

 Navigation

 	
 index

 	
 next |

 	Laranav

Documentation

An easy-to-use, customisable menu and navigation package, for Laravel 5.1+. It
offers:

	Define your menus in simple config files

	Use regular ol’ Blade templates for rendering menus - never build HTML programatically again!

	Fully-tested

User Guide

	Overview
	Requirements

	Installation

	License

	Quickstart
	Creating a menu
	Configuration

	Menu items

	Rendering the menu

	FAQ
	Why is (insert-component-here) not working?

	Developers
	Contributing
	Documentation

	Pull Requests

	Running tests

	Reporting a security vulnerability

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laranav

Overview

Requirements

	PHP 5.5.9+

	Laravel 5.1+

Installation

The recommended way to install Laranav is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

You can add Laranav as a dependency using the composer.phar CLI:

php composer.phar require larabros/laranav:~1.0

Alternatively, you can specify it as a dependency in your project’s
existing composer.json file:

 {
 "require": {
 "larabros/laranav": "~1.0"
 }
}

Then, open config/app.php in your Laravel project and add the service
provider. You can optionally add the Nav facade:

After registering the service provider, run php artisan vendor:publish to
publish Laranav’s config files and example template files to your project.

License

Licensed using the MIT license [http://opensource.org/licenses/MIT].

Copyright (c) 2016 Hassan Khan <contact@hassankhan.me>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laranav

Quickstart

This page provides a quick introduction to Laranav and introductory examples.
If you have not already installed, head over to the Installation
page.

Creating a menu

Configuration

First, open config/laranav/config.php:

Any menus added here automatically inherit their configuration from default,
and can be overridden by specifying them in explicitly for each menu.
You can read more about available options [here](#configphp).

Menu items

Next, we will define items for the menu in config/laranav/menus.php:

Items can link to a simple URL, or you can use Laravel’s UrlGenerator object to generate URLs. You can read more about available options [here](#menusphp)

Rendering the menu

Finally, in your template, add {!! Nav::menu(‘myMenu’)->toHtml() !!} and your menu should render!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laranav

FAQ

Why is (insert-component-here) not working?

We’re working on it, and we’re trying to do this in a sane and sensible way, so
it may take a while to get it right.

 Navigation

 	
 index

 	
 previous |

 	Laranav

Developers

Contributing

Contributions are welcome and will be fully credited.

We accept contributions via Pull Requests on Github [https://github.com/larabros/laranav].

Documentation

Documentation for this project is available at
http://laranav.readthedocs.org.

The API reference documentation is available at
http://laranav.readthedocs.org/en/latest/Larabros/Laranav.

Pull Requests

	PSR-2 Coding Standard: The easiest way to apply the code
standard is to install PHP Code Sniffer [http://pear.php.net/package/PHP_CodeSniffer].

	PHP 5.5.9: Laranav has a minimum PHP version requirement of PHP
5.5.9. Pull requests must not require a PHP version greater than PHP
5.5.9 unless the feature is only utilized conditionally.

	Add tests!: All pull requests must include unit tests to ensure
the change works as expected and to prevent regressions.

	Documentation format: All documentation except this file,
CHANGELOG.md, LICENSE.md and README.md are in
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickstart.html] - this includes any code docblocks. Using reST
allows us to generate a better experience for users browsing the
documentation.

	Document any change in behaviour: Make sure the README.md and
any other relevant documentation are kept up-to-date.

	Consider our release cycle: We try to follow SemVer v2 [http://semver.org/].
Randomly breaking public APIs is not an option.

	Use Git Flow: Don’t ask us to pull from your master branch. Set
up Git Flow [http://nvie.com/posts/a-successful-git-branching-model/] and create a new feature branch from develop.

	One pull request per feature: If you want to do more than one
thing, send multiple pull requests.

	Send coherent history: Make sure each individual commit in your
pull request is meaningful. If you had to make multiple intermediate
commits while developing, please squash them [http://www.git-scm.com/book/en/v2/Git-Tools-Rewriting-History#Changing-Multiple-Commit-Messages] before submitting.

Running tests

In order to contribute, you’ll need to checkout the source from GitHub
and install dependencies using Composer:

$ git clone https://github.com/larabros/laranav.git
$ cd laranav && composer install
$ php vendor/bin/phpunit

Reporting a security vulnerability

We want to ensure that Laranav is secure for everyone. If you’ve
discovered a security vulnerability, we appreciate your help in
disclosing it to us in a responsible manner [http://en.wikipedia.org/wiki/Responsible_disclosure].

Publicly disclosing a vulnerability can put the entire community at
risk. If you’ve discovered a security concern, please email us at
contact@hassankhan.me. We’ll work with you to make sure that we
understand the scope of the issue, and that we fully address your
concern. We consider correspondence sent to this email address our
highest priority, and work to address any issues that arise as quickly
as possible.

After a security vulnerability has been corrected, a security hotfix
release will be deployed as soon as possible.

Happy coding!

 Navigation

 	
 index

 	Laranav

Index

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Laranav »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

advanced.html

 Navigation

 		
 index

 		Laranav »

Advanced

This page provides a quick introduction to Laranav and introductory examples.
If you have not already installed, head over to the Installation
page.

Configuration

Laranav publishes two files to your Laravel project in config/laranav:
config.php and menus.php. An example menu named default is provided
which can be overwritten.

config.php

Each menu can be configured as follows:

'myMenu' => [
 'active_class' => 'active',
 'children_class' => 'dropdown',
 'view' => 'laranav::partials.menu',
],

		Options
		Description
		Default

		active_class
		The CSS class to set on the active menu item
		active

		children_class
		The CSS class to set on a menu item with children
		dropdown

		view
		The blade template to use when rendering a menu
		laranav::partials.menu

menus.php

Items in a menu are defined like this:

'myMenu' => [
 'Home' => '/',
 'About' => 'about',
 'Contact' => 'contact',
]

You can use Laravel’s routing to generate URLs from routes defined in
your application’s routes.php - the following methods are allowed:

		to()

		secure()

		asset()

		route()

		action()

Items are then defined like this:

'myMenu' => [
 'Home' => ['route' => 'home'],
 'About' => ['action' => 'HomeController@about'],
 'Contact' => ['to' => 'contact'],
]

If the item has child items, then add them like this:

'myMenu' => [
 'Nested' => [
 'default' => '/',
 '1' => '1',
 '2' => '2',
]
]

Note

Items with children require a default key.

_static/up-pressed.png

