

Laniakea Documentation

[image: elixir-italy logo]

Laniakea provides the possibility to automate the creation of Galaxy-based virtualized environments through an easy setup procedure, providing an on-demand workspace ready to be used by life scientists and bioinformaticians.

Galaxy is a workflow manager adopted in many life science research environments in order to facilitate the interaction with bioinformatics tools and the handling of large quantities of biological data.

Once deployed each Galaxy instance will be fully customizable with tools and reference data and running in an insulated environment, thus providing a suitable platform for research, training and even clinical scenarios involving sensible data. Sensitive data requires the development and adoption of technologies and policies for data access, including e.g. a robust user authentication platform.

For more information on the Galaxy Project, please visit the https://galaxyproject.org

Laniakea has been developed by ELIXIR-IIB, the italian node of ELIXIR, within the INDIGO-DataCloud project (H2020-EINFRA-2014-2) which aims to develop PaaS based cloud solutions for e-science.

Note

Laniakea is in fast development. For this reason the code and the documentation may not always be in sync. We try to make our best to have good documentatation

Introduction

	Overview

	Service architecture

	ELIXIR-IIB: The Italian Infrastructure for Bioinformatics

	INDIGO-DataCloud
	The ELIXIR-IIB use case in INDIGO

	References

User documentation

	Launch Galaxy
	Galaxy express

	Galaxy live build

	Instantiate Galaxy

	Galaxy access

	Launch Galaxy Docker
	Instantiate Galaxy

	Galaxy access

	References

	Launch Galaxy cluster
	Galaxy cluster

	Galaxy elastic cluster

	Instantiate Galaxy

	Galaxy access

	Manage an encrypted instance
	Retrieve the encrypted storage passphrase

	Restart Galaxy on an encrypted instance

	Command line interface: luksctl

	Create SSH Keys
	Create your SSH key with Laniakea

	Remove the SSH key from Laniakea

	How to create SSH keys on Linux or macOS

	How to create SSH keys on Windows

	Virtual hardware presets
	Laniakea@ReCaS

	Galaxy Flavours
	Galaxy minimal

	Galaxy CoVaCS

	Galaxy GDC Somatic Variant

	Galaxy RNA workbench

	Galaxy Epigen

	Submit yout flavour
	Tool list configuration options

	Conda support

	References

	Reference Data
	data.galaxyproject.org

	elixir-italy.covacs.refdata

	elixir-italy.galaxy.refdata

	Supplementary information

	Galaxy production environment
	OS support

	PostgresSQL

	NGINX

	uWSGI

	Proftpd

	Supervisord

	Paths

	Enable Dockerized tools support in job_conf.xml

	Galaxy Docker instance
	Configuration files

	CVMFS configuration

	Galaxy docker usage

	Galaxy Docker usage tutorial

	Cluster configuration
	job_conf.xml configuration

	Shared file system

	Network configuration

	Worker nodes SSH access

	Worker nodes deployment on elastic cluster

	References

	Authentication
	Registration

	Login

	Frequently Asked Questions
	How to manually recover Galaxy after VM reboot

	I’m unable to create users from admin panel

Admin documentation

	The encryption layer
	The encryption strategy

	Storage encryption workflow

	File System Encryption Test

	Fast-luks script

	Luksctl: LUKS volumes management

	LUKSctl: APIs

	Cryptsetup hints

	References

	Galaxyctl: Galaxy management
	Galaxyctl basic usage

	Logging

	Advanced options

	Configuration file

	Features

	Laniakea Ansible Roles
	indigo-dc.galaxycloud

	indigo-dc.galaxycloud-os

	indigo-dc.galaxycloud-tools

	indigo-dc.galaxycloud-refdata

	indigo-dc.galaxycloud-fastconfig

	indigo-dc.galaxycloud_docker

	indigo-dc.cvmfs-client

	indigo-dc.cvmfs-server

	TOSCA templates
	Custom types

	Galaxy template

	Galaxy cluster template

	Build CVMFS server for reference data
	Create CernVM-FS Repository

	Client configuration

	Populate a CernVM-FS Repository (with reference data)

	Reference data download

	References

	Vault configuration
	Vault main concepts

	Vault authentication and authorization flow

	Vault passphrase storage flow

	Passphrase path on Vault

	Laniakea Dashboard
	Configuration

	Laniakea installation
	Services end-points

	Service installation

GitHub repository

https://github.com/Laniakea-elixir-it

DockerHub repository

https://hub.docker.com/r/laniakeacloud

Support

If you need support please contact us to: laniakea.helpdesk@gmail.com

Software glitches and bugs can occasionally be encoutered. The best way to report a bug is to open an issue on our GitHub repository [https://github.com/Laniakea-elixir-it/elixir-italy-science-gateway/issues].

Cite

Marco Antonio Tangaro, Giacinto Donvito, Marica Antonacci, Matteo Chiara, Pietro Mandreoli, Graziano Pesole, Federico Zambelli, Laniakea: an open solution to provide Galaxy “on-demand” instances over heterogeneous cloud infrastructures, GigaScience, Volume 9, Issue 4, April 2020, giaa033, https://doi.org/10.1093/gigascience/giaa033

Tha paper is available here [https://academic.oup.com/gigascience/article/9/4/giaa033/58166689].

Licence

As an open source project Laniakea is made up of many pieces of software created by a range of individuals, teams, and companies. Laniakea is a collective work, and each piece of software within this work has its own license.

Your use of each piece of software is governed by the terms of its accompanying license. Redistribution of parts or the whole of Laniakea may require you to comply with additional license requirements.

Galaxy tutorials

Galaxy training network: https://galaxyproject.org/teach/gtn/

Galaxy For Developers: https://crs4.github.io/Galaxy4Developers/

Indices and tables

	Index

	Module Index

	Search Page

Overview

Galaxy is a workflow manager adopted in many life science research environments in order to facilitate the interaction with bioinformatics tools and the handling of large quantities of biological data. Through a coherent work environment and an user-friendly web interface it organizes data, tools and workflows providing reproducibility, transparency and data sharing functionalities to users.

Currently, Galaxy instances can be deployed in three ways, each one with pros and cons: public servers, local servers and commercial cloud solutions. In particular, the demand for cloud solutions is rapidly growing (over 2400 Galaxy cloud servers launched in 2015), since they allow the creation of a ready-to-use galaxy production environment avoiding initial configuration issues, requiring less technical expertise and outsourcing the hardware needs. Nevertheless relying on commercial cloud providers is quite costly and can pose ethical and legal drawbacks in terms of data privacy.

ELIXIR-IIB in the framework of the INDIGO-DataCloud project is developing a cloud Galaxy instance provider, allowing to fully customize each virtual instance through a user-friendly web interface, overcoming the limitations of others galaxy deployment solutions. In particular, our goal is to develop a PaaS architecture to automate the creation of Galaxy-based virtualized environments exploiting the software catalogue provided by the INDIGO-DataCloud community (www.indigo-datacloud.eu/service-component).

Once deployed each Galaxy instance will be fully customizable with tools and reference data and running in an insulated environment, thus providing a suitable platform for research, training and even clinical scenarios involving sensible data. Sensitive data requires the development and adoption of technologies and policies for data access, including e.g. a robust user authentication platform.

The system allows to setup and launch a virtual machines configured with the Operative System (CentOS 7 or Ubuntu 14.04/16.04) and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself. It is possible to choose between different tools preset, or flavors: basic Galaxy or Galaxy configured with a selection of tools for NGS analyses already installed and configured (e.g. SAMtools, BamTools, Bowtie, MACS, RSEM, etc…) together with reference data for many organisms.

Service architecture

The web front-end is designed to grant user friendly access to the service, allowing to easily configure and launch each Galaxy instance through the indigo_fgw portal.

[image: Galaxy as a cloud service architecture]

Laniakea architecture

All the required components to automatically setup Galaxy instances (Galaxy and all its companion software) are deployed using the indigo_orchestrator and the indigo_im services, based on the TOSCA orchestration language. The service is compatible with both OpenNebula and OpenStack, its deployment on different e-infrastructures. Moreover, it supports both VMs and Docker containers, leaving the selection of the virtual environment to the service providers. This effectively removes the need to depend on particular configurations (e.g. OpenStack, OpenNebula or other private cloud solution like Amazon or Google).

Persistent storage is provided to store users and reference data and to install and run new (custom) tools and workflows. Data security and privacy are granted through the INDIGO indigo_onedata component which, at the same time, allow for transparent access to the storage resources through token management. Data encryption implemented at file system level protects user’s data from any unauthorized access.

Automatic elasticity, provided using the indigo_clues service component, enables dynamic cluster resources scaling, deploying and powering-on new working nodes depending on the workload of the cluster and powering-off them when no longer needed. This provides an efficient use of the resources, making them available only when really needed.

ELIXIR-IIB: The Italian Infrastructure for Bioinformatics

[image: ELIXIR-IIB logo]

ELIXIR-IIB (elixir-italy.org) is the Italian Node of ELIXIR (elixir-europe.org) and collects most of the leading Italian institutions in the field of bioinformatics, including a vast and heterogeneous community of scientists that use, develop and maintain a large set of bioinformatics services. It represents the Italian Node of ELIXIR, an European research infrastructure which goal is to integrate research data from all over Europe and ensure a seamless service provision easily accessible by the scientific community.

ELIXIR-IIB is also one of the scientific communities providing use cases to the INDIGO-Datacloud project (H2020-EINFRA-2014-2) which aims to develop PaaS based cloud solutions for e-science.

For a complete overview of ELIXIR-IIB related projects and services, please visit: http://elixir-italy.org/en/

INDIGO-DataCloud

[image: INDIGO-DataCloud project logo]

The INDIGO-DataCloud project (H2020-EINFRA-2014-2) aims to develop an open source computing and data platform, targeted at multi-disciplinary scientific communities, provisioned over public and private e-infrastructures.

In order to exploit the full capabilities of current cloud infrastructures, supporting complex workflows, data transfer and analysis scenarios, the INDIGO architecture is based on the analysis and the realization of use cases selected by different research communities in the areas of High Energy Physics, Bioinformatics, Astrophysics, Environmental modelling, Social sciences and others.

[image: INDIGO-DataCloud architecture]

The INDIGO-DataCloud architecture

[image: INDIGO-DataCloud communities]

The INDIGO-DataCloud communities

INDIGO released two software release:

	Release

	Code name

	URL

	First release

	MIDNIGHTBLUE

	https://www.indigo-datacloud.eu/news/first-indigo-datacloud-software-release-out

	Second release

	ELECTRICINDIGO

	https://www.indigo-datacloud.eu/news/electricindigo-second-indigo-datacloud-software-release

The INDIGO-DataCloud releases provide open source components for:

	IaaS layer: increase the efficiency of existing Cloud infrastructures based on OpenStack or OpenNebula through advanced scheduling, flexible cloud/batch management, network orchestration and interfacing of high-level Cloud services to existing storage systems.

	PaaS layer: easily port applications to public and private Clouds using open programmable interfaces, user-level containers, and standards-based languages to automate definition, composition and embodiment of complex set-ups.

	Identity and Access Management: manage access and policies to distributed resources.

	FutureGateway: a programmable scientific portal providing easy access to both the advanced PaaS features provided by the project and to already existing applications.

	Data Management and Data Analytics Solutions: distribute and access data through multiple providers via virtual file systems and automated replication and caching.

For a complete list of INDIGO-DataCloud services, please visit: https://www.indigo-datacloud.eu/service-component

The ELIXIR-IIB use case in INDIGO

ELIXIR-IIB in the framework of the INDIGO-DataCloud project is developing a cloud Galaxy instance provider, allowing to fully customize each virtual instance through a user-friendly web interface, overcoming the limitations of others galaxy deployment solutions.
In particular, our goal is to develop a PaaS architecture to automate the creation of Galaxy-based virtualized environments exploiting the software catalogue provided by the INDIGO-DataCloud community.

	All Galaxy required components automatically deployed (INDIGO PaaS Orchestrator and the Infrastructure Manager):

	Galaxy

	PostgreSQL

	NGINX

	uWSGI

	Proftpd

	Galaxy tools (from ToolShed)

	Reference Data

	User friendly access, allowing to easily configure and launch a Galaxy instance (INDIGO FutureGateway portal)

	Authentication (Identity and Access Management and FutureGateway)

	Persistent storage, data security and privacy (Onedata or IaaS block storage with filesystem encryption).

	Cluster support with automatic elasticity (INDIGO CLUES).

[image: ELIXIR-IIB use case architecture (single VM)]

ELIXIR-IIB use case in INDIGO architecture for single Galaxy instances deployment.

[image: ELIXIR-IIB use case archithecture (cluster)]

ELIXIR-IIB use case in INDIGO architecture for Galaxy with cluster support deployment

References

INDIGO services [https://www.indigo-datacloud.eu/service-component]

Launch Galaxy

The Laniakea dashboard tiles allow user to deploy a standard Galaxy production environment [https://docs.galaxyproject.org/en/latest/admin/production.html] through two methods: Galaxy express and Galaxy live build.

See also

To login to the Laniakea dashboard visit the section: Authentication.

Galaxy express

[image: ../../_images/galaxy_express_tile.png]

The Galaxy express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion software and the set of tools that come with the selected flavour. Once deployed each Galaxy instance can be further customized with additional tools and reference data.

This version is usually quite reliable and work well for most users.

[image: ../../_images/get_galaxy_express.gif]

Galaxy live build

[image: ../../_images/galaxy_live_build_tile.png]

The Galaxy live build allows to setup and launch a virtual machine configured with the Operative System CentOS 7 and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself and the tools that come with the selected flavour.

This version is recommended for those users which want to be sure to have the latest available version of each tool.

[image: ../../_images/get_galaxy_live_build.gif]

Warning

In fact, each tool is downloaded from the repositories and configured on the fly. Depending on the number of the tools to be installed the deployment process may take time a variable amount of time.

Instantiate Galaxy

Enter the Galaxy express or Galaxy live build configuration section. The configuration options are the same.

[image: ../../_images/configure_virtual_hardware.png]

Provide a description for your instance using the Instance description field, which will identfy your Galaxy in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

Virtual hardware configuration

	Select your instance flavour (virtual CPUs and the memory size). More information on available virtual hardware presets can be found here: Virtual hardware presets.

	Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

	Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand, to protect user data.

To enable storage encryption set the switch to ON.

Warning

Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be found here:

	Manage an encrypted instance

	The encryption layer

	Finally, it is possible to select the user storage volume size.

Galaxy configuration

[image: ../../_images/configure_galaxy.png]

	Select the Galaxy version, the instance administrator e-mail and the Galaxy brand tag (the top-left name in the Galaxy home page).

	Provide a valid e-mail address as Galaxy administrator credential.

Note

A notification mail will be sent to this e-mail address once the deployment is done.

	Select the Galaxy flavour among those available (see section Galaxy Flavours).

	Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference Data).

	Finally, SUBMIT your request.

Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator email, if different, with the Galaxy URL and user credentials.

Warning

If you don’t receive the e-mail:

	Check you SPAM mail directory

	Chek mail address spelling

	Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

[image: ../../_images/deployments_page.png]

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning

Change the Galaxy password and API key as soon as possible!

Warning

The anonymous login is disabled by default.

Launch Galaxy Docker

The Laniakea dashboard tiles allow user to deploy Galaxy through its official Docker image [https://github.com/bgruening/docker-galaxy-stable].

See also

To login to the Laniakea dashboard visit the section: Authentication.

[image: ../../_images/galaxy_docker_tile.png]

The Galaxy Docker instantiate an Ubuntu 16.04 Virtual Machine with the Galaxy official Docker. Once deployed each Galaxy instance can be further customized with additional tools and reference data.

[image: ../../_images/launch_galaxy_docker.gif]

Instantiate Galaxy

Enter the Galaxy Docker configuration section.

[image: ../../_images/configure_virtual_hardware_docker.png]

Provide a description for your instance using the Instance description field, which will identfy your Galaxy in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

Virtual hardware configuration

	Select your instance flavour (virtual CPUs and the memory size). More information on available virtual hardware presets can be found here: Virtual hardware presets.

	Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

	Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand, to protect user data.

To enable storage encryption set the switch to ON .

Warning

Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be found here:

	Manage an encrypted instance

	The encryption layer

	Finally, it is possible to select the user storage volume size.

Galaxy configuration

[image: ../../_images/configure_galaxy_docker.png]

	Select the instance administrator e-mail and the Galaxy brand tag (the top-left name in the Galaxy home page).

	Provide a valid e-mail address as Galaxy administrator credential.

Note

A notification mail will be sent to this e-mail address once the deployment is done.

	Select the Galaxy flavour among those available.

	Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference Data).

	Finally, SUBMIT your request.

Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator email, if different, with the Galaxy URL and user credentials.

Warning

If you don’t receive the e-mail:

	Check you SPAM mail directory

	Chek mail address spelling

	Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

[image: ../../_images/deployments_page.png]

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning

Change the Galaxy password and API key as soon as possible!

Warning

The anonymous login is disabled by default.

References

Official Galaxy Docker slides [https://galaxyproject.github.io/training-material/topics/admin/tutorials/galaxy-docker/slides.html#1]

Launch Galaxy cluster

Galaxy serves tools which may require a wide range of computing resources to properly work. To account this, the Laniakea dashboard tiles allow user to deploy a standard Galaxy production environment [https://docs.galaxyproject.org/en/latest/admin/production.html] connected to a compute cluster [https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html].

See also

To login to the Laniakea dashboard visit the section: Authentication.

Galaxy cluster

The Galaxy cluster instantiate a Galaxy server and the worker nodes.

[image: ../../_images/galaxy_cluster_tile.png]

Galaxy cluster Express

The Galaxy cluster Express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion software and the set of tools that come with the selected flavour. Once deployed each Galaxy instance can be further customized with additional tools and reference data.

This version is usually quite reliable and work well for most users.

Galaxy cluster Live Build

The Galaxy cluster Live Build allows to setup and launch a virtual machine configured with the Operative System CentOS 7 and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself and the tools that come with the selected flavour.

This version is recommended for those users which want to be sure to have the latest available version of each tool.

Galaxy elastic cluster

The Galaxy elastic cluster section allows to deploy a Galaxy Server with automatic elasticity support for worker nodes deplyment. Automatic elasticity enables dynamic cluster resources scaling, deploying and powering on new working nodes depending on the workload of the cluster and powering-off them when no longer needed. This provides an efficient use of the resources, making them available only when really needed.

[image: ../../_images/galaxy_elastic_cluster_tile.png]

Warning

Currently, this feature is under beta testing. Galaxy and tools are installed on-the-fly starting from a bare CentOS 7 image. The whole process, i.e. install Galaxy and tools, may take time. We will soon add the possibility to exploit images with tools to speed-up the configuration

Warning

Each node takes 12 minutes or more to be instantiated. Therefore, the job needs the same time to start. On the contrary, if the node is already deployed, the job will start immediately.

Instantiate Galaxy

Enter the Galaxy cluster (Express or Live BUild) or Galaxy elastic cluster configuration section. The configuration options are the same.

[image: ../../_images/configure_virtual_hardware_cluster.png]

Provide a description for your instance using the Instance description field, which will identfy your Galaxy in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

	Select the instance flavour (virtual CPUs and the memory size) for your Front node, i.e. the Galaxy server. More information on available virtual hardware presets can be found here: Virtual hardware presets.

	Select the number of Virtual Worker Nodes of your Cluster and the instance flavor, (virtual CPUs and RAM) for each worker node. More information on available virtual hardware presets can be found here: Virtual hardware presets.

	Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

	Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand, to protect user data.

To enable storage encryption set the switch to ON .

Warning

Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be found here:

	Manage an encrypted instance

	The encryption layer

	Finally, it is possible to select the user storage volume size.

[image: ../../_images/configure_galaxy_cluster.png]

	Select the Galaxy version, the instance administrator e-mail and the Galaxy brand tag (the top-left name in the Galaxy home page).

	Provide a valid e-mail address as Galaxy administrator credential.

Note

A notification mail will be sent to this e-mail address once the deployment is done.

	Select the Galaxy flavour among those available (see section Galaxy Flavours).

	Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference Data).

	Finally, SUBMIT your request.

Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator email, if different, with the Galaxy URL and user credentials.

Warning

If you don’t receive the e-mail:

	Check you SPAM mail directory

	Chek mail address spelling

	Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

[image: ../../_images/deployments_page.png]

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning

Change the Galaxy password and API key as soon as possible!

Warning

The anonymous login is disabled by default.

Manage an encrypted instance

Laniakea provides the possibility to encrypt the storage volume associated to the virtual machine on-demand.

A detailed description of Laniakea encryption strategy is reported here: The encryption layer.

Warning

Only the external volume, where Galaxy data are stored, is encrypted, not the Virtual Machine root disk. The encryption layer should be secure enough to protect data uploaded from users to the Galaxy instance from any unwanted attention. However, users must be aware that the responsibility of correctly handling any sensitive data they upload to Laniakea falls on them and that the administrators of the Laniakea service can not be considered responsible for any data breach that may happen due to negligence by Galaxy users or the action of external malicious attackers.

Retrieve the encrypted storage passphrase

Cryptographic keys should never be transmitted in the clear. For this reason Laniakea encrypt your storage with a strong alphanumerical random passphrase.

This passphrase can be easily retrieved thorugh the dashboard.

Warning

If you require the storage encryption, please retrieve your passphrase as soon as possible and keep it secret.

	Connect to the dashboard and click on the name of your encrypted instance.

	In the overview tab, click on Retrieve LUKS passphrase button.

	Copy your passphtase.

Restart Galaxy on an encrypted instance

In case of reboot of yout virtual instance, the encrypted storage cannot be automatically enabled again, since the encryption passphrase is needed. The user intervention is needed.

It is possible to do this through the dashboard.

	Connect to the dashboard and click on the name of your encrypted instance.

	In the overview tab, the button Unlock and mount volulme is available only if the encrypted storage is not mounted. Click it to unlock

	It is now possible to restart Galaxy. The button Try to restart Galaxy will be enabled only if the encrypted storage is correctly mounted, avoiding to start Galaxy without user data.

Note

If the automatic procecure does not work, please have a look here: Frequently Asked Questions

Command line interface: luksctl

To easily the encrypted storage management a python script, luksctl, is installed.

By default its configuration file is stored in /etc/luks/luks-cryptdev.ini.

Warning

Please don’t change it unless you know what you’re doing.

Note

The script requires superuser rights.

Here the list of the currently available commands:

	Action

	Command

	Description

	Open

	sudo luksctl open

	Open the encrypted device, requiring your passphrase.

	Close

	sudo luksctl close

	Close and umount the encrypted device

	Status

	sudo luksctl status

	Check device status

Create SSH Keys

SSH keys allow you to establish a secure connection between your computer and Galaxy.

Generating a key pair provides you with two long string of characters: a public and a private key. Laniakea upload the public key on the Galaxy server and then unlock it by connecting to it with a client that already has the private key. When the two match up, the system unlocks without the need for a password. You can increase security even more by protecting the private key with a passphrase.

Warning

Laniakea requires ONLY a SSH public key to instatiate Galaxy and grant you the access on the Virtual Machine.

Create your SSH key with Laniakea

During the Galaxy instance configuration procedure a SSH public key has to be mandatorly provided. This field, in fact, is required and without the SSH key you won’t be able to submit your deployment.

[image: ../../_images/ssh_popup_render.png]

Warning

FOR SECURITY REASONS THE SSH KEY OF A VIRTUAL INSTANCE CANNOT BE CHANGED FROM THE LANIAKEA DASHBOARD AFTER ITS DEPLOYMENT. IF NEEDED, AND IF YOU KNOW WHAT YOU ARE DOING, IT CAN STILL BE MODIFIED ACCESSING DIRECLY THE INSTANCE VIA SSH.

NOTICE THAT IF YOU LOSE THE PRIVATE KEY CORRESPONDING TO THE PUBLIC ONE ON THE VM HOSTING YOUR GALAXY INSTANCE, IT WILL BECOME UNACCESSIBLE FOREVER.

An example of using interpreted text

For this reason the Laniakea dashboard provides a menu to upload/create the user public (and private) key, in the top left user menu.

[image: ../../_images/ssh_menu_render.png]

This will load the SSH management page, which will allow you to upload a SSH public key or generate a SSH key pair.

[image: ../../_images/ssh_page_render.png]

We recommend you to manually generate your SSH key pair and then upload the SSH public key on Laniakea. Paste your public Key in the text box

[image: ../../_images/ssh_paste_key_render.png]

and press the upload button.

[image: ../../_images/ssh_upload_key_render.png]

If you don’t have a public key, it is possible to create a SSH key pair, i.e. a public and a private key.

Warning

The private key is not exploited by Laniakea. Is only generated and uploaded on Vault for security. Please download it. The Laniakea team will not be held liable for lost data due to hardware failure, virus, spyware, corruption or any other situation.

[image: ../../_images/ssh_create_keypair_render.png]

And then retrieve it with the Retrieve SSH private key button.

[image: ../../_images/ssh_download_priv_key_render.png]

Once the public SSH key is available on the Dashboard the service will recognize it and it no longer needs to be loaded.

[image: ../../_images/ssh_page_with_key_render.png]

Remove the SSH key from Laniakea

It is possible to delete the SSH key (pair) from Laniakea with Delete button.

[image: ../../_images/ssh_delete_key_render.png]

Warning

The key will not be removed from the virtual instances where it has been inserted. Once removed, if not saved elsewhere, and if no different keys were added, you will not be able to access the instances.

How to create SSH keys on Linux or macOS

https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/create-with-openssh/

How to create SSH keys on Windows

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows

Virtual hardware presets

Each cloud provider enable a set of Image Flavor, defined in terms of Virctual CPUs (VCPUS), Memory, Disk, etc.

Laniakea@ReCaS

Currently, the following pre-sets are available at ReCaS-Bari facility:

	Name

	VCPUs

	RAM

	Disk

	Enabled

	small

	1

	2 GB

	20 GB

	No

	medium

	2

	4 GB

	20 GB

	No

	large

	4

	8 GB

	20 GB

	Yes

	xlarge

	8

	16 GB

	20 GB

	Yes

	xxlarge

	16

	32 GB

	20 GB

	No

Note

New flavors can be assigned to particular projects.

Note

The storage associated tho each instance is configured separately.

Galaxy Flavours

Each Galaxy instance is customizable, through the web front-end, with different sets of pre installed tools (e.g. SAMtools, BamTools, Bowtie, MACS, RSEM, etc…), exploiting CONDA as default dependency resolver. New tools are automatically installed using the official GalaxyProject python library Ephemeris [https://ephemeris.readthedocs.io/en/latest/index.html].

Currently the following Galaxy flavours are available on Laniakea

Galaxy minimal

	Description

	Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd, uWSGI).

	Reference data repository

	usegalaxy.org Galaxy reference data CVMFS repository

Galaxy CoVaCS

	Description

	Workflow for genotyping and variant annotation of whole genome/exome and target-gene sequencing data.

For more information on CoVaCs Flavour visit this page: CoVaCS on Galaxy.

	Reference data repository

	ELIXIR-IT Galaxy CoVaCS reference data CVMFS repository

	Reference

	https://www.ncbi.nlm.nih.gov/pubmed/29402227

Galaxy GDC Somatic Variant

	Description

	Port of the Genomic Data Commons (GDC) pipeline for the identification of somatic variants on whole exome/genome sequencing data.

For more information on GDC Somatic Variant visit this page: GDC Somatic Variant on Galaxy.

	Reference data repository

	usegalaxy.org Galaxy reference data CVMFS repository

	Reference

	https://gdc.cancer.gov/node/246

Galaxy RNA workbench

	Description

	More than 50 tools for RNA centric analysis.

	Reference data repository

	usegalaxy.org Galaxy reference data CVMFS repository

	Reference

	https://www.ncbi.nlm.nih.gov/pubmed/28582575

Galaxy Epigen

	Description

	Based on Epigen project.

	Reference data repository

	usegalaxy.org Galaxy reference data CVMFS repository

	Reference

	Galaxy Epigen server [http://159.149.160.87/galaxy]

Create new Galaxy flavours

New flavors can be created through yaml recipes with the list of tools. A tool list example can be found here [https://raw.githubusercontent.com/indigo-dc/Galaxy-flavors-recipes/master/galaxy-testing/galaxy-testing-tool-list.yml].

For more information on how to create a flavour visit this page: Submit yout flavour.

References

Galaxy flavors [https://github.com/bgruening/docker-galaxy-stable#Extending-the-Docker-Image]

Ephemeris [https://ephemeris.readthedocs.io/en/latest/]

Ephemeris documentation [https://github.com/galaxyproject/ephemeris]

Conda for Galaxy tools dependencies [https://docs.galaxyproject.org/en/master/admin/conda_faq.html]

Submit yout flavour

Note

To follow this procedure basic knowledge of Git is needed. If you feel unsure you can contact us using our support mail address (laniakea.helpdesk@gmail.com) and we will be happy to assist you in creating your flavour.

New flavours can be easily added to Laniakea through a Pull Request on our GitHub page [https://github.com/Laniakea-elixir-it/Galaxy-flavours].

In this step will be described how to make a Pull Request to the Laniakea GitHub repository to create a new flaovur.

	Fork the Laniakea GitHub Galaxy flavours repository [https://github.com/Laniakea-elixir-it/Galaxy-flavours.git].

	Clone the forked repository:

git clone https://github.com/<user-name>/Galaxy-flavours.git

	Create a new directory with the name of your flavour. For example, galaxy-testing in this case.

mkdir galaxy-testing

	To create a new Galaxy flavour, a tool list file, written in YAML syntax, has to be provided. The examples directory provides some samples.

Move in the flavour directory:

cd galaxy-testing

Edit your tool list file with your favourite text editor adding the following default configuration lines:

api_key: admin
galaxy_instance: http://localhost:8080
install_resolver_dependencies: true
install_tool_dependencies: false

Then, add your tool list. For each tool to install, name, owner and tool_panel_section_label, which labels the tools section in the right Galaxy panel, have to be provided:

tools:

 - name: fastqc
 owner: devteam
 tool_panel_section_label: "tools"

 - name: bowtie2
 owner: devteam
 tool_panel_section_label: "tools"

 - name: bowtie_wrappers
 owner: devteam
 tool_panel_section_label: "tools"

 - name: sam_to_bam
 owner: devteam
 tool_panel_section_label: "tools"

 - name: bam_to_sam
 owner: devteam
 tool_panel_section_label: "tools"

In this case the resulting Galaxy tools section will be:

[image: ../../_images/galaxy-testing-flavour.png]

	If you don’t need to add one or more workflows to your flavor, move to the next step.

Create a new directory in your flavour directory:

mkdir workflow

For example, in our galaxy-testing flavour we have:

~/Galaxy-flavours/galaxy-testing$ ls

tool-list.yaml workflow

Navigate in this directory and copy here your Galaxy workflows with .ga extension.

	We are now ready to create a Pull Request. Add your files to your GitHub repository. For example, for our testing flavour:

cd galaxy-testing

$ git add tool-list.yaml workflow/Galaxy-Workflow-test.ga

$ git commit -m "add galaxy-testing flavour"
[master 2bc262d] add galaxy-testing flavour
 2 files changed, 30 insertions(+)
 create mode 100644 galaxy-testing/tool-list.yaml
 create mode 100644 galaxy-testing/workflow/Galaxy-Workflow-test.ga

$ git push
Username for 'https://github.com': mtangaro
Password for 'https://mtangaro@github.com':
Counting objects: 3, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 356 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/mtangaro/Galaxy-flavours.git
 be92a03..2bc262d master -> master

	Finally, from GitHub it is possible to create a Pull Request to the Laniakea repository:

[image: ../../_images/galaxy-testing-PR.png]

We will review and test your flavour and enable it on Laniakea.

These changes must be merged to the main branch of the Galaxy flavours repository [https://github.com/Laniakea-elixir-it/Galaxy-flavours.git]. The merge will be done once the flavour has been enabled on Laniakea.

Warning

To enable this changes on Laniakea requires at least 1 working day.

[image: ../../_images/galaxy-testing-PR-accepted.png]

Tool list configuration options

	Keys

	Required

	Default value

	Description

	name

	yes

	
	This is is the name of the tool to install

	owner

	yes

	
	Owner of the Tool Shed repository from where the tools is being installed

	tool_panel_section_id

	yes, if tool_panel_section_label
not specified

	
	ID of the tool panel section where you want the
tool to be installed. The section ID can be found
in Galaxy’s shed_tool_conf.xml config file. Note
that the specified section must exist in this file.
Otherwise, the tool will be installed outside any
section.

	tool_panel_section_label

	yes, if tool_panel_section_id
not specified

	
	Display label of a tool panel section where
you want the tool to be installed. If it does not
exist, this section will be created on the target
Galaxy instance (note that this is different than
when using the ID).
Multi-word labels need to be placed in quotes.
Each label will have a corresponding ID created;
the ID will be an all lowercase version of the
label, with multiple words joined with
underscores (e.g., ‘BED tools’ -> ‘bed_tools’).

	tool_shed_url

	
	https://toolshed.g2.bx.psu.edu)

	The URL of the Tool Shed from where the tool should be
installed.

	revisions

	
	latest

	A list of revisions of the tool, all of which will attempt to
be installed.

	install_tool_dependencies

	
	True

	True or False - whether to install tool
dependencies or not.

	install_repository_dependencies

	
	True

	True or False - whether to install repo
dependencies or not, using classic toolshed packages

Conda support

Conda is a package manager like apt-get, yum, pip, brew or guix and it is, currently, used as default dependency resolver in Galaxy.

References

Galaxy flavors [https://github.com/bgruening/docker-galaxy-stable#Extending-the-Docker-Image]

Ephemeris [https://ephemeris.readthedocs.io/en/latest/]

Ephemeris documentation [https://github.com/galaxyproject/ephemeris]

Conda for Galaxy tools dependencies [https://docs.galaxyproject.org/en/master/admin/conda_faq.html]

Reference Data

Many Galaxy tools rely on the presence of reference data, such as alignment indexes or reference genome sequences, to efficiently work. A complete set of Reference Data, able to work with most common tools for NGS analysis is available for each Galaxy instance deployed.

The reference data are available for many species and shared among all the instances, avoiding unnecessary and costly data duplication, exploiting a CernVM-FS (CVMFS) [https://cvmfs.readthedocs.io/en/stable/] repository.

Laniakea automatically configures Galaxy to properly use them.

By default Laniakea exploits the usegalaxy.org reference data [https://galaxyproject.org/admin/reference-data-repo/#cvmfs-client-configuration], but for specific needs, e.g. new tools, it is possible to enable, using the Laniakea Dahsobard, different repositories:

[image: Reference data indexes]

Reference data indexes available for bowite

data.galaxyproject.org

	Description

	The usegalaxy.org CVMFS repository hosts more than 4 TB of reference data. There are two primary directories in the reference data repository:

	/managed: Data generated with Galaxy Data Managers, organized by data table (index format), then by genome build.

	/byhand: Data generated prior to the existence/use of Data Managers, manually curated.

Currently, the Laniakea instances are preconfigured to mount /byhand data. More information can be found here [https://galaxyproject.org/admin/reference-data-repo/#cvmfs-client-configuration].

For GDC Somatic Variant flavour (GDC Somatic Variant on Galaxy) Galaxy is configured to use also an additional gdc_tool_data_table_conf.xml, which can be found here [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/data.galaxyproject.org/location/gdc_tool_data_table_conf.xml].

elixir-italy.covacs.refdata

	Description

	This repository hosts specific reference data for CoVaCS pipeline, Laniakea configure the CoVaCS flavours to consume these data.

	Reference data cvmfs

	Details

	cvmfs repository name

	elixir-italy.covacs.refdata

	cvmfs server url

	90.147.75.251

	cvmfs config file

	elixir-italy.covacs.refdata.conf [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_config_files/elixir-italy.covacs.refdata.conf]

	cvmfs key file

	elixir-italy.covacs.refdata.pub [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/elixir-italy.covacs.refdata.pub]

	cvmfs proxy url

	DIRECT

	galaxy tool data table

	tool-data-table.xml [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.covacs.refdata/location/tool_data_table_conf.xml]

elixir-italy.galaxy.refdata

	Description

	This repository is recommended only for testing tools and is currently not available on the Laniakea Dashboard. It is used for those tools need to ship reference data still not in the Galaxy Official CVMFS.

	Reference data cvmfs

	Details

	cvmfs repository name

	elixir-italy.galaxy.refdata

	cvmfs server url

	90.147.102.186

	cvmfs config file

	elixir-italy.galaxy.refdata.conf [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_config_files/elixir-italy.galaxy.refdata.conf]

	cvmfs key file

	elixir-italy.galaxy.refdata.pub [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/elixir-italy.galaxy.refdata.pub]

	cvmfs proxy url

	DIRECT

	galaxy tool data table

	tool-data-table.xml [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.galaxy.refdata/location/tool_data_table_conf.xml]

Supplementary information

	ELIXIR-Italy CVMFS documentation
	Default folders structure

	Additional folders

	CVMFS server details

	Manage CVMFS
	Cvmfs client setup

	Troubleshooting

	References

References

Galaxyproject CVMFS [https://training.galaxyproject.org/training-material/topics/admin/tutorials/cvmfs/tutorial.html]

CernVM-FS [https://cernvm.cern.ch/portal/filesystem]

CVMFS documentation [http://cvmfs.ireadthedocs.io/en/stable/]

Debugging CVMFS [https://cernvm.cern.ch/portal/filesystem/debugmount]

ELIXIR-Italy CVMFS documentation

ELIXIR-Italy maintain two CVMFS repository, exploited by Laniakea.

	CVMFS

	Flavours supported

	folder tree

	elixir-italy.covacs.refdata

	galaxy CoVaCS

	tree structure [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.covacs.refdata/structure/tree_elixir-italy.covacs.refdata]

	elixir-italy.galaxy.refdata

	galaxy Epigen, galaxy RNA-workbench, Galaxy GDC Somatic Variant Calling

	tree structure [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.galaxy.refdata/structure/tree_elixir-italy.galaxy.refdata]

A complete list of the reference data, with download link, is available here [https://docs.google.com/spreadsheets/d/1l0dbaVuT4qiXMGevrYtkRDvsNa052WT8WbBg_dFpqFM/edit?usp=sharing].

Default folders structure

The basic structure of the CVMFS repositories is the same. The repository directories are referred to the model organism genome different assemblies:

	
	at10

	at9

	dm2

	dm3

	dm6

	hg18

	hg19

	
	hg38

	mm10

	mm8

	mm9

	sacCer1

	sacCer2

	sacCer3

Inside each assembly directory there is the genome.fa and the refseq gtf and gff downloaded from UCSC and the tools indeces:

bwa

It has been created using the default command

$ bwa index -a bwtsw genome.fa

bowtie2

It has been created using the default command

$ bowtie2-build

bowtie

Created using the default command

$ bowtie-build

rsem

Created using the default command

$ rsem-prepare-reference --gtf (.gtf) --transcript-to-gene-map (table.txt) --bowtie (.fa) <assembly-name>

Additional folders

The two repositories hosts also spceific directories:

elixir-italy.covacs.refdata

annovar_db

Hosts the databases needed to perform CoVaCS pipeline downloaded from annovar repository using the annotate_variation.pl perl script.

bed_file_covacs

Hosts the bed files needed to perform CoVacs pipeline, the same bed files were present in the CINECA implementation of the CoVaCS pipeline.

location

Hosts the .loc file and the tool_data_table.xml file that will be used by galaxy CoVaCS flavours.

elixir-italy.galaxy.refdata

rRNAdatabase

Location of ribosomial RNA for sortmeRNA tool in galaxy RNA workbench flavour.

index_GATK_bundle

Location of genome indices for GATK toools for hg38 and hg19 assembly downloaded from GATK ftp bundle (https://software.broadinstitute.org/gatk/download/bundle).

location

Hosts the .loc file and the tool_data_table.xml file that will be used by galaxy RNA workbench, galaxy EPIGEN and galaxy GDC Somatic Variant flavours

CVMFS server details

Since, cvmfs relies on OverlayFS or AUFS as default storage driver and Ubuntu 16.04 natively supports OverlayFS, it is used as default choice to create and populate the cvmfs server.

A resign script is located in /usr/local/bin/Cvmfs-stratum0-resign and the corresponding weekly cron job is set to /etc/cron.d/cvmfs_server_resign.

Log file is located in /var/log/Cvmfs-stratum0-resign.log.

Manage CVMFS

The CernVM-File System (conversely cvmfs) provides a scalable, reliable and low-maintenance software distribution service. It was developed to assist High Energy Physics (HEP) collaborations to deploy software on the worldwide distributed computing infrastructure used to run data processing applications.

CernVM-FS is implemented as a POSIX read-only file system in user space (a FUSE module). When initially mounted, CVMFS does not consume any local disk space on the client (in this case, your Galaxy server). Instead, as files are accessed, they are pulled from the server to a local disk-based cache of a configurable size. The reference data Files and directories are hosted on standard web servers and mounted on /cvmfs directory

For example, listing the CVMFS elixir-italy.galaxy.refdata will results in:

$ ls -l /cvmfs/elixir-italy.galaxy.refdata/
total 60
drwxr-xr-x. 5 cvmfs cvmfs 4096 May 21 20:10 at10
drwxr-xr-x. 5 cvmfs cvmfs 4096 May 21 20:10 at9
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:10 dm2
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:11 dm3
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:15 hg18
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 18:36 hg19
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:18 hg38
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:22 mm10
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:22 mm8
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:25 mm9
-rw-r--r--. 1 cvmfs cvmfs 57 May 21 18:31 new_repository
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:25 sacCer1
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:25 sacCer2
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:25 sacCer3
-rw-r--r--. 1 cvmfs cvmfs 0 May 21 18:31 test-content

Note

The files hosted on a CVMFS repository are pulled from the server only if required, resulting in an empty directory if the file are not required. For example, just listing the directory content will cause the files to be mounted.

Cvmfs client setup

CVMFS is installed by default on each Galaxy instance (CentOS 7 or Ubuntu 16.04). The public key is installed in /etc/cvmfs/keys/. The /etc/cvmfs/default.local file is also already configured. The cvmfs_config probe command mount the cvmfs volume to /cvmfs.

	Description

	Command

	check configuration

	cvmfs_config chksetup

	mount volume

	cvmfs_config probe

	umount volume

	cvmfs_config umount <refdata_repository_name>

	reload repository

	cvmfs_config reload <refdata_repository_name>

Note

If mount fails, try to restart autofs with sudo service autofs restart.

Note

CVMFS commands require root privileges

The CVMFS repositoy can be mount also using the mount command to a specific mount point:

$ sudo mount -t cvmfs elixir-italy.galaxy.refdata /refdata/elixir-italy.galaxy.refdata
CernVM-FS: running with credentials 994:990
CernVM-FS: loading Fuse module... done

$ ls /refdata/elixir-italy.galaxy.refdata/
at10 at9 dm2 dm3 hg18 hg19 hg38 mm10 mm8 mm9 new_repository sacCer1 sacCer2 sacCer3 test-content

Troubleshooting

After an instance reboot, CVMFS is automatically restarted. If this does not happen:

$ sudo cvmfs_config_probe
Probing /cvmfs/elixir-italy.galaxy.refdata... Failed!

