • packets – list of larpix.Packet objects
  • version – optional, encode a message in specified version format, tuple of major, minor numbers
Returns:

list of bytestream messages, 1 for each packet

larpix.format.message_format.dataserver_message_decode(msgs, version=(1, 0), **kwargs)[source]

Convert a list of larpix data server messages into packets. Additional packet meta data can be passed along via kwargs E.g.:

msg = b'\x01\x00D\x01\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00'
packets = dataserver_message_decode([msg], io_group=1)
packets[0] # Packet(b'\x04\x00\x00\x00\x00\x00\x00'), key of '1-1-1'
Parameters:
  • msgs – list of bytestream messages each starting with a single 8-byte header word, followed by N 8-byte data words
  • version – optional, message version to validate against, tuple of major, minor version numbers
Returns:

list of larpix.Packet and larpix.TimestampPacket objects

PACMAN interface message format

A python interface to the pacman ZMQ message format.

The pacman ZMQ messages are a raw bytestring with two components: a short header and N words. It’s a bit cumbersome to work with bytestrings in data (and keep track of endianness / etc), so this module allows you to translate between native python objects and the pacman message bytestring.

To import this module:

import larpix.format.pacman_msg_format as pacman_msg_fmt

Access to the message content is provided by the parse_msg(msg) method which takes a single pacman message bytestring as an argument, e.g.:

msg = b'!-----P---------------' # a simple ping response
data = pacman_msg_fmt.parse_msg(msg) # (('REP',123456,1), [('PONG')])
msg = b'D-----D------datadata' # a simple data message
data = pacman_msg_fmt.parse_msg(msg) # (('DATA',123456,1), [('DATA',1,1234,b'datadata')])

The creation of messages can be performed with the inverse method, format_msg(msg_type, msg_words). Here, the msg_type is one of 'DATA', 'REQ', or 'REP', and msg_words is a list of tuples indicating the word type (index 0) and the word data (index 1, 2, …). Word types are specified by strings that can be found in the word_type_table. The necessary fields (and primitive types) for the word data is described in the word_fmt_table. E.g.:

data = ('REP', [('PONG')]) # simple ping response
msg = pacman_msg_fmt.format_msg(*data) # b'!----P'
data = ('DATA', [('DATA',1,1234,b'datadata')])
msg = pacman_msg_fmt.format_msg(*data) # b'D----Ddatadata'

To facilitate translating to/from larpix-control packet objects, you can use the format(pkts, msg_type) and parse(msg, io_group=None) methods. E.g.:

packet = Packet_v2()
packet.io_channel = 1
msg = pacman_msg_fmt.format([packet]) # b'?----D'

packets = pacman_msg_fmt.parse(msg, io_group=1) # [Packet_v2(b'')]
packets[0].io_group # 1

Note that no io_group data is contained within a pacman message. This means that when formatting messages, packets’ io_group field is ignored, and when parsing messages, an io_group value needs to be specified at the time of parsing.

larpix.format.pacman_msg_format.latest_version = '0.0'

Most up-to-date message format version.

larpix.format.pacman_msg_format.format_header(msg_type, msg_words)[source]

Generates a header-formatted bytestring of message type msg_type and with msg_words specified words

larpix.format.pacman_msg_format.format_word(msg_type, word_type, *data)[source]

Generates a word-formatted bytestring of word type specified by the msg_type and word_type. The data contained within the word should be passed in as additional positional arguments in the order that they appear in the word (least significant byte first). E.g. for a data word:

data_word = format_word('DATA','DATA',<io_channel>,<receipt_timestamp>,<data_word_content>)
larpix.format.pacman_msg_format.parse_header(msg)[source]

Returns a tuple of the data contained in the header:

(<msg type>, <msg time>, <msg words>)
larpix.format.pacman_msg_format.parse_word(msg_type, word)[source]

Returns a tuple of data contained in word (little endian), first item is always the word type

larpix.format.pacman_msg_format.format_msg(msg_type, msg_words)[source]

msg_words should be a list of tuples that can be unpacked and passed into format_word

larpix.format.pacman_msg_format.parse_msg(msg)[source]

returns a tuple of:

(<header data>, [<word 0 data>, ...])
larpix.format.pacman_msg_format.format(packets, msg_type='REQ', ts_pacman=0)[source]

Converts larpix packets into a single PACMAN message. The message header is automatically generated.

Note:: For request messages, this method only formats Packet_v2 objects. For data messages, this method only formats Packet_v2, SyncPacket, and TriggerPacket objects.

larpix.format.pacman_msg_format.parse(msg, io_group=None)[source]

Converts a PACMAN message into larpix packets

The header is parsed into a TimestampPacket, data words are parsed into Packet_v2 objects, trigger words are parsed into TriggerPacket objects, and sync words are parsed into SyncPacket objects.

Index

Index