A reload of the config could be able to fix the problem [https://wiki.chipp.ch/twiki/bin/view/CmsTier3/IssueCvmfsFailsToMount]:

$ sudo cvmfs_config reload elixir-italy.galaxy.refdata
Connecting to CernVM-FS loader... done
Entering maintenance mode
Draining out kernel caches (60s)
Blocking new file system calls
Waiting for active file system calls
Saving inode tracker
Saving chunk tables
Saving inode generation
Saving open files counter
Unloading Fuse module
Re-Loading Fuse module
Restoring inode tracker... done
Restoring chunk tables... done
Restoring inode generation... done
Restoring open files counter... done
Releasing saved glue buffer
Releasing chunk tables
Releasing saved inode generation info
Releasing open files counter
Activating Fuse module

If the file system appears to be hanging, it might have been interrupted during a reload operation. Try to run sudo cvmfs_config killall and then again sudo cvmfs_config_probe.

References

CernVM-FS [https://cernvm.cern.ch/portal/filesystem]

CVMFS documentation [http://cvmfs.ireadthedocs.io/en/stable/]

Debugging CVMFS [https://cernvm.cern.ch/portal/filesystem/debugmount]

Galaxy production environment

Laniakea allows to setup and launch a virtual machine (VM) configured with the Operative System (CentOS 7 or Ubuntu 16.04) and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself. A common set of Reference data is available through a CernVM-FS volume. Once deployed each Galaxy instance can be further customized with tools and reference data.

The Galaxy production environment is deployed according to Galaxy official documentation: https://docs.galaxyproject.org/en/latest/admin/production.html.

[image: galaxy production environment]

OS support

CentOS 7 is our default distribution, Given its adherence to Standards and the length of official support (CentOS-7 updates until June 30, 2024, https://wiki.centos.org/FAQ/General#head-fe8a0be91ee3e7dea812e8694491e1dde5b75e6d). CentOS 7 and Ubuntu 16.04 are both supported.

Warning

Selinux is by default disabled on CentOS.

PostgresSQL

PostgreSQL packages coming from PostgreSQL official repository are installed:

Note

Current installed PostgreSQL is: PostgreSQL 9.6

	Distribution

	Repository

	Centos

	https://wiki.postgresql.org/wiki/YUM_Installation

	Ubuntu

	https://wiki.postgresql.org/wiki/Apt

On CentOS 7 the default pgdata directory is /var/lib/pgsql/9.6/data. The pg_hba.conf configuration is modified allowing for password authentication. On CentOS we need to exclude CentOS base and updates repo for PostgreSQL, otherwise dependencies might resolve to the postgresql supplied by the base repository.

On Ubuntu default pgdata directory is /var/lib/postgresql/9.6/main, while the configuration files are stored in /etc/postgresql/9.6/main. There’s no need to modify the HBA configuration file since, by default, it is allowing password authentication.

PostgreSQL start/stop/status in entrusted to Systemd on CentOS 7 and Ubuntu Xenial.

	Distribution

	Command

	CentOS 7

	sudo systemctl start/stop/status postgres-9.6

	Ubuntu Xenial

	sudo systemctl start/stop/status postgresql

Galaxy database configuration

Two different database are configured to track data and tool shed install data, e.g. allowing to bootstrap fresh Galaxy instance with pretested installs.
The database passwords are randomly generated and the passoword can be retrieved in the galaxy.yml file.

Galaxy database is named galaxy and is configured in the galaxy.yml file:

database_connection = postgresql://galaxy:gtLxNnH7DpISmI5FXeeI@localhost:5432/galaxy

The shed install tool database is named galaxy_tools and is configured as:

install_database_connection = postgresql://galaxy:gtLxNnH7DpISmI5FXeeI@localhost:5432/galaxy_tools

PostgresSQL troubleshooting

With the recents update (October 2019) the package python2-psycopg2 requires postgresql12-libs, resulting in a broken environment since the package is not available.
We avoid this behaviour excluding python pytho2-psycopg2 update in /etc/yum.conf file with the line exclude=python2-psycopg2.
If you need to update it, just remove it from the exclude line in /etc/yum.conf.

Docker configuration

On Docker container PostgreSQL cannot be managed through systemd/upstart, since there’s no init system on CentOS and Ubuntu docker images.
Therefore, the system is automatically configured to run postgresql using supervisord.

NGINX

To improve Galaxy performance, NGINX is used as web server. The official Galaxy nginx packages are used by default (built in upload module support).

	Distribution

	Repository

	Centos

	https://depot.galaxyproject.org/yum/

	Ubuntu

	ppa:galaxyproject/nginx

Moreover, on Ubuntu, we need to prevent NGINX to be updated by apt default packages. For this purpose the pin priority of NGINX ppa packages is raised, by editing /etc/apt/preferences.d/galaxyproject-nginx-pin-700 (more on apt pinning at: https://wiki.debian.org/AptPreferences).

NGINX is configured following the official Galaxy wiki: https://galaxyproject.org/admin/config/nginx-proxy/.

NGINX is started, usually using systemd:

$ sudo systemctl start nginx

NGINX options

NGINX options are listed here: https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/

To start/stop/status NGINX with systemd:

	Dstribution

	Command

	CentOS 7

	sudo systemctl start/stop/status nginx

	Ubuntu Xenial

	sudo systemctl start/stop/status nginx

NGINX troubleshooting

Running NGINX on CentOS through systemd could lead to this error in /var/log/nginx/error.log, which can prevent Galaxy web page loading:

2017/08/24 08:22:32 [crit] 3320#0: *7 connect() to 127.0.0.1:4001 failed (13: Permission denied) while connecting to upstream, client: 192.167.91.214, server: localhost, request: "GET /galaxy HTTP/1.1", upstream: "uwsgi://127.0.0.1:4001", host: "90.147.102.159"

This is related to SELinux policy on CentOS.

Warning

You should avoid to modify SELinux policy, since you can still use NGINX command line options.

Anyway, the problem is that selinux dany socket access. This results in a generic access denied error in NGINX’s log, the important messages are actually in selinux’s audit log. To solve this issue, you can ran the following commands as superuser.

show the new rules to be generated
grep nginx /var/log/audit/audit.log | audit2allow

show the full rules to be applied
grep nginx /var/log/audit/audit.log | audit2allow -m nginx

generate the rules to be applied
grep nginx /var/log/audit/audit.log | audit2allow -M nginx

apply the rules
semodule -i nginx.pp

Then restart NGINX.

You may need to generate the rules multiple times (likely four times to fix all policies), trying to access the site after each pass, since the first selinux error might not be the only one that can be generated.

Further readings

NGINX documentation [https://www.nginx.com/blog/nginx-se-linux-changes-upgrading-rhel-6-6/]

StackOverflow post [https://stackoverflow.com/questions/26334526/nginx-cant-access-a-uwsgi-unix-socket-on-centos-7]

Blog post [http://axilleas.me/en/blog/2013/selinux-policy-for-nginx-and-gitlab-unix-socket-in-fedora-19/]

uWSGI

uWSGI (https://uwsgi-docs.readthedocs.io/en/latest) is used as interface between the web server (i.e. NGINX) and the web application (i.e. Galaxy). Using uWSGI for production servers is recommended by the Galaxy team: https://galaxyproject.org/admin/config/performance/scaling/

uWSGI configuration is embedded in the galaxy.yml file ($HOME/galaxy/config/galaxy.yml), and by default foresee 4 handler configuration.
The number of processes (i.e. uWSGI workers) is set to number_of_virtual_cpus - 1. This configuration should be fine for most uses. Nevertheless, there’s no golden rule to define the workers number. It is up to the end-user to configure it dependig on your needs. The same goes for the number of job handlers (4 by default).

uWSGI socket and stats server are, by default, listening on 127.0.0.1:4001 and 127.0.0.1:9191, respectively. More on the uWSGI stats server here: http://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html?highlight=stats%20server.

enable-threads: true
socket: 127.0.0.1:4001
manage-script-name: True
stats: 127.0.0.1:9191
logto: /var/log/galaxy/uwsgi.log
no-orphans: true

Proftpd

To allow user to upload files (> 2GB) through FTP, Proftpd is installed and configured on each Galaxy server, according to: https://galaxyproject.org/admin/config/upload-via-ftp/

Proftpd configuration file is located at /etc/proftdp.conf on CentOS and /etc/proftpd/proftpd.conf on Ubuntu.

To grant a user access to read emails and passwords from the Galaxy database, a separate user is created for the FTP server which has permission to SELECT from the galaxy_user table and nothing else.

Proftpd is listening on port 21. FTP protocol is not encrypted by default, thus any usernames and passwords are sent over clear text to Galaxy.

How to use FTP through FileZilla

Open FileZilla and configure it with:

	Host: Galaxy ip address (e.g. 90.147.170.108), without the /galaxy.

	User name: your e-mail address on Galaxy.

	Password: your password on Galaxy.

	Port: 21

[image: ../../_images/ftp_filezilla.png]

How to use FTP through command line

To install FTP command line client, type sudo yum install ftp on CentOS or sudo apt-get install ftp on Ubuntu.

To establish a connection with Glaxy Proftpd server, you can use your Galaxy username and password, in addition to the server IP address you’re connecting to (e.g. 90.147.102.82). To open a connection in Terminal type the following command, replacing the IP address with your server IP address:

$ ftp 90.147.102.82
Connected to 90.147.102.82.
220 ProFTPD 1.3.5e Server (galaxy ftp server) [::ffff:90.147.102.82]
Name (90.147.102.82:marco):

Then login with your Galaxy credentials, typing your Galaxy e-mail address and password:

$ ftp 90.147.102.82
Connected to 90.147.102.82.
220 ProFTPD 1.3.5e Server (galaxy ftp server) [::ffff:90.147.102.82]
Name (90.147.102.82:marco): ma.tangaro@gmail.com
331 Password required for ma.tangaro@gmail.com
Password:

To upload file to your Galaxy remote directory:

ftp> put Sc_IP.fastq
local: Sc_IP.fastq remote: Sc_IP.fastq
229 Entering Extended Passive Mode (|||30023|)
150 Opening BINARY mode data connection for Sc_IP.fastq
8% |****** | 12544 KiB 23.84 KiB/s 1:31:23 ETA

Then you will find it on Galaxy:

[image: ftp fasta file copy]

Here’s a list of the basic commands that you can use with the FTP client.

	Command

	Description

	ls

	ls the current directory on the remote machine.

	cd

	to change directory on the remote machine.

	pwd

	to find out the pathname of the current directory on the remote machine.

	delete

	to delete (remove) a file in the current remote directory (same as rm in UNIX).

	mkdir

	to make a new directory within the current remote directory.

	rmdir

	to remove (delete) a directory in the current remote directory.

	get

	to copy one file from the remote machine to the local machine

	

	get ABC DEF copies file ABC in the current remote directory to (or on top of) a file named DEF in your current local directory.

	

	get ABC copies file ABC in the current remote directory to (or on top of) a file with the same name, ABC, in your current local directory.

	mget

	to copy multiple files from the remote machine to the local machine; you are prompted for a y/n answer before transferring each file.

	put

	to copy one file from the local machine to the remote machine.

	mput

	to copy multiple files from the local machine to the remote machine; you are prompted for a y/n answer before transferring each file.

	quit

	to exit the FTP environment (same as bye).

Supervisord

Supervisor is a process manager written in Python, which allows its users to monitor and control processes on UNIX-like operating systems.
It includes:

	
Supervisord daemon (privileged or unprivileged);

	
Supervisorctl command line interface;

	
INI config format;

	
[program:x] defines a program to control.

Supervisord requires root privileges to run.

Galaxy supervisord configuration is located here [https://docs.galaxyproject.org/en/master/admin/framework_dependencies.html?highlight=uwsgi#supervisor] and here [https://galaxyproject.github.io/dagobah-training/2016-saltlakecity/002a-systemd-supervisor/systemd-supervisor.html#1].

A configuration running the Galaxy server under uWSGI has been installed on /etc/supervisord.d/galaxy_web.ini on CentOS, while it is located on /etc/supervisor/conf.d/galaxy.conf on Ubuntu.
The options stopasgroup = true and killasgroup = true ensure that the SIGINT signal, to shutdown Galaxy, is propagated to all uWSGI child processes (i.e. to all uWSGI workers).

PYTHONPATH is not specified in this configuration since it was conflicting with Conda.

To manage Galaxy through supervisord:

	Action

	Command

	Start Galaxy

	sudo supervisorctl start galaxy:

	Stop Galaxy

	sudo supervisorctl stop galaxy:

	Restart Galaxy

	sudo supervisorctl restart galaxy:

	Galaxy status

	sudo supervisorctl status galaxy:

$ supervisorctl help

default commands (type help <topic>):
=====================================
add clear fg open quit remove restart start stop update
avail exit maintail pid reload reread shutdown status tail version

$ sudo supervisorctl status galaxy:
galaxy:galaxy_web RUNNING pid 9030, uptime 2 days, 21:19:28
galaxy:handler0 RUNNING pid 9031, uptime 2 days, 21:19:28
galaxy:handler1 RUNNING pid 9041, uptime 2 days, 21:19:27
galaxy:handler2 RUNNING pid 9046, uptime 2 days, 21:19:26
galaxy:handler3 RUNNING pid 9055, uptime 2 days, 21:19:25

galaxy_web.ini file configuration:

[program:galaxy_web]
command = /home/galaxy/galaxy/.venv/bin/uwsgi --virtualenv /home/galaxy/galaxy/.venv --ini-paste /home/galaxy/galaxy/config/galaxy.ini --pidfile /var/log/galaxy/uwsgi.pid
directory = /home/galaxy/galaxy
umask = 022
autostart = true
autorestart = true
startsecs = 20
user = galaxy
environment = PATH="/home/galaxy/galaxy/.venv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
numprocs = 1
stopsignal = INT
startretries = 15
stopasgroup = true
killasgroup = true

[program:handler]
command = /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/galaxy/galaxy/config/galaxy.ini --server-name=handler%(process_num)s --log-file=/var/log/galaxy/handler%(process_num)s.log
directory = /home/galaxy/galaxy
process_name = handler%(process_num)s
numprocs = 4
umask = 022
autostart = true
autorestart = true
startsecs = 20
user = galaxy
startretries = 15

[group:galaxy]
programs = handler, galaxy_web

Finally, a systemd script has been installed to start/stop Supervisord on /etc/systemd/system/supervisord.service.

	Action

	Command

	Start

	sudo systemctl start supervisord.service

	Stop

	sudo systemctl stop supervisord.service

	Restart

	sudo systemctl restart supervisord.service

	Status

	sudo systemctl status supervisord.service

$ sudo systemctl status supervisord.service
 ● supervisord.service - Supervisor process control system for UNIX
 Loaded: loaded (/etc/systemd/system/supervisord.service; disabled; vendor preset: disabled)
 Active: active (running) since Sat 2017-08-12 08:48:33 UTC; 9s ago
 Docs: http://supervisord.org
 Main PID: 12204 (supervisord)
 CGroup: /system.slice/supervisord.service
 ├─12204 /usr/bin/python /usr/bin/supervisord -n -c /etc/supervisord.conf
 ├─12207 /home/galaxy/galaxy/.venv/bin/uwsgi --virtualenv /home/galaxy/galaxy/.venv --ini-paste /home/galaxy/galaxy/config/galaxy.ini --pidfile /var/log/galaxy/uwsgi.pid
 ├─12208 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/galaxy/galaxy/config/galaxy.ini --server-name=handler0 --log-file=/var/log/galaxy/handler0.log
 ├─12209 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/galaxy/galaxy/config/galaxy.ini --server-name=handler1 --log-file=/var/log/galaxy/handler1.log
 ├─12210 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/galaxy/galaxy/config/galaxy.ini --server-name=handler2 --log-file=/var/log/galaxy/handler2.log
 └─12211 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/galaxy/galaxy/config/galaxy.ini --server-name=handler3 --log-file=/var/log/galaxy/handler3.log

Aug 12 08:48:33 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:33,805 CRIT Supervisor running as root (no user in config file)
Aug 12 08:48:33 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:33,805 WARN Included extra file "/etc/supervisord.d/galaxy_web.ini" during parsing
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,564 INFO RPC interface 'supervisor' initialized
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,564 CRIT Server 'unix_http_server' running without any HTTP authentication checking
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,565 INFO supervisord started with pid 12204
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,569 INFO spawned: 'galaxy_web' with pid 12207
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,573 INFO spawned: 'handler0' with pid 12208
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,576 INFO spawned: 'handler1' with pid 12209
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,581 INFO spawned: 'handler2' with pid 12210
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,584 INFO spawned: 'handler3' with pid 12211

Paths

User data are automatically stored to the “/export” directory, where an external (standard block storage) volume is mounted.

All Galaxy job results are stored in this directory through galaxy.yml (galaxy.ini on galaxy < 18.01) configuration file. For instance, the files directory is located:

Dataset files are stored in this directory.
file_path = /export/galaxy/database/files

while the job working directory is located:

Each job is given a unique empty directory as its current working directory.
This option defines in what parent directory those directories will be
created.
job_working_directory = /export/job_work_dir

Here is the list of Galaxy database path directories:

file_path = /export/galaxy/database/files
job_working_directory = /export/job_work_dir
new_file_path = /export/galaxy/database/tmp
template_cache_path = /export/galaxy/database/compiled_templates
citation_cache_data_dir = /export/galaxy/database/citations/data
citation_cache_lock_dir = /export/galaxy/database/citations/lock
whoosh_index_dir = /export/galaxy/database/whoosh_indexes
object_store_cache_path = /export/galaxy/database/object_store_cache
cluster_file_directory = /export/galaxy/database/pbs"
ftp_upload_dir = /export/galaxy/database/ftp

Enable Dockerized tools support in job_conf.xml

Different job_conf.xml configurations to exploit Dockerized tools can be here [https://github.com/Laniakea-elixir-it/galaxy-resources/tree/master/job-configurations].

Galaxy Docker instance

The Laniakea Galaxy Docker application run a Galaxy Docker container inside a Centos 7 virtual machine. The Official Galaxy Docker image [https://github.com/bgruening/docker-galaxy-stable] is used. Currently, Laniakea supports the following Docker images:

	bgruening/galaxy-stable [https://hub.docker.com/r/bgruening/galaxy-stable/tags]

	laniakeacloud/galaxy-covacs [https://hub.docker.com/r/laniakeacloud/galaxy-covacs/tags]

	laniakeacloud/galaxy-gdc_somatic_variant [https://hub.docker.com/r/laniakeacloud/galaxy-gdc_somatic_variant/tags]

	bgruening/galaxy-rna-workbench [https://hub.docker.com/r/bgruening/galaxy-rna-workbench/tags]

	laniakeacloud/galaxy-epigen [https://hub.docker.com/r/laniakeacloud/galaxy-epigen/tags]

Note

Docker is configured to install all docker-engine files on /export, i.e. in the external storage.

Configuration files

The Docker configuration is slighty customized to make the Galaxy experience as similar as possible to the one on the virtual machine.

	/etc/galaxy/.myenv.sh: file with the environment variables of the Docker container.

The customized variables are:

GALAXY_CONFIG_TOOL_DATA_TABLE_CONFIG_PATH: tool_data_table_conf.xml specific for the galaxy flavour (see section Galaxy Flavours)

GALAXY_CONFIG_ADMIN_USERS: admin_user - the email selected in the laniakea dashboard

GALAXY_CONFIG_BRAND: Galaxy brand - the Instance description inserted in the laniakea dashboard

GALAXY_CONFIG_REQUIRE_LOGIN: true - avoid anonymous login.

GALAXY_CONFIG_ALLOW_USER_CREATION: true - allow user creation.

GALAXY_CONFIG_ALLOW_USER_IMPERSONATION: false - allow user impersonation.

GALAXY_CONFIG_NEW_USER_DATASET_ACCESS_ROLE_DEFAULT_PRIVATE: true - By default, users’ data will be public, but setting this to True will cause it to be private.

GALAXY_CONDA_PREFIX: path to _conda prefix

GALAXY_CONFIG_CONDA_AUTO_INIT: true - conda auto-start

GALAXY_CONFIG_CONDA_AUTO_INSTALL: true - conda auto-install

	/etc/galaxy/tool_data_tables: directory with the tool_data_table_conf.xml files. A detailed description of Laniakea Galaxy flavours configuration for the reference data is here: Galaxy Flavours.

CVMFS configuration

The CVMFS repository selected in the Lanikaea dashboard is automatically configured and mounted inside the docker directory /cvmfs. The corresponding configuration files are in the directory /etc/cvmfs.

Galaxy docker usage

Galaxy docker logs

SSH login in the virtual machine and type:

$ sudo docker logs --tail 200 -f galaxydocker

Enter in the Docker

In order to access to the Galaxy container, SSH login in the virtual machine and execute the following command:

$ sudo docker exec -it galaxydocker bash

Main directories in the Docker

Main Galaxy directories inside the Docker container are in /export:

	ftp: /export/ftp

	database: /export/database

	conda: /export/tool_deps/_conda

Check Galaxy configuration

In order to see the Galaxy Docker configuration, SSH login in the virtual machine and execute the following command:

$ sudo docker exec -it galaxydocker echo $GALAXY_CONFIG

Data upload: FTP

Of course, the Galaxy Docker container allows user to upload data through FTP.

The procedure is similar to that described in the Proftpd section here: /user_documentation/galaxy_production_environment/galaxy_production_environment_configuration.rst.

Moreover, you need to enable FTP Passive mode. Go to Settings..., then to FTP and flag Passive (recommended), as shown in the following picture.

[image: ../../_images/docker_ftp_passive.png]

For those using the command line tool, you can enable/disable the passive mode by typing passive. First connect to the server then type:

passive

and you will be in passive mode.

Galaxy Docker usage tutorial

Cluster configuration

Laniakea provides the possibility to instantiate Galaxy with SLURM as Resource Manager and to customize the number of virtual worker nodes and the workenr nodes and front-end server virtual hardware, e.g. vCPUs and memory.

Furthermore, automatic elasticity, provided using CLUES [https://ec3.readthedocs.io/en/latest/arch.html#clues], enables dynamic cluster resources scaling, deploying and powering on new working nodes depending on the workload of the cluster and powering-off them when no longer needed. This provides an efficient use of the resources, making them available only when really needed.

Conda packages used to solve Galaxy tools dependencies are stored in /export/tool_deps/_conda directory and shared between front and worker nodes.

job_conf.xml configuration

SLURM has been configured following the GalaxyProject tutorial [https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html].

In particular the number of tasks per nodes, i.e. the $GALAXY_SLOTS, is set at --ntasks=2 by default.

[image: ../../_images/cluster_history.png]

Moreover, to allow SLURM restart on elastic cluster, the number of connection retries has been set to 100.

<?xml version="1.0"?>
<job_conf>
 <plugins>
 <plugin id="local" type="runner" load="galaxy.jobs.runners.local:LocalJobRunner" workers="2"/>
 <plugin id="slurm" type="runner" load="galaxy.jobs.runners.drmaa:DRMAAJobRunner" workers="100">
 <param id="drmaa_library_path">/usr/local/lib/libdrmaa.so</param>
 <param id="internalexception_retries">100</param>
 </plugin>
 </plugins>
 <handlers default="handlers">
 <handler id="handler0" tags="handlers"/>
 <handler id="handler1" tags="handlers"/>
 <handler id="handler2" tags="handlers"/>
 <handler id="handler3" tags="handlers"/>
 </handlers>
 <destinations default="slurm">
 <destination id="slurm" runner="slurm" tags="mycluster" >
 <param id="nativeSpecification">--nodes=1 --ntasks=2</param>
 </destination>
 <destination id="local" runner="local">
 <param id="local_slots">2</param>
 </destination>
 </destinations>
 <tools>
 <tool id="upload1" destination="local"/>
 </tools>
 <limits>
 <limit type="registered_user_concurrent_jobs">1</limit>
 <limit type="unregistered_user_concurrent_jobs">0</limit>
 <limit type="job_walltime">72:00:00</limit>
 <limit type="output_size">268435456000</limit>
 </limits>
</job_conf>

Shared file system

Current cluster configuration foresee two paths shared between front and worker nodes:

	/home where Galaxy is installed.

	/export where Galaxy input and output datasets are stored. Here is also mounted the external (encrypted) storage volume, allowing to share it among worker nodes.

Note

The NFS exports configuration file is: /etc/exports

For example, listing the mount points in the worker nodes:

$ df -h
Filesystem Size Used Avail Use% Mounted on
devtmpfs 1.9G 0 1.9G 0% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 1.9G 17M 1.9G 1% /run
tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
/dev/vda1 20G 2.3G 18G 12% /
172.30.66.154:/home 20G 3.9G 17G 20% /home
172.30.66.154:/export 47G 537M 44G 2% /export
tmpfs 379M 0 379M 0% /run/user/1000
cvmfs2 4.0G 68K 4.0G 1% /cvmfs/data.galaxyproject.org

Note

The CVMFS repository is mounted on each node of the cluster.

Network configuration

The front node, hosting Galaxy and SLURM, is deployed with a public IP addess. Moreover, a private net is created among front and worker nodes. The worker nodes are not exposed to the internet, but reachable only from the front node, because they connected only with the private network.

[image: ../../_images/cluster_network.png]

Worker nodes SSH access

It is possible to SSH login to each deployed worker node from the front node, i.e. the Galaxy server.

The SSH public key is availeble at /var/tmp/.im/<deployment_uuid>/ansible_key. The deployment_uuid is a random string which identifies your deployment and in the only directory in the path /var/tmp/.im. For examples:

cd /var/tmp/.im/748ee382-ed9f-11e9-9ace-fa163eefe815/
(.venv) [root@slurmserver 748ee382-ed9f-11e9-9ace-fa163eefe815]# ll ansible_key
ansible_key ansible_key.pub

The list of the worker nodes ip address is in the Output values tab of the deployment, as wn_ips:

[image: ../../_images/cluster_outputs.png]

Finally, you can connect to worker nodes as:

ssh -i ansible_key cloudadm@<wn_ip_address>

where wn_ip_address is the worker node ip address

Worker nodes deployment on elastic cluster

Warning

Each node takes 12 minutes or more to be instantiated. Therefore, the job needs the same time to start. On the contrary, if the node is already deployed, the job will start immediately.

This is due to:

	Virtual Machine configuration

	CernVM-FS configuration

	SLURM installation and configuration

During the worker node deployment and delete procedure the Dashboard will show the status UPDATE_IN_PROGRESS:

[image: ../../_images/cluster_update_in_progress.png]

When the worker node is up and running or once it is deleted the Dashboard will show the status UPDATE_COMPLETE:

[image: ../../_images/cluster_update_complete.png]

References

Connecting Galaxy to a compute cluster [https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html]

SLURM main commands [https://www.rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands/]

Sbatch commands [https://slurm.schedmd.com/sbatch.html]

Authentication

Currently, the authentication system relies on INDIGO-AAI.

To login into the portal, select the Sign in section on top-right:

[image: FGW Sign In]

Registration

It is needed to register to the portal at the first login. Register with your preferred username or using Google authentication.

[image: Select login method]

Fill the registration form using a valid e-mail address:

[image: registration form]

and accept the usage policy to complete the registration:

[image: policy form]

A confirmation e-mail is the sent your e-mail address:

[image: confirmation alert]

You don’t need to answer to this mail, just follow the instructions, going to the link in the e-mail.

[image: confirmation mail]

[image: success alert]

Once confirmed, your request has to be approved by the site administrators. This usually does not require too much time.

Once your request is approved, you will be notified by mail and asked to insert your password.

[image: success mail]

[image: change password]

[image: change password success]

Finally at the first login you have to allow the Laniakea portal to acquire your login information:

[image: mitre authorization]

Login

To login into the portal, select the Sign in section on top-right:

[image: FGW Sign In]

Then insert your credentials or login using another authentication provider, you used during the registratrion procedure, like Google.

[image: Select login method]

Finally, you can access the dashboard and instantiate Galaxy:

[image: FGW portal]

Frequently Asked Questions

Laniakea FAQs.

How to manually recover Galaxy after VM reboot

Recover Galaxy after Virtual Machine reboot

I’m unable to create users from admin panel

User creation error

The encryption layer

While the adoption of a distributed environment for data analysis makes data difficult to be tracked and identified by a malevolus attacker, full data anonymity and isolation is still not granted.

The user data privacy is granted through LUKS storage encryption as a service: data are isolated from any other instance on the same platform and from the cloud service administrators.
In the past version, users were required to insert a password to encrypt/decrypt data directly on the virtual instance during its deployment, through SSH connection.

In the second Laniakea release the encryption procedure has been completely re-worked and automated in order to simplify the user experience: now the user can encrypt storage on-demand, using a strong random alphanumerical passphrase, without having to interact with the Galaxy instance through SSH.
This has been achieved integrating the key management system Hashicorp Vault (vaultproject.io) to store encryption keys, which are shown in the Laniakea Dashboard only if explicitly requested by the user.

Disk encryption ensures that files are stored on disk in an encrypted form: the files only become available to the operating system and applications in readable when the volume is unlocked by a trusted user. The adopted block device encryption method, operates below the filesystem layer and ensures that everything is written to the block device (i.e. the external volume) is encrypted.

The encryption layer sits between the physical disk and the file system and Galaxy is unaware of storage encryption. Galaxy exploits a specific mount point in order to store and retrieve files. Files are encrypted when stored to disk and decrypted when read.

[image: ../../_images/encryption_strategy.png]

	The encryption strategy

	Storage encryption workflow

	File System Encryption Test

	Fast-luks script

	Luksctl: LUKS volumes management
	Dependencies

	Open LUKS volumes

	Close LUKS volumes

	LUKS volumes status

	LUKSctl: APIs
	Volume Status

	Volume Open

	Cryptsetup hints
	Change LUKS password

References

	LUKS [https://gitlab.com/cryptsetup/cryptsetup]

	Disk encryption archlinux wiki page [https://wiki.archlinux.org/index.php/disk_encryption#Block_device_encryption_specific]

	Dm-crypt archlinux wiki page [https://wiki.archlinux.org/index.php/Dm-crypt/Device_encryption#Encryption_options_for_LUKS_mode]

	LUKS how-to [http://www.thegeekstuff.com/2016/03/cryptsetup-lukskey]

	Original LUKS script [https://github.com/JohnTroony/LUKS-OPs/blob/master/luks-ops.sh] (Credits to John Troon for the original script)

The encryption strategy

Device mapper is the Linux kernel driver for volume management and provides transparent encryption of devices through the Linux kernel crypto API, using its device mapper crypt (dm-crypt) module. Dm-crypt is commonly used through Cryptsetup [cryptsetup], a command line interface to dm-crypt, allowing user to setup a new encrypted block device in /dev, specifying the encryption mode, the cipher and the key. Then the device can be formatted with a file system (e.g. ext4), mounted like any other partition and used as persistent storage.

Cryptsetup supports different encryption modes, like plain dm-crypt [cryptsetup] and LUKS volumes [LUKS_web, LUKS_spec] already included in the Linux kernel, but also Loop-AES [loopaes] and TrueCrypt/VeraCrypt [vera] requiring extra modules installation.

We restricted our choice to dm-crypt usage, which exploits Linux kernel built-in APIs, avoiding the installation of any additional external package other than cryptsetup. In particular, the LUKS encryption grants better usability and flexibility to end users without neglecting data security. Unlike others encryption modes, LUKS stores all dm-crypt setup information in the partition header at the beginning of the block device itself, allowing for multiple passphrases that can be changed and/or revoked anytime. It provides robustness against low-entropy passphrases attack using salting and iterated PBKDF2 passphrase hashing.

Cryptsetup allows for different ciphers usage. A cipher consists of three parts: a block cipher, i.e. it is the encryption algorithm, which operate on fixed-length blocks of data; a block cipher mode of operation, which describes how to repeatedly apply a cipher single block operation to data larger than cipher block size and an Initialization Vector (IV) generator, used to randomize the output of the encryption algorithm, ensuring that the same data are encrypted differently with the same key.

LUKS default cipher is aes-xts-plain64, i.e. AES as block cipher, XTS as mode of operation and plain64 as IV generator. The Advanced Encryption Standard (AES) [AES] is a symmetric-key algorithm, I.e. the same key is used either to encrypt and decrypt data, applying several substitution and permutation rounds to plaintext block to produce encrypted blocks. The Xor encrypt xor Tweakable block Cipher (XTS) mode of operation [XTS1, XTS2] is intended specifically to encrypt data on a block-structured storage device, e.g. disk sectors. The mode works with AES as underlying block cipher which is applied two times to each data chunk: the plain text block is combined with the tweak value, i.e. the plain64 IV, encrypted with AES. Then the block is AES encrypted with the key. Finally, the result is combined again with the tweak value before storing the cipher block.

These options represent the current standard on storage encryption and their modification is strongly discouraged, unless user requires particular configurations. For this reason, even if the Laniakea encryption layer can in theory accept user-defined configuration, e.g. different ciphers, we did not expose these options in the user-interface.

Storage encryption workflow

When the storage encrpyptions is required by the user the following workflow is triggered:

	All required software are installed, e.g. cryptsetup.

	A strong alphanumerical passphrase is generated (100 characters long).

	The storage is encrypted. Laniakea adopts, by default, xts-aes-plain64 cipher with 256 bit keys ans sha256 hashing algorithm.

Defaults values

cipher_algorithm='aes-xts-plain64'
keysize='256'
hash_algorithm='sha256'
device='/dev/vdb'
cryptdev='crypt'
mountpoint='/export'
filesystem='ext4'

	The passphrase is uploaded on Vault, allowing user to retrieve it through the Laniakea dashboard.

	Once the LUKS partition is created, it is unlocked.

The unlocking process will map the partition to a new device name using the device mapper. This alerts the kernel that device is actually an encrypted device and should be addressed through LUKS using the /dev/mapper/<cryptdev_name> so as not to overwrite the encrypted data. cryptdev_name is random generated to avoid accidental overwriting.

	The volume is mounted, by default, on /export, with standard ext4 filesystem and Galaxy is configured to store here datasets.

File System Encryption Test

Test executed to ensure LUKS volume encryption.

	Create two volumes, here named vol1, vol2.

	Attach each one to the instance (here listed as /dev/vdd and /dev/vde) and mount them respectively to /export and /export1.

$ df -h
Filesystem Size Used Avail Use% Mounted on
...
/dev/vdd 976M 2.6M 907M 1% /export
/dev/vde 976M 2.6M 907M 1% /export1

	Encrypt /export, i.e. /dev/vdd using fast_luks (/export is the default value).

$ df -h
Filesystem Size Used Avail Use% Mounted on
...
/dev/vde 976M 2.6M 907M 1% /export1
/dev/mapper/jtedehex 990M 2.6M 921M 1% /export

Ensure that /export has the same permissions of the other two volumes.

drwxr-xr-x. 3 centos centos 4096 Nov 9 10:27 export
drwxr-xr-x. 3 centos centos 4096 Nov 9 10:27 export1

	Put the same file on both volumes:

$ echo "encryption test" > /export/test.txt
$ echo "encryption test" > /export1/test.txt

	Umount all the volumes and luksClose the encrypted one:

$ sudo cryptsetup luksClose /dev/mapper/jtedehex

	Create the volume binary image using dd:

sudo dd if=/dev/vdd of=/home/centos/vdd_out
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 21.809 s, 49.2 MB/s

$ sudo dd if=/dev/vde of=/home/centos/vde_out
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 21.3385 s, 50.3 MB/s

	HexDump the binary image with xdd:

$ xxd vdd_out > vdd.txt

$ xxd vde_out > vde.txt

As output you should have:

$ ls -ltrh
-rw-r--r--. 1 root root 1.0G Nov 9 11:19 vdd_out
-rw-r--r--. 1 root root 1.0G Nov 9 11:22 vde_out
-rw-rw-r--. 1 centos centos 4.2G Nov 9 11:32 vdd.txt
-rw-rw-r--. 1 centos centos 4.2G Nov 9 11:36 vde.txt

	Grep non-zero bytes and search for the test.txt file content encryption test:

$ grep -v "0000 0000 0000 0000 0000 0000 0000 0000" vde.txt > grep_vde.txt
$ grep "encryption test" grep_vde.txt
8081000: 656e 6372 7970 7469 6f6e 2074 6573 740a encryption test.

$ grep -v "0000 0000 0000 0000 0000 0000 0000 0000" vdd.txt > grep_vdd.txt
$ grep "encryption test" grep_vdd.txt
$

Note

It is possible to see the test.txt file content only on the un-encrypted volume.

Moreover, the output file grep_vde.txt is 73 kb while the encrypted one, grep_vdd.txt (138 MB), is very large:

-rw-rw-r--. 1 centos centos 73K Nov 9 11:46 grep_vde.txt
-rw-rw-r--. 1 centos centos 138M Nov 9 11:58 grep_vdd.txt

We also tried to open the volume when active (LUKS volume opened and mounted, Galaxy running) in the Virtual Machine, using the cloud controller (as administrator).

Test executed on the cloud controller:

rbd map volume-3bedc7bc-eaed-466f-9d55-f2c29b44a7b2 --pool volumes
/dev/rbd0

lsblk -f
NAME FSTYPE LABEL UUID MOUNTPOINT
sda
|-sda1 ext4 db06fc46-7231-4189-ba2b-0b0117049680 /boot
|-sda2
|-sda5 swap e5b98538-8337-4e25-8f82-f97f04258716 [SWAP]
`-sda6 LVM2_member n4SAgY-GRNy-4Fl2-ROoQ-rRIf-bdBP-QC1B6s
 `-vg00-root ext4 1e3f1ff1-8677-4236-8cb4-07d5cad32441 /
rbd0 crypto_LUKS c4bee3b9-e0dc-438e-87ae-2a3e491081c0

mount /dev/rbd0 /mnt/
mount: unknown filesystem type ‘crypto_LUKS’

It is not possible to mount the volume without the user password.

Fast-luks script

The fast-luks [https://github.com/Laniakea-elixir-it/fast-luks] bash script is responsible for Laniakea Storage encryption. It parse common cryptsetup parameters to encrypt the volume. For this reason it checks for cryptsetup and dm-setup packages and it install cryptsetup, if not installed.

The default encryption parameters are:

cipher_algorithm: aes-xts-plain64
keysize: 256
hash_algorithm: sha256
device: /dev/vdb
cryptdev: crypt [this is randomly generated]
mountpoint: /export
filesystem: ext4

From version v3.0.1 Hashicorp Vault support has been integrated. It exploits a Vault token with the right write policy only, which can be used only one time and for a limited time duration (currently configured to expire after 12 hours), to store user secret passphrases. A temporary python virtual environment is created allowing fast-luks to store secrets on vault and then it is deleted.

The fast-luks script is automatically downloaded in /home/galaxy/laniakea_utils/fast-luks.

Full documentation on fast-luks script is hosted here [https://github.com/Laniakea-elixir-it/fast-luks].

Note

The script requires superuser rights.

Luksctl: LUKS volumes management

Luksctl is a python script allowing to easily Open/Close and Check LUKS encrypted volumes, parsing dmsetup and cryptsetup commands. It’s source code is located on Laniakea GitHub [https://github.com/Laniakea-elixir-it/luksctl].

Note

The script requires superuser rights.

	Module

	Action

	Description

	luksctl

	open

	Open and mount the encrypted storage

	

	close

	Umount and close the encrypted storage

	

	status

	Show the encrypted storage status

Dependencies

Since the script is going to parse cryptsetup, dmsetup and mount/umount commands, all of them are required

cryptsetup
dmsetup

Open LUKS volumes

To open LUKS volume, call: luksctl open, which will require your LUKS decrypt password:

$ sudo luksctl open
Enter passphrase for /dev/disk/by-uuid/9bc8b7c6-dc7e-4aac-9cd7-8b7258facc75:
Name: ribqvkjj
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 252, 1
Number of targets: 1
UUID: CRYPT-LUKS1-9bc8b7c6dc7e4aac9cd78b7258facc75-ribqvkjj

Encrypted volume: [OK]

Close LUKS volumes

To Close LUKS volume, call luksctl close:

$ sudo luksctl close
Encrypted volume umount: [OK]

LUKS volumes status

To check if LUKS volume is Open or not call luksctl status

$ sudo luksctl status
Name: ribqvkjj
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 252, 1
Number of targets: 1
UUID: CRYPT-LUKS1-9bc8b7c6dc7e4aac9cd78b7258facc75-ribqvkjj

Encrypted volume: [OK]

LUKSctl: APIs

A set of RESTFul APIs is distributed with LUKSctl. It is written using python Flask micro framework and Gunicorn. It’s source code is located on Laniakea GitHub [https://github.com/Laniakea-elixir-it/luksctl_api].

A systemd unit file is used for start/stop/restart the API.

	Moudule

	Action

	Description

	luksctl-api

	status

	Show status

	

	stop

	Stop the API

	

	start

	Start the API.

	

	restart

	Restart the API.

Note

LUKSctl-api is configured to listen on 5000 port.

$ sudo systemctl status luksctl-api
● luksctl-api.service - Gunicorn instance to serve luksctl api server
 Loaded: loaded (/etc/systemd/system/luksctl-api.service; enabled; vendor preset: disabled)
 Active: active (running) since Fri 2019-10-25 14:23:06 UTC; 1 day 17h ago
 Main PID: 19972 (gunicorn)
 CGroup: /system.slice/luksctl-api.service
 ├─19972 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/luksctl_api/venv/bin/gunicorn --workers 2...
 ├─19995 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/luksctl_api/venv/bin/gunicorn --workers 2...
 └─19997 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/luksctl_api/venv/bin/gunicorn --workers 2...

Oct 25 14:23:06 slurmserver systemd[1]: Started Gunicorn instance to serve luksctl api server.
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972] [INFO] Starting gunicorn 19.9.0
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972] [INFO] Listening at: https://0.0.0.0:...19972)
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972] [INFO] Using worker: sync
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19995] [INFO] Booting worker with pid: 19995
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19997] [INFO] Booting worker with pid: 19997
Oct 26 07:55:37 slurmserver sudo[24629]: luksctl_api : TTY=unknown ; PWD=/home/luksctl_api/luksctl_api ; USER=root ; C...status
Oct 27 07:48:04 slurmserver sudo[21947]: luksctl_api : TTY=unknown ; PWD=/home/luksctl_api/luksctl_api ; USER=root ; C...status
Hint: Some lines were ellipsized, use -l to show in full.

It used to connect the Laniakea Dashboard to the encrypted instances, allowing end-user to perform some actions, e.g. to mount and enable the LUKS storage volume, without accessing the Virtual Machine with SSH.

Currently, supported APIs are:

Volume Status

A GET request is used to check the status of the encrypted volume and show it in the Dhasboard. If the volume is open and mounted it return mounted, othrewise it return umounted. If the API is not available, an unavailable status is showed.

Example request:

$ curl -k -i -X GET 'https://90.147.75.173:5000/luksctl_api/v1.0/status'
HTTP/1.1 200 OK
Server: gunicorn/19.9.0
Date: Sun, 27 Oct 2019 08:02:54 GMT
Connection: close
Content-Type: application/json
Content-Length: 27

{"volume_state":"mounted"}

Volume Open

A POST request can be used to open and mount the encrypted volume in case of VM reboot. To prevent unwanted restart, the API check if the volume is already mounted. If yes it return mounted, otherwise it run luksctl open command.

Example request:

curl -k -X POST 'https://<vm_ip_address>:5000/luksctl_api/v1.0/open' -H 'Content-Type: application/json' -d '{ "vault_url": vault_url, "vault_token": wrapping_read_token, "secret_root": vault_secrets_path, "secret_path": secret_path, "secret_key": user_key }'

API configuration

To perform the LUKSctl API, Laniakea creates a luksctl_api user on the Virtual Machine, and install the LUKSctl on its home directory. This user can only run the LUKS commands as super user, for security reasons. Finally, to sercure API communications, a self signed SSL certificate is created and installed.

The LUSKctl API currently support both single VMs and Cluster. Moreover, if the encrypted volume is used to host the Docker Engine files, it can be configured to correctly manage this scenario. This is managed using a json configuration file config.json.

Note

Laniakea provides automaric configuration for LUKSctl APIs.

Single VM

	Description

	This is the default API configuration.

	config.json

	{
 "INFRASTRUCTURE_CONFIGURATION": "single_vm"
}

Docker

	Description

	The Docker engine files are installed on the encrypted storage, so the Docker daemon needs to be restarted after LUKS volume mount. If VIRTUALIZATION_TYPE is set at docker after LUKS volume mount, the Docker daemon is restarted.

	config.json

	{
 "INFRASTRUCTURE_CONFIGURATION": "single_vm",
 "VIRTUALIZATION_TYPE": "docker"
}

Cluster

Current cluster configuration foresee a NFS between front and worker nodes. If the Front End and/or the Worker Nodes are restarted, once the encrypted volume is opened and mounted, the NFS has to be restarted. If the cluster support is enabled in the API configuration file, after LUKS volum mount, the API contacts each worker nodes, via API, and restart the NFS module.

Front End configuration

	Description

	To enable API cluster support the variable INFRASTRUCTURE_CONFIGURATION has to be set at cluster on the front end and the worker nodes list has to be provided.

	config.json

	{
 "INFRASTRUCTURE_CONFIGURATION": "cluster",
 "WN_IPS": ["127.0.0.1"]
}

Worker Nodes(s) configuration

	Description

	On each worker node, the API needs the list of the NFS shared directores. This list is required to check if all directories have been properly mounted.

	config.json

	{
 "NFS_MOUNTPOINT_LIST": ["/home","/export"]
}

Cryptsetup hints

The cryptsetup action to set up a new dm-crypt device in LUKS encryption mode is luksFormat:

cryptsetup -v --cipher aes-xts-plain64 --key-size 256 --hash sha 256 --iter-time 2000 --use-urandom --verify-passphrase luksFormat crypt --batch-mode

where crypt is the new device located to /dev/mapper/crypt.

To open and mount to /export an encrypted device:

cryptsetup luksOpen /dev/vdb crypt

mount /dev/mapper/crypt /export

To show LUKS device info:

dmsetup info /dev/mapper/crypt

To umount and close an encrypted device:

umount /export

cryptsetup close crypt

To force LUKS volume removal:

dmsetup remove /dev/mapper/crypt

Note

Run as root.

Change LUKS password

LUKS provides 8 slots for passwords or key files. First, check, which of them are used:

cryptsetup luksDump /dev/<device> | grep Slot

where the output, for example, looks like:

Key Slot 0: ENABLED
Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

Then you can add, change or delete chosen keys:

cryptsetup luksAddKey /dev/<device> (/path/to/<additionalkeyfile>)

cryptsetup luksChangeKey /dev/<device> -S 6

As for deleting keys, you have 2 options:

	delete any key that matches your entered password:

cryptsetup luksRemoveKey /dev/<device>

	delete a key in specified slot:

cryptsetup luksKillSlot /dev/<device> 6

Galaxyctl: Galaxy management

Galaxyctl is a python script collection used for Galaxy management, to properly check uWSGI Stats and to correctly retrieve Galaxy and uWSGI workers status. It’s source code is located on Laniakea GitHub [https://github.com/Laniakea-elixir-it/galaxyctl].

Note

Since the script parse supervisorctl or systemd commands, it needs to be run as superuser.

	Moudule

	Action

	Description

	galaxy

	status

	Show galaxy status

	

	stop

	Stop Galaxy. --force check uwsgi master process. If it is still running, after galaxy stop, it is killed.

	

	start

	Start Galaxy. --force force galaxy to start by restarting it. --retry option allow to specify number of tentative retart (default 5). --timeout allow to customize uWSGI stats server wait time. These options are used during galaxy instantiation and you should not use them on production.

	

	restart

	Restart Galaxy. --force force galaxy to start by restarting it. --retry option allow to specify number of tentative retart (default 5). --timeout allow to customize uWSGI stats server wait time. These options are used during galaxy instantiation and you should not use them on production.

	

	startup

	This method is used only to run galaxy for the first time and you shoud not use it in production. --retry option allow to specify number of tentative retart (default 5). --timeout allow to customize uWSGI stats server wait time.

Galaxyctl basic usage

The script requires superuser commands to be used. Its basic commands are:

	Action

	Command

	Start Galaxy

	sudo galaxyctl start galaxy

	Stop Galaxy

	sudo galaxyctl stop galaxy

	Restart Galaxy

	sudo galaxyctl restart galaxy

	Check Galaxy Status

	sudo galaxyctl status galaxy

Logging

Logs are stored in /var/log/galaxy/galaxyctl.log file.

Advanced options

stop

To stop galaxy:

sudo galaxyctl stop galaxy

The script check the uWSGI Stats server to retrieve workers PID and their status. If, after uWSGI stop, workers are still up and running, they are killed, allowing Galaxy to correctly start next time.
The --force options allow to kill uwsgi master process if it is still alive after galaxy stop (in case of uwsgi FATAL error or ABNORMAL TERMINATION). Please check galaxy logs before run --force option.

start

To start Galaxy:

sudo galaxyctl start galaxy

Once Galaxy started, galaxyctl waits and check the uWSGI Stats server. Since it is the last software loaded, this ensure that Galaxy has correctly started.
The script also check that at least 1 uWSGI worker has correctly started and it is accepting requests.

If no workers are available you have to restart Galaxy.
Galaxyctl is able to automatically restart galaxy if the option --force is specified, restarting it until the workers are correctly loaded
The number of retries is set, by default, to 5. It can be customized using --retry option, e.g. --retry 10.
These options were not designed for production, but are used only during VMs instantiation phase to ensure Galaxy can correctly start.

restart

To restart Galaxy:

sudo galaxyctl restart galaxy

The options --force, --timeout and --retry are available for restart command too.

Galaxy first start

Galaxy takes longer to start the first time. Since the uWSGI stats server is the last software component started, the script waits to ensure that Galaxy has correctly started. Then uWSGI workers are checked to ensure Galaxy is accepting requests. If not, uWSGI is restarted.
Currently, before rise an error, the script try to restart galaxy 5 times, while the waiting time is set to 600 seconds.
The command used in /usr/local/bin/galaxy-startup script, is

galaxyctl startup galaxy -c /home/galaxy/galaxy/galaxy.ini -t 600

Configuration file

Supervisord and systemd/upstart are supported to start/stop/restart/status Galaxy. The init system can be set using the variables init_system: two values are, currently, allowed: supervisord and init

	init_system

	Explanation

	supervisord

	Supervisord is current default, it is mandatory for docker container, since there’s no systemd on docker images.

	init

	CentOS 7 and Ubuntu 16.04 use systemd, while Ubuntu 14.04 is using upstart.

Through galaxyctl_libs.DetectGalaxyCommands method the script automatically retrieves the right command to be used and it is compatible with both CentOS 7 and Ubuntu 16.04.

If Supervisord is used to manage Galaxy (which is our default choice), configuration files have to be specified using the variable supervisord_config_file
On CentOS:

supervisord_conf_file = '/etc/supervisord.conf'

while on Ubuntu:

supervisord_conf_file = '/etc/supervisor/supervisord.conf'

Galaxyctl needs galaxy.yml to retrieve uWSGI stats server information, through the variable:

galaxy_config_file = '/home/galaxy/galaxy/config/galaxy.yml'

Features

	Galaxyctl: libraries
	Dependencies

	DetectGalaxyCommands

	UwsgiSocket

	UwsgiStatsServer

	Galaxyctl: APIs
	Restart Galaxy

Galaxyctl: libraries

Galaxyctl is a python script collection for Galaxy management (first start, stop/start/restart/status).

Note

Galaxyctl requires superuser privileges.

Note

Current version: v2.0.0

	Script

	Description

	galaxyctl_libs

	Python libraries for uWSGI socket and stats server management, LUKS volume and Onedata space management.

	galaxyctl

	Galaxy management script. It integrates Luksctl and Onedatactl commands.

Galaxyctl_libs is composed by several modules.

Dependencies

Galaxyctl_libs depends on uWSGI for Galaxy management (i.e. currently no run.sh support). Moreover lsof is needed to check listening ports.

uwsgi

lsof

DetectGalaxyCommands

Parse galaxy Stop/Start/Restart/Status commands. Currently it supports supervisord or systemd/upstart

UwsgiSocket

Get uWSGI socket from galaxy.ini config file (e.g. 127.0.0.1:4001) and using lsof return uWSGI master PID.

master_pid, stderr, status = UwsgiSocket(fname='/home/galaxy/galaxy/config/galaxy.ini').get_uwsgi_master_pid()

UwsgiStatsServer

Read uWSGI stats server json.
The stats server is the last software which uWSGI run during galaxy start procedure. When the stats server is ready, galaxy is ready to accept requests.
Stats server address and port can be specified, but the class is able to read galaxy.ini file to recover stats informations.
Reading Stats json the class is able to detect if uWSGI workers accept requests or not.

	Inputs

	Description

	server

	uWSGI stats server address, e.g. 127.0.0.1

	port

	uUWSG stats server port, e.g. 9191

	timeout

	Wait time, in seconds, for the Stats server start. If galaxy is starting, 300 seconds as timeout is ok, while if galaxy is already running 5 seconds are enough.

	fname

	Galaxy config file, e.g. /home/galaxy/galaxy/config/galaxy.ini

GetUwsgiStatsServer

To connect to running uWSGI stats server call:

stats = UwsgiStatsServer(timeout=300, fname='/home/galaxy/galaxy/config/galaxy.ini)
socket = stats.GetUwsgiStatsServer()

GetUwsgiStatsServer

To check if at least one uWSGI workers accept requests, call:

stats = UwsgiStatsServer(timeout=300, fname='/home/galaxy/galaxy/config/galaxy.ini)
status = stats.GetUwsgiStatsServer('/home/galaxy/galaxy/config/galaxy,ini')

GetBusyList

To get the list of busy uWSGI workers:

stats = UwsgiStatsServer(timeout=5, fname='/home/galaxy/galaxy/config/galaxy.ini)
busy_list = stats.GetBusyList()

Galaxyctl: APIs

A set of RESTFul APIs is distributed with Galaxyctl. It is written using python Flask micro framework and Gunicorn.

A systemd unit file is used for start/stop/restart the API.

	Moudule

	Action

	Description

	galaxyctl-api

	status

	Show status

	

	stop

	Stop the API

	

	start

	Start the API.

	

	restart

	Restart the API.

Note

Galaxyct-api is configured to listen on 5001 port.

$ sudo systemctl status galaxyctl-api
● galaxyctl-api.service - Gunicorn instance to serve luksctl api server
 Loaded: loaded (/etc/systemd/system/galaxyctl-api.service; enabled; vendor preset: disabled)
 Active: active (running) since Wed 2019-10-09 16:49:57 UTC; 2 weeks 2 days ago
 Main PID: 15648 (gunicorn)
 CGroup: /system.slice/galaxyctl-api.service
 ├─15648 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.galaxyctl/api/venv/bin/gunicorn --workers 2 --b...
 ├─15662 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.galaxyctl/api/venv/bin/gunicorn --workers 2 --b...
 └─15663 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.galaxyctl/api/venv/bin/gunicorn --workers 2 --b...

Oct 09 16:49:57 vnode-0.localdomain systemd[1]: Started Gunicorn instance to serve luksctl api server.
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000] [15648] [INFO] Starting gunicorn 19.9.0
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000] [15648] [INFO] Listening at: http://0....5648)
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000] [15648] [INFO] Using worker: sync
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000] [15662] [INFO] Booting worker with pid: 15662
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000] [15663] [INFO] Booting worker with pid: 15663
Hint: Some lines were ellipsized, use -l to show in full.

It used to connect the Laniakea Dashboard to the Galaxy instances, allowing end-user to perform some actions, e.g. to restart Galaxy, without accessing the Virtual Machine with SSH.

Currently, supported APIs are:

Restart Galaxy

A POST request is used to restart Galaxy if offline. To prevent unwanted restart, the API check if Galaxy is on line. If yes it return on-line else it run the galaxy-startup script. Also NGINX is restarted.

Example request:

$ curl 'http://<galaxy_ip_address>:5001/galaxyctl_api/v1.0/galaxy-startup' -i -X POST -H 'Content-Type: application/json' -d '{"endpoint": "http://<galaxy_ip_address>/galaxy"}'

Laniakea Ansible Roles

Ansible automates Galaxy installation and configuration using Ansible roles. These roles make extensive use of Ansible Modules, which are the ones that do the actual work in ansible, they are what gets executed in each playbook task. Furthermore, a python scripts collection for galaxy advanced configuration is used (run by ansible).

Note

All roles can be easily installed through ansible-galaxy.

indigo-dc.galaxycloud

	Description

	Install Galaxy Production environment, i.e. Galaxy with all needed software, PostgreSQL, NGINX, Proftpd and uWSGI. The role also installs Galaxyctl and its API [https://github.com/Laniakea-elixir-it/galaxyctl] for Galaxy management.

	Installation

	# ansible-galaxy install indigo-dc.galaxycloud

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud

indigo-dc.galaxycloud-os

	Description

	This role provides storage encryption with aes-xts-plain64 algorithm using LUKS for Galaxy instances. The role installs and run fast-luks [https://github.com/Laniakea-elixir-it/fast-luks] for storage encryption, and LUKSctl [https://github.com/Laniakea-elixir-it/luksctl] and LUKSctl APIs [https://github.com/Laniakea-elixir-it/luksctl_api] for storage management.

	Installation

	ansible-galaxy install indigo-dc.galaxycloud-os

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud-os

indigo-dc.galaxycloud-tools

	Description

	Automated installation of tools from a Tool Shed into Galaxy. The role use the path scheme from the indigo-dc.galaxycloud [https://github.com/indigo-dc/ansible-role-galaxycloud] role. It creates a virtual environment, install ephemeris and invoke the install script to tools into Galaxy. The script stop Galaxy (if running), start a local Galaxy instance on http://localhost:8080 and install tools. The list of tools to install is provided in files/tool_list.yaml file, hosted in the external repository [https://github.com/indigo-dc/Galaxy-flavors-recipes]. Workflows are also installed.

	Installation

	ansible-galaxy install indigo-dc.galaxycloud-tools

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud-tools

indigo-dc.galaxycloud-refdata

	Description

	The role provides reference data using the CernVM File System and the corresponding Galaxy configuration.

	Installation

	ansible-galaxy install indigo-dc.galaxycloud-refdata

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud-refdata

indigo-dc.galaxycloud-fastconfig

	Description

	Ansible role for Galaxy fast configuration on Virtual Machines with Galaxy and tools already inside, created using indigo.dc-galaxycloud role. The documentation on Galaxy Express services, which explotis this role, is: Galaxy express configuration.

	Installation

	ansible-galaxy install indigo-dc.galaxycloud-fastconfig

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud-fastconfig

indigo-dc.galaxycloud_docker

	Description

	Run Galaxy Docker containers on a Centos7 (Ubuntu 16.04) virtual machine, creating Galaxy administrator user and mounting specific Cern VM file system. The Docker engine is installed and stored with docker images on the external volume (/export).

	Installation

	ansible-galaxy install indigo-dc.galaxycloud_docker

	Documentation

	https://github.com/indigo-dc/ansible-role-galaxycloud-docker

indigo-dc.cvmfs-client

	Description

	Ansible role to install CernVM-FS Client.

	Installation

	ansible-galaxy install indigo-dc.cvmfs-client

	Documentation

	https://github.com/indigo-dc/ansible-role-cvmfs-client

indigo-dc.cvmfs-server

	Description

	Ansible role to install CernVM FS Server.

	Installation

	ansible-galaxy install indigo-dc.cvmfs-server

	Documentation

	https://github.com/indigo-dc/ansible-role-cvmfs-server

TOSCA templates

[image: TOSCA logo]

The INDIGO PaaS Orchestrator [https://www.indigo-datacloud.eu/paas-orchestrator] is the key software component of the INDIGO PaaS layer: it receives deployment requests from the user interface software layer and coordinates the deployment process over the IaaS platforms. The Orchestrator accepts the deployment requests written using the TOSCA standard [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html], allowing to deploy complex application using small building blocks, named node types, which exploit Ansible to install and configure the end-user applications or services, like Galaxy, on bare OS images. Therefore, to correctly orchestrate Galaxy deployment the following component are needed:

	Ansible [https://www.ansible.com/] roles to automate software installation and configuration (see section Laniakea Ansible Roles)

	Custom types: define user configurable parameters, node requirements, call ansible playbooks.

	Artifact: define what to install and how to do it, through ansible role configuration.

	TOSCA template: the orchestrator interprets the TOSCA template and orchestrates the deployment.

Note

This section is not inteded to be a complete guide to TOSCA types, but aims to describes the solutions adopted to deploy Galaxy in Laniakea.

TOSCA documentation

	Custom types
	GalaxyPortal

	GalaxyPortalAndStorage

	GalaxyShedTool

	GalaxyReferenceData

	GalaxyPortalDocker

	Galaxy template

	Galaxy cluster template

Custom types

GalaxyPortal

Galaxy portal installation and configuration is entrusted to the GalaxyPortal custom type.

tosca.nodes.indigo.GalaxyPortal:
 derived_from: tosca.nodes.WebServer

It is composed by the following sections:

properties

Galaxy input parameters are listed in the properties section:

properties:
 admin_email:
 type: string
 description: email of the admin user
 default: admin@admin.com
 required: false
 admin_api_key:
 type: string
 description: key to access the API with admin role
 default: not_very_secret_api_key
 required: false
 user:
 type: string
 description: username to launch the galaxy daemon
 default: galaxy
 required: false
 install_path:
 type: string
 description: path to install the galaxy tool
 default: /home/galaxy/galaxy
 required: false
 export_dir:
 type: string
 description: path to store galaxy data
 default: /export
 required: false
 version:
 type: string
 description: galaxy version to install
 default: master
 required: false
 instance_description:
 type: string
 description: galaxy instance description
 default: "INDIGO Galaxy test"
 instance_key_pub:
 type: string
 description: galaxy instance ssh public key
 default: your_ssh_public_key
 flavor:
 type: string
 description: name of the Galaxy flavor
 required: false
 default: galaxy-no-tools
 reference_data:
 type: boolean
 description: Install Reference data
 default: true
 required: false

Note

The export_dir property is able to set Galaxy storage location. On single VMs it is set to /export, while on Cluster it has to be set to /home/export, allowing for data sharing.

requirements

The LRMS, e.g. local, torque, slurm, sge, condor, mesos, is specified in the requirements section:

requirements:
 - lrms:
 capability: tosca.capabilities.indigo.LRMS
 node: tosca.nodes.indigo.LRMS.FrontEnd
 relationship: tosca.relationships.HostedOn

artifacts

The needed Ansible roles, installed using ansible-galaxy, are listed in the artifacts section:

artifacts:
 nfs_role:
 file: indigo-dc.nfs
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_role:
 file: mtangaro.galaxycloud,master
 type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with its input parameters:

interfaces:
 Standard:
 configure:
 implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_install.yml
 inputs:
 galaxy_install_path: { get_property: [SELF, install_path] }
 galaxy_user: { get_property: [SELF, user] }
 galaxy_admin: { get_property: [SELF, admin_email] }
 galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
 galaxy_lrms: { get_property: [SELF, lrms, type] }
 galaxy_version: { get_property: [SELF, version] }
 galaxy_instance_description: { get_property: [SELF, instance_description] }
 galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
 export_dir: { get_property: [SELF, export_dir] }
 galaxy_flavor: { get_property: [SELF, flavor] }
 get_refdata: { get_property: [SELF, reference_data] }

The artifact, called in the implementation line, is located on github tosca-types/artifacts/galaxy/galaxy_install.yml [https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_install.yml]

- hosts: localhost
 connection: local
 roles:
 - role: indigo-dc.galaxycloud
 GALAXY_VERSION: "{{ galaxy_version }}"
 GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
 GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"

GalaxyPortalAndStorage

GalaxyPortalAndStorage custom type inherits its properties from GalaxyPortal and extends its functionalities for the storage encryption:

tosca.nodes.indigo.GalaxyPortalAndStorage:
 derived_from: tosca.nodes.indigo.GalaxyPortal

properties

The inputs needed to enable the storage encryption and the Hashicorp Vault key management are:

properties:
 storage_encryption:
 type: boolean
 description: Enable storage encryption using Vault to store secrets and LUKS to encrypt
 default: false
 required: true
 vault_url:
 type: string
 description: Hashicorp Vault server url
 default: vault_url
 required: false
 vault_wrapping_token:
 type: string
 description: Vault Wrapping token to write secret
 default: not_a_valid_token
 required: false
 vault_secret_path:
 type: string
 description: Vault path to store secret
 default: path_to_secret
 required: false
 vault_secret_key:
 type: string
 description: Vault secret key name
 default: secret_key_name
 required: false
 wn_ips:
 type: list
 entry_schema:
 type: string
 description: List of IPs of the WNs
 required: false
 default: []

artifacts

Here the indigo-dc.galaxycloud-os is the ansible role entrusted of file system encryption:

artifacts:
 nfs_role:
 file: indigo-dc.nfs
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_os_role:
 file: indigo-dc.galaxycloud-os
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_role:
 file: mtangaro.galaxycloud
 type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with its input parameters:

interfaces:
 Standard:
 configure:
 implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_os_install.yml
 inputs:
 storage_encryption: { get_property: [SELF, storage_encryption] }
 vault_url: { get_property: [SELF, vault_url] }
 vault_wrapping_token: { get_property: [SELF, vault_wrapping_token] }
 vault_secret_path: { get_property: [SELF, vault_secret_path] }
 vault_secret_key: { get_property: [SELF, vault_secret_key] }
 wn_ips: { get_property: [SELF, wn_ips] }
 galaxy_install_path: { get_property: [SELF, install_path] }
 galaxy_user: { get_property: [SELF, user] }
 galaxy_admin: { get_property: [SELF, admin_email] }
 galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
 galaxy_lrms: { get_property: [SELF, lrms, type] }
 galaxy_version: { get_property: [SELF, version] }
 galaxy_instance_description: { get_property: [SELF, instance_description] }
 galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
 export_dir: { get_property: [SELF, export_dir] }
 galaxy_flavor: { get_property: [SELF, flavor] }
 get_refdata: { get_property: [SELF, reference_data] }

The artifact includes indigo-dc.galaxycloud-os and indigo-dc.galaxycloud call.

- hosts: localhost
 connection: local
 roles:
 - role: indigo-dc.galaxycloud-os
 GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"

 - role: indigo-dc.galaxycloud
 GALAXY_VERSION: "{{ galaxy_version }}"
 GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
 GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"
 enable_storage_advanced_options: true # true only with indigo-dc.galaxycloud-os

Note

The option enable_storage_advanced_options has to be set to true, leaving storage configuration to indigo-dc.galaxycloud-os.

GalaxyShedTool

This custom type is used to install tools on Galaxy.

tosca.nodes.indigo.GalaxyShedTool:
 derived_from: tosca.nodes.WebApplication

properties

The inputs needed to install tools on Galaxy are:

properties:
 flavor:
 type: string
 description: name of the Galaxy flavor
 required: true
 default: galaxy-no-tools
 admin_api_key:
 type: string
 description: key to access the API with admin role
 default: not_very_secret_api_key
 required: false
 version:
 type: string
 description: galaxy version installed
 default: master
 required: false
 reference_data:
 type: boolean
 description: Install Reference data
 default: true
 required: false

requirements

This custom types requires to be run on a Host with Galaxy already installed before tools installation.

requirements:
 - host:
 capability: tosca.capabilities.Container
 node: tosca.nodes.indigo.GalaxyPortal
 relationship: tosca.relationships.HostedOn

Then the Indigo-dc.galaxy-tools role is installed:

artifacts:
 galaxy_role:
 file: indigo-dc.galaxy-tools,master
 type: tosca.artifacts.AnsibleGalaxy.role

interfaces

Finally, ansible is called:

interfaces:
 Standard:
 configure:
 implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_tools_configure.yml
 inputs:
 galaxy_flavor: { get_property: [SELF, flavor] }
 galaxy_admin_api_key: { get_property: [HOST, admin_api_key] }
 galaxy_version: { get_property: [SELF, version] }
 get_refdata: { get_property: [SELF, reference_data] }

to install tools:

- hosts: localhost
 connection: local
 roles:
 - { role: indigo-dc.galaxycloud-tools, GALAXY_VERSION: '{{ galaxy_version }}', when: galaxy_flavor != 'galaxy-no-tools' }

GalaxyReferenceData

The ReferenceData custom type configure Galaxy to retrieve the reference data from a CernVM-FS repository.

tosca.nodes.indigo.GalaxyReferenceData:
 derived_from: tosca.nodes.WebApplication

properties

The ReferenceData input parameters are:

properties:
 reference_data:
 type: boolean
 description: Install Reference data
 default: true
 required: true
 refdata_cvmfs_configuration:
 type: string
 description: Configure cvmfs or load preconfigured repository
 default: 'cvmfs_preconfigured'
 required: false
 refdata_cvmfs_repository_name:
 type: string
 description: CernVM-FS repository name
 default: 'elixir-italy.galaxy.refdata'
 required: false
 refdata_cvmfs_server_url:
 type: string
 description: CernVM-FS server, replica or stratum-zero
 default: 'server_url'
 required: false
 refdata_cvmfs_key_file:
 type: string
 description: CernVM-FS public key
 default: 'not_a_key'
 required: false
 refdata_cvmfs_proxy_url:
 type: string
 description: CernVM-FS proxy url
 default: 'DIRECT'
 required: false
 refdata_cvmfs_proxy_port:
 type: integer
 description: CernVM-FS proxy port
 default: 80
 required: false
 refdata_dir:
 type: string
 description: path to store galaxy reference data
 default: /cvmfs
 required: false
 flavor:
 type: string
 description: name of the Galaxy flavor
 required: true
 default: galaxy-no-tools

If refdata_cvmfs_configuration is set to cvmfs all the parameters are required to setup the CVMFS repository.

On the contrary, if refdata_cvmfs_configuration is set to cvmfs_preconfigured only refdata_cvmfs_repository_name, i.e. the name of the repository is needed, since all the needed parameters are retrieved from GitHub [https://github.com/indigo-dc/Reference-data-galaxycloud-repository].

requirements

Also in this case, Galaxy is required to install and configure reference data:

requirements:
 - host:
 capability: tosca.capabilities.Container
 node: tosca.nodes.indigo.GalaxyPortal
 relationship: tosca.relationships.HostedOn

artifacts

The role is used to install cvmfs client.

artifacts:
 cvmfs_role:
 file: indigo-dc.cvmfs-client
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_role:
 file: indigo-dc.galaxycloud-refdata
 type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with the paramteres:

interfaces:
 Standard:
 configure:
 implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_redfata_configure.yml
 inputs:
 get_refdata: { get_property: [SELF, reference_data] }
 refdata_cvmfs_configuration: { get_property: [SELF, refdata_cvmfs_configuration] }
 refdata_cvmfs_repository_name: { get_property: [SELF, refdata_cvmfs_repository_name] }
 refdata_cvmfs_server_url: { get_property: [SELF, refdata_cvmfs_server_url] }
 refdata_cvmfs_key_file: { get_property: [SELF, refdata_cvmfs_key_file] }
 refdata_cvmfs_proxy_url: { get_property: [SELF, refdata_cvmfs_proxy_url] }
 refdata_cvmfs_proxy_port: { get_property: [SELF, refdata_cvmfs_proxy_port] }
 refdata_dir: { get_property: [SELF, refdata_dir] }
 galaxy_flavor: { get_property: [SELF, flavor] }

The role download from the GitHub [https://github.com/indigo-dc/Reference-data-galaxycloud-repository] repository all needed information to mount the CVMFS repository:

- hosts: localhost
 connection: local
 pre_tasks:
 - set_fact:
 galaxy_flavor: 'galaxy-no-tools'
 when: galaxy_flavor == 'galaxy-minimal'
 - name: Get reference data cvmfs key for on-the-fly configuration
 get_url:
 url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/{{ refdata_cvmfs_key_file }}'
 dest: '/tmp'
 when: refdata_cvmfs_configuration == 'cvmfs'
 - name: Get reference data cvmfs key for preconfigured repository
 get_url:
 url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/{{ refdata_cvmfs_repository_name }}.pub'
 dest: '/tmp'
 when: refdata_cvmfs_configuration == 'cvmfs_preconfigured'
 - name: Get reference data cvmfs configuration for preconfigured repository
 get_url:
 url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_config_files/{{ refdata_cvmfs_repository_name }}.conf'
 dest: '/tmp'
 when: refdata_cvmfs_configuration == 'cvmfs_preconfigured'
 roles:
 - role: indigo-dc.galaxycloud-refdata

GalaxyPortalDocker

The role to deploy the Galaxy Official Docker is derived again from the GalaxyPortalAndStorage, allowing to configure the same options and to perform, also, the storage encryption.

tosca.nodes.indigo.GalaxyPortalDocker:
 derived_from: tosca.nodes.indigo.GalaxyPortalAndStorage

properties

The reference data are automatically configured, using CVMFS. Therefore the repository name is needed between the inputs.

properties:
 refdata_cvmfs_repository_name:
 type: string
 description: CernVM-FS repository name
 default: 'elixir-italy.galaxy.refdata'
 required: false

artifacts

The Docker engine has to be installed, alongside with the role to configure the Docker and the storage encryption.

artifacts:
 nfs_role:
 file: indigo-dc.nfs
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_os_role:
 file: indigo-dc.galaxycloud-os
 type: tosca.artifacts.AnsibleGalaxy.role
 docker_role:
 file: indigo-dc.docker
 type: tosca.artifacts.AnsibleGalaxy.role
 galaxy_role_docker:
 file: indigo-dc.galaxycloud_docker
 type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with the paramteres:

interfaces:
 Standard:
 configure:
 implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_docker.yml
 inputs:
 storage_encryption: { get_property: [SELF, storage_encryption] }
 vault_url: { get_property: [SELF, vault_url] }
 vault_wrapping_token: { get_property: [SELF, vault_wrapping_token] }
 vault_secret_path: { get_property: [SELF, vault_secret_path] }
 vault_secret_key: { get_property: [SELF, vault_secret_key] }
 galaxy_install_path: { get_property: [SELF, install_path] }
 galaxy_user: { get_property: [SELF, user] }
 galaxy_admin: { get_property: [SELF, admin_email] }
 galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
 galaxy_lrms: { get_property: [SELF, lrms, type] }
 galaxy_version: { get_property: [SELF, version] }
 galaxy_instance_description: { get_property: [SELF, instance_description] }
 galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
 export_dir: { get_property: [SELF, export_dir] }
 galaxy_flavor: { get_property: [SELF, flavor] }
 get_refdata: { get_property: [SELF, reference_data] }
 refdata_cvmfs_repository_name: { get_property: [SELF, refdata_cvmfs_repository_name] }

Finally, the galaxycloud_docker ansible role download and run the Galaxy Docker image.

- hosts: localhost
 connection: local
 roles:
 - role: indigo-dc.galaxycloud-os
 GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
 application_virtualization_type: 'docker'
 enable_reboot_scripts: false
 enable_customization_scripts: false

 - role: indigo-dc.galaxycloud_docker
 GALAXY_VERSION: "{{ galaxy_version }}"
 GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
 GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"

Galaxy template

The orchetrator interprets the TOSCA template and orchestrate the Galaxy deployment on the virtual machine.

Galaxy template is located here [https://raw.githubusercontent.com/Laniakea-elixir-it/laniakea-dashboard-config/master/tosca-templates/galaxy.yaml].

Input parameters are needed for each custom type used in the template:

	Virtual hardware parameters:

number_cpus:
 type: integer
 description: number of cpus required for the instance
 default: 1
memory_size:
 type: string
 description: ram memory required for the instance
 default: 1 GB
storage_size:
 type: string
 description: storage memory required for the instance
 default: 10 GB

	Galaxy input paramters:

admin_email:
 type: string
 description: email of the admin user
 default: admin@admin.com
admin_api_key:
 type: string
 description: key to access the API with admin role
 default: not_very_secret_api_key
user:
 type: string
 description: username to launch the galaxy daemon
 default: galaxy
version:
 type: string
 description: galaxy version to install
 default: master
instance_description:
 type: string
 description: galaxy instance description
 default: "INDIGO Galaxy test"
instance_key_pub:
 type: string
 description: galaxy instance ssh public key
 default: your_ssh_public_key
export_dir:
 type: string
 description: path to store galaxy data
 default: /export

	Storage input parameters:

galaxy_storage_type:
 type: string
 description: Storage type (Iaas Block Storage, Onedaata, Filesystem encryption)
 default: "IaaS"
userdata_provider:
 type: string
 description: default OneProvider
 default: "not_a_privder_url"
userdata_token:
 type: string
 description: Access token for onedata space
 default: "not_a_token"
userdata_space:
 type: string
 description: Onedata space
 default: "galaxy"

	Galaxy flavor input parameters:

flavor:
 type: string
 description: Galaxy flavor for tools installation
 default: "galaxy-no-tools"

	Reference data input parameters, for all possible options (CernVM-FS, Onedata and download).

reference_data:
 type: boolean
 description: Install Reference data
 default: true
refdata_dir:
 type: string
 description: path to store galaxy reference data
 default: /refdata
refdata_repository_name:
 type: string
 description: Onedata space name, CernVM-FS repository name or subdirectory downaload name
 default: 'elixir-italy.galaxy.refdata'
refdata_provider_type:
 type: string
 description: Select Reference data provider type (Onedata, CernVM-FS or download)
 default: 'onedata'
refdata_provider:
 type: string
 description: Oneprovider for reference data
 default: 'not_a_provider'
refdata_token:
 type: string
 description: Access token for reference data
 default: 'not_a_token'
refdata_cvmfs_server_url:
 type: string
 description: CernVM-FS server, replica or stratum-zero
 default: 'server_url'
refdata_cvmfs_repository_name:
 type: string
 description: Reference data CernVM-FS repository name
 default: 'not_a_cvmfs_repository_name'
refdata_cvmfs_key_file:
 type: string
 description: CernVM-FS public key
 default: 'not_a_key'
refdata_cvmfs_proxy_url:
 type: string
 description: CernVM-FS proxy url
 default: 'DIRECT'
refdata_cvmfs_proxy_port:
 type: integer
 description: CernVM-FS proxy port
 default: 80

Input parameters are passed to the corresponding ansible roles, through custom type call:

galaxy:
 type: tosca.nodes.indigo.GalaxyPortalAndStorage
 properties:
 os_storage: { get_input: galaxy_storage_type }
 token: { get_input: userdata_token }
 provider: { get_input: userdata_provider }
 space: { get_input: userdata_space }
 admin_email: { get_input: admin_email }
 admin_api_key: { get_input: admin_api_key }
 version: { get_input: version }
 instance_description: { get_input: instance_description }
 instance_key_pub: { get_input: instance_key_pub }
 export_dir: { get_input: export_dir }
 requirements:
 - lrms: local_lrms

galaxy_tools:
 type: tosca.nodes.indigo.GalaxyShedTool
 properties:
 flavor: { get_input: flavor }
 admin_api_key: { get_input: admin_api_key }
 requirements:
 - host: galaxy

galaxy_refdata:
 type: tosca.nodes.indigo.GalaxyReferenceData
 properties:
 reference_data: { get_input: reference_data }
 refdata_dir: { get_input: refdata_dir }
 flavor: { get_input: flavor }
 refdata_repository_name: { get_input: refdata_repository_name }
 refdata_provider_type: { get_input: refdata_provider_type }
 refdata_provider: { get_input: refdata_provider }
 refdata_token: { get_input: refdata_token }
 refdata_cvmfs_server_url: { get_input: refdata_cvmfs_server_url }
 refdata_cvmfs_repository_name: { get_input: refdata_cvmfs_repository_name }
 refdata_cvmfs_key_file: { get_input: refdata_cvmfs_key_file }
 refdata_cvmfs_proxy_url: { get_input: refdata_cvmfs_proxy_url }
 refdata_cvmfs_proxy_port: { get_input: refdata_cvmfs_proxy_port }
 requirements:
 - host: galaxy
 - dependency: galaxy_tools

Note

Note that Reference data custom type needs Galaxy installed to the ost host: galaxy, but depends on galaxy tools dependency: galaxy_tools since it has to check installed and missing tools.

Finally we have virtual hardware customization:

host:
 properties:
 num_cpus: { get_input: number_cpus }
 mem_size: { get_input: memory_size }

Image selection:

os:
 properties:
 type: linux
 distribution: centos
 version: 7.2
 image: indigodatacloudapps/galaxy

And Storage configuration, which takes the export_dir input for the mount point and storage_size input allowing for storage size customization.

- local_storage:
 # capability is provided by Compute Node Type
 node: my_block_storage
 capability: tosca.capabilities.Attachment
 relationship:
 type: tosca.relationships.AttachesTo
 properties:
 location: { get_input: export_dir }
 device: hdb

my_block_storage:
 type: tosca.nodes.BlockStorage
 properties:
 size: { get_input: storage_size }

Galaxy cluster template

The ansible_galaxycloud role provides the possibility to instantiate Galaxy with SLURM as Resource Manager, just setting the galaxy_lrms variable to slurm.

This allows to instantiate Galaxy with SLURM cluster exploiting INDIGO custom types and ansible roles using INDIGO components:

	CLUES (INDIGO solution for automatic elasticity)

	Master node deployment with SLURM (ansible recipes + tosca types)

	Install Galaxy + SLURM support (already in our ansible role indigo-dc.galaxycloud)

	Worker node deployment

	Galaxy customization for worker nodes

The related tosca template is located here [https://github.com/indigo-dc/tosca-types/blob/master/examples/galaxy_elastic_cluster.yaml].

The input parameters allow to customize the number of virtual nodes, nodes and master virtual hardware:

wn_num:
 type: integer
 description: Maximum number of WNs in the elastic cluster
 default: 5
 required: yes
fe_cpus:
 type: integer
 description: Numer of CPUs for the front-end node
 default: 1
 required: yes
fe_mem:
 type: scalar-unit.size
 description: Amount of Memory for the front-end node
 default: 1 GB
 required: yes
wn_cpus:
 type: integer
 description: Numer of CPUs for the WNs
 default: 1
 required: yes
wn_mem:
 type: scalar-unit.size
 description: Amount of Memory for the WNs
 default: 1 GB
 required: yes

Note

You can refere to Galaxy template section for galaxy input parameters.

The master node hosts Galaxy and Slurm controller:

elastic_cluster_front_end:
 type: tosca.nodes.indigo.ElasticCluster
 properties:
 deployment_id: orchestrator_deployment_id
 iam_access_token: iam_access_token
 iam_clues_client_id: iam_clues_client_id
 iam_clues_client_secret: iam_clues_client_secret
 requirements:
 - lrms: lrms_front_end
 - wn: wn_node

galaxy_portal:
 type: tosca.nodes.indigo.GalaxyPortal
 properties:
 admin_email: { get_input: admin_email }
 admin_api_key: { get_input: admin_api_key }
 version: { get_input: version }
 instance_description: { get_input: instance_description }
 instance_key_pub: { get_input: instance_key_pub }
 requirements:
 - lrms: lrms_front_end

lrms_front_end:
 type: tosca.nodes.indigo.LRMS.FrontEnd.Slurm
 properties:
 wn_ips: { get_attribute: [lrms_wn, private_address] }
 requirements:
 - host: lrms_server

lrms_server:
 type: tosca.nodes.indigo.Compute
 capabilities:
 endpoint:
 properties:
 dns_name: slurmserver
 network_name: PUBLIC
 ports:
 http_port:
 protocol: tcp
 source: 80
 host:
 properties:
 num_cpus: { get_input: fe_cpus }
 mem_size: { get_input: fe_mem }
 os:
 properties:
 image: linux-ubuntu-14.04-vmi

Then the worker nodes configuration (OS and virtual hardware):

wn_node:
 type: tosca.nodes.indigo.LRMS.WorkerNode.Slurm
 properties:
 front_end_ip: { get_attribute: [lrms_server, private_address, 0] }
 capabilities:
 wn:
 properties:
 max_instances: { get_input: wn_num }
 min_instances: 0
 requirements:
 - host: lrms_wn

galaxy_wn:
 type: tosca.nodes.indigo.GalaxyWN
 requirements:
 - host: lrms_wn

lrms_wn:
 type: tosca.nodes.indigo.Compute
 capabilities:
 scalable:
 properties:
 count: 0
 host:
 properties:
 num_cpus: { get_input: wn_cpus }
 mem_size: { get_input: wn_mem }
 os:
 properties:
 image: linux-ubuntu-14.04-vmi

Note

Note that to orchestrate Galaxy with SLURM we do not need new TOSCA custom types or ansible roles. Everythings is already built in INDIGO.

Build CVMFS server for reference data

This section gives a quick overview of the steps needed to create a new cvmfs repository to share reference data and activate it on the clients. The repository name used is elixir-italy.galaxy.refdata, but it can be replaced with the appropriate name.

All script needed to deploy a Reference data CernVM-FS Stratum 0 are located here [https://github.com/indigo-dc/Reference-data-galaxycloud-repository].

Create CernVM-FS Repository

The CernVM-FS (cvmfs) relies on OverlayFS or AUFS as default storage driver. Ubuntu 16.04 natively supports OverlayFS, therefore it is used as default, to create and populate the cvmfs server.

	Install cvmfs and cvmfs-server packages.

	Ensure enough disk space in /var/spool/cvmfs (>50GiB).

	For local storage: ensure enough disk space in /srv/cvmfs.

	Create a repository with cvmfs_server mkfs.

Warning

	/cvmfs is the repository mount point, containing read-only union file system mountpoints that become writable during repository updates.

	/var/spool/cvmfs hosts the scratch area described here, thus might consume notable disk space during repository updates. When you copy your files to /cvmfs/<your_repository_name>/, they are stored in /var/spool/cvmfs, therefore you have ensure enough space to this directory.

	/srv/cvmfs is the central repository storage location. During the cvmfs_server publish procedure, your files will be moved and stored here. Therefore you have to ensure enough space here, too. This directory needs to have enough space to store all your cvmfs server contents.

Note

A complete set of reference data takes 100 GB. Our cvmfs server exploits two different volumes, one 100 GB volume mounted on /var/spool/cvmfs and one 200 GB volume for /srv/cvmfs.

	To Create a new repository:

cvmfs_server mkfs -w http://<stratum_zero>/cvmfs/elixir-italy.galaxy.refdata -o cvmfs elixir-italy.galaxy.refdata'

Replace <stratum_zero> with your domain or ip address.

	Publish your contents to the cvfms stratum zero server:

cvmfs_server transaction elixir-italy.galaxy.refdata
touch /cvmfs/elixir-italy.galaxy-refdata/test-content
cvmfs_server publish elixir-italy.galaxy.refdata

	Periodically resign the repository (at least every 30 days):

cvmfs_server resign elixir-italy.galaxy.refdata

A resign script is located in /usr/local/bin/Cvmfs-stratum0-resign and the corresponding weekly cron job is set to /etc/cron.d/cvmfs_server_resign.

Log file is located in /var/log/Cvmfs-stratum0-resign.log.

	Finally restart the apache2 daemon.

sudo systemctl restart apache2

The public key of the new repository is located in /etc/cvmfs/keys/elixir-italy.galaxy.refdata.pub

Client configuration

	Add the public key of the new repository to /etc/cvmfs/keys/elixir-italy.galaxy.refdata.pub

	Repository configuration:

$ cat /etc/cvmfs/config.d/elixir-italy.galaxy.refdata.conf
CVMFS_SERVER_URL=http://90.147.102.186/cvmfs/elixir-italy.galaxy.refdata
CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/elixir-italy.galaxy.refdata.pub
CVMFS_HTTP_PROXY=DIRECT

Populate a CernVM-FS Repository (with reference data)

Content Publishing

	
cvmfs_server transaction <repository name>

	
Install content into /cvmfs/<repository name> (see Reference data download section)

	
cvmfs_server publish <repository name>

Note

cvmfs_server publish command will take time to move your contents from /cvmfs to /srv/cvmfs.

Reference data download

Reference data are available on Openstack Swift for public download. The list of reference data download link is here [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/lists/url_list.txt]

Furthermore, to automatically download our reference data set it is possible to use python script refdata_download.py [https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/scripts/refdata_download.py].

The package python-pycurl is needed to satisfy refdata_download.py requirements: on Ubuntu sudo apt-get install python-pycurl

Script usage

This script takes the yaml files as input located in Reference-data-galaxycloud-repository/lists/ directory.

	Option

	Description

	-i, --input.

	Input genome list in yaml format

	-o, --outdir

	Destination directory. Default /refdata

	-s, --space

	Subdirectory name (for cvmfs and onedata spaces). Default elixir-italy.galaxy.refdata

/usr/bin/python refdata_download.py -i sacCer3-list.yml -o /refdata -s elixir-italy.galaxy.refdata

Available Reference data yaml file:

	at10-list.yml

	at9-list.yml

	dm2-list.yml

	dm3-list.yml

	hg18-list.yml

	hg19-list.yml

	hg38-list.yml

	mm10-list.yml

	mm8-list.yml

	mm9-list.yml

	sacCer1-list.yml

	sacCer2-list.yml

	sacCer3-list.yml

It is possible to download automatically all reference data files using the bash script refdata_download.sh, which parse the python script, using as input the list file Reference-data-galaxycloud-repository/lists/list.txt

./refdata_download.sh list.txt

References

CernVM-FS stratum Zero documentation [http://cvmfs.readthedocs.io/en/stable/cpt-repo.html]

Nikhef wiki [https://wiki.nikhef.nl/grid/Adding_a_new_cvmfs_repository]

Vault configuration

Hashicorp Vault is a tool for securely accessing “secrets” and is exploited on Laniakea to store and manage user encryption passphrases.

A secret is everything you want to tightly control access to, such as encryption passphrases. Data stored on Vault are encrypted with 256 bit AES (Advanced Encryption Standard) cipher in the Galois Counter Mode (GCM) with a randomly generated nonce.

Laniakea by default exploits kv-v2 [https://www.vaultproject.io/docs/secrets/kv/kv-v2.html] secrets engine to store secrets within the configured physical storage for Vault.

Vault main concepts

	Paths: everything in Vault is path based: users are able to write their secrets on a specific path, depending on their Identity.

	Tokens are the core method for authentication within Vault. After the authentication on the Laniakea Dashboard, tokens are dynamically generated based on user identity.

	Policies provide a declarative way to grant or forbid access to certain path and operations, controlling what the token holder is allowed to do within Vault.

A token generated with a specific policy allows to write/read/update a secret in a specific path.

Vault authentication and authorization flow

Laniakea exploits a set of four different policies for secrets management:

	The first policy needed is named kv-2 and is used to issue new tokens and grant permissions on the Vault UI.

Manage tokens
path "auth/token/*" {
 capabilities = ["create", "read", "update", "delete", "sudo"]
}

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {
 capabilities = ["read"]
}

For Web UI usage
path "secrets/metadata" {
 capabilities = ["list"]
}

	The write only.hcl token is exploited by LUKS script on the Virtual machine during the encryption procedure to store passphrases on Vault.

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {
 capabilities = ["create"]
}

The ecryption script write the random generated passphrase on vault, in a path where only the user can access, since it depends on its identity.

	The Laniakea Dashboard can Read, if required by the user, after the authentication, the passphrase from Vault using the read_only.hcl policy.

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {
 capabilities = ["read"]
}

Users can read their passphrases through the dashboard after authenticating.

	Finally, the Laniakea Dashboard Deletes the passphrase from Vault, once the deployment is deleted using the delete_only.hcl policy.

Permanently remove all versions and metadata for a key
path "secrets/metadata/{{identity.entity.aliases.auth_jwt_9144d398.name}}/*" {
 capabilities = ["delete"]
}

The passphrases are automatically deleted from Vault once the Galaxy instance is deleted.

[image: ../../_images/vault_auth_flow.png]

Vault passphrase storage flow

On the Dashboard:

	The dashboard exploits the JWT token (from IAM) to get Vault token using the kv-2 policy. This token should not be revoked until the write procedure is finished, otherwise also the children token are revoked.

	The vault token is used to get a wrapping token [https://learn.hashicorp.com/vault/secrets-management/sm-cubbyhole] :

	with write_only policy, i.e. the token can only write (not update) a new secret on vault.

	it can be used only one time.

	limited in time duration (currently configured to expire after 12 hours).

The wrapping token is sent to the VM, via TOSCA template, with the vault path where the secret has to be stored. These information are sent to the VM, all needed to store a secret on vault using kv-v2:

	The path of the secret: secrets/<user_subject>/<deployment_uuid>. This allows to have user identity and deployment uuid dependent path for every secret

	wrapping token

	key name: the kv secret has key and its value. The value, i.e. the encryption passphrase, is automatically filled by luks script (it is randomly generated).

On the Virtual machine:

	The ansible role on the VM run the fast-luks script to encrypt storage.

	The (alphanumerical) passphrase is randomly generated.

	The wrapping token is unwrapped, thus obtaining the privileged token with write (only) permissions to the secrets path.

	The passphrase is written to secrets/<user_subject>/<deployment_uuid> path.

	The token used to write the passphrase is revoked.

Finally, if required, the dashboard crate a read_only token to show the passphrase to the user.

[image: ../../_images/vault_storage_flow.png]

Passphrase path on Vault

Each passphrase is stored on vault on /secrets path. Each one depends on

	User subject (issued by IAM): a unique and never reassigned user identifier

#. Deployment uuid (issued by the Dashboard): a unique and never reassigned deployment identifier.

This procedure results to have a passphrase path on Vault unique per user and Galaxy deployment. Only the deployment owner can write and read this path.

[image: ../../_images/vault_passphrase_path.png]

Laniakea Dashboard

The Laniakea Dashboard is the new, redesigned and reimplemented, user interface of Laniakea, developed using:

	Flask web micro-framework;

	Jinja2 template engine;

	Bootstrap 4 toolkit.

Lighter and more flexible than the previous interface, it has been integrated with Hashicorp Vault for user secrets management.

The Laniakea dashboard has, currently, two configuration files, in json format, which can be found in the /etc/orchestrator-dashboard directory: the config.json for the dashboard configuration and the vault-config.json specific for the Vault integretion configuration.

Moreover, the TOSCA templates for each Laniakea application, with the corresponding parameters and metadata file can be found in /opt/laniakea-dashboard-config:

	/opt/laniakea-dashboard-config/tosca-templates: this directory collects the TOSCA templates of applications shown in the dashboard.

	/opt/laniakea-dashboard-config/tosca-parameters: this directory collects the parameters files corresponding to the TOSCA templates.

	/opt/laniakea-dashboard-config/tosca-metadata: this directory collects the metadata files corresponding to the TOSCA templates.

These paths can be configured in the config.json file.

Warning

The Laniakea configuration files and templates are automatically configured by the installation procedure. Please modify them only if you know what you are doing!

Configuration

	Overview
	Home view

	Deployments list

	Advanced options

	Administration panel

	Basic configuration
	Configuration options

	Vault configuration
	Configuration options

	Add new applications
	Supported inputs

	Supported outputs

	Application launcher forms customization
	File structure

	Input parameters options

	Available tag types

	Supported inputs

	Application metadata
	Metadata file structure

	Supported options

Overview

Home view

The home page tiles show the available applications. The goal of each tile is to quickly display each application, with its description and configuration button. Currently, the interface allows to pin three applications.

[image: ../../_images/home.png]

Deployments list

Each user can manage its instances. It is possible to view details, delete and access instances. Finally, using the menu in the action column, It is also possible to view logs and the template used for each instance.

[image: ../../_images/deployments.png]

Advanced options

If advanced options are enabled in the Dashboard configuration file, a new Advanced dropdown menu becomes available in the navbar,

[image: ../../_images/advanced_slas_panel.png]

showing available Service Level Agreement

[image: ../../_images/advanced_settings_panel.png]

and Dashboard settings.

[image: ../../_images/advanced_configure_tab.png]

Administration panel

For the Dashboard Administrator Users panel is available for advanced users management,

[image: ../../_images/home_admin.png]

allowing to browse the Laniakea users,

[image: ../../_images/users_panel.png]

user datails:

[image: ../../_images/user_panel.png]

and user deployment list. The Deployment details can be inspected. The cloud icon in the last icon shows if the deployment is conncted to the INDIGO PaaS Orchestrator or not.

[image: ../../_images/user_deployments_list_panel.png]

Basic configuration

The dashboard configuration file is located at /etc/orchestrator-dashboard/config.json, to make configuration changes.

{
 "IAM_CLIENT_ID": "my_client_id",
 "IAM_CLIENT_SECRET": "my_client_secret",
 "IAM_BASE_URL": "https://iam-test.indigo-datacloud.eu",
 "ORCHESTRATOR_URL": "https://indigo-paas.cloud.ba.infn.it/orchestrator",
 "SLAM_URL": "https://indigo-slam.cloud.ba.infn.it:8443",
 "CMDB_URL": "https://indigo-paas.cloud.ba.infn.it/cmdb",
 "IM_URL": "https://indigo-paas.cloud.ba.infn.it/im",
 "TOSCA_TEMPLATES_DIR": "/opt/tosca-templates",
 "TOSCA_PARAMETERS_DIR": "/opt/tosca-parameters",
 "TOSCA_METADATA_DIR": "/opt/tosca-metadata",
 "CALLBACK_URL": "https://my-orchestrator-dashboard.com/callback",
 "DB_HOST": "localhost",
 "DB_USER": "my-user",
 "DB_PASSWORD": "my-password",
 "DB_NAME": "orchestrator_dashboard",
 "DB_PORT": "3306",
 "MAIL_SERVER": "your.smtp.server.com",
 "MAIL_PORT": "25",
 "MAIL_SENDER": "test@orchestrator.com",
 "ADMINS": "['admin@foo.it','other_admin@test.it']",
 "VAULT_URL": "https://my-vault-instance.com",
 "SUPPORT_EMAIL": "support@example.com",
 "EXTERNAL_LINKS": [{ "url": "https://indigo-paas.cloud.ba.infn.it/status-page", "menu_item_name": "Services status" }],
 "ENABLE_ADVANCED_MENU": "no",
 "LOG_LEVEL": "info
}

Configuration options

IAM_CLIENT_ID

Description: IAM client ID for the dashboard.

IAM_CLIENT_SECRET

Description: IAM client Secret for the dashaboard.

IAM_BASE_URL

Description: IAM url.

ORCHESTRATOR_URL

Description: Orchestrator url.

SLAM_URL

Description: SLAM url.

CMDB_URL

Description: CMDB url.

IM_URL

Description: IM url.

TOSCA_TEMPLATES_DIR

Description: Path of TOSCA tempaltes to be loaded.

Defaults: /opt/laniakea-dashboard-config/tosca-templates”,

TOSCA_PARAMETERS_DIR

Description: Path of TOSCA template parameters to create Dashboard configurable forms.

Defaults: /opt/laniakea-dashboard-config/tosca-parameters

TOSCA_METADATA_DIR

Description: Path of TOSCA template metadata with additional info (e.g. icon path).

Defaults: /opt/laniakea-dashboard-config/tosca-metadata

CALLBACK_URL

Description: Dahsboard url for callback. Configure it as <dashboard url>/callback

Defaults: https://my-orchestrator-dashboard.com/callback

DB_HOST

Description: Dataase host. Configure it with the IP address of the Database host (do not leave localhost).

Defaults: localhost

DB_USER

Description: MySQL database user.

Defaults: orchestrator

DB_PASSWORD

Description: MySQL database password.

DB_NAME

Description: MySQL database name:

Defaults: orchestrator_dashboard

DB_PORT

Description: MySQL database port.

Defaults: 3306

MAIL_SERVER

Description: Mail server address allowing Dahsboard notifications.

MAIL_PORT

Description: Mail server port.

Defaults: 25

MAIL_SENDER

Description: Mail sender of the notification mail.

Defaults: Laniakea@elixir-italy.org

ADMINS

Description: Dahsobard administrator users. Set this to a comma-separated list of valid Galaxy users (email addresses). These users will have access to the Users section of the dashboard.

VAULT_URL

Description: Vault url. This option enable vault support on Laniakea.

SUPPORT_EMAIL

Description: Support email, displayed on 500 error page.

Defaults: laniakea.helpdesk@gmail.com

EXTERNAL_LINKS

Description: create menu with external links, giving the url and the menu item name.

ENABLE_ADVANCED_MENU

Description: if yes, show advanced options in the navbar and the configurator form.

LOG_LEVEL

Description: Set log level.

Defaults: info

Vault configuration

The Vault support can be enabled editing the /etc/orchestrator-dashboard/config.json file, inserting the Vault url:

...
"VAULT_URL": "https://<vault_host>:<vault_port>"

Vault fine tuning can be done through the vault-config.json file at /etc/orchestrator-dashboard/vault-config.json:

{
 "VAULT_BOUND_AUDIENCE": "orchestrator-dashboard",
 "VAULT_SECRETS_PATH": "secrets",
 "WRAPPING_TOKEN_TIME_DURATION": "1h",
 "READ_POLICY": "read_only",
 "READ_TOKEN_TIME_DURATION": "12h",
 "READ_TOKEN_RENEWAL_TIME_DURATION": "12h",
 "WRITE_POLICY": "write_only",
 "WRITE_TOKEN_TIME_DURATION": "12h",
 "WRITE_TOKEN_RENEWAL_TIME_DURATION": "12h",
 "DELETE_POLICY": "delete_only",
 "DELETE_TOKEN_TIME_DURATION": "12h",
 "DELETE_TOKEN_RENEWAL_TIME_DURATION": "12h"
}

Configuration options

VAULT_BOUND_AUDIENCE

Description: Vault is configured to exploits Json Web Token (JWT) for authentication. The role created on Vault (called laniakea) authorizes only JWT with the given subject (i.e. user identifier) and this audience claim and gives it the policy. This parameter allows the dashboard to retrieve a token with the right bound audience to login on Vault.

Default: orchestrator-dashboard

VAULT_SECRETS_PATH

Description: path on Vault where users secrets are stored.

Default: secrets/

WRAPPING_TOKEN_TIME_DURATION

Description: time duration of the wrapping token sent to the encryption script to upload secrets on Vault.

Default: 1h (1 hour)

READ_POLICY

Description: Secrets reading policy name. This policy has to be configured on Vault with the right permissions to read secrets.

Default: read_only

READ_TOKEN_TIME_DURATION

Description: time duration of the read token, to read secrets on vault

Default: 12h (12 hours)

READ_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of read token.

Default: 12h (12 hours)

WRITE_POLICY

Description: Secrets writing policy name: The correspondig policy has to be configured on Vault with the right permissions to write secrets.

Default: write_only

WRITE_TOKEN_TIME_DURATION

Description: time duration of the write token, to write secrets on vault

Default: 12h (12 hours)

WRITE_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of write token.

Default: 12h (12 hours)

DELETE_POLICY

Description: Secrets deletion policy name. This policy has to be configured on Vault with the right permissions to delete secrets.

Default: delete_only

DELETE_TOKEN_TIME_DURATION

Description: time duration of the delete token, to delete secrets on vault

Default: 12h (12 hours)

DELETE_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of delete token.

Default: 12h (12 hours)

Add new applications

The PaaS Layer accepts deployment requests in the form of TOSCA Templates (see section TOSCA templates): a document (YAML syntax) describing the infrastructure to deploy, e.g. the virtual hardware and the software to be installed and configured. Galaxy TOSCA tempaltes are installed during Laniakea installation procedure automaticall on /opt/laniakea-dashboard-config/tosca-templates

To add new TOSCA applications copy your tosca template in /opt/laniakea-dashboard-config/tosca-templates and restart the dashboard:

cp tosca_example.yml /opt/laniakea-dashboard-config/tosca-templates/

docker restart orchestrator-dashboard

New applications will be then desplayed in the All applications section of the dashboard home page.

[image: ../../_images/home_view.png]

The Dashboard parses the TOSCA document automatically and renders the user interface with user friendly forms. This allows to extend Laniakea functionalities just adding new templates without any code modification.

For example, the input field in the TOSCA template to select the instance flavour in terms of vCPUs, RAM and disk storage is:

instance_flavor:
 type: string
 description: instance flavor (num_cpu, memory, disk)
 default: small

where the default value small corresponds to a VM with 1 CPU and 2 GB of RAM.

The user input field automatically rendered as text field on the dashboard, allowing the user to modify the flavour modifying the value:

[image: ../../_images/tosca_inputs_render_explained.png]

Note

The dashboard automatically renders all the entries in the input section of the tosca templates as text fields in the tab Ìnput values, for user configuration.

TOSCA templates inputs and outputs name are arbitrary and can be customized. The dashboard support some keywords to enable special features like the SSH key injection and Galaxy restart. Currently available keywords are listed below.

Supported inputs

instance_key_pub: user SSH public key is available in the dashboard through the SSH keys page (see section ../qs_key_pair). If configured, the public key is automatically assigned to a TOSCA template input value with this name if the input form is left empty. Otherwise, the value inserted in the input form will be assigned to instance_key_pub input.

Note

Lanaiakea exploits this feature to automatically set user public key on Galaxy instances.

admin_email: if present among the inputs, this field is automatically filled with user e-mail address.

Supported outputs

endpoint: if the endpoint output is present, it is displayed in the deployments page of the dashboard, in the endpoint column as clickable url.

node_ip: if available among the output values of the single node Galaxy instance, it is consumed by the dashboard as base url to contact the instance APIs to restart the encrypted storage and Galaxy if needed,

cluster_ip: if available among the output values of a Galaxy cluster, it is consumed by the dashboard as base url to contact the instance APIs to restart the encrypted storage, the NFS between the nodes and Galaxy.

Application launcher forms customization

The dashboard automatically renders all the entries in the input section of the tosca templates as text fields, for user configuration. Despite this allows to easily increase Laniakea applications, it may be necessary to make available to users only some fields to be configured and only some options defined by the service provider.

For this reason we extended the TOSCA templates inputs to create configurable forms. This creates a flexible web interface, allowing straightforward customisation of the user experience through human readable YAML configuration files, which can be easily adapted adding new functionalities to the user interface (e.g. adding a dropdown menu, text fields, toggles…) based on the Laniakea administrator requirements.

To enable configurable forms a parameter file, corresponding to the TOSCA template, is needed. To be automatically parsed by the dashboard the file needs the same name of the TOSCA template file with the extention .parameters.yaml. For example if the TOSCA template is named galaxy.yaml the corresponding parameters file has to be named galaxy.parameters.yaml and has to be placed in /opt/laniakea-dashboard-config/tosca-parameters.

Note

The parameters directory can be modified in the dahsboard configuration file config.json (see section Basic configuration).

Once added the parameters file, the dashboard needs to be restart to make changes effective.

The dashboard reads the content of this directory and automatically associate to each TOSCA template the corresponding parameters file, if existing.

Note

If the parameters file is available, only the inputs present within it will be shown on the dashboard user interface, allowing to select which TOSCA template input to customize and show.

For example, referring again to the input field to configure the VM virtual hardware, named ìnstance_flavor, we have the following TOSCA template input:

instance_flavor:
 type: string
 description: instance flavor (num_cpu, memory, disk)
 default: small

Rendered as an input text field:

[image: ../../_images/tosca_inputs_render.png]

The value small, which corresponds to a VM with 1 CPU and 2 GB of RAM, will be displayed as default value in an input text field, allowing the user to modify it and change the VM configuration.

This requires the user to know the hardware presets available on the infrastructure, their names and, above all, it would allow them to choose any possible presets knowing their names.

It is possible to customize this input value inserting an entry with the same name in the YAML parameters file.

For the ìnstance_flavor input, for example, we will have as parameter file input:

instance_flavor:
 display_name: "Instance flavour"
 tag_type: "select"
 description: "CPUs, memory size (RAM), root disk size"
 constraints:
 - { value: "medium", label: "Medium (2 cpu, 4 GB RAM, 20 GB dsk)" }
 - { value: "large", label: "Large (4 cpu, 8 GB RAM, 20 GB dsk)" }
 - { value: "xlarge", label: "xLarge (8 cpu, 16 GB RAM, 20 GB dsk)" }
 tab: "Virtual hardware"

Which is rendered as a dropdown menu on the dashboard:

[image: ../../_images/tosca_pars_render_2.png]

	File structure
	tabs

	inputs

	Input parameters options
	display_name

	tag_type

	description

	placeholder

	constraints

	required

	tab

	Available tag types
	text

	hidden

	email

	password

	select

	toggle

	radio

	ssh_pub_key_type

	Supported inputs
	instance_flavor_fe

	instance_flavor_wn

File structure

The YAML parameter file has two sections: tabs and ìnputs.

tabs

	Description

	This section is optional, if set creates the listed tabs instead of the Input values one. It is possible to display each input in the desired tab, using the option tab in the input section. If not specified, all inputs will be displayed by default in the Ìnput values tab, as default behaviour.

	Example

	# Set here the list of the tabs to be displayed
tabs: ["tab_1", "tab_2"]
...

inputs

	Description

	The list of the inputs is mandatory. Each input must have the same name of the corresponding TOSCA template input value, to be correctly associated.

	Example

	# Set here the list of the tabs to be displayed
tabs: ["tab_1", "tab_2"]

Set here a new set of inputs to be displayed
inputs:

 first_input:
 display_name: "<name to be displayed>"
 tag_type: "<specific tag type for this input>"
 description: "<description to desplayed>"
 tab: "tab_1"

 another_input:
 display_name: "<name to be displayed>"
 tag_type: "<specific tag type for this input>"
 description: "<description to desplayed>"
 tab: "tab_2"

 ...

Input parameters options

Each entry in the YAML parameters file can be customized in order to simplify the user intercation with the UI.

[image: ../../_images/tosca_pars_render_explained.png]

The Laniakea dashboard supports the following options.

display_name

	Description

	The name that will be displayed in the form.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 ...

tag_type

	Description

	Set the tag to be used in the form to generate dropdown menu, radio button… Currently, the following tags are available: text, hidden, email, password, select, radio, ssh_pub_key_type.

More on the available tag types can be found in the section: Available tag types.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 ...

description

	Description

	Override the descripion present in the tosca template input field.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 description: <custom_description_of_the_input>
 ...

placeholder

	Description

	The placeholder attribute specifies a short hint that describes the expected value of an input field/text area.
It is available for the following tag_types: text, email, password, ssh_pub_key_type.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 description: <custom_description_of_the_input>
 placeholder: <custom_placeholder_of_the_input>
 ...

constraints

	Description

	The constraint option is used to define the possible options to choose from. For instance, for select tag type it is possible to specify the selectable values.

It is possible to configure a value attribute, which is the value assigned to the input after the selection, and a label attribute to display.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 description: <custom_description_of_the_input>
 constraints:
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 ...
 ...

required

	Description

	When present it specifies that the input field must be mandatorly filled out before submitting the form.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 description: <custom_description_of_the_input>
 constraints:
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 ...
 required: <yes_or_no>

tab

	Description

	The tab where the input must be shown.

	Example

	input_name: value
 display_name: <name_to_be_displayed>
 tag_type: <selected_tag_type>
 description: <custom_description_of_the_input>
 constraints:
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 - { value: "<value_attribute>", label: "<displayed_label>" }
 ...
 required: <yes_or_no>
 tab: <custom_tab>

Available tag types

The Laniakea dashboard currently supports the following tag_types allowing to differentiate user interactions with the UI.

text

	Description

	Defines a one-line text input field.

	Example

	input_example:
 display_name: "Text input example"
 tag_type: "text"
 description: "Input description"
 default: "default_value"
 tab: "tab_2"

[image: ../../_images/tag_text_render.png]

hidden

	Description

	Define an hidden input. The user will not see any entry in the configuration form. Despite this, the dashboard will automatically assign a value to this input.

For example the token to write secrets to vault is assigned with this system, without the user noticing.

Warning

If defined in the tabs section, the tab field is requred.

	Example

	input_example:
 tag_type: "hidden"
 default: hidden_default_value
 tab: "tab_1" # Hidden fields needs a tab, if tabs are defined.

email

	Description

	The email tag defines a field for an e-mail address. The input value is automatically validated to ensure it is a properly formatted e-mail address.

	Example

	email_input_example:
 display_name: "user e-mail"
 tag_type: "email"
 description: "Type a valid e-mail address."
 tab: "tab_1"
 required: yes

[image: ../../_images/tag_email_render.png]

password

	Description

	Defines a password field, i.e. a text field with hidden input.

	Example

	password_input_example:
 display_name: "Password input example"
 tag_type: "password"
 description: "Password description"
 default: "default_value"
 tab: "tab_1"

[image: ../../_images/tag_password_render.png]

select

	Description

	Create drop down list of options, which appears when clicking on form element and allows the user to choose one of the options. The options are described using the constraint attribute.

	Example

	input_example:
 display_name: "Dropdown menu example"
 tag_type: "select"
 description: "Dropdown menu description"
 constraints:
 - { value: "value1", label: "Value 1" }
 - { value: "value2", label: "Value 2" }
 - { value: "value3", label: "Value 3" }
 tab: "tab_1"

[image: ../../_images/tag_select_render_closed.png]

[image: ../../_images/tag_select_render_open.png]

toggle

	Description

	Create a On/Off toggle. On values can be set ìn the constraints option.

	Example

	input_example:
 display_name: "Enable an option"
 tag_type: "toggle"
 description: "Turn on this option"
 constraints:
 - { value: "True", label: "On" }
 tab: "tab_1"

[image: ../../_images/tag_toggle_render.png]

radio

	Description

	Create a radio button to select one of many choices.

	Example

	input_example:
 display_name: "Radio buttons example"
 tag_type: "radio"
 description: "Radio buttons description"
 constraints:
 - { value: "value1", label: "Value 1" }
 - { value: "value2", label: "Value 2" }
 - { value: "value3", label: "Value 3" }
 tab: "tab_1"

[image: ../../_images/tag_radio_render.png]

ssh_pub_key_type

	Description

	Special tag for ssh public key input. It is a text field to insert a SSH public key.
If the ssh public key is set in the corresponding page (see section ../qs_key_pair) a placeholder is shown to remember te possibility to load the default key.
If no ssh public key is set, nothing is displayed as placeholder.

Warning

The input option has to be mandatorily named instance_key_pub in both TOSCA template and parameter file.

	Example

	instance_key_pub:
 display_name: "Insert instance SSH public key"
 tag_type: "ssh_pub_key_type"
 description: "Paste here your SSH public key or configure a default key"
 placeholder: 'Leave blank this field to load your default SSH public key'
 tab: "tab_1"
 required: yes

[image: ../../_images/tag_ssh_render.png]

Supported inputs

instance_flavor_fe

If an input with the same name is used in the TOSCA template, this variable does not trigger any special action. If not, the correspondig menu accepts couples of number of CPUs and RAM size in the form of python dictionary: {'<tosca_template_cpu_num>':'2', '<tosca_template_mem_size>':'4 GB'}. instance_flavor_fe is commonly used for front-end inputs.

tosca_template_cpu_num and tosca_template_mem_size are the corresponding inputs in the TOSCA template. For example, if in the TOSCA template you have:

...

topology_template:
 inputs:

 fe_cpus:
 type: integer
 description: Numer of CPUs for the front-end node
 default: 1
 required: yes

 fe_mem:
 type: scalar-unit.size
 description: Amount of Memory for the front-end node
 default: 1 GB
 required: yes

 ...

The corresponding entry in the parameter file will be:

instance_flavor_fe:
 display_name: "Front End instance flavour"
 tag_type: "select"
 description: "CPUs, memory size (RAM), root disk size"
 constraints:
 - { value: "{'fe_cpus':'2', 'fe_mem':'4 GB'}", label: "Medium (2 cpu, 4 GB RAM, 20 GB dsk)" }
 - { value: "{'fe_cpus':'4', 'fe_mem':'8 GB'}", label: "Large (4 cpu, 8 GB RAM, 20 GB dsk)" }
 - { value: "{'fe_cpus':'8', 'fe_mem':'16 GB'}", label: "xLarge (8 cpu, 16 GB RAM, 20 GB dsk)" }

instance_flavor_wn

If an input with the same name is used in the TOSCA template, this variable does not trigger any special action. If not, the correspondig menu accepts couples of number of CPUs and RAM size in the form of python dictionary: {'<tosca_template_cpu_num>':'2', '<tosca_template_mem_size>':'4 GB'}. instance_flavor_wn is commonly used for front-end inputs.

tosca_template_cpu_num and tosca_template_mem_size are the corresponding inputs in the TOSCA template. For example, if in the TOSCA template you have:

...
topology_template:
 inputs:
 wn_cpus:
 type: integer
 description: Numer of CPUs for the WNs
 default: 1
 required: yes

 wn_mem:
 type: scalar-unit.size
 description: Amount of Memory for the WNs
 default: 1 GB
 required: yes
...

The corresponding entry in the parameter file will be:

instance_flavor_wn:
 display_name: "Worker Node nstance flavour"
 tag_type: "select"
 description: "CPUs, memory size (RAM), root disk size"
 constraints:
 - { value: "{'wn_cpus':'2', 'wn_mem':'4 GB'}", label: "Medium (2 cpu, 4 GB RAM, 20 GB dsk)" }
 - { value: "{'wn_cpus':'4', 'wn_mem':'8 GB'}", label: "Large (4 cpu, 8 GB RAM, 20 GB dsk)" }
 - { value: "{'wn_cpus':'8', 'wn_mem':'16 GB'}", label: "xLarge (8 cpu, 16 GB RAM, 20 GB dsk)" }

Note

For the full list of supported tag types, see section: Available tag types.

Application metadata

The Laniakea dashboard needs some additional information to further customize each application, e.g. the image to show in the home page for each application.

[image: ../../_images/tosca_metadata_render_explained.png]

To add metadata information, corresponding to the TOSCA template, a metadata file is needed. To be automatically parsed by the dashboard the file needs the same name of the TOSCA template file with the extention .metadata.yaml. For example if the TOSCA template is named galaxy.yaml the corresponding meatadata file has to be named galaxy.metadata.yaml and has to be placed in /opt/laniakea-dashboard-config/tosca-metadata.

Note

The metadata directory can be modified in the dahsboard configuration file config.json (see section Basic configuration).

Once added the metadata file, the dashboard needs to be restart to make changes effective.

The dashboard reads the content of this directory and automatically associate to each TOSCA template the corresponding metadata file, if existing.

Metadata file structure

The YAML metadata file has only one section: metadata. For example:

metadata:
 icon: https://galaxyproject.org/images/galaxy-logos/galaxy_project_logo_square.png
 display_name: "Galaxy"
 virtualization_type: "Docker"
 pinned: 'yes'
 pin_order: 0

Supported options

icon

	Documentation

	Define the image/icon loaded in the application tile. If no image URL is provided, the Dashboard loads this icon [https://cdn4.iconfinder.com/data/icons/mosaicon-04/512/websettings-512.png].

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 ...

[image: ../../_images/metadata_icon_render.png]

display_name

	Documentation

	Define the name of the application shown in the Dashboard home page and in the configuration form.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 ...

[image: ../../_images/metadata_displayname_render.png]

ribbon

	Documentation

	Enable the ribbon on bottom right corner of each tile if True.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 ribbon: true
 ribbon_tag: "Test"
 ribbon_color: "yellow"
 ...

[image: ../../_images/metadata_ribbon.png]

ribbon_tag

	Documentation

	Define the name to be shown within the colored ribbon on the bottom right corner of the tile. Currently, we adopted three values:

Express: for those applications already installed in the image used to create the Virtual Instance, to speed-up the deployment.

Docker: for those applications run using a Docker container.

Live build: for those applications installed on a bare OS image from scratch.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 ribbon: true
 ribbon_tag: "Test"
 ribbon_color: "yellow"
 ...

ribbon_color

	Documentation

	Define the color of the ribbons.
Possible colors are: white, black, grey, blue, green, turquoise, purple, red, orange, yellow.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 ribbon: true
 ribbon_tag: "Test"
 ribbon_color: "yellow"
 ...

pinned

	Description

	Define the three applications which can be displayed in the Most used top row.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 virtualization_type: "Live build"
 pinned: 'yes'
 ...

pin_order

	Description

	Define the order of the three pinned application: 0 for the first place, 1 for the second and 2 for the third.

	Example

	metadata:
 icon: https://elixir-europe.org/system/files/elixir_node_italy.png
 display_name: "Custom application name"
 virtualization_type: "Live build"
 pinned: 'yes'
 pin_order: '0'

Laniakea installation

Laniakea relies on the INDIGO-DataCloud software catalogue [https://www.indigo-datacloud.eu/electricindigo-software-catalogue]. The Fig. 1 shows the deployment strategy to be followed to install Laniakea.

[image: ../../_images/paas_deploy.png]

Fig 1: PaaS component architecture scheme
We tested our deployment on OpenStack Mitaka [https://releases.openstack.org/mitaka/index.html] and Stein [https://releases.openstack.org/stein/index.html], using Ubuntu 16.04 as default OS.

Docker containers are used to provide the INDIGO microservices: each INDIGO component is installed using its official Docker container and run on a specific Virtual Machine.

Tab. 1 shows the VMs tha has to be created, their requirements and the corresponding ports configuration needed to install Laniakea.

Please create the needed VMs with the following configuration:

	INDIGO Component

	RAM

	vCPU

	Ports

	Network

	Proxy server

	2 GB

	1

	22, 443, 8080

	
public IP

private IP

	Identity and Access Manager (IAM)

	4 GB

	2

	22, 443

	public IP

	Infrastructure Manager (IM)

	4 GB

	2

	22, 8800

	private IP

	
Change Management Database (CMDB),

Cloud Provider Ranker (CPR)

	4 GB

	2

	22, 443, 5984, 8080,
8081

	private IP

	Service Level Agreement Manager (SLAM)

	2 GB

	1

	22, 8443, 443

	public IP

	PaaS Orchestrator

	4 GB

	2

	22, 443

	private IP

	HashiCorp Vault and Dashboard

	4 GB

	2

	22, 8200, 8250, 443

	public IP

In particular we highlight in the table the VM Network configuration, i.e. if the VM needs a public IP address to be accessed from outside or a private IP address is enough.

[image: ../../_images/openstack_paas_deploy.png]

Fig 2: INDIGO PaaS VMs view on OpenStack

Services end-points

Once installed the services will be available at the following endpoint:

Services end-points

	Service

	end-point

	IAM

	https://<iam_vm_dns_name>/

	SLAM

	https://<slam_vm_dns_name>:8443/auth

	Proxy

	https://<proxy_vm_dns_name>

	CMDB

	https://<proxy_vm_dns_name>/couch/_utils/database.html?indigo-cmdb-v2

	IM

	https://<proxy_vm_dns_name>/im

	CPR

	https://<proxy_vm_dns_name>/cpr

	Orchestrator

	https://<proxy_vm_dns_name>/orchestrator

	Dashboard

	https://<dashboard_vm_dns_name>

Service installation

	Prerequisites
	VM configuration

	Ansible installation

	Configuration

	SSH key pair configuration

	Identity Access Manager (IAM)
	VM configuration

	Enable Google Authentication

	Enable ELIXIR-AAI Authentication

	Installation

	Video tutorial

	IAM test

	Create IAM Client

	Obtaining an IAM access token

	Proxy server
	VM configuration

	Installation

	Video tutorial

	Infrastructure Manager (IM)
	VM configuration

	IAM protected resource configuration

	Installation

	Video tutorial

	IM configuration

	IM testing

	FAQ

	References

	CMDB and CPR
	VM configuration

	CMDB installation

	CMDB installation video tutorial

	CMDB configuration

	CMBD configuration json example

	CMDB configuration video tutorial

	CPR installation

	CPR video tutorial

	SLA Manager (SLAM)
	VM configuration

	SLAM IAM client creation

	Installation

	Video tutorial

	SLAM configuration

	PaaS Orchestrator
	VM configuration

	IAM protected resource configuration for the Orchestrator

	IAM protected resource configuration for CLUES

	Orchestrator Installation

	Video tutorial

	FAQ

	Hashicorp Vault
	VM configuration

	Installation

	Vault initialization

	References

	Laniakea Dashboard
	VM configuration

	IAM client configuration

	Installation

	Post installation steps to enable the callback

	Appendix A. Stateless version

	Appendix B. Database version

	The last mile: applications configuration
	Galaxy live build

	Galaxy express

	Galaxy Docker

	Test applications

	Updating Laniakea
	Current recommended configuration

Prerequisites

The installation procedure exploits Ansible to deploy all the INDIGO services.

A Virtual Machine with ansible is mandatory for this purpose, which we will refer to as control machine in the following. This VM will be used to run the installation procedure of each INDIGO component on the remote VMs.

Here, we will exploit the same VM we will use to deploy the Proxy Server.

VM configuration

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Public and private IP address.

This VM will be used as control machine VM to run Ansible and will also serve as host for the proxy server.

Warning

All the command will be run on this control machine VM!

Ansible installation

Ansible can be easily installed following the documentation [https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html].

We tested the whole procedure using Ansible 2.8.3 with Ubuntu 16.04 [https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#latest-releases-via-apt-ubuntu].

Configuration

	Clone the indigopaas-deploy repository [https://github.com/indigo-dc/indigopaas-deploy/tree/devel], the collection of recipes to install INDIGO-DataCloud PaaS micro-services

git clone -b v1.0 https://github.com/indigo-dc/indigopaas-deploy.git

cd indigopaas-deploy

mkdir ansible/inventory

	Create the file indigopaas-deploy/ansible/inventory/inventory and set the IP of the virtual machines for each service as shown in the following:

[iam]
<iam_vm_public_ip>

[im]
<im_vm_private_ip>

[cmdb]
<cmdb_vm_private_ip>

[cpr]
<cpr_vm_private_ip>

[slam]
<slam_vm_public_ip>

[proxy]
<proxy_vm_private_ip>

[orchestrator]
<orchestrator_vm_private_ip>

[vault]
<vault_vm_public_ip>

[orchestrator-dashboard]
<dashboard_vm_public_ip>

Warning

CMDB and CPR will be host on the same Virtual Machine in this guide.

Warning

Vault and the Orchestrator Dashboard will be host on the same Virtual Machine in this guide.

	Create the group_vars directory in indigopaas-deploy/ansible/inventory/

cd indigopaas-deploy/ansible/inventory

mkdir group_vars

This directory will be populated with the YAML files with the configuration variables for each indigo component, with the following structure:

group_vars/

├── cmdb.yml

├── iam.yaml

├── im.yaml

├── orchestrator.yaml

├── proxy.yaml

└── slam.yaml

SSH key pair configuration

To run Ansible on remote hosts we need to configure an SSH connection on each VM.

You can create a new SSH key

ssh-keygen -t rsa -b 4096

The default vaules should be ok.

Then you can distribute your new key copying and pasting the public key, i.e. the content of the file .ssh/id_rsa.pub, to /root/.ssh/authorized_keys on each virtual machine allowing ansible to to execute indigopaas-deploy roles.

Warning

The Ansible roles will install all the services over HTTPS protocol using Let’s Eencrypt certificates.

Identity Access Manager (IAM)

The INDIGO Identity and Access Management (IAM) is an Authentication and Authorisation Infrastructure (AAI) service which manages users credentitials and attributes, like group membership, and authorization policies to access the resources.

Note

Current IAM version: v1.5.0.rc2

Note

After IAM installation it is needed to configure the Cloud provider identity service to accept the INDIGO IAM OpenID Connect authentication. For Openstack Keystone this is a standard configuration and the documentation can be found here [https://indigo-dc.gitbook.io/keystone-with-oidc-documentation/]. Furthermore, to enable more OpenID Connect providers configured in the apache mod_auth_openidc module used by Keystone, in order to not change Keystone configuration, it is possible to exploit the ESACO plugin [https://github.com/indigo-iam/esaco]. At the moment, for example, it is used with OpenStack at ReCaS-Bari datacenter. An example of integration is available here [https://github.com/andreaceccanti/esaco-integration].

VM configuration

Create VM for IAM. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Public IP address.

Warning

All the command will be run on the control machine.

Enable Google Authentication

To enable Google authentication access to Google developers console [https://console.developers.google.com/apis/credentials] and create and configure a new credential project.

	Create Credentials > OAuth Client ID

	Application Type: Web Application

	Name: Set a custom Service Provider (SP) name

	Authorized JavaScript origins: https://<iam_vm_dns_name>.

	Authorized redirect URIs: https://<iam_vm_dns_name>/openid_connect_login

	Create the client

	Copy your client ID and client secret

Create the file indigopaas-deploy/ansible/application-oidc.yml, copying and pasting the client ID, client Secret and the IAM url

oidc:
 providers:
 - name: google
 issuer: https://accounts.google.com
 client:
 clientId: <iam_google_client_id>
 clientSecret: <iam_google_client_secret>
 redirectUris: https://<iam_url>/openid_connect_login
 scope: openid,profile,email,address,phone
 loginButton:
 text: Google
 style: btn-social btn-google
 image:
 fa-icon: google

Enable ELIXIR-AAI Authentication

To enable you need to request a valid client ID and client Secret. Please read the corresponding documentation [https://elixir-europe.org/services/compute/aai].

Then create the file indigopaas-deploy/ansible/application-oidc.yml, copying and pasting the client ID, client Secret and the IAM url:

oidc:
 providers:
 - name: elixir-aai
 issuer: https://login.elixir-czech.org/oidc/
 client:
 clientId: <iam_elixiraai_client_id>
 clientSecret: <iam_elixiraai_client_secret>
 redirectUris: https://<iam_fqdn>/openid_connect_login
 scope: openid,groupNames,bona_fide_status,forwardedScopedAffiliations,email,profile
 loginButton:
 text:
 style: no-bg
 image:
 url: https://raw.githubusercontent.com/Laniakea-elixir-it/ELIXIR-AAI/master/login-button-orange.png
 size: medium

Installation

In the following, both Google and ELIXIR-AAI authentication methods will be enabled. To achieve this the indigopaas-deploy/ansible/application-oidc.yml with Google and ELIXIR-AAI corresponding clients ID and clients Secret, looks like:

oidc:
 providers:
 - name: google
 issuer: https://accounts.google.com
 client:
 clientId: <iam_google_client_id>
 clientSecret: <iam_google_client_secret>
 redirectUris: https://<iam_fqdn>/openid_connect_login
 scope: openid,profile,email,address,phone
 loginButton:
 text: Google
 style: btn-social btn-google
 image:
 fa-icon: google
 - name: elixir-aai
 issuer: https://login.elixir-czech.org/oidc/
 client:
 clientId: <iam_elixiraai_client_id>
 clientSecret: <iam_elixiraai_client_secret>
 redirectUris: https://<iam_fqdn>/openid_connect_login
 scope: openid,groupNames,bona_fide_status,forwardedScopedAffiliations,email,profile
 loginButton:
 text:
 style: no-bg
 image:
 url: https://raw.githubusercontent.com/Laniakea-elixir-it/ELIXIR-AAI/master/login-button-orange.png
 size: medium

Create the file indigopaas-deploy/ansible/inventory/group_vars/iam.yaml with the following configured values:

iam_fqdn: <iam_vm_dns_name>
iam_mysql_root_password: *******
iam_organization_name: '<your_organization_name>'
iam_logo_url: <logo_url>
iam_account_linking_disable: true
iam_mysql_image: "mysql:5.7"
iam_image: indigoiam/iam-login-service:v1.5.0.rc2-SNAPSHOT-latest
iam_notification_disable: true
iam_notification_from: 'iam@{{iam_fqdn}}'
iam_enable_oidc_auth: true
iam_application_oidc_path: "/root/indigopaas-deploy/ansible/application-oidc.yml"
iam_admin_email: '<valid_email_address>'

Warning

Set also your custom mysql password with: iam_mysql_root_password.

Warning

Please provide a valid e-mail address, which is mandatory for Let’s Encrypt certificate creation.

It is possible to enable mail notification adding the following parameters:

iam_notification_disable: false
iam_notification_from: 'laniakea-alert@example.com'
iam_notification_admin_address: <valid_email_address>
iam_mail_host: <mail_server_address>

This is needed to allow user registration, e.g. to enable confirmation e-mails.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-iam.yml

Note

Default administrator credentials:

username: admin
password: password

[image: ../../_images/iam_login.png]

Fig.2: IAM login page

Video tutorial

IAM test

Basic IAM tests.

Test 1: login as admin

	Login as admin

username: admin
password: password

Warning

Change the default password.

Test 2: Register a new user

	Click Register a new account

	Fill the form

	Login as admin and accept the request

	Login as new user

The full registration procedure is described in the Authentication section.

Test 3: Register using Google account (optional)

	Sign-in with Google

	Login as admin and accept the request

	Login with Google

The full registration procedure is described in the Authentication section.

Create IAM Client

Registered clients allow to request and receive information about authenticated end-users. Each INDIGO service must authenticate to a dedicated IAM client using a client id and a client secret.

To create a IAM client or a protetect resource, please follow these instructions:

	Create a IAM client or a protected resource

Obtaining an IAM access token

To get a vaild IAM access token, please follow these instructions:

	Obtaining an IAM access token
	Prerequisites

	Get IAM access token

Create a IAM client or a protected resource

	Login as administrator or registered user.

[image: ../../_images/iam_dashboard.png]

	Click on MitreID Dashboard and then Self-service client registration for client creation or Self-service protected resource registration to register a new protected resource.

[image: ../../_images/mitre.png]

	Click on New client and provides at least the the following parameters:

Client name = iam-client-name

redirect URI(s) = http(s)://<service_url>

Warning

The redirect URI(s) is required only for client creation.

[image: ../../_images/client_main.png]

	In the Access tab configure your client as requested by your service, for example:

Scopes: openid, profile, email, address, phone, offline_access

Grant Types: authorization code, refresh

[image: ../../_images/client_access.png]

	Save the client.

[image: ../../_images/client_saved.png]

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

[image: ../../_images/client_json.png]

	If you need Token Introspection and/or Token exchange, login as Administrator user, and through the ADMINISTRATIVE, Manage Clients, in the Access tab flag the needed options.

[image: ../../_images/client_admin_access.png]

Obtaining an IAM access token

Prerequisites

	Create a IAM client. The Redirect URI is not important, so you can exploit the IAM address itself.

[image: ../../_images/get_iam_token_client_main.png]

	Give the client the rigth Scopes and Grant Types as in the figure:

[image: ../../_images/get_iam_token_client_access.png]

	Save.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

	Login as Administrator user and select from the left menu Manage Clients.

	Select the client just created.

	Navigate to the Tokens tab and set it as in the figure and save. In particular the Device Code Timeout should not be empty.

[image: ../../_images/get_iam_token_client_tokens.png]

	On any linux distirbution, e.g. Ubuntu, Install jq:

apt-get install jq

	Download the following script:

wget https://raw.githubusercontent.com/Laniakea-elixir-it/Scripts/master/IAM/dc-get-access-token.sh

	Give dc-get-access-token.sh execution permissions:

chmod +x dc-get-access-token.sh

	Create the file ìam.rc with the following content:

IAM_DEVICE_CODE_CLIENT_ID="<get_iam_token_client_id>"
IAM_DEVICE_CODE_CLIENT_SECRET="<get_iam_token_client_secret>"
IAM_TOKEN_ENDPOINT="<iam_url>/token"
IAM_DEVICE_CODE_ENDPOINT="<iam_url>/devicecode"

Get IAM access token

	Run dc-get-access-token.sh script

./dc-get-access-token.sh

[image: ../../_images/get_iam_token_script_start.png]

	Open in a browser the URL obtained from the script and paste code:

[image: ../../_images/get_iam_token_enter_code.png]

	Authorize the client to create a token:

[image: ../../_images/get_iam_token_authorize.png]

	Type `Y on the shell script and get your access token:

[image: ../../_images/get_iam_token_script_end.png]

Proxy server

A proxy server is used to expose IM, CMDB, CPR and the PaaS Orchestrator.

VM configuration

The control machine can be used to run the proxy server. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	1

	RAM

	2 GB

	Network

	Public and private IP address.

Warning

All the command will be run from the control machine.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/proxy.yaml with the following configured values:

letsencrypt_email: "<valid_email_address>"
domain_name: "<proxy_vm_dns_name>"

Warning

Please provide a valid e-mail address, which is mandatory for Let’s Encrypt certificate creation.

Run the role using ansible-playbook

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-proxy.yml

Video tutorial

Infrastructure Manager (IM)

The Infrastructure Manager (IM) [https://www.grycap.upv.es] is used to deploy virtual infrastructures, e.g. Galaxy and the underlying virtual hardware.

Note

Current IM version: 1.8.6.1

VM configuration

Create VM for IM. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Private IP address.

Warning

All the command will be run from the control machine VM.

IAM protected resource configuration

Register a new protected resource for IM on IAM:

	Login on IAM as Administrator User.

	Navigate to MitreID Dashboard and select from the left panel Self-service protected resource registration.

	Create a New Resource.

	Give it a name, e.g. im_test.

	Keep the default configuration and Save.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

	As Administrator user select from the left menu Manage Clients.

	Select the client just created.

	Navigate to the Tokens tab and set it as in the figure and save. In particular set:

	Access Token Timeout: 3600

	ID Token Timeout: 1800

[image: ../../_images/im_client_admin_tokens.png]

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/im.yaml with the following configured values:

im_image_version: 1.8.6.1
im_repo_tag: v1.8.6
im_mysql_root_password: ********
im_mysql_password: *********
im_cfg_oidc_issuers: 'https://<iam_address>/'
im_cfg_oidc_client_id: '<im_client_id>'
im_cfg_oidc_client_secret: '<im_client_secret>'
im_cfg_ssh_reverse_tunnels: 'True'
im_ansible_version: '2.2.3.0'

Warning

Set also your custom mysql password with: iam_mysql_root_password and im_mysql_password.

Warning

Current supported Ansible version: 2.2.3.0

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-im.yml

Video tutorial

IM configuration

In order to allow IM to distinguish private from public networks, IM needs to be properly configured. Edit the IM configuration file /etc/im.cfg, modifying the field PRIVATE_NET_MASKS [https://imdocs.readthedocs.io/en/latest/manual.html#confval-PRIVATE_NET_MASKS] with your favourite text editor, adding the network IP address. The IM will considers IPs not in these subnets as Public IPs.

...

PRIVATE_NET_MASKS = 10.0.0.0/8,172.16.0.0/12,192.168.0.0/16,169.254.0.0/16,100.64.0.0/10,192.0.0.0/24,198.18.0.0/15,192.169.0.0/16

...

IM testing

	Get IAM access token (see section Obtaining an IAM access token)

	Download an IM tosca template

mkdir im_test

cd im_test

wget https://raw.githubusercontent.com/Laniakea-elixir-it/IM-templates/devel/node_with_image.yaml

	Configure the image url as ost://<keystone_url>/<image_id>, as for example:

image: ost://cloud.recas.ba.infn.it/f38d4e87-cc7e-4035-921b-6b200a9ebaee

save and exit.

POST

The POST request istantiate a new deployment

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type = InfrastructureManager; username = mtangaro; token = eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host = <keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>; service_region = <region>' -i -X POST https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures --data-binary "@node_with_image.yaml"

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 15:54:37 GMT
Content-Type: text/uri-list
Content-Length: 100
Connection: keep-alive
Infid: c90796fe-e5f5-11e9-930c-fa163eefe815

https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815

Where Infid, in this case a9feb488-e5f3-11e9-aafa-fa163eefe815, is the IM UUID of your deployment

[image: ../../_images/im_openstack_post.png]

GET

The GET request can be used to list the VMs associated to a deployment:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type = InfrastructureManager; username = mtangaro; token = eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host = <keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>; service_region = <region>' -i -X GET https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815
HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 18:49:43 GMT
Content-Type: text/uri-list
Content-Length: 106
Connection: keep-alive

https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815/vms/0

The GET request can be used to list all VMs information:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type = InfrastructureManager; username = mtangaro; token = eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host = <keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>; service_region = <region>' -i -X GET https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815/vms/0

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 18:52:38 GMT
Content-Type: text/plain
Content-Length: 2476
Connection: keep-alive

network public_net (outports = '9001/tcp-9001/tcp,9000/tcp-9000/tcp' and
provider_id = 'public_net' and
outbound = 'yes')
system simple_node (
instance_name = 'userimage-157011807495' and
cpu.arch = 'x86_64' and
disk.0.image.url = 'ost://cloud.recas.ba.infn.it/f38d4e87-cc7e-4035-921b-6b200a9ebaee' and
net_interface.0.ip = '90.147.75.76' and
memory.size = 2048M and
cpu.count = 1 and
disk.0.os.credentials.private_key = '-----BEGIN RSA PRIVATE KEY-----
MIIEqAIBAAKCAQEAmNLLui9dXce/1XAj21inN5K4zrpgtst7cAJmZwnbIrVqEiNa
q60MhINASHP5VR0HQpMqWuC1dlDE09XGp6qGzPa1+RFn894j5jd9X/H/HFbvMYN4
DFq5AF+Lwj0AkCQT4+R/9iYYJbjuZug3UflAspCYzg7Ht94lVRNAzhlCM++96kkO
j9jNxI5enX+MdKA0n1mOVhAyRi3wtfaQmhk2q47R1X9URqeE8UaZf6xL9KincVb/
X94Wnc0dtbQfyHsNWM/Oo78pkrSfKxUNHC18Em/ZfJ+ADm7u27rY+V2eiKK+kahm
8PCvOGO3qblBqwcnPUh/clVm5JGaiLal/keDlQIDAQABAoIBAAnjsj1VLVSRRY+5
VwitvvxwqTbvhqytlEpWTWwjjiO726Za1VZAt4untrQ5lQv1+e9L+LSyz+tdJK+U
qOtWtKx01qfMgY6ddHNEaf+YeGrMEWSB3nXmNQyaIkAqlGu/ee4IbmNuaaefRQYx
xsquN4qWotzKxg/W91F/EnWD2u3jXyxOAOmRFBy5y1pU9YhcDR8w46+ZyV7h04f8
hFbJILYA5kzmFtwHScUq5yGLlcddDGSK40EGJNpni4gNh61D4DOD/yzCrgqhL+th
wfwSMOVhxWPBKOqlQDHqOyb21TVc+5UeFBwb+3LbfCdjfA7Sfi4Dpygvv1FPELCl
ZGF1+0ECggCBAMUi+q15uresVXCyQrQ9HmZ2FcRwNc9BtB0ag5RuuuFNsh4suPcL
hxJVG35vTfRgf9USO2WzCrgiAHzij6yT/USIoAFOUvLrtg+T5abd6Fec3lrvXgsL
LLVX0NPK0RVqKhTAgNzEAqGEOkd8Ew3WWH0Klrwr3uxp1sEO8I3kt8/RAoIAgQDG
dImkibakryLFd833OWdG33ClWT0kgFRBerq8taHZjdBejze9n67LzJludW77lqUQ
VCpH424lxP7qIT+hNs/pFXi9Sq/VBsbfehwPoetDgv0yKSP1mRHiKOvTu47hHdst
4q4iwxuYENLBjjESMKR2nge1pJMe2EUFURWHx87MhQKCAIAvp/QXqbzEmCmTc9SC
Q+AsftFmSoYHk2eaPYWfhWEyBBlSCBeyyRufB+n8l6WttQJSHPU08aJevwGFLzPy
UVhBkBG2HxwYU3kQrP0waKa5P1fVfdYrL0lgkVkPShFfbum7WIoOVGgaaZ+5Fjp4
9t8vYzbrSGO8nR1oUFdAxhDVcQKCAIEAspZsxwSmt8xjHhCR6MhfiAfK9wE3ZIGX
UNWA9hD9dSmJOY7oOlxYkE2uRRiopv8Jy4fyBH9Fv/dm7oq9F/abYsVPwghT8wAG
N1VLq0Wq0TYvY9Rh58G3ti3dCszd5vdXJhO3YNDzJAT/o+6xeg0L8zKC/ZL8UeWN
NxugpG/KSYECggCAbcJeVFjNQYEhroRg2dmVY/Y6cmndvCUudDs8hvtTmvWmFGri
7dY1T7ACdWAbFYh+Q1x2SswHAOXC+FYJ2HJ8InbKeRAlQ7KDgDsofPGRCTRUL9HO
mZQkIZqryAcSnC++OLNnbFGsTY4vhyotb3IgR/pC+6RSgqJFabFtA7Ttkgg=
-----END RSA PRIVATE KEY-----
' and
provider.host = 'cloud.recas.ba.infn.it' and
disk.0.free_size = 20G and
instance_id = 'c6e54a1e-f2ce-4cd5-a38f-f26858d57d7c' and
instance_type = 'small' and
state = 'unconfigured' and
provider.port = 5000 and
provider.type = 'OpenStack' and
net_interface.0.connection = 'public_net' and
disk.0.os.name = 'linux' and
disk.0.os.credentials.username = 'cloudadm'
)

DELETE

The DELETE request can be used to delete the deployment:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type = InfrastructureManager; username = mtangaro; token = eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host = <keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>; service_region = <region>' -i -X DELETE https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 15:43:52 GMT
Content-Type: text/plain
Content-Length: 0
Connection: keep-alive

Test IM using OIDC

It is possible to use an OIDC Token with IM for POST, GET and DELETE calls:

Note

Please note in this case that the username parameter in the API call must be set to IAM organization name. For example, in the following, we used as IAM organization name laniakea and the username has been set accordingly.

POST

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack; host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region = recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -X POST https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures --data-binary "@node_with_image.yaml"

GET

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack; host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region = recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -X GET https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures

DELETE

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack; host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region = recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -X DELETE https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/<infrastructure_uuid>

FAQ

	Where are the deployments log?

References

IM configuration [https://imdocs.readthedocs.io/en/latest/manual.html#configuration]

IM APIs documentation [https://imdocs.readthedocs.io/en/latest/REST.html]

Where are the deployments log?

The deployment logs are available in /var/tmp/.im/<im-id>/<deployment_ip>/ctxt_agent.log. For example:

tail -f /var/tmp/.im/1b0e064c-9a29-11e7-9c45-300000000002/90.147.102.27_0/ctxt_agent.log

Note

After each ansible role run, the log file is deleted!!

CMDB and CPR

The Configuration Management DataBase (CMDB) is used to contain all the configuration items (CIs) that are valid to manage the infrastructure.

The Cloud Provider Ranker is a standalone REST WEB Service which ranks cloud providers.

CMDB and CPR are installed on the same machine.

Note

Current CMDB version: indigo_2

Note

Current CPR version: indigo_2

VM configuration

Create VM for CMDB and CPR. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Private IP address.

Warning

All the command will be run from the control machine VM.

CMDB installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/cmdb.yaml with the following configured values:

cmdb_crud_password: *****
cmdb_oidc_userinfo: https://<proxy_url>/userinfo

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-cmdb.yml

CMDB installation video tutorial

CMDB configuration

The current version of CMDB is supporting set of configuration elements that are vital for INDIGO operations:

	providers: organizational entity that owns or operates the services;

	services (both computing and storage): main technical component description defining type and location of technical endpoints;

	images: local service metadata about mapping of INDIGO-wide names of images, which are necessary to translate TOSCA description into service specific request.

CMDB needs to be populated with IaaS provider, services and images information.

Warning

SSH on CMDb virtual machine.

	Create a directory called cmdb-data

mkdir cmdb-data

	Create the file cmdb-data/provider.json

{
 "_id": "",
 "data": {
 "name": "",
 "country": "",
 "country_code": "",
 "roc": "",
 "subgrid": "",
 "giis_url": "",
 "owners": [""]
 },
 "type": "provider"
}

The _id field identifies the Cloud Provider and can be set as preferred

Warning

The provider owners list requrires at least a valid mail address, since this user has to be used for the resource negotiation procedure, during SLAM configuration (see section SLA Manager (SLAM))

	Create the file cmdb-data/service.json

{
 "_id": "",
 "data": {
 "service_type": "",
 "endpoint": "",
 "provider_id": "",
 "region": "",
 "sitename": "",
 "hostname": "",
 "type": "compute"
 },
 "type": "service"
}

Here the _id string identifies the service and can be set as preferred. On the contrary, the provider_id is the _id previously set in the provider.json file.

	Create the file cmdb-data/image.json

{
 "type": "image",
 "data": {
 "image_id": "",
 "image_name": "",
 "architecture": "",
 "type": "linux",
 "distribution": "ubuntu",
 "version": "16.04",
 "service": ""
 }
}

where the ìmage_id is the image ID on the Cloud Provider Manager, e.g. OpenStack.

The service field has to be set with the _id set in the service.json file.

Note

The image_name field is the parameter which is used in the image field in the tosca template to identify the image to use (see section Galaxy template)

	Add providers, services and images to CMDB.

Create the file cmdb-add-data.sh with the content:

#!/bin/bash

source /etc/cmdb/.cmdbenv

if [[-z "$CMDB_CRUD_USERNAME"]]; then
echo ENV variable CMDB_USER not set
exit 1
fi

if [[-z "$CMDB_CRUD_PASSWORD"]]; then
echo ENV variable CMDB_PASSWORD not set
exit 1
fi

if [[-z "$1"]]; then
echo "
usage: $0 <json>
"
exit 1
fi

give it execution permissions:

chmod +x cmdb-add-data.sh

Finally you can upload informations to cmdb using curl:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/provider.json

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/service.json

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/image.json

	Check on CMDB couchDB if your configuration has been uploaded from your browser at the following endpoint: https://<proxy_url>/couch/_utils/database.html?indigo-cmdb-v2

[image: ../../_images/cmdb_config.png]

CMDB couchDB after the configuration process with provider, service and image.

Note

All CMDB image are listed at the address: https://<proxy_url>/cmdb/image/list?include_docs=true

CMBD configuration json example

These are the configuration files used for Laniakea@ReCaS service, the Laniakea installation at the ReCaS Datacenter:

provider.json

{
 "_id": "provider-RECAS-BARI",
 "data": {
 "name": "RECAS-BARI",
 "country": "Italy",
 "country_code": "IT",
 "roc": "NGI_IT",
 "subgrid": "",
 "giis_url": "ldap://cloud-bdii.recas.ba.infn.it:2170/GLUE2DomainID=RECAS-BARI,o=glue",
 "owners": ["*****"]
 },
 "type": "provider"
}

service.json

{
 "_id": "service-RECAS-BARI-openstack",
 "data": {
 "service_type": "eu.egi.cloud.vm-management.openstack",
 "endpoint": "https://cloud.recas.ba.infn.it:5000/v3",
 "provider_id": "provider-RECAS-BARI",
 "region": "recas-cloud",
 "sitename": "RECAS-BARI",
 "hostname": "cloud.recas.ba.infn.it",
 "type": "compute"
 },
 "type": "service"
}

image.json

{
 "type": "image",
 "data": {
 "image_id": "8f667fbc-40bf-45b8-b22d-40f05b48d060",
 "image_name": "RECAS-BARI-ubuntu-16.04",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "ubuntu",
 "version": "16.04",
 "service": "service-RECAS-BARI-openstack"
 }
}

CMDB configuration video tutorial

CPR installation

CPR does not need any configuration. Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-cpr.yml

CPR video tutorial

SLA Manager (SLAM)

The Service Level Agreement Manager (SLAM) is used to establish an agreement between customer and provider about capacity and quality targets. SLAM is using INDIGO IAM for authentication and INDIGO CMDB for configuration and authorization for providers.

Note

Current SLAM version v2.0.0

VM configuration

Create VM for SLAM. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	1

	RAM

	2 GB

	Network

	Public IP address.

Warning

All the command will be run from the control machine VM.

SLAM IAM client creation

Register a new IAM client for SLAM:

	Login in IAM as admin.

	Click on MitreID Dashboard and then Self-service client registration.

	Click on New client and fill the form with the following parameters:

Client name: slam_client

redirect URI = https://<slam_vm_dns_name>:8443/auth

[image: ../../_images/slam_client_main.png]

	In the Access tab select the following Scopes

Scopes: openid, profile, email, address, phone, offline_access

and for Grant Types select:

Grant types: authorization code

[image: ../../_images/slam_client_access.png]

	Save.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/slam.yaml with the following configured values:

letsencrypt_email: '<valid_email_address>'
slam_dns_name: '<slam_dns_name>'
slam_mysql_password: '*****'
slam_mysql_root_password: '*****'
slam_iam_url: 'https://<iam_dns_name>'
slam_iam_client_id: '<slam-client-ID>'
slam_iam_client_secret: '<slam-client-secret>'
slam_cmdb_url: 'https://<proxy_dns_name>'
slam_keystore_password: '*****'
slam_create_keystore: true

Warning

Set also your custom mysql password with slam_mysql_password, lam_mysql_root_password and keystore password with slam_keystore_password.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-slam.yml

Warning

SLAM will require few minutes to start and will be available at https://<slam_dns_name>:8443/auth.

Video tutorial

SLAM configuration

Authorize SLAM

	SLAM is available at https://<slam_dns_name>:8443/auth. It will redirect you to IAM

	Login as admin

	Authorize SLAM

[image: ../../_images/slam_client_authorize.png]

Fig.1: SLAM authorization

[image: ../../_images/slam_home.png]

Fig.1: SLAM home page

Resources negotiation

To create new SLAs with SLAM follow this steps:

	Resources negotiation

Resources negotiation

Resources con be negotiated through SLAM dashboard creating new computing SLA or storage SLA and filling the form.

	For Laniakea login as IAM admin user and create a new computing SLA

Warning

Only Provider and service, Start and End data are currently relevant parameters.

[image: ../../_images/slam_negotiation_1.png]

Save the document to perfom actions, validate and send it to provider.

The entry is now available in the dashboard tab.

[image: ../../_images/slam_negotiation_2.png]

The SLA is now available in the SLAM dashboard.

[image: ../../_images/slam_negotiation_3.png]

	The SLA has to be validated by provider owner provided during CMDB configuration (see section CMDB and CPR):

Login with the e-mail address provided during CMDB configuration.

Note

For testing purposes, please, use a browser hidden session to avoid any cookie and login problem.

Tap on the ID in the Provider tab, which is available only for provider user set in CMDB.

[image: ../../_images/slam_negotiation_4.png]

	Accept the SLA.

[image: ../../_images/slam_negotiation_5.png]

	The SLA is now available:

[image: ../../_images/slam_negotiation_6.png]

PaaS Orchestrator

PaaS Orchestrator is the core component of the PaaS layer. It collects high-level deployment requests from the software layer, and coordinates the resource or service deployment.

Note

Current Orchestrator version: 2.1.2-final

VM configuration

Create VM for IM. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Private IP address.

IAM protected resource configuration for the Orchestrator

	Login on IAM then MitreID Dashboard and select Self-service protected resource registration as Administrator user.

	Select New Resource with the following parameters

Name: orchestrator_client

Scopes: openid, profile, offline_access

[image: ../../_images/orchestrator_client_main.png]

[image: ../../_images/orchestrator_client_access.png]

	Save the protected resource.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

	Edit the protected resource configuration page as Administrator user, through the ADMINISTRATIVE, Manage Clients

[image: ../../_images/iam_manage_clients.png]

	Enable Token exchange and Check the flag at Introspection:

Introspection Allow calls to the Introspection Endpoint?

[image: ../../_images/orchestrator_admin_client_access.png]

	Navigate to the Tokens tab and set:

	Access Token Timeout: 7200

	ID Token Timeout: 7200

and flag:

	Refresh tokens are issued for this client

	Refresh tokens for this client are re-used

	Active access tokens are automatically revoked when the refresh token is used

	Refresh tokens do not time out

[image: ../../_images/orchestrator_admin_client_tokens.png]

	Save again the protected resource.

IAM protected resource configuration for CLUES

	Login on IAM then MitreID Dashboard and select Self-service protected resource registration as Administrator user.

	Select New Resource and set the following parameters

Name: clues_client

Scopes: openid, profile, email, address, phone, offline_access

[image: ../../_images/clues_client_main.png]

[image: ../../_images/clues_client_access.png]

	Save the protected resource.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

	Edit the protected resource configuration page as Administrator user, through the ADMINISTRATIVE, Manage Clients

	Enable Token exchange and Check the flag at Introspection:

[image: ../../_images/clues_admin_client_access.png]

	Navigate to the Tokens tab and set:

	Access Token Timeout: 7200

	ID Token Timeout: 7200

and flag:

	Refresh tokens are issued for this client

	Refresh tokens for this client are re-used

	Active access tokens are automatically revoked when the refresh token is used

	Refresh tokens do not time out

[image: ../../_images/clues_admin_client_tokens.png]

	Save the protected resource again.

Orchestrator Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/orchestrator.yaml with the following configured values:

orchestrator_url: https://<proxy_dns_name>/orchestrator
orchestrator_image: indigodatacloud/orchestrator:2.1.2-final
orchestrator_mysql_root_password: *****
orchestrator_mysql_password: *****
orchestrator_im_url: https://<proxy_dns_name>/im
orchestrator_cmdb_url: https://<proxy_dns_name>/cmdb
orchestrator_slam_url: https://<slam_dns_name>:8443/rest/slam
orchestrator_cpr_url: https://<proxy_dns_name>/cpr
orchestrator_iam_issuer: https://<iam_dns_name>/
orchestrator_iam_client_id: <orchestrator_client_id>
orchestrator_iam_client_secret: <orchestrator_client_secret>
orchestrator_clues_iam_client_id: <clues_client_id>
orchestrator_clues_iam_client_secret: <clues_client_secrett>
orchestrator_custom_types: https://raw.githubusercontent.com/Laniakea-elixir-it/indigopaas-resources/master/orchestrator/custom_types.yaml
disable_monitoring: True

Warning

SLAM and IAM are the only two services requiring a public IP, on the contrary all the others are behind the proxy.

Warning

In this guide we avoid monitoring installation, leaving this job to the Cloud provider.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator.yml

Video tutorial

FAQ

	INDIGO PaaS Orchestrator
	Orchent: the orchestrator CLI tool

	INDIGO CLUES
	Check worker nodes status

	Check worker nodes deployment

	Troubleshooting

INDIGO PaaS Orchestrator

Orchent: the orchestrator CLI tool

Orchent is the indigo command line client.

Orchent: https://github.com/indigo-dc/orchent

INDIGO CLUES

CLUES is an elasticity manager system for HPC clusters and Cloud infrastructures that features the ability to power on/deploy working nodes as needed (depending on the job workload of the cluster) and to power off/terminate them when they are no longer needed.

Official GitBook documentation: https://www.gitbook.com/book/indigo-dc/clues-indigo/details

Check worker nodes status

To check worker node status:

sudo clues status
node state enabled time stable (cpu,mem) used (cpu,mem) total

vnode-1 powon enabled 00h02'54" 0,0.0 1,1073741824.0
vnode-2 off enabled 00h41'00" 0,0.0 1,1073741824.0

CLUES commands:

clues --help
The CLUES command line utility

Usage: clues [-h] [status|resetstate|enable|disable|poweron|poweroff|nodeinfo|shownode|req_create|req_wait|req_get]

[-h|--help] - Shows this help
* Show the status of the platform
Usage: status

* Reset the state of one or more nodes to idle
Usage: resetstate <nodes>
<nodes> - names of the nodes whose state want to be reset

* Enable one or more nodes to be considered by the platform
Usage: enable <nodes>
<nodes> - names of the nodes that want to be enabled

* Disable one or more nodes to be considered by CLUES
Usage: disable <nodes>
<nodes> - names of the nodes that want to be disabled

* Power on one or more nodes
Usage: poweron <nodes>
<nodes> - names of the nodes that want to be powered on

* Power off one or more nodes
Usage: poweroff <nodes>
<nodes> - names of the nodes that want to be powered off

* Show the information about node(s), to be processed in a programmatically mode
Usage: nodeinfo [-x] <nodes>
[-x|--xml] - shows the information in XML format
<nodes> - names of the nodes whose information is wanted to be shown

* Show the information about node(s) as human readable
Usage: shownode <nodes>
<nodes> - names of the nodes whose information is wanted to be shown

* Create one request for resources
Usage: req_create --cpu <value> --memory <value> [--request <value>] [--count <value>]
--cpu|-c <value> - Requested CPU
--memory|-m <value> - Requested Memory
[--request|-r] <value> - Requested constraints for the nodes
[--count|-n] <value> - Number of resources (default is 1)

* Wait for a request
Usage: req_wait <id> [timeout]
<id> - Identifier of the request to wait
[timeout] - Timeout to wait

* Get the requests in a platform
Usage: req_get

Check worker nodes deployment

Worker node deployment log are available to: /var/log/clues2/clues2.log

Troubleshooting

Invalid Token

Symptoms: Galaxy jobs stuck in This job is waiting to run and stay gray in the Galaxy history.

The worker nodes are not correctly instantiated, due to an Invalid Token. Check /var/log/clues2/clues2.log:

urllib3.connectionpool;DEBUG;2017-10-31 10:52:33,288;"GET /orchestrator/deployments/48126bd4-14d8-494d-970b-fb581a3e13b2/resources?size=20&page=0 HTTP/1.1" 401 None
[PLUGIN-INDIGO-ORCHESTRATOR];ERROR;2017-10-31 10:52:33,291;ERROR getting deployment info: {"code":401,"title":"Unauthorized","message":"Invalid token: eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.eyJzdWIiOiI3REU4Qjg4MC1DNEQwLTQ2RkEtQjQxMS0wQTlCREI3OUYzOTYiLCJpc3MiOiJodHRwczpcL1wvaWFtLXRlc3QuaW5kaWdvLWRhdGFjbG91ZC5ldVwvIiwiZXhwIjoxNTA5NDQ0NDY2LCJpYXQiOjE1MDk0NDA4NjYsImp0aSI6IjAyZmE5YmM0LTBkMjctNGJkZi1iODVjLTJlMjM2NjNjNmY5OCJ9.QqjYzVs0h5kuqoBZQf5PPcYrsRJksTFyZO5Zpx8xPcfjruWHwwOnw9knQq8Ex3lwAXgi5qxdmqBDi4EIZAOaoFsPirlM7K6fCBE0-M_btm4nTbUvTSaUAfjki41DnPoEjLqXTTy8XLPUrCSmHVeqvSHHFipeSkP9OxKltlUadPc"}

Solution:

	Stop CLUES: sudo systemctl stop cluesd.

	Edit the file /etc/clues2/conf.d/plugin-ec3.cfg and change the value of the INDIGO_ORCHESTRATOR_AUTH_DATA parameter with the new token.

	Restart CLUES sudo systemctl start cluesd.

	You also have to open the CLUES DB with sqlite3 command: sqlite3 /var/lib/clues2/clues.db and delete old refreshed token: DELETE FROM orchestrator_token;.
To exit from sqlite just type: .exit.

Hashicorp Vault

Vault is exploited as secrets management store, to store and manage encryption passphrases

Note

Current version: 1.1.2

VM configuration

Create a VM for Vault. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Public IP address.

Warning

All the command will be run from the control machine VM.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/vault.yaml with the following configured values:

vault_fqdn: <dashboard_vm_dns_name>
vault_image_name: vault:1.1.2
vault_letsencrypt_email: "<valid_email_address>"

Warning

Depending on your Cloud Provider network configuration, the vault_host variable needs to be added and configured with the private ip address associated to the VM, for example when a floating IP is used.

In this case it is possible to set the IP address adding:

vault_host: '<vm_private_ip_address>'

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-vault.yml

Installation video tutorial

Vault initialization

The Vault initialization can not be automated. To initialize it and get your root token for the initial configuration

	Login on the VM hosting Vault:

ssh root@<vault_vm_ip_address>

	Initialize Vault:

docker exec -it vault vault operator init
Unseal Key 1: p7YF7vyLRrfeilwlD/QusQ+UESJiGrhn1TwCsBAa7fKV
Unseal Key 2: OHoyPApMFuQTz9B20bmpJjzLgkCi2ELr+zKFdvKq8lmL
Unseal Key 3: xDRcbkOsYL9uswFzCdFqpxudgvZFVfAwFCkigYMMMCHt
Unseal Key 4: LJ0hHW5dsmbuFAnL+W/4NMtZUbuNkILFWXxL3zTYblzQ
Unseal Key 5: Z1OvJ7RvT+pUVtqB93RAQ8q1s8l04clGVFn+oi22x4rZ

Initial Root Token: s.YxsTl9H3f1qgAqH3cj4JAXR8

Vault initialized with 5 key shares and a key threshold of 3. Please securely
distribute the key shares printed above. When the Vault is re-sealed,
restarted, or stopped, you must supply at least 3 of these keys to unseal it
before it can start servicing requests.

Vault does not store the generated master key. Without at least 3 key to
reconstruct the master key, Vault will remain permanently sealed!

It is possible to generate new unseal keys, provided you have a quorum of
existing unseal keys shares. See "vault operator rekey" for more information.

	Every initialized Vault server starts in the sealed state [https://learn.hashicorp.com/vault/getting-started/deploy#sealunseal]. Unsealing has to happen every time Vault starts. It can be done via the API and via the command line. To unseal the Vault, you must have the threshold number of unseal keys. In the output above, notice that the “key threshold” is 3. This means that to unseal the Vault, you need 3 of the 5 keys that were generated.

docker exec -it vault vault operator unseal p7YF7vyLRrfeilwlD/QusQ+UESJiGrhn1TwCsBAa7fKV
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 5
Threshold 3
Unseal Progress 1/3
Unseal Nonce 7a0891bb-7d0e-6efa-2081-9c60941f9a6d
Version 1.1.2
HA Enabled false

docker exec -it vault vault operator unseal OHoyPApMFuQTz9B20bmpJjzLgkCi2ELr+zKFdvKq8lmL
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 5
Threshold 3
Unseal Progress 2/3
Unseal Nonce 7a0891bb-7d0e-6efa-2081-9c60941f9a6d
Version 1.1.2
HA Enabled false

docker exec -it vault vault operator unseal xDRcbkOsYL9uswFzCdFqpxudgvZFVfAwFCkigYMMMCHt
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false
Total Shares 5
Threshold 3
Version 1.1.2
Cluster Name vault-cluster-e6688ec2
Cluster ID ccf2e852-69ca-bcd6-0079-6c820f9c0e67
HA Enabled false

	Finally, authenticate as the initial root token (it was included in the output with the unseal keys):

docker exec -it vault vault login s.YxsTl9H3f1qgAqH3cj4JAXR8
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token s.YxsTl9H3f1qgAqH3cj4JAXR8
token_accessor QEUBU4tepPWDatRu6jrnTbFW
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

Warning

Save the unseal keys and the root token. Please read Vault documentation [https://www.vaultproject.io/docs/concepts/seal.html].

Initialization video tutorial

References

Vault documentation [https://learn.hashicorp.com/vault/getting-started/deploy#initializing-the-vault]

Laniakea Dashboard

The Laniakea Dashbaord is built on top of the INDIGO Orchestrator Dashboard.

Note

Current Dahsboard version: stable version

VM configuration

Create VM for Dashboard. The VM should meet the following minimum requirements:

	OS

	Ubuntu 16.04

	vCPUs

	2

	RAM

	4 GB

	Network

	Public IP address.

Warning

In this tutorial we will use the same VM for vault and the dashbord, being the two services strictly connected.

This is not requred.

Warning

All the command will be run from the control machine VM.

IAM client configuration

	Login on IAM as Administrator User.

	Navigate to MitreID Dashboard and select from the left panel Self-service client registration.

	Create a New client and fill the form with the following paramethers

Client name = dashboard_client

redirect URI(s) = https://<dashboard_vm_dns_name>/login/iam/authorized

[image: ../../_images/dashboard_client_main.png]

	In the Access tab select the follwing Scopes

Scopes: openid, profile, email, address, phone, offline_access

and for Grant Types select:

Grant types: authorization code

[image: ../../_images/dashboard_client_access.png]

	Save.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

Installation

The Laniakea dashboard can be installed in three different ways: Stateless, with MySQL database and with MySQL and Vault integration.

The one with MySQL and Hashicorp Vault is the one used in Laniakea.

	Install Laniakea dashboard (database and vault version)
	Update the dashboard IAM client configuration

	IAM client configuration for Vault

	Installation

	Video Tutorial

Post installation steps to enable the callback

If the callback is enabled, the PaaS Orchestrator (PaaS Orchestrator) needs to be configured accordingly.

In particular, the dashboard CA certificate has to be copied on the PaaS Orchestrator Virtual Machine in /etc/orchestrator/trusted_certs.

For Let’s Encrypt certificats, those used in this wiki:

	Connect through SSH to the Dashboard VM and copy the content of the file /etc/letsencrypt/live/<orchestrator_dashboard_dns_name>/chain.pem.

	Connect through SSH to the PaaS Orchestrator VM and paste the chain.pem to /etc/orchestrator/trusted_certs/dashboard-cert.pem

	Restart the PaaS Orchestrator with:

docker restart orchestrator

	Once the Orchestrator is started the chain file can be removed:

rm /etc/orchestrator/trusted_certs/dashboard-cert.pem

Appendix A. Stateless version

This is a simple graphical User interface of the INDIGO PaaS orchestrator. The automated storage encryption will not work.

	Install Laniakea dashboard (stateless version)

Appendix B. Database version

This version comes with a MySQL database support.

	Install Laniakea dashboard (database version)

Install Laniakea dashboard (database and vault version)

Warning

Vault integration leverages on MySQL database. It can’t work with dashboard stateless version

Update the dashboard IAM client configuration

To enable Vault integration the token exchange is needed. Therefore, edit the IAM client previously created for the dashboard.

Enable token exchange accessing to the client configuration page as Administrator user, through the ADMINISTRATIVE, Manage Clients and check the flag token exchange in the Grant types section.

[image: ../../_images/dashboard_admin_client_access.png]

IAM client configuration for Vault

Create another IAM client for Vault, to enable oidc integration to authenticate users.

	Login on IAM then MitreID Dashboard and select Self-service client registration as Administrator user.

	Click on New client with the following parameters:

Client name: vault_client

redirect URI(s): https://<dashboard_vm_dns_name>:8200/ui/vault/auth/oidc/oidc/callback
 https://<dashboard_vm_dns_name>:8250/oidc/callback

[image: ../../_images/vault_client_main.png]

	In the Access tab select the follwing Scopes

Scopes: openid, profile, email, address, phone, offline_access

[image: ../../_images/vault_client_access.png]

	Save the client.

	Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future access.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: laniakeacloud/laniakea-dashboard

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/laniakea-dashboard-config.git
dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"
dashboard_support_email: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

dashboard_enable_db: True
dashboard_db_sql_file_url: "https://raw.githubusercontent.com/Laniakea-elixir-it/orchestrator-dashboard/laniakea-stable/utils/orchestrator_dashboard.sql"
dashboard_mysql_root_password: ******
dashboard_db_password: ******

dashboard_enable_vault: True
dashboard_vault_token: "<vault_valid_token>"
dashboard_vault_iam_client_id: "vault_iam_client_id>"
dashboard_vault_iam_client_secret: "<vault_iam_client_secret"

Warning

Depending on your Cloud Provider network configuration, the database IP address needs to be further configured, for example using the private ip address associated to the VM, when a floating IP is used.

In this case it is possible to set the database IP address adding:

dashboard_db_host: '<vm_private_ip_address>'

Warning

Set also your custom mysql password with: dashboard_mysql_root_password and dashboard_mysql_password.

Note

A valid token to create policies and enable OIDC authentication on vault is needed. Here, for simplicity we use the root token gathered in the Vault installation section Hashicorp Vault.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

Video Tutorial

Install Laniakea dashboard (stateless version)

Create the file indigopaas-deploy/ansible/inventory/group_vars/orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: indigodatacloud/orchestrator-dashboard

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/laniakea-dashboard-config.git
dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

Install Laniakea dashboard (database version)

Create the file indigopaas-deploy/ansible/inventory/group_vars/orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: laniakeacloud/laniakea-dashboard:withDB

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/laniakea-dashboard-config.git
dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

dashboard_enable_db: True
dashboard_db_sql_file_url: "https://raw.githubusercontent.com/Laniakea-elixir-it/orchestrator-dashboard/laniakea-stable/utils/orchestrator_dashboard.sql"
dashboard_mysql_root_password: ******
dashboard_db_password: ******

Warning

Depending on your Cloud Provider network configuration, the database IP address needs to be further configured, for example using the private ip address associated to the VM, when a floating IP is used.

In this case it is possible to set the database IP address adding:

dashboard_db_host: '<vm_private_ip_address>'

Warning

Set also your custom mysql password with: dashboard_mysql_root_password and dashboard_mysql_password.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

The last mile: applications configuration

By default, Laniakea is configured to run the following applications:

Galaxy live build

	Description

	The Galaxy live build allows to setup and launch a virtual machine configured with the Operative System CentOS 7 and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself and the tools that come with the selected flavour.

This application can be deployed with cluster support, using SLURM as Resource Manager and with automatica elasticity support, with CLUES as elasticity manager.

	Recommended images

	CentOS-7-x86_64-GenericCloud-1907.qcow2 [https://cloud.centos.org/centos/7/images]

	Configuration

	Galaxy live build configuration

Galaxy express

	Description

	The Galaxy express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion software and the set of tools that come with the selected flavour. Once deployed each Galaxy instance can be further customized with additional tools and reference data.

This application can be deployed with cluster support, using SLURM as Resource Manager.

The default available flavours currently are:

	galaxy-minimal: Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd, uWSGI).

	galaxy-CoVaCS: workflow for genotyping and variant annotation of whole genome/exome and target-gene sequencing data (https://www.ncbi.nlm.nih.gov/pubmed/29402227).

	galaxy-GDC_Somatic_Variant: port of the Genomic Data Commons (GDC) pipeline for the identification of somatic variants on whole exome/genome sequencing data (https://gdc.cancer.gov/node/246).

	galaxy-rna-workbench: more than 50 tools for RNA centric analysis (https://www.ncbi.nlm.nih.gov/pubmed/28582575).

	galaxy-epigen: based on Epigen project (http://www.epigen.it/).

More information on Laniakea default Galaxy flavours can be found here: Galaxy Flavours.

	Configuration

	Galaxy express configuration

Galaxy Docker

	Description

	The Galaxy Docker instantiate an Ubuntu 16.04 Virtual Machine with the Galaxy official Docker. Once deployed each Galaxy instance can be further customized with additional tools and reference data.

	Recommended images

	Ubuntu 16.04 LTS cloud images [https://cloud-images.ubuntu.com/xenial/]

	Configuration

	Galaxy Docker configuration

Test applications

	Description

	Two test recipes are shipped by default to test a simple Ubuntu or Centos deployment with or without storage volume

	Recommended images

	CentOS-7-x86_64-GenericCloud-1907.qcow2 [https://cloud.centos.org/centos/7/images] or Ubuntu 16.04 LTS cloud images [https://cloud-images.ubuntu.com/xenial/]

	Configuration

	test_deployments

Updating Laniakea

The same ansible roles used to deploy Laniakea can be used to keep it up to date.

	Update the indigpaas-deploy ansible roles:

cd indigopaas-deploy

git pull

	All the services run inside docker container. Therefore, in most of cases, service aupdate requires to re-create the Docker container with the updated image. The corrisponding data are mounted inside the Docker container, thus avoiding any data loss during the update procedure.

The services docker images can be changed in the corresponding configuration file in indigopaas-deploy/ansible/inventory/group_vars/<service>.yaml.

	Finally to update a service, just re-run the ansible role:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-<service>.yml

Warning

INDIGO Software catalogue is acively developed. So the update procedure of Laniakea depends on the INDIGO services evolution. We will keep this page updated accordingly.

Note

All the (Galaxy) instances deployed with Laniakea are not influenced by the update procedure.

Current recommended configuration

Currently, the following verions of the INDIGO services are recommended:

	Service

	Version

	Docker image

	indigopaas-deploy

	v1.0

	—

	IAM

	1.5 rc2

	indigoiam/iam-login-service:v1.5.0.rc2-SNAPSHOT-latest

	IM

	1.8.8.1

	indigodatacloud/im:1.8.6.1

	CMDB

	indigo_2

	indigodatacloud/cmdb:indigo_2

	CPR

	indigo_2

	indigodatacloud/cloudproviderranker:indigo_2

	SLAM

	v2.0.0

	indigodatacloud/slam:v2.0.0

	Custom types

	v3.0.1

	—

	Orchestrator

	2.1.2-final

	indigodatacloud/orchestrator:2.1.2-final

	Vault

	1.1.2

	vault:1.1.2

	Dashboard

	laniakea-stable

	laniakeacloud/laniakea-dashboard:stable

Index

galaxycloud-ReadTheDocs

Cvmfs_client

Ansible role to install CernVM-FS Client.

Requirements

Python is required on host to run ansible.

The apt ansible module requires the following packages on host to run:

	python-apt (python 2)

Variables

server_url: set cvmfs server url (e.g. ip address or domain).

repository_name: set cvmfs server repository name (default: elixir-italy.galaxy.refdata).

cvmfs_server_url: sert cvmfs server complete url (default: 'http://{{ server_url }}/cvmfs/{{ repository_name }}).

cvmfs_public_key_path: set path for cvmfs keys (default: /etc/cvmfs/keys).

cvmfs_public_key: set cvfms public key, usually <repository_name.pub> (defatul: {{ repository_name }}.pub).

cvmfs_public_key_list_files: list of *.pub files with the key to the repository to be mounted.

public_key_src_path: set cvmfs public key temporary path (default: /tmp).

proxy_url: set proxy name (default: DIRECT).

proxy_port: set proxy port (default: 80).

cvmfs_http_proxy: set proxy complete url (default: http://{{ proxy_url }}:{{ proxy_port }}).

cvmfs_mountpoint: set cvmfs mount point (default: /cvmfs, for reference data /refdata). If set to /cvmfs the role will use cvmfs_config probe to mount the repository.

add_fstab_entry: add fstab entry to automatically mount the repository (default: true).

Example Playbook

The role takes as input parameters the CernVM-FS server location details (stratum 0 address, public key and mount point).

- hosts: servers
 roles:
 - role: indigo-dc.cvmfs-client
 server_url: '90.147.102.186'
 repository_name: 'elixir-italy.galaxy.refdata'
 cvmfs_public_key: 'elixir-italy.galaxy.refdata.pub'
 proxy_url: 'DIRECT'
 proxy_port: '80'
 cvmfs_mountpoint: '/refdata'
 when: refdata_provider_type == 'cvmfs'

References

Official cvmfs documentation: http://cvmfs.readthedocs.io/en/stable/cpt-repo.html

NIKHEF documentation: https://wiki.nikhef.nl/grid/Adding_a_new_cvmfs_repository

Cvmfs-server

Ansible role to install CernVM FS Server.

This role has been create to be general, but it is used to create Galaxy Reference Data read-only repository. To populate Stratum Zero repository with Reference data see section Build cvmfs server for reference data.

Requirements

This ansible role is compatible with both CentOS 7 and Ubuntu 16.04 Xenial.

The CernVM-FS (cvmfs) relies on OverlayFS or AUFS as default storage driver. Ubuntu 16.04 natively supports OverlayFS, therefore it is used as default, to create and populate the cvmfs server.

Python is required on host to run ansible: sudo apt-get install python

The apt ansible module requires the following packages on host to run:

	python-apt (python 2)

Variables

repository_name: set the cvmfs repository name (default: elixir-italy.galaxy.refdata).

stratum_zero: set your domain or your ip address. (default: {{ ansible_default_ipv4.address }}).

repository_url: set the cvmfs repository url (default: http://{{ stratum_zero }}/cvmfs/{{ repository_name }}).

Example Playbook

The role is able to detect the server ip address automatically, through ansible. To customize your server, set your repository name.

- hosts: servers
 roles:
 - role: indigo-dc.cvmfs-server
 repository_name: '<your_repository_name>'

Development

	S3 support and squid proxy server support is on-going.

	Replica server support is on-going.

References

Official cvmfs documentation: http://cvmfs.readthedocs.io/en/stable/cpt-repo.html

NIKHEF documentation: https://wiki.nikhef.nl/grid/Adding_a_new_cvmfs_repository

To Install CernVM FS Client: https://github.com/indigo-dc/ansible-role-cvmfs-client

To Create a CernVM Replica: https://github.com/mtangaro/ansible-role-cvmfs-replica (on-going)

Galaxycloud-fastconfig

Ansible role for Galaxy fast configuration on Virtual Manchines with Galaxy already installed using indigo.dc-galaxycloud role.

Current indigo-dc.galaxycloud (and then Galaxy) configuration is the following:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@elixir-italy.org"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "ssh-rsa ..."
 set_pgsql_random_password: false # postgres password is fixed: galaxy
 set_proftpd_random_password: false # proftpd database password is fixed: galaxy
 galaxy_db_dir: '/home/galaxy/galaxy/database'
 tool_deps_path: '/home/galaxy/tool_deps'
 conda_prefix: '/home/galaxy/tool_deps/_conda'
 job_work_dir: 'database/jobs_directory'

Final Galaxy configuration, i.e. galaxycloud + galaxycloud-fastconfig is the same of galaxycloud standalone.

Example Playbook

Including an example of how to use your role (for instance, with variables passed in as parameters) is always nice for users too:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-fastconfig
 GALAXY_ADMIN_EMAIL: "mymail@example.com"
 GALAXY_ADMIN_USERNAME: "myuser"
 galaxy_instance_description: "mygalaxy"
 galaxy_instance_key_pub: "ssh-rsa ..."

License

Apache Licence 2

Galaxycloud-os

This role provides advanced storage options for Galaxy instances.

Warning

Run indigo-dc.galaxycloud-os before indigo-dc.galaxycloud, setting the variable enable_storage_advanced_options to true.

It is possible to select three different storage options using the os_storage ansible role variable.

	Storage provider

	Description

	Iaas

	IaaS block storage volume is attached to the instance and Galaxy is configured.

	onedata

	Onedata space is mounte through oneclient and Galaxy is configured.

	encryption

	IaaS block storage volume is encrypted with aes-xts-plain64 algorithm using LUKS.

Path configuration for Galaxy is then correctly set, depending on the storage solution selected, replacing the indigo-dc.galaxycloud path recipe (with the enable_storage_advanced_options set to true).

The role exploits the galaxyctl_libs (see script_galaxyctl_libs) for LUKS and onedata volumes management .

LUKS encryption

For a detailed description of LUKS encryption used and scripts, see section FS_encryption.

Dependencies

For LUKS encryption the ansible role install cryptsetup.

For onedata reference data provider, the role depends on indigo-dc.oneclient role, to install oneclient:

- hosts: servers
 roles:
 - role: indigo-dc.oneclient
 when: os_storage == 'onedata'

Variables

The Galaxy path variables are the same of indigo-dc.galaxycloud.

Path

galaxy_user: set linux user to launch the Galaxy portal (default: galaxy).

GALAXY_UID: set user UID (default: 4001).

galaxy_FS_path: path to install Galaxy (default: /home/galaxy).

galaxy_directory: Galaxy directory (usually galaxy or galaxy-dist, default galaxy).

galaxy_install_path: Galaxy installation directory (default: /home/galaxy/galaxy).

export_dir: Galaxy userdata are stored here (defatult: /export).

galaxy_custom_config_path: Galaxy custom configuration files path (default: /etc/galaxy).

galaxy_custom_script_path: Galaxy custom script path (defautl: /usr/local/bin).

galaxy_log_path: log file directory (default: /var/log/galaxy).

galaxy_instance_key_pub: instance ssh public key to configure <galaxy_user> access.

galaxy_lrms: enable Galaxy virtual elastic cluster support. Currently supported local and slurm (default: local, possible values: local, slurm).

Main options

GALAXY_ADMIN_EMAIL: Galaxy administrator e-mail address

Isolation specific vars

os_storage: takes three possible values:

	IaaS: standard IaaS block storage volume.

	onedata: Onedata space is mounted for user data.

	download: IaaS block storage volume encrypted with aes-xts-plain64 is mounted.

Onedata

onedata_dir: onedata mountpoint. (default: /onedata).

Note

Once onedata space is mounted, files existing before mount operation, will not be available until volume umount. For this reason we set it to /onedata to a differet path.

onedatactl_config_file: set onedatactl config file (default: {{ galaxy_custom_config_path }}/onedatactl.ini).

userdata_oneprovider: set onedata oneprovider.

userdata_token: set onedata access token.

userdata_space: set space name.

Encryption

luks_lock_dir: set luks lock file directory (default: /var/run/fast_luks).

luks_success_file: set success file. It signals to ansible to proceed (default: /var/run/fast-luks.success).

luks_log_path: set LUKS log path (default: /var/log/galaxy).

luks_config_file: set luksctl configuration file (default: /etc/galaxy/luks-cryptdev.ini).

wait_timeout: time to waint encryption password (default: 5 hours).

mail_from: set mail from field (default: GalaxyCloud@elixir-italy.org).

mail_subject: with the instructions to access and encrypt the volume is sent to the user (default: [ELIXIR-ITALY] GalaxyCloud encrypt password).

LUKS specific variables

cipher_algorithm: set cipher algorithm (default: aes-xts-plain64).

keysize: set key size (default: 256).

hash_algorithm: set hash algorithm (default: sha256).

device: set device to mount (default: /dev/vdb)

cryptdev: set device mapper name (default: /dev'crypt).

mountpoint: set mount point. Usually the same of export_dir (default: {{ export_dir }}).

filesystem: set file system (default: ext4).

Create block file:

	https://wiki.archlinux.org/index.php/Dm-crypt/Device_encryption

	https://wiki.archlinux.org/index.php/Dm-crypt/Drive_preparation

	https://wiki.archlinux.org/index.php/Disk_encryption#Preparing_the_disk

Before encrypting a drive, it is recommended to perform a secure erase of the disk by overwriting the entire drive with random data.

To prevent cryptographic attacks or unwanted file recovery, this data is ideally indistinguishable from data later written by dm-crypt.

paranoic_mode: to enable block storage low level deletion set to true (default: false).

Example Playbook

IaaS configuration:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-os
 os_storage: 'IaaS'
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 galaxy_instance_key_pub: '<your_ssh_public_key>'

 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "<your_ssh_public_key>"
 enable_storage_advanced_options: true

Onedata configuration:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-os
 os_storage: 'onedata'
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 userdata_provider: 'oneprovider2.cloud.ba.infn.it'
 userdata_token: '<your_access_token>'
 userdata_space: '<your_onedata_space>'
 galaxy_instance_key_pub: '<your_ssh_public_key>'

 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "<your_ssh_public_key>"
 enable_storage_advanced_options: true

LUKS configuration:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-os
 os_storage: 'encryption'
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 galaxy_instance_key_pub: '<your_ssh_public_key>'

 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@server.com"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "<your_ssh_public_key>"
 enable_storage_advanced_options: true

References

Galaxy: https://galaxyproject.org/

Apache licence: http://www.apache.org/licenses/LICENSE-2.0

Galaxycloud-refdata

Reference data ansible role for indigo-dc.galaxycloud.
The role provides reference data and the corresponding galaxy configuration.

Currently, three reference data source are supported:

	Provider

	Description

	cvmfs

	CernVM-FS repository is used to provide reference data. It is mounted to /refdata.

	onedata

	Onedata space hosting reference data is mounted to /refdata.

	download

	Reference data are downloaded in /refdata (requires >100GB free space available on /refdata directory).

Moreover, this role, exploiting the python library Ephemeris, is able to check which tools have been installed through indigo-dc.galaxy-tools ansible role, and returns

	the list of installed tools stored in /var/log/galaxy/galaxy-installed-tool-list.yml in yaml format

	the list of missing tools stored in /var/log/galaxy/galaxy-missing-tool-list.yml in yaml format

Note

This option has been introduced for galaxy tools automatic deployment. If you need to install and configure reference data, you can disable it using galaxy_flavor: "galaxy-no-tools.

Requirements

When a CernVM-FS server is used, the role run the indigo-dc.cvmfs-client ansible role as dependency to install and configure the cvmfs client.

If the role use onedata to provide reference data, onedata command line tool oneclient needs to be installed on your system.
In this case,the role is going to depend on indigo-dc.oneclient role and it will install oneclient automatically.

Finally, if the download option is selected, the role exploits a python script to download the reference data, which depends on python-pycurl (which is automatically installed).

Role Variables

galaxy_flavor: if different from ‘galaxy-no-tools’ the role will check if all tools installed using https://github.com/indigo-dc/ansible-galaxy-tools have been correctly installed. Possible galaxy_flavor values with the correspinding recipes are reported here: feat_galaxy_tools (default: galaxy-no-tools).

get_refdata: enable reference data configuration. If set to false this variable disable reference data configuration (default: true).

refdata_provider_type: takes three possible values:

	cvmfs: CernVM-FS repository with reference data is mounted

	onedata: Onedata space with reference data is mounted

	download: Reference data download

refdata_repository_name: onedata space, CernVM-FS repository name or subdirectory to download local reference data.

cvmfs variables

refdata_cvmfs_server_url: set CernVM-FS server (stratum 0 or Replica) address without ‘http://’ string, e.g. single ip address.

refdata_cvmfs_repository_name: set a different cvmfs repository name, overwriting the default option, which point to refdata_repository_name (e.g. elixir-italy.galaxy.refdata).

refdata_cvmfs_key_file: SSH public key to mount the repository

refdata_cvmfs_proxy_url: proxy address (default DIRECT).

refdata_cvmfs_proxy_port: proxy port (default 80).

onedata variables

refdata_provider: set reference data oneprovider (e.g. oneprovider2.cloud.ba.infn.it).

refdata_token set reference data access token (e.g. MDAxNWxvY2F00aW9uIG9uZXpvbmUKMDAzYmlkZW500aWZpZXIgeExqMi00xdFN3YVp1VWIxM1dFSzRoNEdkb2x3cXVwTnpSaGZONXJSN2tZUQowMDFhY2lkIHRpbWUgPCAxNTI1MzM00NzgyCjAwMmZzaWduYXR1cmUgIOzeMtypO75nZvPJdAocInNbgH9zvJi6ifgXDrFVCr00K).

refdata_space: set reference data space name.

download

at10: false # A. thaliana (TAIR 10)
at9: false # A. thaliana (TAIR 9)
dm2: false # D. melanogaster (dm2)
dm3: false # D. melanogaster (dm3)
hg18: false # H. sapiens (hg18)
hg19: false # H. sapiens (hg19)
hg38: false # H. sapeins (hg38)
mm10: false # M. musculus (mm10)
mm8: false # M. musculus (mm9)
mm9: false # M. musculus (mm8)
sacCer1: false # S. cerevisiae (sacCer1)
sacCer2: false # S. cerevisiae (sacCer2)
sacCer3: true # S. cerevisiae (sacCer3)

Select which reference data genome has to be downloaded.

Dependencies

For cvmfs server reference data provider, the role depends on indigo-dc.cvmfs-client role, which takes as input parameters the CernVM-FS server location details (stratum 0 address, public key and mount point).

- hosts: servers
 roles:
 - role: indigo-dc.cvmfs-client
 server_url: '90.147.102.186'
 repository_name: 'elixir-italy.galaxy.refdata'
 cvmfs_public_key: 'elixir-italy.galaxy.refdata.pub'
 proxy_url: 'DIRECT'
 proxy_port: '80'
 cvmfs_mountpoint: '/refdata'
 when: refdata_provider_type == 'cvmfs'

For onedata reference data provider, the role depends on indigo-dc.oneclient role:

- hosts: servers
 roles:
 - role: indigo-dc.oneclient
 when: refdata_provider_type == 'onedata'

Example Playbook

	Configure Galaxy with CernVM-FS reference data volume.

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-refdata
 galaxy_flavor: 'galaxy-no-tools'
 get_refdata: true
 refdata_provider_type: 'cvmfs'
 refdata_cvmfs_server_url: '90.147.102.186'
 refdata_cvmfs_repository_name: 'elixir-italy.galaxy.refdata'
 refdata_cvmfs_key_file: 'elixir-italy.galaxy.refdata'
 refdata_cvmfs_proxy_url: 'DIRECT'

	Configure Galaxy with Onedata space for reference data.

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-refdata
 galaxy_flavor: "galaxy-no-tools"
 get_refdata: true
 refdata_provider: 'oneprovider2.cloud.ba.infn.it'
 refdata_token: 'MDAxNWxvY2F00aW9uIG9uZXpvbmUKMDAzYmlkZW500aWZpZXIgeExqMi00xdFN3YVp1VWIxM1dFSzRoNEdkb2x3cXVwTnpSaGZONXJSN2tZUQowMDFhY2lkIHRpbWUgPCAxNTI1MzM00NzgyCjAwMmZzaWduYXR1cmUgIOzeMtypO75nZvPJdAocInNbgH9zvJi6ifgXDrFVCr00K'
 refdata_space: 'elixir-italy.galaxy.refdata'

	Download (all available) reference data. You can select which one download.

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-refdata
 galaxy_flavor: 'galaxy-no-tools'
 get_refdata: true
 refdata_repository_name: 'elixir-italy.galaxy.refdata'
 refdata_provider_type: 'download'
 at10: true # A. thaliana (TAIR 10)
 at9: true # A. thaliana (TAIR 9)
 dm2: true # D. melanogaster (dm2)
 dm3: true # D. melanogaster (dm3)
 hg18: true # H. sapiens (hg18)
 hg19: true # H. sapiens (hg19)
 hg38: true # H. sapeins (hg38)
 mm10: true # M. musculus (mm10)
 mm8: true # M. musculus (mm9)
 mm9: true # M. musculus (mm8)
 sacCer1: true # S. cerevisiae (sacCer1)
 sacCer2: true # S. cerevisiae (sacCer2)
 sacCer3: true # S. cerevisiae (sacCer3)

References

Galaxy project: https://galaxyproject.org

CernVM-FS: http://cvmfs.readthedocs.io/en/stable/index.html

Onedata: https://groundnuty.gitbooks.io/onedata-documentation/content/index.html/

Galaxycloud-tools

This Ansible role is for automated installation of tools from a Tool Shed into Galaxy. The role use the path scheme from the role indigo-dc.galaxycloud

When run, this role will create a virtual environment, install ephemeris and invoke the install script to tools into Galaxy. The script stop Galaxy (if running), start a local Galaxy instance on http://localhost:8080 and install tools.

The list of tools to install is provided in files/tool_list.yaml file, hosted on an external repository: https://github.com/indigo-dc/Galaxy-flavors-recipes.

The role automatically clone this repository to install tools.

Requirements

This ansible role supports CentOS 7, Ubuntu 14.04 Trusty and Ubuntu 16.04 Xenial

Note

Minimum ansible version: 2.1.2.0

Role Variables

Path

galaxy_instance_description: set Galaxy brand

galaxy_user: set linux user to launch the Galaxy portal (default: galaxy).

GALAXY_UID: set user UID (default: 4001).

galaxy_FS_path: path to install Galaxy (default: /home/galaxy).

galaxy_directory: Galaxy directory (usually galaxy or galaxy-dist, default galaxy).

galaxy_install_path: Galaxy installation directory (default: /home/galaxy/galaxy).

galaxy_config_path: Galaxy config pat location.

galaxy_config_file: Galaxy primary configuration file.

galaxy_venv_path: Galaxy virtual environment directory (usually located to <galaxy_install_path>/.venv).

galaxy_custom_config_path: Galaxy custom configuration files path (default: /etc/galaxy).

galaxy_custom_script_path: Galaxy custom script path (defautl: /usr/local/bin).

galaxy_log_path: log file directory (default: /var/log/galaxy).

galaxy_instance_url: instance url (default: http://<ipv4_address>/galaxy/).

galaxy_instance_key_pub: instance ssh public key to configure <galaxy_user> access.

Main options

GALAXY_ADMIN_API_KEY: Galaxy administrator API_KEY. https://wiki.galaxyproject.org/Admin/API. Please note that this key acts as an alternate means to access your account, and should be treated with the same care as your login password. To be changed by the administrator.(default value: GALAXY_ADMIN_API_KEY)

galaxy_tools_tool_list_files: a list of yml files that list the tools to be installed.

galaxy_tools_base_dir: base dir to install installation script (default: /tmp).

galaxy_flavor: galaxy flavor to install. Each flavor corresponds to a directory hosted here: https://github.com/indigo-dc/Galaxy-flavors-recipes (defautl: galaxy-no-tools).

lock_file_path: add lock file to avoid role re-run during recipe update. To re-run the role remove the lock file {{lock_file_path}}/indigo-dc.galaxycloud-tools.lock (default: /var/run).

install_workflows: install workflows (default: ``false).

install_data_libraries: install data libs (default: ``false).

install_interactive_tours: enable interactive tours installation (default: ``false).

export_dir: Galaxy userdata are stored here (default: /export).

This role exploits a lite version of galaxy to install data-libraries. It install dataset in /home/galaxy/galaxy/database/files/000 by defaults.
If the default galaxy database directory is different you have two options. By default the role read galaxy.ini and move datasets to file_path dir:

move_datasets: true
set_dataset_dest_dir: false

Otherwise you can set the destination directory. Dataset_dest_dir must exist, since the role will not create it.

move_datasets: true
set_dataset_dest_dir: true
dataset_dest_dir: '/path/to/dir'

Defaults values:

move_datasets:true

set_dataset_dest_dir:true

dataset_dest_dir:/path/to/dir

add_more_assets: add custom resources (i.e. visualisations plugins, custom web pages, etc.). Since there is no a standard way to retrieve and install visualisation plugin, we keep this recipes external and implement a common interface to insall these resources (default: false).

Create bootstrap user

if an apy key is not present on galaxy, a new user is created to istall tools and removed.
This is a very basic implementation. Advanced one is located here: https://raw.githubusercontent.com/indigo-dc/ansible-galaxy-tools/master/files/manage_bootstrap_user.py
Currently, to create it, few informations are needed:
- galaxy installation path
- galaxy_database_connection
- and pbkdf2 enabled

create_bootstrap_user: false

galaxy_database_connection: postgresql://galaxy:galaxy@localhost:5432/galaxy

use_pbkdf2: true

bootstrap_user_mail: admin@server.com

bootstrap_user_name: admin

bootstrap_user_password: password

By default, the api key is random-generated, overwriting the galaxy_admin_api_key variable assignment. You can set it to a defined value, by setting this create_random_api_key to false.
create_random_api_key: true

Example Playbook

Including an example of how to use your role (for instance, with variables passed in as parameters) is always nice for users too:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud-tools
 galaxy_flavor: "galaxy-rna-workbench"
 galaxy_admin_api_key: "ADMIN_API_KEY"
 when: galaxy_flavor != "galaxy-no-tools"

Example Sources list

The role takes a sources list as input. Sources list recipe is used to describe Galaxy resources, tools, reference data, workflow, data libraries and/or visualization plugin to install.

The role always install tools:

- name: "Set {{galaxy_flavor}} resources"
 set_fact:
 galaxy_tools_tool_list_files:
 - '{{galaxy_tools_base_dir}}/Galaxy-flavors-recipes/{{galaxy_flavor}}/tool-list-example.yml'

You can enable workflows installation setting the variable install_workflows to true, then insert the directory containing wokflows:

set path to workflow files
ephemeris takes the worlflow path to install workflows
- name: "Set {{galaxy_flavor}} workflows resources"
 set_fact:
 install_workflows: true
 galaxy_tools_workflow_list_path:
 - '{{galaxy_tools_base_dir}}/Galaxy-flavors-recipes/{{galaxy_flavor}}/workflow'

The same goes for data libraries. You have to enable the installation, setting install_data_libraries``to ``true, then the yaml recipe path

set yaml recipes
ephemeris takes single files as argument
- name: "Set {{galaxy_flavor}} data library resources"
 set_fact:
 install_data_libraries: true
 galaxy_tools_data_library_list_files:
 - '{{galaxy_tools_base_dir}}/Galaxy-flavors-recipes/{{galaxy_flavor}}/library_data.yaml'

To enable tours set install_interactive_tours to true and the tours path:

set galaxy tours path
the whole dir is copied to galaxy/config/plugins/tours/
- name: "Set {{galaxy_flavor}} tours resources"
 set_fact:
 install_interactive_tours: true
 galaxy_tools_interactive_tour_list_path:
 - '{{galaxy_tools_base_dir}}/Galaxy-flavors-recipes/{{galaxy_flavor}}/tours'

Finally, it is possible to install external resources, like visualisation plugins, setting add_more_assets to true:

set more resources to be installed
like visualisation plugins.
since there is no a standard way to retrieve and install
visualisation plugin, we keep this recepie external.
- name: "Install visualisation plugins"
 set_fact:
 add_more_assets: true
 galaxy_tools_assets_recipe_list_files:
 - '{{galaxy_tools_base_dir}}/Galaxy-flavors-recipes/{{galaxy_flavor}}/visualisations.yml'

Example Tool list

For each tool you want to install, you must provide tool name and owner and one between tool_panel_section_id and tool_panel_section_label in the yaml tool list.

api_key: <Admin user API key from galaxy_instance>
galaxy_instance: <Galaxy instance IP>

tools:
- name: fastqc
 owner: devteam
 tool_panel_section_label: 'Tools'
 install_resolver_dependencies: True
 install_tool_dependencies: False

- name: 'bowtie_wrappers'
 owner: 'devteam'
 tool_panel_section_label: 'Tools'
 install_resolver_dependencies: True
 install_tool_dependencies: False

License

Apache Licence v2

Galaxycloud

Install Galaxy Production environment.
This role has been specifically developed to be used for the ELIXIR-IIB use case in the INDIGO-DataCloud project.

Requirements

This ansible role supports CentOS 7, Ubuntu 14.04 Trusty and Ubuntu 16.04 Xenial

Note

Minimum ansible version: 2.1.2.0

Role Variables

Path

galaxy_instance_description: set Galaxy brand

galaxy_user: set linux user to launch the Galaxy portal (default: galaxy).

GALAXY_UID: set user UID (default: 4001).

galaxy_FS_path: path to install Galaxy (default: /home/galaxy).

galaxy_directory: Galaxy directory (usually galaxy or galaxy-dist, default galaxy).

galaxy_install_path: Galaxy installation directory (default: /home/galaxy/galaxy).

galaxy_config_path: Galaxy config pat location.

galaxy_config_file: Galaxy primary configuration file.

galaxy_venv_path: Galaxy virtual environment directory (usually located to <galaxy_install_path>/.venv).

galaxy_custom_config_path: Galaxy custom configuration files path (default: /etc/galaxy).

galaxy_custom_script_path: Galaxy custom script path (defautl: /usr/local/bin).

galaxy_log_path: log file directory (default: /var/log/galaxy).

galaxy_instance_url: instance url (default: http://<ipv4_address>/galaxy/).

galaxy_instance_key_pub: instance ssh public key to configure <galaxy_user> access.

galaxy_lrms: enable Galaxy virtual elastic cluster support. Currently supported local and slurm (default: local, possible values: local, slurm).

main options

GALAXY_VERSION: set Galaxy version (e.g. master, release_17.01, release_17.05…).

create_galaxy_admin: if true the administrator user will be created (default: true).

GALAXY_ADMIN_USERNAME: Galaxy administrator username.

GALAXY_ADMIN_PASSWORD: Galaxy administrator password.

GALAXY_ADMIN_API_KEY: Galaxy administrator API_KEY. https://wiki.galaxyproject.org/Admin/API. Please note that this key acts as an alternate means to access your account, and should be treated with the same care as your login password. To be changed by the administrator.(default value: GALAXY_ADMIN_API_KEY)

GALAXY_ADMIN_EMAIL: Galaxy administrator e-mail address

Galaxy configuration

export_dir: Galaxy userdata are stored here (defatult: /export).

tool_deps_path: change tool dependency directory (default: {{ export_dir }}/tool_deps)

use_conda: enable Conda (default: true).

job_work_dir: change job_working_dir path. Due to a current limitation in conda, the total length of the conda_prefix and the job_working_directory path should be less than 50 characters! (default: {{ export_dir }}/job_work_dir).

conda_prefix: change conda prefix directory (default: {{ export_dir }}/_conda).

conda_channels: change conda channels (default: iuc,bioconda,r,defaults,conda-forge).

update_ucsc: update UCSC genome database (default: ``true). A monthly cron job is added to keep update ucsc genome db.

fast_update: force database update by copying cached files (default: true).

use_pbkdf2: enable pbkdf2 cryptograpy (default: true).

Postgres database details

postgresql_version: set postgres version to be installed (current default: 9.6).

galaxy_db_dir: change galaxy database directory to store jobs results (default: {{export_dir}}/galaxy/database).

galaxy_db_port: set postgres port (default: 5432).

galaxy_db_passwd: set database password. By default it is generated a random password 20 characters long.

set_pgsql_random_password: if set to false the role takes the password specified through galaxy_db_passwd variable (default: true).

NGINX

nginx_upload_store_path: set nginx upload dataset directory (default: {{galaxy_db_dir}}/tmp/nginx_upload_store).

https mode

The Galaxy portal runs through an nginx http proxy by default. The following variables enable you to set nginx in https mode:

nginx_https: true
ssl_cert: /etc/certs/cert.pem
ssl_key: /etc/certs/key.pem
ssl_dhparam: /etc/certs/dhparam.pem

If nginx_https is set to true, the other ssl variables are required. You can either request a signed trusted certificate or generated self-signed certificate. An ansible role to generate self-signed certificate can be found in https://galaxy.ansible.com/LIP-Computing/ssl-certs/

PROFTPD

proftpd_welcome: set proftpd welcome message (default: galaxy ftp server).

proftpd_conf_path: set proftpd configuration file path.

proftpd_db_user: set proftpd database user (default: galaxyftp).

proftpd_db_passwd: set postgresql database password. By default it is generated a random password 20 characters long.

proftpd_files_path: set proftpd upload directory (default: {{galaxy_db_dir}}/ftp).

proftpd_ftp_port: set proftpd port (default: 21).

proftpd_passive_port_low: set passive port range minimum (default: 30000).

proftpd_passive_port_high: set passive port reng maximum (default:40000).

set_proftpd_random_password: if set to false the role takes the password specified through proftpd_db_passwd variable (default: true).

Init system

Currently this role support supervisord and systemd/upstart to start Galaxy services.
init_type: if set to supervisord, it use to manage Galaxy. If set to init systemd/upstart is used to start Galaxy.

It is possible to exploit supervisord to manage postegreSQL, NGINX and proftpd setting to true the following variables. To run this role on docker container you have to set them to true.
supervisor_manage_postgres: enable supervisord postgresql management (default: false).

supervisor_manage_nginx: enable supervisord nginx management (default: false).

supervisor_manage_proftpd: enable supervisord proftpd management (default: false).

Advanced storage configuration

enable_storage_advanced_options: this option, false by the default, has to be set to true only if you run the ansible role indigo-dc.galaxycloud-os, for advanced path configuration, onedata and filesystem encryption support. More details here: Galaxycloud-os (default: false).

Example Playbook

Including an example of how to use your role (for instance, with variables passed in as parameters) is always nice for users too:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@elixir-italy.org"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "your_public_key"
 galaxy_instance_description: "INDIGO-CNR test"

Install Galaxy setting postgresql passwords:

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@elixir-italy.org"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "your_public_key"
 galaxy_instance_description: "INDIGO-CNR test"
 set_pgsql_random_password: false
 galaxy_db_passwd: 'galaxy'
 set_proftpd_random_password: false
 proftpd_db_passwd: 'galaxy'

Setup Galaxy Docker container. The role, using ansible, automatically recognize the virtual platform (virtual machine or Docker contanier).

- hosts: servers
 roles:
 - role: indigo-dc.galaxycloud
 GALAXY_ADMIN_EMAIL: "admin@elixir-italy.org"
 GALAXY_ADMIN_USERNAME: "admin"
 GALAXY_VERSION: "release_17.05"
 galaxy_instance_key_pub: "your_public_key"
 galaxy_instance_description: "INDIGO-CNR test"
 supervisor_manage_postgres: "True"
 supervisor_manage_nginx: "True"
 supervisor_manage_proftpd: "True"

License

Apache Licence v2

References

Galaxy: https://galaxyproject.org/

Apache licence: http://www.apache.org/licenses/LICENSE-2.0

Galaxy Docker configuration

Laniakea leverages on an Ansible role (indigo-dc.galaxycloud_docker) to run a Galaxy Docker in a Virtual Machine.

Recommended images

Laniaeka exploits Ubuntu to run the Galaxy Docker. The recommended image is Ubuntu 16.04 LTS cloud images [https://cloud-images.ubuntu.com/xenial/]

CMDB configuration

The image details must be uploaded on CMDB (see section CMDB and CPR). The json file needs the following details:

	image_id: is the ID of the image on the cloud platform, e.g. Openstack.

	service: is the service ID, configured on CMDB.

	image_name: is the name of the image that has to be used in the tosca template in the image field.

SSH on CMDB virtual machine and create the file cmdb-data/ubuntu.json with the following content:

{
 "type": "image",
 "data": {
 "image_id": "<ubuntu-image-id>",
 "image_name": "ubuntu-16.04-vmi",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "ubuntu",
 "version": "16.04",
 "service": "<service-id>"
 }
}

where ubuntu-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

To upload the image information on CMDB:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/ubuntu.json

The image shuld now be available on CMDB with the name: ubuntu-16.04-vmi.

Note

All CMDB image are listed at the address: https://<proxy_vm_dns_name>/cmdb/image/list?include_docs=true

Tosca template configuration

The TOSCA template of the Galaxy Docker is located at /opt/laniakea-dashboard-config/tosca-templates/galaxy-docker.yaml and is configured to exploit Ubuntu 16.04 as default image:

galaxy_server:
...
 # Guest Operating System properties
 os:
 properties:
 image: ubuntu-16.04-vmi
...

If the images is uploaded on CMDB with a different name, the image field needs to be changed accordingly.

Galaxy live build configuration

Recommended images

The OS image has to be available in the Tenant. Laniakea has been tested using CentOS 7 [https://cloud.centos.org/centos/7/images/CentOS-7-x86_64-GenericCloud-1907.qcow2].

CMDB configuration

The image details must be uploaded on CMDB (see section CMDB and CPR). The json file needs the following details:

	image_id: is the ID of the image on the cloud platform, e.g. Openstack.

	service: is the service ID, configured on CMDB.

	image_name: is the name of the image that has to be used in the tosca template in the image field.

SSH on CMDB virtual machine and create the file cmdb-data/centos.json with the following content:

{
 "type": "image",
 "data": {
 "image_id": "<centos-image-id>",
 "image_name": "centos-7-vmi",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where centos-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

To upload the image information on CMDB:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/centos.json

The image shuld now be available on CMDB with the name: centos-7-vmi.

Note

All CMDB image are listed at the address: https://<proxy_vm_dns_name>/cmdb/image/list?include_docs=true

Tosca template configuration

Galaxy

The TOSCA template of the Galaxy live build is located at /opt/laniakea-dashboard-config/tosca-templates/galaxy.yaml and is configured to exploit CentOS 7 as default image:

galaxy_server:
...
 # Guest Operating System properties
 os:
 properties:
 image: centos-7-vmi
...

If the images is uploaded on CMDB with a different name, the image field needs to be changed accordingly.

Galaxy (elastic) cluser

The Galaxy cluster TOSCA template is /opt/laniakea-dashboard-config/tosca-templates/galaxy-cluster.yaml. The Galaxy elastic cluster TOSCA template is /opt/laniakea-dashboard-config/tosca-templates/galaxy-elastic-cluster.yaml.

The image configuration is the same. There are two image fields, one for the fronte node:

lrms_server:
...
 # Front-End Guest Operating System properties
 os:
 properties:
 image: centos-7-vmi
...

and one for the worker node:

lrms_wn:
...
 # Worker Node Guest Operating System properties
 os:
 properties:
 image: galaxy-base
 #image: centos-7-vmi

If the images is uploaded on CMDB with a different name, the image field needs to be changed accordingly.

Galaxy express configuration

Galaxy express exploits custom images with Galaxy, all its companion software and tools inside it. In particular, tools are installed on Galaxy but their dependencies are not included in the image, otherwise its size would make deployment slow and difficult to manage. For this reason the tool_deps directory is compressed in a separated tarball, which is downloaded and extracted at the deployment time.

Image creation

Galaxy flavours images can be created using Laniakea ansible roles:

	indigo-dc.galaxycloud [https://github.com/indigo-dc/ansible-role-galaxycloud]

	indigo-dc.galaxycloud-tools [https://github.com/indigo-dc/ansible-role-galaxycloud-tools]

A setup script is available to automate the procedure here [https://github.com/Laniakea-elixir-it/laniakea-images].
The setup script can used to create Laniakea cloud images. It is compatible with CentOS 7 and Ubuntu 16.04. CentOS 7 is the recommended OS.
This script update all CentOS or Ubuntu image packages. CVMFS client is installed by default. Other installed packages: vim, wget, git.
On CentOS 7 epel repository are enabled by default.

The script can be also used to create a tar.gz with conda tools dependencies on /export path. The created tarball will have the galaxy flavour name.

Image upload

Once create the Galaxy image has to be made available in the cloud provider tenant. For example, on Openstack:

[image: ../../_images/openstack_images.png]

Tools upload

The tarrball with the tools must be available to be downloaded at deployment time. Laniakea tarball are currently available (with the corresponding cloud images) here:

http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images

The Galaxycloud-fastconfig ansible role, download and uncompress the tools dependencies in the right path. A naming convention has been adoped to grant the donwload of the tarball file, corresponding to the right cloud image: <galaxy_flavour>-<galaxy_version>-<image_version>. For example galaxy-rna-workbench-release_19.05-1.

	<galaxy_flavour>: it is the selected Galaxy flavour, e.g. galaxy-CoVaCS.

	<galaxy_version>: it is the selected Galaxy version, e.g. release_19.05.

	<image_version>: it is the version of the cloud image, currently available. For each Galaxy flavour and Galaxy version, the image version can be checked here [https://github.com/indigo-dc/ansible-role-galaxycloud-fastconfig/tree/master/vars]. For example, the image version of galaxy-CoVaCS for each Galaxy release can be found here [https://raw.githubusercontent.com/indigo-dc/ansible-role-galaxycloud-fastconfig/master/vars/galaxy-CoVaCS.yml].

CMDB configuration

Galaxy express exploits custom images with Galaxy already inside. Therefore, a naming convention is used, allowing the TOSCA template to call the right image: centos-7-<galaxy_flavour>-<galaxy_version>, where <galaxy_flavour≤ is the selected flavour and <galaxy_version ins the selected Galaxy version.

Therefore, the image name uploaded on CMDB must follow this convention. For example, if the galaxy_flavour = galaxy-CoVaCS and the galaxy_version = release_19.05 the resultant image name will be centos-7-galaxy-CoVaCS-release_19.05.

The follwing naming convenction is used in Laniakea:

	Flavours

	Name

	Description

	Galaxy minimal

	galaxy-no-tools

	Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd, uWSGI).

	Galaxy CoVaCS

	galaxy-CoVaCS

	Workflow for genotyping and variant annotation of whole genome/exome and target-gene sequencing data (https://www.ncbi.nlm.nih.gov/pubmed/29402227).

	Galaxy GDC Somatic Variant

	galaxy-GDC_Somatic_Variant

	Port of the Genomic Data Commons (GDC) pipeline for the identification of somatic variants on whole exome/genome sequencing data (https://gdc.cancer.gov/node/246).

	Galaxy RNA workbench

	galaxy-rna-workbench

	More than 50 tools for RNA centric analysis (https://www.ncbi.nlm.nih.gov/pubmed/28582575).

	Galaxy Epigen

	galaxy-epigen

	Based on Epigen project (http://www.epigen.it/).

Note

All CMDB image are listed at the address: https://<proxy_vm_dns_name>/cmdb/image/list?include_docs=true

TOSCA template configuration

The Galaxy express TOSCA template needs to be configured to use the right image and download the right tool tarball. Open the file /opt/laniakea-dashoard-config/tosca-templates/galaxy-express.yaml.

Tools tarball repository is set in the inputs section of the TOSCA template:

remote_tool_deps_dir_url:
 type: string
 description: tools tar gz location
 default: 'http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images'

The image can be configured in the section galaxy_server, with the image inserted in CMDB, allowing the PaaS Orchestrator to retrieve the right image:

galaxy_server:
...
 # Guest Operating System properties
 os:
 properties:
 image: { concat: ['centos-7-', get_input: flavor,'-', get_input: version] } # centos-7-galaxy-CoVaCS-release_19.05
...

galaxy-minimal

Description

Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd, uWSGI).

Image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-minimal_release_19.05-1.qcow2]

CMDB json

Create the file cmdb-data/galaxy-minimal.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-minimal-image-id>",
 "image_name": "centos-7-galaxy-minimal-release_19.05",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-minimal-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-minimal.json

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-minimal-release_19.05.

galaxy-CoVaCS

Description

Workflow for genotyping and variant annotation of whole genome/exome and target-gene sequencing data (https://www.ncbi.nlm.nih.gov/pubmed/29402227).

Image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-CoVaCS_release_19.05-1.qcow2]

Tools dependencies tarball

Tools tarball URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/galaxy-CoVaCS-release_19.05-1.tar.gz]

CMDB json

Create the file cmdb-data/galaxy-CoVaCS.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-covacs-image-id>",
 "image_name": "centos-7-galaxy-CoVaCS-release_19.05",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-covacs-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-CoVaCS.json

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-CoVaCS-release_19.05.

galaxy-GDC_Somatic_Variant

Description

Port of the Genomic Data Commons (GDC) pipeline for the identification of somatic variants on whole exome/genome sequencing data (https://gdc.cancer.gov/node/246).

Image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-GDC_Somatic_Variant_release_19.05-1.qcow2]

Tools dependencies tarball

Tools tarball URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/galaxy-GDC_Somatic_Variant-release_19.05-1.tar.gz]

CMDB json

Create the file cmdb-data/galaxy-GDC_Somatic_Variant.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-gdc-image-id>",
 "image_name": "centos-7-galaxy-GDC_Somatic_Variant-release_19.05",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-gdc-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-GDC_Somatic_Variant.json
{"ok":true,"id":"6e2ed4e065ab0a768d2614fc34005859","rev":"1-edf1bca98184f9a3b08001f96752f214"}

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-GDC_Somatic_Variant-release_19.05.

galaxy-epigen

Description

Based on Epigen project (http://www.epigen.it/).

Image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-epigen_release_19.05-1.qcow2]

Tools dependencies tarball

Tools tarball URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/galaxy-epigen-release_19.05-1.tar.gz]

CMDB json

Create the file cmdb-data/galaxy-epigen.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-epigen-image-id>",
 "image_name": "centos-7-galaxy-epigen-release_19.05",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-epigen-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:Delta552@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-epigen.json
{"ok":true,"id":"6e2ed4e065ab0a768d2614fc340066d4","rev":"1-b94b13e05f7afb4dfd98b2b59608de49"}

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-epigen-release_19.05.

galaxy-rna-workebench

Description

More than 50 tools for RNA centric analysis (https://www.ncbi.nlm.nih.gov/pubmed/28582575).

Image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-rna-workbench_19.05-1.qcow2]

Tools dependencies tarball

Tools tarball URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/galaxy-rna-workbench-release_19.05-1.tar.gz]

CMDB json

Create the file cmdb-data/galaxy-rna-workbench.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-rnawb-image-id>",
 "image_name": "centos-7-galaxy-rna-workbench-release_19.05",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-rnawb-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-rna-workbench.json
{"ok":true,"id":"6e2ed4e065ab0a768d2614fc34005ad8","rev":"1-bcc95ed3bbb3ca6ef4138d70fb8acab3"}

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-rna-workbench-release_19.05.

Galaxy express cluster

The Galaxy express cluster explits the previous flavour images to instantiate Galaxy, but it needs an additional image for the Worker Nodes, since the galaxy user must be already created in the image, to grant the right permissions. The galaxy user is created with 4001 UID and GID, that are the galaxy user default UID and GID on galaxy images, thus granting the right permissions.

Worker nodes image

Image URL [http://cloud.recas.ba.infn.it:8080/v1/AUTH_3b4918e0a982493e8c3ebcc43586a2a8/Laniakea-generic-cloud-images/CentOS-7-x86_64-GenericCloud_galaxy-wn-1.qcow2]

CMDB json

Create the file cmdb-data/galaxy-wn.json on the CMDB Virtual Machine, with the content:

{
 "type": "image",
 "data": {
 "image_id": "<galaxy-wn-image-id>",
 "image_name": "centos-7-galaxy-wn",
 "architecture": "x86_64",
 "type": "linux",
 "distribution": "centos",
 "version": "7",
 "service": "<service-id>"
 }
}

where galaxy-wn-image-id is the image ID on the Cloud platform, while service-id is the service ID on CMDB.

CMDB upload command

On CMDB Virtual Machine run the following command:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H "Content-Type: application/json" -d@cmdb-data/galaxy-wn.json
{"ok":true,"id":"6e2ed4e065ab0a768d2614fc340068a3","rev":"1-07289295a1aefb3c0a50e5d9bbc675f9"}

where <cmdb_crud_password> is the CMDB password set during its installation.

The image shuld now be available on CMDB with the name: centos-7-galaxy-wn.

TOSCA template

The images must be configured in the Galaxy express cluster corresponding TOSCA template. Open the file /opt/laniakea-dashoard-config/tosca-templates/galaxy-express-cluster.yaml end edit the image name in the section in the lrms_wn section:

lrms_wn:
...
 os:
 properties:
 image: centos-7-galaxy-wn

Recover Galaxy after Virtual Machine reboot

How to correctly restart Galaxy after a reboot of the Virtual Machine ?

After the boot procedure of your VM at least these services should already be up and running:

	PostgreSQL

	Proftpd

	NGINX

Trying to connect to your Galaxy instance IP with a web browser you should see:

[image: Galaxy page]

Step 1: Unlock encrypted storage

If your instance is not mounted on encrypted storage please skip this and go to Step 2: One-command procedure

To unlock the volume connect with SSH and type the command sudo /usr/local/bin/luksctl open followed by your passphrase.

$ sudo /usr/local/bin/luksctl open
Enter passphrase for /dev/disk/by-uuid/4ba96890-f914-46aa-b7a6-7e71f0846f43:

Name: jzwoejuw
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 252, 0
Number of targets: 1
UUID: CRYPT-LUKS1-4ba96890f91446aab7a67e71f0846f43-jzwoejuw

Encrypted volume: [OK]

Step 2: One-command procedure

To start Galaxy you can just copy and paste this:

$ sudo su -c "wget -O - https://raw.githubusercontent.com/Laniakea-elixir-it/Scripts/master/galaxy/recover.sh | bash" root

Probing /cvmfs/elixir-italy.galaxy.refdata... OK
Contacting Galaxy (wait for 10 seconds)...
Galaxy server on-line: [OK]

Warning

This may require few minutes, but should safely restart your Galaxy.

[image: Galaxy page]

Advanced Step-by-step procedure

Warning

Please follow this instructions only if you know what you are doing!

Mount reference data

After encrypion storage unlock (see section Step 1: Unlock encrypted storage), if you have it, you need now to mount your reference datasets:

$ sudo systemctl restart autofs

$ sudo cvmfs_config killall

Terminating cvmfs_config processes... OK
Terminating cvmfs2 processes... OK
Unmounting stale mount points... OK
Cleaning up run-time variable data... OK
Reloading autofs... OK

$ sudo cvmfs_config probe

Probing /cvmfs/elixir-italy.galaxy.refdata... OK

Start Galaxy

Finally, to correctly start all Galaxy services run: sudo /usr/local/bin/galaxy-startup

$ sudo /usr/local/bin/galaxy-startup

Loading Galaxy environment
Exporting environment variables
Check if galaxy is up and running, to avoid unuseful restart
status: 502
Galaxy unreachable
Check is supervisord is running
Starting the Galaxy production environment
/usr/lib/python2.7/site-packages/supervisor/options.py:383: PkgResourcesDeprecationWarning: Parameters to load are deprecated. Call .resolve and .require separately.
return pkg_resources.EntryPoint.parse("x="+spec).load(False)

Galaxy start: [OK]

User creation error

Anonymous login is disabled by default on Laniakea Galaxy instances. On Galaxy 19.05 there is a bug in the Admin section to create the user.

Note

Only Galaxy 19.05 is affected.

[image: ../../_images/galaxy_admin_user_creation.png]

Once you create the user, you will be redirect to the Admin panel. Currently, Galaxy is unable to set it correctly.

[image: ../../_images/galaxy_admin_redirect_error.png]

Actually, the user is correctly created and this is only redirect problem.

[image: ../../_images/galaxy_admin_user_created.png]

Galaxy is, in fact, wrongly redirecting you to http://<ip_address>/admin/users and not in the subpath http://<ip_address>/galaxy/admin/users. You need just to go on the Galaxy home page and then in the admin panel, to see the user created.

CoVaCS on Galaxy

CoVaCS [https://www.ncbi.nlm.nih.gov/pubmed/29402227], Consensus Variant Calling System, is a fully automated system for genotyping and variant annotation of resequencing data produced by second generation NGS technologies. The CoVaCS pipeline integrates cutting-edge tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data.

The implementation of CoVaCS on Galaxy performs the following pipeline steps:

	Quality control

	Quality Trimming

	Mapping

	Variant calling

	Variant selection

	Variant annotation

Each step of the pipeline is performed by one or more bioinformatics tools:

Quality control

The quality control of raw reads is performed by FastQC.

	Description

	This step provides quality control report on raw sequence data spotting problems which originate either in the sequencer or in the starting library material. The report gives a quick view of the quality of raw data, making the user aware of any quality problems before making any further analysis

	Galaxy wrapper

	wrapper FastQC [https://toolshed.g2.bx.psu.edu/repository?repository_id=ca249a25748b71a3]

Quality Trimming

The quality trimming step is performed by Trimmomatic

	Description

	Taking into account the data problems found in the previous step, Trimmomatic provides the possibility to optimize the raw reads length. It includes several options to read trimming and filtering.

	Galaxy wrapper

	wrapper Trimmomatic [https://toolshed.g2.bx.psu.edu/repository?repository_id=ef9e620e9ac844b3]

Mapping

The mapping step is performed by the Burrows-Wheeler Aligner (BWA) software package for mapping sequences against a large reference genome.

	Description

	It uses a Burrow’s Wheeler Transform method to map the reads on the reference genome creating a Sequence/Alignment Map (SAM) file for each sample.

	Galaxy wrapper

	wrapper BWA [https://toolshed.g2.bx.psu.edu/repository?repository_id=9ff2d127cd7ed6bc]

Variant calling

The variant calling step is performed by three different tools: Varsca2, GATK and Freebayes. Each tool gives two different output one for the discovery of Indels and one for SNPs.

Varscan2

	Description

	Varscan2 adopts a series of stringent quality metrics in order to identify putative false positive predictions.

	Galaxy wrapper

	wrapper Varscan2 [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_varscan2/44e9fd8fd25a]

GATK

	Description

	GATK performs local reassembly of the reads to mitigate sequence errors and reconstruct haplotypes using VariantRecalibrator and ApplyRecalibrator for standard CoVaCS implementation and Select filtration wrapper in case of not enough snp or indels error in covacs_VariantRecalibrator.

	Galaxy wrapper

	wrapper VariantRecalibrator [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_variant_recalibrator/18481dd04f37] | wrapper ApplyRecalibrator [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_apply_recalibrator/48dc4c9bc497] | wrapper SelectFiltration [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_select_filtration/3a37867409fe]

Freebayes

	Description

	Freebayes (Garrison and Marth 2012) is based on a probabilistic haplotype reconstruction algorithm.

	Galaxy wrapper

	wrapper Freebayes [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_freebayes/cbe203c9bc3a]

Variant selection

	Description

	All the SNPs discovered using these two approaches, are grouped into two separate outputs using two perl script intersect_snp and intersect_indels: common SNPs (SNPs detected by two or three tools) and unique SNPs (SNPs discovered by only one tool). The same process is applied to Indels generating common Indels and unique Indels files.

	Galaxy wrapper

	wrapper covacs intersect SNP [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_intersect_snps/3edc7bb490d3] | wrapper covacs intersect indels [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_intersect_indels/482e911975a1]

Variant annotation

	Description

	The variant annotation step, both of common and unique variants, is performed by Annovar (Wang, Li, and Hakonarson 2010). Annovar annotates genetic variants returning:

	Gene-based annotation: identify whether SNPs or CNVs cause protein-coding changes and the amino acids that are affected.

	Region-based annotation: identify variants in specific genomic regions.

	Filter-based annotation: identify variants that are documented in specific databases.

	Galaxy wrapper

	wrapper annovar [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/covacs_annovar/40db0c5e3310]

The output comprising the annotated variants can be uploaded and visualized for example on the UCSC genome browser [https://genome.ucsc.edu/].

CoVaCS reference data

CoVaCS reference data are automatically mounted on Galaxy, selecting ELIXIR-IT Galaxy CoVaCS reference data CVMFS repository during the Instance configuration.

The available reference data are:

	Reference Genome indexed for BWA and GATK downloaded from GATK bundle ucsc.hg19.fasta

	Annovar Databases

Gene-based annotation:

	refGene

Filter-based annotation:

	Exac03

	1000g2015aug

	avsnp150

	clinvar_20180603

	cosmic70

	dbnsfp33a

	esp6500_all

	kaviar_2015092361

	knownGene

	mitimpact2

	gnomad_genome

Downloaded from Annovar repository using the command

$ perl annotate_variation.pl -downdb -buildver hg19 -webfrom annovar <database_name> humandb

CoVaCS workflows

The first workflow was implemented to run the standard pipeline of CoVaCS (fig.1) starting after the quality control, trimming and mapping.

[image: ../../_images/galaxy_covacs_workflow_1.png]

Fig.1 - CoVaCS standard workflow

The second workflow (fig.2) differs from the previous one since the GATK VariantRecalibrator and ApplyRecalibrator are replaced by the Select filtration wrapper. This workflow has been developed in order to be used by users if enough snp or indels error in VariantRecalibrator.

[image: ../../_images/galaxy_covacs_workflow_2.png]

Fig.2 - CoVaCS Select Filtration workflow

GDC Somatic Variant on Galaxy

The GDC Somatic Variant [https://gdc.cancer.gov/node/246] pipeline aims to identify and annotate somatic variants using high-throughput genomic sequencing data.

The implementation on Galaxy performs the following pipeline steps:

	Quality check and trimming

	Genome Alignment

	Alignment Co-Cleaning

	Somatic Variant Calling

	Variant Annotation

Note

The GDC Somatic Variant Galaxy pipeline requires at least 7.5 GB of RAM to properly run, due to the large amount of RAM used by BWA and GATK. The recommended configuration is with 16 GB or RAM.

Warning

On SLURM cluster, it could be necessary to enable GATK computational options, setting the field
Overwrite Memory in MB (0 = don't overwrite) to 7500 (MB).

This field corresponds to the GATK_MEM variable in the tool wrapper.
By default, GATK check if this variable is set. If not, the SLURM_MEM_PER_NODE variable is checked.
This variable, on SLURM, correspods to the –mem options (https://slurm.schedmd.com/sbatch.html), i.e. the RAM associated to each job.
If this variable is not defined, a default value of 4096 MB is taken

On Laniakea, the --mem options is not enabled by default, since it requires the RealMemory field enabled in the slurm.conf file, therefore it is currently needed to set the Overwrite Memory in MB (0 = don't overwrite) field to 7500.

The different steps are performed as follows.

Quality check and trimming

	Description

	The Quality check of raw reads is performed by FastQC. It provides quality control report on raw sequence data spotting problems which originate either in the sequencer or in the starting library material. The report gives a quick outlook on the quality of raw data, making the user aware of any quality problems before making any further analysis.

The Quality trimming step is performed by Trimmomatic. This tool taking into account the data problems encountered in the previous step, offer the possibility to optimize the raw reads length. It includes several options for read trimming and filtering.

	Galaxy wrapper

	Wrapper FastQC [https://toolshed.g2.bx.psu.edu/repository?repository_id=ca249a25748b71a3] | Wrapper Trimmomatic [https://toolshed.g2.bx.psu.edu/repository?repository_id=ef9e620e9ac844b3]

Genome Alignment

The Genome Alignment step is performed by the Burrows-Wheeler Aligner (BWA) software package for mapping sequences against a large reference genome.

	Descriptiom

	It uses a Burrow’s Wheeler Transform method to map the reads on the reference genome creating a Sequence/Alignment Map (SAM) file for each sample. After the mapping, the output file is passed to Markduplicates. This tool is used to locate and tags duplicate reads within a BAM file.

	Galaxy wrapper

	Wrapper BWA [https://toolshed.g2.bx.psu.edu/view/devteam/bwa/01ac0a5fedc3] | Wrapper MarkDuplicates [https://toolshed.g2.bx.psu.edu/repository?repository_id=c45d6c51a4fcfc6c]

Alignment Co-Cleaning

The Co-cleaning step is performed by GATK (Aaron McKenna, et al).

	Description

	Local realignment of insertions and deletions is performed using GATK IndelRealigner. This step locates regions that contain misalignments across BAM files, often caused by insertion-deletion (indel). Misalignment of indel mutations can often be scored as substitutions reducing the accuracy of the downstream variant calling steps. The second step consists of a base quality score recalibration performed by GATK BaseRecalibrator. This step allows to obtain more accurate base qualitie through the use of a machine learning algorithm that adjusts the technical errors leading to over- or under-estimated base quality scores in the data.

	Galaxy wrapper

	GATK Wrapper [https://toolshed.g2.bx.psu.edu/view/avowinkel/gatk/b80ff7f43ad1]

Somatic Variant Calling

The somatic variant calling step is performed using four different tools: MuSE, MuTect2, VarScan2 and SomaticSniper.

MuSE

	Description

	Variant calling is performed using two tools. The MuSE call tool takes as input the BAM file of the normal and the tumor sample and calculates the equilibrium frequencies for all four alleles. The output is then processed by the second step, MuSE sump, that computes tier-based cut-offs from a sample-specific error model. The final output of the second step is a Variant Call Format (VCF) file that lists the identified somatic variants.

	Galaxy wrapper

	Muse Wrapper <https://testtoolshed.g2.bx.psu.edu/view/elixir-it/muse/110b3018eb2a>

MuTect2

	Description

	The tool processes the raw BAM alignment file from the mapper tool performing the detection of somatic genome variants using a Bayesian classifier, a probabilistic classifier based on the Bayes theorem. Like the other tools mentioned above, it produces in output a VCF file with the identified the variants.

	Galaxy wrapper

	Mutect2 Wrapper [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/mutect2/e3662508ee26]

Varscan2

	Descritpion

	This step is performed by two tools: Samtools Mpileup (Li et al. 2009) and VarScan2. Samtools Mpileup, takes in input the tumoral and normal bam files, provides a summary of the coverage of mapped reads on a reference sequence at single base pair resolution, in a pileup file. This file is then processed by Varscan2 that calls the somatic variants (SNPs and indels) using a heuristic method and a statistical test based on the number of aligned reads supporting each allele.

	Galaxy wrapper

	Wrapper Varscan2 [https://toolshed.g2.bx.psu.edu/view/devteam/varscan_version_2/bc1e0cd41241] | Wrapper Mpileup [https://toolshed.g2.bx.psu.edu/view/devteam/samtools_mpileup/fa7ad9b89f4a]

Somatic Sniper

	Descritpion

	Somatic Sniper takes as input the BAM files, and determines the differences and calls the variants. In order to compare the two BAM files it employs the genotype likelihood model of MAQ (as implemented in Samtools) and then calculates the probability that the tumor and normal genotypes are different.

	Galaxy wrapper

	Wrapper Somatic Sniper [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/somaticsniper/f7d69881bdec]

Somatic Sniper and Varscan 2 use also fpfilter to filter again the vcf. (Wrapper fpfilter [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/fpfilter/0f17ca98338e])

Variant Annotation

	Descritpion

	The Variant annotation step is performed for each of the variant calling step. The software used is the Variant Effect Predictor (VEP) (McLaren et al. 2016), made available by Ensembl. VEP takes a VCF in input and reports the genes and transcripts affected by the variants, the location of the variants, the consequences of the variant on the protein sequence, and any variant already catalogued in the database of the 1000 Genome project.

	Galaxy wrapper

	Wrapper Variant Annotation [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/vep86_vcf2maf/ca1e48c52db9]

GDC Somatic Variant reference data

CVMFS data.galaxyproject.org

	Reference genome Human (Homo sapiens)(b73): hg_g1k_v37

	As vcf the user have to download one of the variant .vcf files related to the b73 genome present in the ftp of GATK bundle [https://software.broadinstitute.org/gatk/download/bundle] and upload it on the Galaxy history.

CVMFS elixir-italy.galaxy.refdata

	Reference genome hg19_bundle (Reference Genome indexed for BWA and GATK downloaded from GATK bundle [https://software.broadinstitute.org/gatk/download/bundle] ucsc.hg19.fasta)

	As vcf the user have to download one of the variant .vcf files related to the hg19 genome present in the ftp of GATK bundle [https://software.broadinstitute.org/gatk/download/bundle] and upload it on the Galaxy history

GDC somatic variant Galaxy workflow

GDC wf preparation

Before running the GDC workflow some preparation steps are required:

	On Galaxy homepage go to Admin then manage tool and select gatk.

	In this page select the tool dependecy GATK_PATH

[image: ../../_images/GATK_dependencies.png]

	Copy the Tool dependency installation directory

[image: ../../_images/GATK_PATH.png]

	Open the file env.sh located in the Tool dependency installation directory and change its content to: GATK_PATH=/export/tool_deps/_conda; export GATK_PATH

	Move the GenomeAnalysisTK.jar avaiable in GenomeAnalysisTK-3.8-0-ge9d806836.tar.bz2 downloadable from GATK website [https://software.broadinstitute.org/gatk/download/archive] package to /export/tool_deps/_conda

	Download the required vep-cache using vep-download-cache module of Wrapper Variant Annotation [https://testtoolshed.g2.bx.psu.edu/view/elixir-it/vep86_vcf2maf/ca1e48c52db9]

[image: ../../_images/galaxy_gdc_workflow.png]

The Galaxy workflow that connects together all the tool of the GDC-DNA-seq pipeline in order to be automatically performed in a single step.

Troubleshooting

vep_annotated and vcf2maf exit with the following error:

Can't locate Bio/PrimarySeqI.pm in @INC (you may need to install the Bio::PrimarySeqI module) (@INC contains: /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0 /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/lib/site_perl/5.26.2/x86_64-linux-thread-multi /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/lib/site_perl/5.26.2 /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/lib/5.26.2/x86_64-linux-thread-multi /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/lib/5.26.2 .) at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Slice.pm line 75.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Slice.pm line 75.
Compilation failed in require at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Feature.pm line 84.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Feature.pm line 84.
Compilation failed in require at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/BaseVariationFeature.pm line 58.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/BaseVariationFeature.pm line 58.
Compilation failed in require at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/VariationFeature.pm line 97.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/VariationFeature.pm line 97.
Compilation failed in require at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/Utils/VEP.pm line 81.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/share/variant-effect-predictor-86-0/Bio/EnsEMBL/Variation/Utils/VEP.pm line 81.
Compilation failed in require at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/bin/variant_effect_predictor.pl line 72.
BEGIN failed--compilation aborted at /export/tool_deps/_conda/envs/mulled-v1-1cf17a4e29129ede8b208c6c7c927283b476352e9fbed97e30914485f334b89b/bin/variant_effect_predictor.pl line 72.

To fix this, in the corresponding conda environment:

conda install -c bioconda perl-bioperl

 _images/orchestrator_client_access.png
RECAS |AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Self-service Protected Resource Registration / rsreg.new

Manage Clients

Whitelisted Clients @ Cencel

Blacklisted Clients
System Scopes

Main Access Credentials ~ JSON

|AM Dashboard

PERSONAL Scope

Manage Approved Sites
Manage Active Tokens
View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Powered by MITREid Connect [T}

new scope
openid
profile
email
address
phone

offline_access

EDDDEE“’

Scopes that this resource will be able to introspect tokens for.

©2016 INFN

_images/orchestrator_client_main.png
RECAS 1AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Self-service Protected Resource Registration / rsreg.new
Manage Clients
Whitelisted Clients @ Cancel
Blackisted Clients
System Scopes

Main Access Credentials JSON
1AM Dashboard
- 1 be ed by th

" generated by the server when the

Manage Approved Sites €D
Manage Active Tokens

Client Secret Will be generated by the server when the
View Profile Information

pRvELorER Cllent Configuration URL Wil1 be generated by the server when the

Self-service client

e Access WLl be ted by th when th
{11 be generated by the server when the

[— ooy

resource registration LD

Client name [orchestrator._test]

'Human-readable application name

Logo | https// |

client is

client is

client is

client is

saved

saved

saved

saved

URL that points to a logo image, will be displayed on approval page

Terms of Service | hitps:// |

URL for the Terms of Service of this client, will be displayed to the user

Policy Statement _ hiips: |

URL for the Policy Statement of this client, will be displayed to the user

Home Page | fitps

URL for the client's home page, will be displayed to the user

X570 Application Type) Native) Web
Contacts
| new contact

ey
admin@iam.test o

List of contacts for administrators of this client.

B2 ocwe

Powered by MITREId Connect [

©2016 INFN

_images/orchestrator_admin_client_access.png
INDIGO IAM for laniakea

TS Home / Manage Clients / Edit Glient
Manage Cllents
Whitelsted Glients Edit client
Blackisted Clents
System Scopes @ Cancel
1AM Dashboard
I Man | Access Credentials Tokens ~Crypto Other
Manage Approved Sites
Manage Active Tokens Soope (e e
View Profile Information
openid
e profile)
Self-service client Ja— o
registration
Self-service protected address
resource registration phone a)
offiine_access
scimiread
scimwrite &)

Grant Types

(X570 Response Types

Introspection

Subject Type

Sector Identifier URI

Powered by MITREid Connect [}

registration:read
registration:write
soim

registration

OAuth scopes this client s allowed to request

‘authorization code
client credentials
password

implicit
redelegation
device

© token exchange

code
token
id_token
token id_token
code id_token
code token

code token id_token

Allow calls to the Introspection Endpoint?

Public () Pairwise

https:

‘Sector Identifier for JavaScript

©2016 INFN

_images/orchestrator_admin_client_tokens.png
~4" INDIGO IAM for laniakea

ADMINISTRATIVE Home / Manage Clients

Manage Clients

Edit Client

Whitelisted Glients Ed it client

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard
I Main Access Credentials Tokens ~ Crypto Other
Manage Approved Sites
Manage Active Tokers Access Token Timeout) Access tokens do not time out
View Profil Information 200 s |
eveiomen Enter this time in seconds, minutes, or hours.
Self-service client o Token Timeout
Bt foken Timeout | 7200 seconds <]
Self-servioe protected Enter this time in seconds, minutes, or hours.
resource registration
Refresh Tokens € Refresh tokens are issued for this clent
“This will add the offine_access scope to the client's scopes.
Refresh tokens for this client are re-used
Active access tokens are automatically revoked when the refresh token s used
Refresh tokens do not time out
seconds -]
Enter ths time in seconds, minutes, or hours.
Device Code Timeout

0w

Powered by MITREId Connect [

seconds <]

Enter this time in seconds, minutes, o hours.

©2016 INFN

_images/paas_deploy.png
Deploy
CMDB

N

CMDB url

CMDB url

Deploy
1AM

Confi

igure

IAM clients

7

SLAM client ID
‘SLAM client secret

N

Deploy
SLAM

N

SLAM url

N~

M client ID Monitoring client ID
IMclient secret Monitoring client secret

\, T~

Deploy
Infrastructure
Manager

Deploy
Monitoring

Orchestato lent 1D
Orchesttor et sectet / /
Inastrctus Manager i Moniorng u
! 1AM clients for:
- SLAM
+ Infrastructure Manager
+ Monitoring
Deploy + Orchestrator

Orchestrator —

_static/comment.png

_images/policy_form.png
compliance with the law and In accordance with the security
directions provided by Computing and Networking Service. They are
required to ensure the privacy of processed personal data by proper
observance of the rules available at the following web page:
www.infn.it/privacy/; take into account the guidelines provided by
the Computing and Networking Service concerning the selection of
computing devices to use, especially if they concern security-related
features. They shall prefer systems and procedures that offer the
highest levels of protection; be responsible for the data and for the
software they install on the computers entrusted to them: they are
required to examine software carefully and in advance and do not
install any software with no regular licenses; regularly update the
software installed on the computers entrusted to them; protect from
unauthorized access data used and/or stored in the computers and
systems they are allowed to access; carefully evaluate the reliability
of external services, including cloud services, in terms of security,
storage and data confidentiality; follow the Computing and
Networking Service recommendations concerning the regular
backup of data and used programmes; protect their account
avoiding to choose obvious passwords and in the event of multiple
authentication systems by using different passwords for each
system, not share their passwords, nor allow even occasional use by
anyone other than the account holder; immediately notify any
incidents, suspected abuses and security breaches to their contact
person and to the Computing and Networking Service; use updated
anti-virus software where operating systems require that. They shall
take care to scan all software and files exchanged over the network
and all removable media they use; not maintain unused remote
connections nor leave their resources unattended with unprotected
open connections. | hereby declare of having read and understood
and to accept the Acceptable Use Policy described in the present
document. Moreover, | declare that any violations of national or
international laws and of the terms attached to the present
document, linked to the ReCaS-Bari computing resources assigned
to me, will be my sole responsibility.

By submitting this registration request, you agree to the terms of this
organization Acceptable Usage Policy (AUP).

_static/down.png

_static/down-pressed.png

_static/elixir_italy_logo.png
EI?(I"'

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_images/openstack_images.png
Images

@ Project (6) | @ Shared with Me (7) & Public (7) + Create Image 1@ Delete Images

O Image Name Type Status Public Protected Format Size Actions

0O CentOS-7-x86_64-GenericCloud_galaxy-C... Image Active No No Qcow2 5.5GB Launch | ~
O CentOS-7-x86_64-GenericCloud_galaxy-e... Image Active No No Qcow2 6.1 GB Launch |~
0O CentOS-7-x86_64-GenericCloud_galaxy-G... Image Active No No Qcow2 5.6 GB Launch |~
0O CentOS-7-x86_64-GenericCloud_galaxy-m... Image Active No No Qcow2 5.2GB Launch |~

O CentOS-7-x86_64-GenericCloud_galaxy-r... Image Active No No Qcow2 7.1GB Launch |~

_images/openstack_paas_deploy.png
Instances

O Instance Name

O test-dashboard
O testorchestrator
O testsiam

O test-cmdb-cpr
O testim

O testiam

O test-paas

Image Name

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

RECAS Ubuntu 16.04 LTS [Daily Build 20181114]

1P Address.

90.147.170.32

172.30127.19

90.147.75.149

172.30127.18

172.30127.17

90.147.170.28

public_net
90.147.75.119
private_net
172.30.127.16

Size

medium

medium

small

medium

medium

medium

small

Instance Name =
Key Pair Status
miangaro-key Active
miangaro-key Active
miangaro-key Active
miangaro-key Active
miangaro-key Active
miangaro-key Active
miangaro-key Active

Availability Zone.

nova

nova

nova

nova

nova

nova

nova

Task

None

None

None

None

None

None

None

Fiter | @ Launch Instance | L 1L L More Actions .

Power State Time since created Actions

Running 0 minutes. Create Snapshot | +
Running 14 minutes Create Snapshot | +
Running 17 minutes Create Snapshot | +
Running 19 minutes Create Snapshot | +
Running 20 minutes Create Snapshot | +
Running 21 minutes Create Snapshot | +
Running 23 minutes Greate Snapshot | +

_images/metadata_ribbon.png
'8

_images/mitre.png
INDIGO IAM for laniakea m

Manage Clients

Whitelisted Clients

e lixir Welcome!
Sytom Scopes ElAIr d

|AM Dashboard This is the INDIGO Identity and Access Management (IAM) service.
ITALY

PERSONAL
Manage Approved Sites
Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Powered by MITREid Connect [T} ©2016 INFN

_images/vault_auth_flow.png
LANIAKEA dashboard LUKS script (on the VM)

< Secret write: the passphrase is written to
WAL ia;is: JEED | vault in a path where only the user can
Y access.

0IDC (Goolge, ELIXIR-AAI), SAML Read passphrase Secret read: users can read their
Username and password Policy paasphrases through the dashboard after

the authentication procedure.
Authentication

Secret delete: the passpharases are
Delet h Delete
=< eppjis:yp ase Tok:w -+ |automatically deleted from Vault once the
Galaxy instance is deleted.

Resources

Vault policy engine

_images/users_panel.png
Deployments

Users

Show 10 ¢ entries

sub

0a17a932-alce-437c-b074-
c00156a181d2

5d13f594-b527-4f9f-80aa-
af2a9c3b960f

73f16d93-2441-4a50-88ff-
85360d78c6b5

Showing 1to 3 of 3 entries

© 2019 ELIXIR-ITALY Laniakea

Laniaka has

Usemame

marco.tangaro

ma.tangaro@gmail.com

admin

First
Name

Marco

Marco

Admin

Last
Name *

Tangaro

Tangaro

User

Organisation

laniakea

laniakea

laniakea

ma.tangaro@ibiom.cr.it

ma.tangaro@gmail.com

admin@iam.test

Search:
Role
=z
user Details
dmis =z
admin Details
=z
user Details

Deployments

Deployments

Deployments

Previous n Next

_images/vault_client_main.png
ReCAS

ADMINISTRATIVE Home

Manage Clients
Whitelisted Clients
BlacKisted Clients

Self-service Client Registration

IAM Test Instance for RECAS-BARI

Register a new client

New Client

System Scopes @ Cancel
1AM Dashboard
— Main Access Credentials Crypto Other JSON
Manage Approved Sites
Manage Active Tokens ClientiD Will be generated by the server when the client is saved
View Profile Information
Will be generated by the server when the client is saved
eveiomen Client Secret 9 y
Sel rvice client

registration

Self-service protected
resource registration

Client Configuration URL

WLl be generated by the server when the client is saved

Registration Access Wil be generated by the server when the client is saved
Token
Clientname vault_test

Redirect URI(s)

Logo

Terms of Service

Policy Statement

Home Page

Software ID

Software Version

Contacts

Software Statement

Powered by MITREId Connect [

Human-readable application name

https://
https://cloud-90-147-170-32.cloud.ba.infn.it:8200/ui/vault/auth/oidc/oidc/callback

https://cloud-90-147-170-32.cloud.ba.infn.it:8250/oidc/callback

lo/[o]le

URIs that the client can be redirected to after the authorization page

https://

URL that polints to a logo image, will be displayed on approval page

Enter a logo URL

https://

URL for the Terms of Service of this client, will be displayed to the user

https://

URL for the Policy Statement of this client, will be displayed to the user

https://

URL for the client's home page, will be displayed to the user

software ID...

Identifier for the software in this client

10...

Version of the software in this client

List of contacts for administrators of this client.

new contact °©

‘admin@iam.test)
List of contacts for administrators of this client.

eyj0...

A

A software statement is issued by a trusted third party and locks certain elements of a client’s registration

_images/vault_client_access.png
ReCAS

ADMINISTRATIVE Home
Manage Clients
Whitelisted Clients
Blackisted Clients
System Scopes

|AM Dashboard

Main Access

PERSONAL

Manage Approved Sites

Manage Active Tokens Scope

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Grant Types

[0 Response Types

Subject Type

Sector Identifier URI

Powered by MITREId Connect [

Self-service Client Registration

Credentials

IAM Test Instance for RECAS-BARI

Register a new client

New Client
Qe

Crypto Other JSON
new scope °

openid

profile.
email

address

phone

offline_access

OAuth scopes this client is allowed to request

© authorization code
) client credentials
implicit

() password

() redelegation

) refresh

device

() token exchange

code

[token

[id_token
token id_token
() code id_token
() code token

) code token id_token

Public ©) Pairwise

https://

‘Sector Identifier for JavaScript

_images/vault_storage_flow.png
User

ence' R:zﬁ 1. Authenticate to
vp Laniakea
passhrase
LANIAKEA
/ 3 : %
=D
= < > < %);f
5. Read secrets 3. Login with the token RS
= from Vault 4. Write secret to Vault L K
Laniakea Dashboard v U - S
« Authentication (IAM) VaUIt ScCri pt

* Instance configuration
* Galaxy customization

2. Deliver token to write secret to Vault

_images/vault_passphrase_path.png
000 o LA x | @ hpsiiciowd-00-147-75-117 x | @ Galaxy | ELGR-TALY x W vau x +

Marco Tangaro
<« C @ httpsi//cloud-90-147-75-223 cloud.ba.infn.it:8 4 -4 087baolf85/5b68bb5-d.. % @ i
N e A
20340b0b-c07f-46e0-a9¢c6-1f987ba9ff85/5b68fbb5-d251-4820-b003-94b8ae2405¢cd
Marco Tanga R .
<) neare User subject Deployment uuid
‘ unique and never unique and never

reassigned user identifier | reassigned deployment

stotus identifier

Created ayear ago

Updated ayear ago

Signed AUP 5 months ago - - - S

The passphrase path on Vault is unique per user and

Galaxy deployment. Only the deployment owner can
write and read this path!

User identity in IAM Passphrase path on Vault

_static/ajax-loader.gif

_images/user_deployments_list_panel.png
kea Dashboard Deployments

Deployments for: Marco Tangaro &' Refresh || € Back
Show 10 # entries Search:
uuid Status Description Created At ¥ Updated At Deployed At Physical ID Endpoint
1e9fbfc-86ca-3609- CREATE_COMPLETE elastic cluster 2019-10-31 2019-10-31 provider- 8e310778-fbfc-11e9-86dc- http://90.147.75.86 = Q show a
ac54-02420f5dce16 - test 16:36:00 17:44:00 RECAS-BARI fa163eefe815 /galaxy Details template
1e9fbed-6afe-43a7- 2019-10-31 2019-10-31 provider- 760090d8-fbed-11e9-aadc- http://90.147.75.254 = Q show

DELETE_COMPLETE elastic fixed

ac54-02420f5dce16 14:47:00 16:09:24 RECAS-BARI fal63ecfe815 Jgalaxy Details template
Tedfbe-266f- DELETE CompLETe IMV1861ans 2019-10-31 2019-10-31 provider- 31683a10-fbe6-1169-0442- http://90.147.75.199 = Q show
C611-82¢5-02420f5dce16 a 23 13:55:00 14:12:59 RECAS-BARI fal63ecfe815 Jgalaxy Details template
Tedfbe2-c127- 2019-10-31 2019-10-31 provider- = Q show
ead7-825-024205dce16 DELETE COMPLETE prova 13:31:00 13:46:48 RECAS-BARI Details template
Tledfbde-338a- . 2019-10-31 2019-10-31 provider- 39849250-fbde-11e9- = Q show
b2e9-82¢5-02420f5dce16 DELETE COMPLETE im v1.861 12:58:00 13:32:12 RECAS-BARI aSc8-fal3eefe81s Details template
11e9fb15-9309- DELETE CompLeTg @aticcluster 2019-10-30 2019-10-31 provider- 91c319f0-fb15-11e9-ac2a- http://90.147.102.71 = Q show
190b-82¢5-02420f5dce16 a live 13:02:00 06:53:10 RECAS-BARI fal63eefe815 Jgalaxy Details template
Tegfa6a- 2019-10-20 2019-10-29 = Q show
28e6-0d37-82¢5-02420f5dce1s CREATE-FAILED cluster express 16.56:00 15:56:00 Details template
Tlegfa6a- DELETE CompLeTg S@sticcluster 2019-10-29 2019-10-30 provider- bec7ed0e-faba-11e9-ac2a- http://90.147.170.217 = Q show
b83e-3a24-82¢5-02420f5dce16 a live 16:56:00 13:03:21 RECAS-BARI fal63ecfe815 Jgalaxy Details template
11e9fa64-985c-) 2019-10-20 2019-10-30 provider- a1806918-fab4-11e9-a613- http://90.147.170.203 = Q show
2506-82€5-02420f5dce16 DELETE COMPLETE cluster live 15:55:00 13:03:51 RECAS-BARI falB3eefe815 Jgalaxy Details template
Te9fa5b-4484-271c- 2019-10-20 2019-10-20 provider- 4d351654-fabb-11e9-ac2a- = Q show
a29e-02420f5dce16 DELETE COMPLETE centos 2 14:49:00 15:21:11 RECAS-BARI fal63eefe815 Details template

3 4 5 .. 14 Next

‘Showing 1 to 10 of 132 entries Previous

© 2019 ELIXIR-ITALY Laniakea

Laniaka has eloped n the framework of the INDIGO-Datacloud projact funded by the European Commision H2020 research and innovation

program under grar

_images/tosca_pars_render_explained.png
tabs
Virtual hardware Galaxy Advanced (e———

display_name

Instance flavour
Medium (2 cpu, 4 GB RAM, 20 GB dsk) .ﬂ P -
CPUs, memory size (RAM), root disk size &

Virtual hardware Galaxy Advanced

Instance flavour .di— pay_na
Medium (2 cpu, 4 GB RAM, 20 GB dsk) .ﬂ N

Medium (2 cpu, 4 GB RAM, 20 GB dsk)

Large (4 cpu, 8 GB RAM, 20 GB dsk)

xLarge (8 cpu, 16 GB RAM, 20 GB dsk)

L Enahla ancruntian

_images/user_panel.png
kea Dashboard Deployments

Userdata € Back ‘

sub

0a17a932-alce-437c-b074-c00156a181d2

First Name

Marco

Last Name

Tangaro

Username
marco.tangaro

e-mail
ma.tangaro@ibiom.cnrit

Organisation
laniakea

Role

er]

Active

Active '|

© 2019 ELIXIR-ITALY Laniakea

Laniak ha been develaped i he fameworkof he INDIGO-Datckoud profectfundod b the Eurapean Commisin XX

_static/up.png

_static/up-pressed.png

_images/galaxy_admin_user_creation.png
Galaxy / ELIXIR-ITAI

Admin g 0 bytes

‘Galaxy version 19.05
Create a Galaxy account

Server
Data types Email Address
Data tables test@test.com
Display applications }
Password
Manage jobs
Local data e
User Management Confirm password
Users -
Groups
Roles Public name
Forms test]
Tool Management Your public name is an identifer that will b used to generate addresses for mformation you share publicly. Publc names must be a least three characters n length and contain only lower-case

letters, numbers, dots, underscores, and dashes (", ,).
Install new tools.

Install new tools (Beta) Create
Manage tools

Manage metadata

Manage whitelist

Manage dependencies

View lineage

View migration stages

View error logs

_images/galaxy_cluster_tile.png
Galaxy cluster Galaxy cluster

Galaxy Galaxy

_images/galaxy_admin_redirect_error.png
403 Forbidden

nginx/1.122

_images/galaxy_admin_user_created.png
Galaxy / ELIXIR-ITAI Using 0 bytes

Galaxy version 19.05

Users Create new user
Server search Q
Data types ‘Advanced Search
Data tables

Emaild. User Name. Groups Roles External Lastlogin Status Created Activated APIKey
Manage jobs | matangaro@gmailcom v Galaxydmin_username 0O 1 no 2 minutes ago 1001019 N not very_secret _api_key
Local data
test 0 1 no never 1011019 Y

test@testcom ~
User Management

Users For 0 selected items: Reset Password
Groups
Roles
Forms

Tool Management
Install new tools
Install new tools (Beta)
Manage tools
Manage metadata
Manage whitelist
Manage dependencies

View lineage

View error logs

_images/galaxy_docker_tile.png
& S

_images/galaxy_elastic_cluster_tile.png
Galaxy elastic cluster (BETA)

Galaxy

_images/galaxy_covacs_workflow_1.png
| Use the following dataset as
reference bed

output (vef)
output filtered (v)

Use the following dataset as
reference bed

output (vef)
output_fitered (ver)

_images/galaxy_covacs_workflow_2.png
variants_recal (vef)

_images/galaxy_express_tile.png
Galaxy

[}
O

_images/slam_negotiation_4.png
C b INDISO - DotaCloud Provider Dashboard

Binding Computing SLAs

ID SITE CREATED

There are no documents to display

Binding Storage SLAs

ID SITE CREATED

There are no documents to display

Computing SLA Negotiations

ID SITE CREATED

1 RECAS-BARI Sep 19, 2019

Storage SLA Negotiations

ID SITE CREATED

https://cloud-90-147-75-149.cloud.ba.infn.it:8443/#/asla/5d839e89cb0e672962ed47b6

STATUS START
STATUS START
STATUS START
sent Sep 20, 2019
STATUS START

There are no documents to display

END

END

END

Dec 31, 2019

END

_images/galaxy_gdc_workflow.png

_images/slam_negotiation_6.png
Binding Computing SLAs

1 RECAS-BARI Sep 19, 2019

Binding Storage SLAs

ID SITE CREATED

There are no documents to display

Computing SLA Negotiations

ID SITE CREATED

Storage SLA Negotiations

ID SITE CREATED

STATUS START
signed Sep 20, 2019
STATUS START
STATUS START

There are no documents to display

STATUS START

There are no documents to display

© By ACC Cyfronet AGH, 2017

END

Dec 31, 2019

END

END

END

_images/slam_negotiation_5.png
User Guaranteed (The guaranteed quantity of a resource to be granted to each user)

Enter missing value

User Limit (The limit of a resource for each user)

Enter missing value

Public IP Restrictions

IP Total Guaranteed (The guaranteed quantity of public ip to be granted to the user group in total)

Enter missing value

IP Total Limit (The limit of public IPs for the user group in total)

Enter missing value

IP User Guaranteed (The guaranteed quantity of a resource to be granted to each user)

Enter missing value

IP User Limit (The limit of a resource for each user)

Enter missing value

Accept SLA Reject SLA Negotiate SLA

© By ACC Cyfronet AGH, 2017

Version: 1.8.0_171

O 1. GENERAL

Computing SLA
All changes have been saved

ORGANIZATION
Not specified yet

Q

_images/ssh_delete_key_render.png
Confirm SSH key pair deletion

Do you really want to delete the SSH key pair ?

_images/ssh_create_keypair_render.png
Create new key pair

SSH key pair will be created from scratch. The private key will be stored on vault, while the public key will be stored on the Dashboard database,
allowing the access to Galaxy.

<+ Create new SSH key pair

_images/slam_client_main.png
RECAS |IAM Test Instance for RECAS-BARI

ADMINISTRATIVE
Manage Clients
Whitelisted Clients
Blacklisted Clients
System Scopes
IAM Dashboard

PERSONAL
Manage Approved Sites
Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Home / Manage Clients / Edit Client

Edit Client
@ Cancel

Main Access Credentials Tokens Crypto Other

Registered at 2019-09-19T15:14:18+0200

Client name slam_client

Human-readable application name

ClientID | 7c054db2-6df2-4f72-951e-2846f

Unique identifier. If you leave this blank it will be automatically generated.

Redirect URI(s)
https://

https://cloud-90-147-75-149.cloud.ba.infn.it:8443/auth

_images/slam_client_authorize.png
RECAS |IAM Test Instance for RECAS-BARI

Approval Required for slam_client

. Access to:
@ Caution:

This client was dynamically registered .

- N -
It has [(3¥83 been approved previously. © X log in using your identity @
basic profile information @

= email address @
A physical address

9 more information

You will be redirected to the following page if you click Approve:
https://cloud-90-147-75-149. cloud.ba. infn.it:8443/auth A telephone number @

Remember this decision:

© remember this decision until | revoke it
remember this decision for one hour

prompt me again next time

Do you authorize " slam_client "?

_images/slam_negotiation_1.png
CREATE Computing SLA GENERAL 1/1

Service in scope of SLA

Provider and service * (the service that is subject of this SLA)

v

RECAS-BARI : cloud.recas.ba.infn.it

Time Restrictions

Start * (When you wish your SLA to activate)

20-09-2019

End * (When you wish your SLA to deactivate)

31-12-2019

Computing Volume Restrictions
Total guaranteed (The guaranteed quantity of computing time to be granted to the user group in total)

Enter missing value

Total Limit (The limit of computing time for the user group in total)

Enter missing value

Instance Limit (The limit of a resource for each instance)

it

it

O 1. GENERAL

Computing SLA
Document has unsaved changes

ORGANIZATION
Not specified yet

_images/slam_home.png
-ouociws Dashboard

Binding Computing SLAs

D SITE CREATED STATUS START END

There are no documents to display.

Binding Storage SLAs

D SITE CREATED STATUS START END

There are no documents to display.

Computing SLA Negotiations
ID SITE CREATED STATUS START END

There are no documents to display

Create Computing

Storage SLA Negotiations
ID SITE CREATED STATUS START END

There are no documents to display

Create Storage SLA

Rejected SLAs
ID SITE CREATED STATUS START END

There are no documents to display

_images/slam_negotiation_3.png
Binding Computing SLAs

ID SITE CREATED

There are no documents to display

Binding Storage SLAs

ID SITE CREATED

There are no documents to display

Computing SLA Negotiations

ID SITE CREATED

1 RECAS-BARI Sep 19, 2019

Create Computing SLA

Storage SLA Negotiations

ID SITE CREATED

STATUS

STATUS

STATUS

draft

STATUS

START

START

START

Sep 20, 2019

START

END

END

END

Dec 31, 2019

END

_images/slam_negotiation_2.png
[T

User Guaranteed (The guaranteed quantity of a resource to be granted to each user)

‘ Enter missing value h ’
User Limit (The limit of a resource for each user)
‘ Enter missing value h ’

Public IP Restrictions

IP Total Guaranteed (The guaranteed quantity of public ip to be granted to the user group in total)

Enter missing value

IP Total Limit (The limit of public IPs for the user group in total)

Enter missing value

IP User Guaranteed (The guaranteed quantity of a resource to be granted to each user)

Enter missing value

IP User Limit (The limit of a resource for each user)

Enter missing value

‘ Validate H Delete this draft H Save H Send to provider

© By ACC Cyfronet AGH, 2017

Version: 1.8.0_171

O 1. GENERAL

Computing SLA
All changes have been saved

ORGANIZATION
recas-bari

_images/advanced_slas_panel.png
kea Dashboard Deployments

Marco Tangaro ~

Service Level Agreements
Show 10 # entries
Site Service Type
RECAS-BARI eu.egi.cloud.vm-management.openstack

Showing 1to 1 of 1 entries

© 2019 ELIXIR-ITALY Laniakea

Laniaka has

Start date

2017-12-04723:00:00.000Z

& Refresh

Search:

End date »

2018-08-31T22:00:00.000Z

_images/change_password.png
RECAS

Set your password

_images/advanced_configure_tab.png
kea Dashboard Deployments ntation

Galaxy

Description: Deploy Galaxy on a single Virtual Machine from a VM image (FAST). The basic configuration includes CentOS 7, the selected
Galaxy flavour, companion software and reference data. Configure, click on the "Submit* button, wait for the confirmation e-mail(s) and log
in to your new Galaxy instance. If after some hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description

Virtual hardware Galaxy Advanced

Configure scheduling:
© Auto ~ Manual

7 Do not delete the deployment in case of failure

Send a confirmation email when complete

© 2019 ELIXIR-ITALY Laniakea

alixir

Laniaka has

_images/advanced_settings_panel.png
Deployments

Settings
Show 10 + entries Search:
Service Endpoint +
SLA Manager (SLAM) https://cloud-90-147-170-175.cloud.ba.infn.it:8443/rest/slam
Paas Orchestrator https://cloud-90-147-75-155.cloud.ba.infn.it/orchestrator
Identity and Access Management (IAM) https://iam.recas.ba.infn.it
Configuration Management DB (CMDB) https://paas-orchestrator.cloud.ba.infn.it/cmdb
Infrastructure Manager (IM) https://paas-orchestrator.cloud.ba.infn.it/im
Showing 1to 5 of 5 entries Previous n Next

© 2019 ELIXIR-ITALY Laniakea

Laniaka has

_images/change_password_success.png
RECAS

Your password has been reset successfully!

Back to Login Page

_images/get_galaxy_live_build.gif
astic cluster (BETA)

3
Galaxy

laxy cluster

Galaxy

with_image.yam!

= 4

Galaxy

Galaxy

Deploy Galaryonasngle Viua Macrine
nsaing o sratch (SLOW).Tho bsic

Galaxy cluster

_images/get_iam_token_authorize.png
RECAS 1AM Test Instance for RECAS-BARI

Approval Required for get IAM_token

. Access to:
@ Caution:
This client was dynamically registered
© Qg iy
It has been approved [times previously. ° BEsEElohizinmizy

« email address
« O offline access

Do you authorize " get_IAM_token "?

_images/galaxy_prod_env.png
® =

ubuntu centos

PostgreSQL

LWSGI

NGINX
e
Erofted

Users and groups management
System updates
Services management

Galaxy updates
Galaxyni configuration
Virtual environments setup

Galaxy database management
Separated galaxy tools database

Web server/web service interface

NGINX web server + upload module

FTP instance access
FTP data upload (> 2 GB)

_images/get_galaxy_express.gif
Most used

Galaxy

Galaxy

All applications .

Q Search.

Galaxy elastic cluster (BETA)

Galaxy

&

Galaxy

_images/GATK_PATH.png
‘Galaxy version 19.05

Server
Data types
Data tables.
Display applcations.
Manage jobs
Local data

User Management
Users
Groups
Roles
Forms

Tool Management
Install new tools
Install new tools (Beta)
Manage tools
Manage metadata
Manage whitelist
Manage dependencies
View lineage
View migration stages

View error logs.

Browse tool dependency GATK_PATH installation directory.

Tool shed repository:
gatk

Tool shed repository changeset revision:
bBOITI43a01

Tool dependency status:
Installed

Tool dependency installation directory:
lexportitool_depslenvironment_settings/GATK_PATH/avowinkeligatk/b8off71a3ad1

Contents:
O envsh)

Repository Actions.

_images/get_iam_token_client_tokens.png
ADMINISTRATIVE
Manage Clients
Whitelisted Clients
Blackisted Clients
System Scopes
1AM Dashboard

PERSONAL

Manage Approved
Sites

Manage Active Tokens
View Profile Information

DEVELOPER
Self-service client
registration

Self-service protected
resource registration

" INDIGO IAM for laniakea

Home / Manage Clients

Edit Client

Edit Client

© save @ Cancel

Main Access Credentials ~Tokens Crypto Other

Access Token Timeout

1D Token Timeout

Refresh Tokens

Device Code Timeout

© save @ Cancel

Powered by MITREid Connect [T}

) Access tokens do not time out

3600 seconds <]

Enter this time in seconds, minutes, or hours.

600 seconds <]

Enter this time in seconds, minutes, or hours.

Refresh tokens are ssued for this dlient
“This willadd the offine_access soope to the client’s scopes.
Refresh tokens for this dlient are re-used
Active access tokens are automatically revoked when the refresh token is sed
Refresh tokens do not time out

seconds -

Enter this time in seconds, minutes, or hours.

600 seconds <]

Enter this time in seconds, minutes, or hours.

©2016 INFN

_images/GATK_dependencies.png
= Galaxy / ELIXIR-T

‘Galaxy version 19.05 Location:
momelgalaxy/galaxyldatabase/shed_toolsitoolshed.g2.bx. psu.edulepos/avowinkel/gati/b80f7r43ad Ugatk

Server Deleted:

Data types. False

Data tables [

Display applications

Manage jobs

Locatiaata) Dependency Resolver Details

User Management

Users Dependency Version Resolver Exact version Current Instaliation Status
Groups gatk None Conda True o
Roles GATK_PATH None. Tool_Shed_Package True o
Forms. GATK_SITE_OPTIONS None. Tool_Shed_Package True o
Tool Management package.r fo_gat - 121 Tool_Shed_Package e o
Instalnew tools
Instal new tools @Beta)
Dependencies of i reposiory
Manage toois
Vanage metadata
Vanage whielist Installed reposiory dependencies
Manage dependencies
Instale o0 dependncies - ick the name to browse the dependency instalation directory
Viewlineage Name Version Type Instalation status
U ioner package_r_for_gatk 3 4_0 3121 package. Installed
View error ogs
GATK_PATH set_environment nstaliea
GATK_SITE_OPTIONS set_environment nstaliea

Contents of this repository

Valid tools - click the name to inspect the tool metadata.

_images/get_iam_token_enter_code.png
RECAS 1AM Test Instance for RECAS-BARI

Enter Code

_images/get_iam_token_client_access.png
RECAS 1AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Self-service Client Registration / Register a new client

Manage Clients

Whitelisted Glients New client

Blackiisted Clients

System Scopes) 2cece
1AM Dashboard
I Main Access Credentials Crypto Other JSON
Manage Approved Sites
Manage Active Tokens Seope cope o
View Profil Information e
openid
oEvELoPER profe
Self-service client registration email
Self-service protected resource address
registration
phone
offline_access

OAuth scopes this client is allowed to request

GrantTypes @ authorization code
() client credentials
©) implicit
O password
[redelegation
[refresh
device

O token exchange

_images/get_iam_token_client_main.png
ADMINISTRATIVE
Manage Clients
Whitelisted Clients
Blackisted Clients
‘System Scopes
1AM Dashboard

PERSONAL
Manage Approved Sites
Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client registration

Self-service protected resource
registration

RECAS 1AM Test Instance for RECAS-BARI

Home / Self-service Client Registration

New Client

os:

@ Cancel

Main Access Credentials Crypto Other

Client ID

Client Secret

Client Configuration URL

Registration Access
Token

Will be generated by the

Will be generated by the

Will be generated by the

Will be generated by the

Clientname get_IAM_token

Register a new client

JSON

server when the

server when the

server when the

server when the

Human-readable application name

Redirect URI(s)

https://

httpsz//cloud-90-147-75-207.cloud.ba.infr.it/

client is

client is

client is

client is

saved

saved

saved

saved

lolfe

_images/get_iam_token_script_end.png
eoe &) marco — root@test-paas: ~ — ssh « recas_access.sh ubuntu 75 119 — 127x40

[ro0t@test-paas:~#
[ro0tetest-paas:~#

[ro0tetest-pa:

[ro0tetest-pa:

[ro0tetest-pa:

[ro0tetest-pa:

[ro0tetest-pa:

[root@test-paas:~# ./dc-get-access-token. sh
Please open the following URL in the browse

https://cloud-98-147-75-267 .cloud.ba.infn.it/device
and, after having been authenticated, enter the following code when requeste
RATRYF

Note that the code above expires in 600 seconds...
Once you have correctly authenticated and authorized this device, this script can be restarted to obtain a token.

Proceed? [Y/N] (CTRL-c to abort)
Y

An access token was issued, with the following scopes:

email openid offline_access profile

which expires in 3599 seconds.

The following command will set it in the IAM_ACCESS_TOKEN env variable

A refresh token was issued. The following command will set it in the IAM_REFRESH_TOKEN env variable

y3hbGEi01Jub2511n8 ey IqdGKi01 5ZORKZNM2MYB1ZWI2L TQ4YNY tODEINS1iZTVANDCZYZNRNTAL Q.

_images/refdata_indexes.png
Map with Bowtie for Illumina (Galaxy Version 1.2.0) ¥ Options

Will you select a reference genome from your history or use a built-in index?

Use a built-in index v
Built-ins were indexed using default options
Select a reference genome

Arabidopis thaliana (TAIR10) v
Is ! : @
¢ Arabidopis thaliana (TAIR9)
| Drosophila melanogaster (dm3)

Homo sapiens (hg19)

Homo sapiens (hg38)

Mus musculus (mm10)

Mus musculus (mm9)

sa Saccharomyces cerevisiae (sacCer3)

Yes | No

s

Suppress the header in the output SAM file (--sam-nohead)

Yes | No
Bowtie produces SAM with several lines of header information by default

What it does

:

Bowtie is a short read aligner designed to be ultrafast and memory-efficient. It is developed by Ben Langmead and Cole Trapnell. Please cite: Langmead B,
Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10:R25.

Know what you are doing

£} There is no such thing (yet) as an automated gearshift in short read mapping. It is all like stick-shift driving in San Francisco. In other words = running

_images/portfolio.png
iakea Dashboard Deployments

Most used

Galaxy

-
Galaxy

All applications

Q Search...

Galaxy elastic cluster (BETA)

-
Galaxy

Galaxy cluster

-
Galaxy

Galaxy

Galaxy

Galaxy

-
Galaxy

Galaxy cluster

_images/slam_client_access.png
RECAS |IAM Test Instance for RECAS-BARI

DYySDLTIH DLUpPTD m & udncel
|AM Dashboard

Main Access Credentials Crypto Other

PERSONAL
Manage Approved Sites
Manage Active Tokens Scope
new scope
View Profile Information
openid
DEVELOPER profile

Self-service client email
registration

address
Self-service protected
resource registration phone

offline_access

JSON

(<IN <IN < I < I < I <

OAuth scopes this client is allowed to request

Grant Types @ authorization code
() client credentials

) implicit

O

password

O

redelegation

refresh

O

device

O

@]

token exchange

_images/registration_form.png
RECAS

Register at recas-bari

You have been succesfully authenticated with Google,
but your credentials are not yet linked to an recas-bari
account.

To proceed with the registration please fill in your
personal information below.

To abort this registration click here.

Given name

laniakea.testuser

Family name

laniakea-elixir-it

Email

laniakea testuser@gmail.com

Username

Choose a username
Please choose a username

Notes

_images/galaxy_live_build_tile.png
Galaxy

[}
O

_images/iam.png
RECAS

Welcome to recas-bari

2 Username

Forgot your password?

G -

Sign in with INFN AAI

_images/iam_dashboard.png
|IAM for laniakea o @ Adminuser

Admin User

Admin User & Users — Admin User

laniakea

Groups 1C]

No groups found

il

Admin User

VO administrator
Group requests -

admin

73164332041

5088185360

No request found

Email admin@iamtest
Status Linked accounts £
Created 6days ago Nolinked accounts found

MitrelD Dashboard Updated 6daysago

X.509 certificates =]

Nocertificates found
EditDetails
@ Change Password

_images/home_admin.png
iakea Dashboard Deployments

Most used

Galaxy

-
Galaxy

All applications

Q Search...

Galaxy

Galaxy elastic cluster

-
Galaxy

node_with_image.yaml

©2019 ELIXIR-ITALY Laniakea

Laniaka has been developed In the ramework o the INDIGO-Datacloud prjectfunded by the Europaan Commision H2020

54.

rossarch and Innovaton program under grant agreemont RIA

Galaxy

Galaxy cluster Galaxy
| |
[} [}

- -
Galaxy Galaxy
Galaxy cluster Galaxy
| |

Galaxy

node_with_volume.yaml

alixir

_images/home_view.png
iakea Dashboard Deployments

Most used

Galaxy

Galaxy

All applications

Q Search...

Galaxy elastic cluster (BETA)

]

-
L3

Galaxy

Galaxy cluster

Galaxy

Galaxy

Galaxy

Galaxy

node_with_volume.yaml| Galaxy
Galaxy cluster Galaxy
]]
-
L3 L3
Galaxy Galaxy

node_with_image.yaml

G

_images/im_client_admin_tokens.png
INDIGO IAM for laniakea

ADMINISTRATIVE Home / Manage Clients

Manage Clients

Edit Client

Whitelisted Glients Ed it client

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard
I Main Access Credentials Tokens ~ Crypto Other
Manage Approved Sites
Manage Active Tokers Access Token Timeout 1 Access tokens do not time out
View Profil Information 800 o—
veiomen Enter ths time in seconds, minutes, or hours.
Self-service client b Token Timeout
Bt Token Timeout | 1890 seconas -]
Self-servioe protected Enter this time in seconds, minutes, or hours.
resource registration
Refresh Tokens () Refresh tokens are issued for this client
“This will add the offine_acoess scope to the client's scopes.
Device Code Timeout

ocums

Powered by MITREid Connect [T}

seconas -]

Enter this time in seconds, minutes, or hours.

©2016 INFN

_images/im_openstack_post.png
28 openstack 1 lixir-taly-services ~ & marco.tangaro

Project - Instances
— . Instance Name - Fiter | Launeh nstance More Actons +
. Availability Power Time since "
o] [J Instance Name Image Name IP Address Size Key Pair Status Zone Task. cre Actions

Instances

Volumes

_images/iam_login.png
© 0 ® g INDICO M for Laniakea-paz: X |+

« > Ccn

& cloud-90-147-170-28.cloud.ba.infn.it/login

elixir

ITALY

Welcome to Laniakea-paas-test

Signin with your Laniakea-paas-test
credentials

& | username

@ | Password

Forgot your password?

Or signinwiith

Notamember?

_images/iam_manage_clients.png
RECAS 1AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Manage Clients

Manage Cllents
Whitelisted Clents © Refresh

Blackiisted Clients

orchestrator_test

x

System Scopes
Ve P Client Information [
1AM Dashboard
B orchestrator_test oD D €D P2y O wnitelist | i Delete
fr— % more nformation
Manage Approved Sites O Registrered a few seconds ago
Matched search:
Manage Active Tokens

View Profile Information

[T -+ New Ciient

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Powered by MITREid Connect [T} ©2016 INFN

_images/tag_text_render.png
Text input example

default_value

Input description

_images/tosca_inputs_render.png
Instance description

Instance description

Input Values Advanced

instance_flavor

small

instance flavor (num_cpu, memory, disk)

tarane.

.

_images/tag_toggle_render.png
Enable an option Enable an option

) % &

Turn on this option Turn on this option

_images/tosca_logo.png
OASIS [TOSCA

_images/tosca_inputs_render_explained.png
Instance description

Instance description

Input Values Advanced

instance_flavor o

default

name

small —

instance flavor (num_cpu' memory, disk) —

starane size

lescripti

text input field

_images/tosca_pars_render_2.png
Virtual hardware Galaxy Advanced

Instance flavour

‘ Medium (2 cpu, 4 GB RAM, 20 GB dsk) N

Medium (2 cpu, 4 GB RAM, 20 GB dsk)

Large (4 cpu, 8 GB RAM, 20 GB dsk)

xLarge (8 cpu, 16 GB RAM, 20 GB dsk)

= ——r—

_images/tosca_metadata_render_explained.png
Display name

Most used -
oy Galaxy
—
-
-
Galaxy

Ribbons

_images/tag_select_render_closed.png
Dropdown menu example

Value 1

Dropdown menu description

_images/tag_radio_render.png
radio buttons example

® Value 1
Value 2
Value 3
Radio buttons description

_images/tag_ssh_render.png
Insert instance SSH public key

Leave blank this field to load your default SSH public key

Paste here your SSH public key or configure a default key

SSH public key loaded on Laniakea Dashboard

Insert instance SSH public key

Paste here your SSH public key or configure a default key

No SSH public key loaded on Laniakea Dashboard

_images/tag_select_render_open.png
Dropdown menu example

Value 1

Value 2

Value 3

_images/get_iam_token_script_start.png
eoe & marco — root@test-paas: ~ — ssh « recas_access.sh ubuntu 75 119 — 127x40

vim do-get-access-token. sh

~# . /do-get-access-token. sh
Please open the following URL in the browse

and, after having been authenticated, enter the following code when requested:

RQTRYF.

Note that the code above expires in 600 seconds.

Once you have correctly authenticated and authorized this device, this script can be

Proceed? [Y/N] (CTRL-c to abort)

restarted to obtain a token.

_images/home.png
iakea Dashboard Deployments Do

Most used

Galaxy Galaxy

-
Galaxy

All applications

Q Search...
Galaxy Galaxy cluster Galaxy
|
Galaxy
Galaxy elastic cluster Galaxy cluster Galaxy
| | |
[} [} [}
- - -
Galaxy Galaxy Galaxy

©2019 ELIXIR-TALY Laniakea N
alixir

Laniaka has been developed In the ramework o the INDIGO-Datacloud prjectfunded by the Europaan Commision H2020

rossarch and Innovaton program under grant agreemont RIA

_images/laniakea_architecture.png
v AUTHENTICATION
v VIRTUAL HARDWARE CUSTOMIZATION
v GALAXY CUSTOMIZATION

v PROVISIONING
v NETWORK
v OS IMAGES

OASIS [TOSCA [GitHub,

INDIGO cloud providers

I v USERS: WEB AND FTP ACCESS
G a a xy v ADMINS: WEB, SSH AND FTP ACCESS
REFERENCE l a N
__ DATA

system

S f*’f' =N
usenomma || (0 LUKS
— Galaxy single instance
Galaxy + Elastic cluster

- >
s i + USERS:WEBANDFTPACCESS
+ ADVINS:WEB, SSHANDFTPACCESS

e CernVM R - 7 Q
RERERENES G File system w @ LUKS

___ DATA

Running Instances

_images/launch_galaxy_docker.gif
lakea Dashboard Deployments

Most used

Galaxy Galaxy

¢

9
g
2

Al applications

Q Ssearch

_images/indigo_use_case_1.png
ELIXIR-1IB: Galaxy as a Cloud Service elixir

ITALY
2) Deploy TOSCA with
GitHub y Vanllla VM / Container e Gatewa WP6
TOSCA Docurents and
Doclerfiles per UseCase 1a2)
1b) Doclerfile 1) Stage Data
l gflzme‘j (commit)
III
| [T 111
%) = [JATA
INDIGO-DataCloud ™ (h’ 2ol g Provider WPs
Docker Hub Organization bugg. ES
push WP
5)Access aM
Web Portal) Mount
Galaxy virtual instance w
--Galaxy
Front-End

_images/indigo_use_case_2.png
ELIXIR-1IB: Galaxy as a Cloud Service elixir

ITALY

2) Deploy TOSCA with
i o Vanilla VM / Container e Gatewa WP6

TOSCA Docurrents and’

Doclerfiles per Use Case 1a2)
1b) oc 1) Stage Data
| Atomea \ Dl) stag
Build
.-I

| [T 111)ATA
% O =TT

INDIGO-DataCloud -)
Docker Hub Organ'ozatim build, "7 Provider

WP5

psh

5)Access
Web Portal

WP4

4) Mount

3) configure

—

. --Galaxy

_images/metadata_icon_render.png
Most used

Custom application name

i

All anblications

_images/login.png
Welcome! e
This is the PaaS Orchestrator Dashboard. .3 Da
QED

gin »

_images/metadata_displayname_render.png
Custom application name

Description: Deploy Galaxy on a single Virtual Machine installing it from scratch (SLOW). The basic configuration includes CentOS 7, the
selected Galaxy flavour, companion software and reference data. Configure, click on the "Submit" button and wait for the confirmation e-
mail(s) with instructions on how to provide your passphrase (if encryption is enabled) and log in to your new Galaxy instance. If after some
hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description

tab1 tab_2 Advanced

_images/ssh_upload_key_render.png
kea Dashboard Deployments

SSH keys management

SSH keys allow you to establish a secure connection between your computer and Galaxy.

Your SSH key:

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDY787GZIVAHW7QV+Wu2q9q5k5CiTOqO4ENioVig88IIVGNQi8qiX+3fhZx/w2hhlz6AePrYu8CfVPpICRd
SMjP46av53V1IM7r0+yqJvuk1PC2f
[/rSoEL95TvaeiV28+5Wy4MC58UvYuewuhlHcbfPiXHfSNEE3scd38GXCYKLhAP28mUQO50Ar4SoWv4irv21maJwkwgn5AY Xey1yrbBZtaTbQELV
Pa/E6X9j+k29bn32ITmmtKBA3ne/QIFRaaYI3XggvMXhhSSIYsJUdISOjUTriB2DraHsxMGfOPjmPXkjvrXp9MfOzjMg10fb7K2Mda8u

@ Delete | @ Retrieve SSH private key

4

_images/ssh_popup_render.png
No SSH public key provided

SSH keys allow you to establish a secure connection between
your computer and the Galaxy virtual machine. At least one
public key has to be provided mandatorily.

To create a new ssh key pair or upload your public key, please
go

You can still provide a key in the dedicated field of the form.

For more information, please visit our

Don't show me again

_images/success_mail.png
Your recas-bari account is now active Postainarivo x

iam@ba.infn.it
ame v

¥ inglese v > italiano v Traduci messaggio

Dear laniakea.testuser laniakea-elixir-it,
your registration request has been approved.
You can set your password by following this link:

https://iam.recas.ba.infn.it/iam/password-reset/token/af06b392-ea0a-4db3-9331-176e 1946090

The recas-bari registration service

_images/success_alert.png
RECAS

Request confirmed successfully

Your registration request has been confirmed
successfully, and is now waiting for administrator
approval. As soon as your request is approved you will
receive a confirmation email.

Back to Login Page

_images/tag_password_render.png
Password input example

Password description

_images/tag_email_render.png
user e-mail

Enter your email

Type a valid e-mail address.

_images/ssh_menu_render.png
eliyir Laniakea Dashboard Deployments Advanced > Users Documentation .Marco Tangaro ~

Ay

SSH keys

Logout

Description: Deploy Galaxy from scratch with elastic cluster support (SLOW). The basic configuration includes CentOS 7, SLURM, the

_images/ssh_download_priv_key_render.png
SSH Private Key

-BEGIN PRIVATE KEY-----
MIIEvwIBADANBgkghkiGOWOBAQEFAASCBKkwggSIAGEAAC
BAQDPII20kmgOCahV
X2TMtMTFH70B7cvtUVEV/fibsuOS27h86Hi4KdaKAfWawpN
€OKksPUWHU2CTTIQ
Z7PCOebXiAZjbXsGMik6th29peYQTgfN1BZ8UZUmuceD7M
mj¥Yn6oPVK6C2E4LXp8
7IdhHD8htK+UQIOW]LIINGQIInf+BGXIXiHOtg2rjve18uT7qoF1
pSTDGMbSSUT2
HBeWHrjukZ8nHU7U+eYwLhAWyG2s0qcyz+afUit2IFyTnsG
FIX/ETgEd2hwm3By
NOWVCENfKeZKi2BTsYM2+/GCVGFOOXSTEXBAEUPZVYSLA
POT1bBiv47vdBVCQzhI
YRPKBVXBAGMBAAECGGEAPWW1qwHVvAeZHQILELNhupB
tHD3b1IMQANMTBIWQDX2
ShOj+XeHHHTR7c7k0V59z]L7lizQJaF9vyeuanKMxBSTkbiFuK
OGRVQXgDVgBIrP
PDKQCiUodrhnKeQXMtaklajwiJdtP21U22guJL ByiMojXuaKM
LmYuyMrvsCtumy

sQRHgajnWjbVpJF40GgfEEUrJzUw1kG/fgmLNobYQrohWgh 4

_images/ssh_page_with_key_render.png
iakea Dashboard Deployments

Galaxy elastic cluster (BETA)

Description: Deploy Galaxy from scratch with elastic cluster support (SLOW). The basic configuration includes CentOS 7, SLURM, the
selected Galaxy flavour, companion software and reference data. Configure, click on the "Submit" button and wait for the confirmation
e-mail(s) with instructions on how to provide your passphrase (if encryption is enabled) and log in to your new Galaxy instance. If after some
hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description
Virtual hardware ~ Galaxy Advanced

Instance flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Worker nodes number

1 worker node M
Number of worker nodes in the cluster

Worker nodes flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Galaxy instance SSH public key

Leave blank this field to load your default SSH public key
Paste here your SSH public key or configure a default key

Enable encryption

Encrypt instance external storage

Storage volume size

50GB -
Select storage size

_images/ssh_page_render.png
kea Dashboard Deployments

SSH keys management

SSH keys allow you to establish a secure connection between your computer and Galaxy.

Upload SSH public key

Paste your public SSH key, which is usually contained in the file '~.ssh/id_ed25519.pub' or '~/.sshid_rsa.pub' and begins with 'ssh-ed25519' or
'ssh-rsa’. Don't use your private SSH key.

Create new key pair

SSH key pair will be created from scratch. The private key will be stored on vault, while the public key will be stored on the Dashboard database,
allowing the access to Galaxy.

+ Create new SSH key

_images/ssh_paste_key_render.png
kea Dashboard Deployments Marco Tangaro

SSH keys management

SSH keys allow you to establish a secure connection between your computer and Galaxy.

Upload SSH public key

Paste your public SSH key, which is usually contained in the file '~/.sshjid_ed25519.pub’ or ‘~[.ssh/id_rsa.pub’ and begins with 'ssh-ed25519" or
‘ssh-rsa. Don't use your private SSH key.

AAAAB3NzaC1yc2EAAAADAQABAAABAQDY787GZIVAHW7QV+Wu2q9q5k5CiTOqO4ENioVig88IIVGNQi8qiX+3fhZx/w2hhiz6AePrYu8CfVPpICRd
SMjP46av53V1IM7r0+yqJvuk1PC2f
/rSoEL95TvaeiV28+5Wy4MC58UvYuewuhlHcbfPiXHfSNEE3scd38GXCYKLhAP28mUQO50Ar4SoWv4irv21maJwkwgn5AY Xey1yrbBZtaTbQELV
Pa/E6X9j+k29bn32ITmmtKBA3ne/QIFRaaYI3XggvMXhhSSIYsJUdISOjUTriB2DraHsxMGfOPjmPXkjvrXp9MfOzjMg10fb7K2Mda8u
JujK/dvx3BnhlSIpn marco@marco-Latitude-3440

Create new key pair

SSH key pair will be created from scratch. The private key will be stored on vault, while the public key will be stored on the Dashboard database,
allowing the access to Galaxy.

+ Create new SSH key

_images/indigo_communities.png
L

e ’EII ir
¢D
- ® =3
LifeWaich

ITALY

E-Science

cm'

—

LifeWatch
EuroBiolmaging
INSTRUCT
LBT

CTA
WeNMR
ENES
eCulture
ELIXIR-IIB
EMSO
Dariah

100 distinct requirements

*
Converted to concrete
activities in the Project DoW

WLCG

Computational

¢ Software as a Service

¢ Execution of Workflows
* Cloud Bursting

e X-Site Execution

* Improved Scheduling

¢ Access to GP-GPU’s

Storage

* Distributed Storage, accessible via POSIX
* Persistent Data Storage

Infrastructure

* Global Level AAI
¢ Software Defined Networks

_images/indigo_logo.png
INDIGO - DataCloud

_images/indigo_architecture.png
Admin User : oI iR
Mobile Apps plugin
GUI Portlets Portlets Other
A LONI plugin Science
Data Workflow Open Mobile e Gateways

Analitics Portlets Toolkit Kepler plugin

Future Gateway REST API
Future Gateway Engine
JSAGA/JSAGA Adaptors

edbav/posix/Gridftp
“
——

Dynafed

PaaS
Orchestrator

IAM

Service
Monitoring

Sununoly

CloudProvider
Infrastructure Ranker
Manager

Aut. Scaling
Service

Storage

Native laaS API Service

QoS Support
Heat/IM

Smart Iden.tity.
Scheduling Armonization
ke WP4 Ser
Docker L]

Repository

ICes

\

_images/client_approval.png
RECAS |AM Test Instance for RECAS-BARI

Approval Required for dashboard_test

@ Caution:
This client was dynamically registered .

It has [E¥S%59 been approved previously.

 more information
‘You will be redirected to the following page if you click Approve:

hitps: //loud-90-147-170-32.cloud. ba. infn. it/Login/ian/authorized

Access to:

2 log in using your identity @
 basic profile information ©
= email address @

A physical address

A telephone number

O offline access

Remember this decision:

© remember this decision until | revoke it
remember this decision for one hour
prompt me again next time

Do you authorize " dashboard_test "?

Powered by MITREid Connect [T}

©2016 INFN

_images/client_json.png
~4" INDIGO IAM for laniakea m

ADMINISTRATIVE Home / Self-service Client Registration / Edit an existing client

Manage Clients

Whitelisted Glients Edit cl ient

Blackiisted Clients

1AM Dashboard

— Main Access Credentials Crypto Other JSON
Manage Approved Sites

Manage Active Tokens {

“client_id": "4cda8565-8638-47c8-a68d-96510af8ccIb”,

"client_secret": "RtGIX8_k2nlc-ulFijcGVpFSXFUedbu_QNpUSFmILOGO04f4@ounnkShcAZkpQETBP@Dh_b7ikNkuv1IBZ1Qw" ,
“redirect_uris": [

DEVELORER “https://localhost”

Self-service client 1,
registration “client_name": “new_client",

Self-service protected nult,

resource registration “logo_uri”: null,
“contacts”: [

"admin@iam.test"

1,

“tos_uri”: null,

“token_endpoint_auth_method”: "client_secret_basic",

“Scope”: "address phone openid email profile offline_access”,

"grant_types": [
“refresh_token"
*authorization_code"

View Profile Information

1,

"response_types": [
“code”

1,

“policy_uri": null,

"jwks_uri”: null,
jwks": null,
"jwksType": "URL"
"sector_identifier_uri”: null,
"request_object_signing_alg": null,
“userinfo_signed_response_alg": null,
“userinfo_encrypted_response_alg": null,
“userinfo_encrypted_response_enc”: null,
"id_token_signed_response_alg": null,
"id_token_encrypted_response_alg"”: null,
"id_token_encrypted_response_enc": null,
"default_max_age": 60000,
"require_auth_time": true,
“default_acr_values": [],
“initiate_login_uri": null
"post_logout_redirect_uris"
“claims_redirect_uris": [],
“request_uris": [,
"software_statement”: null,
"software_id": null,
"software_version”: null,
"code_challenge_method": null,

"registration_access_token": "eyJralQi0iJycZEXTiwiYWxnIjoiULMyNTYifQ. eyJhdWQi0iIOYZRAODUZNSG4NIMALTQ3YZGHYTYAZCOSNUXMGFMOGN JONT1LCIpc3MiOi JodHRw
CZpCL 1w Y 2xvANQOTAEMTQ3LTC1L TNy S 1GI1ZCS1 YSSpbmzZuLml OXC81LCIpYXQLOJE INZEYMZEXMZMS ImpOaS T61 JQZZNEWMDKNLIYOMZT tNGUKOC1iZTT4LTCZONVINDZ1 YWIKZS19. RO
'WVNaBADsYm3mSgpyRImfunil_s7-38TYcezmSzvN1B2GkZnpG32H1 1q0omzaJ6gpmXcFnb8HHIFr78D- JPEQ_rdaTxCxwdvCqzhdZe_M34_eXQbNEYVOXbIS3ALPe3MNIPT217Qvz8IKIpkLUj6
kmSnJZ981ESGLXATHIWGHS" ,

"registration_client_uri”: "https://cloud-90-147-75-207.cloud.ba. infn.it/register/4cda8565-8638-47c8-a68d-96510afBccob”

"softwareId": null,

"softwareVersion”: null,

"token_endpoint_auth_signing_alg": null,

“client_secret_expires_at": 0,

“client_id_issued_at": 1571231133

ocess

Powered by MITREId Connect [©2016 INFN

_images/client_access.png
~4" INDIGO IAM for laniakea m

ADMINISTRATIVE Home / Self-service Client Registration / Register a new client

Manage Clients

Whitelisted Glients New client

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard

— Man | Access Credentials Crypto Other JSON
Manage Approved Sites

Manage Active Tokens Scope

new scope °
View Profile Information =

openid
DEVELOPER profile

Self-service client email
registration

Self-service protected address
resource registration phons
offline_access

OAuth scopes this client is allowed to request

GrantTypes @ authorization code
client credentials
implicit

) password

() redelegation

) refresh

[device

O token exchange

(X520 Response Types code

) token
[id_token
) token id_token
() code id_token
() code token

) code token id_token

Subject Type) Public) Pairwise

Sector Identifier URI | hitps://

Sector Identifier for JavaScript

00w

Powered by MITREId Connect [©2016 INFN

_images/client_admin_access.png
~4" INDIGO IAM for laniakea m

ADMINISTRATIVE Home / Manage Clients / Edit Client

Manage Clients

Whitelisted Glients Edit cllent

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard
— Main | Access Credentials Tokens Crypto Other
Manage Approved Sites
Manage Active Tokens Seope [oo e =
View Profile Information o
openid
oEveLoPER profile
Self-service client emall
registration
Self-service protected address
resource registration phone
offiine_access
scimread o
scimwrite o

registration:read o
registration:write o
scim o

registration o
OAuth scopes this client is allowed to request

GrantTypes @ authorization code
) client credentials

) password

) implicit

) redelegation

device

token exchange

(X520 Response Types code

) token
[id_token
) token id_token
() code id_token
code token

) code token id_token

Introspection Allow calls to the Introspection Endpoint? [

Subject Type) Public) Pairwise

Sector Identifier URI | hitps://

Sector Identifier for JavaScript

© save @ Cancel
[0 JETN

Powered by MITREId Connect [©2016 INFN

_images/clues_admin_client_access.png
—
‘Whitelisted Clients
Blacklisted Clients
System Scopes
1AM Dashboard

PERSONAL
Manage Approved Sites
Manage Active Tokens

View Profile Information

DEVELOPER
Self-service client registration

Self-service protected resource
registration

~ INDIGO IAM for laniakea

Home / Manage Clients

Edit Client

Edit Client

© save @ Cancel
[0 ST

Main Access ~Credentials Tokens Crypto

Scope

Grant Types

[X7) Response Types

Introspection

Subject Type

Sector Identifier URI

© save @ Cancel
[0 ST

new scope
openid

profile

emall

address

phone
offline_access
scimiread
scim:write
registration:read
registration:write
scim

registration

OAuth scopes this client is allowed to request

() authorization code.
[client credentials
[password

) implicit

[redelegation

[device

token exchange

) code
[token

[id_token

] token id_token
() code id_token
() code token

() code token id_token

Allow calls to the Introspection Endpoint?

© Public O Pairwise

https://

Sector Identifier for JavaScript

Powered by MITREId Connect [

Other

©2016 INFN

_images/clues_admin_client_tokens.png
~4" INDIGO IAM for laniakea

ADMINISTRATIVE Home / Manage Clients

Manage Clients

Edit Client

Whitelisted Glients Ed it client

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard
I Main Access Credentials Tokens ~ Crypto Other
Manage Approved Sites
Manage Active Tokers Access Token Timeout) Access tokens do not time out
View Profil Information 200 s |
eveiomen Enter this time in seconds, minutes, or hours.
Self-service client o Token Timeout
Bt foken Timeout | 7200 seconds <]
Self-servioe protected Enter this time in seconds, minutes, or hours.
resource registration
Refresh Tokens € Refresh tokens are issued for this clent
“This will add the offine_access scope to the client's scopes.
Refresh tokens for this client are re-used
Active access tokens are automatically revoked when the refresh token s used
Refresh tokens do not time out
seconds -]
Enter ths time in seconds, minutes, or hours.
Device Code Timeout

0w

Powered by MITREId Connect [

seconds <]

Enter this time in seconds, minutes, o hours.

©2016 INFN

_images/client_main.png
~4" INDIGO IAM for laniakea

ADMINISTRATIVE Home / Self-service Client Registration / Register a new client

Manage Clients

Whitelisted Glients New client

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard

PERSONAL Main ‘Access Credentials Crypto Other JSON
Manage Approved Sites

Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

ClientID Will be generated by the server when the client is saved

Client Secret Wil be generated by the server when the client is saved

Client Configuration URL ill be generated by the server when the client is saved

Registration Access Wil be generated by the server when the client is saved

Token

Clientname | new_client

Human-readable application name

Redirect URI(s)

https:// °©

hitps://localhost)

URIs that the client can be redirected to after the authorization page

Logo | hitps:/

URL that points to a logo image, will be displayed on approval page

Enter a logo URL

Terms of Service | hitps://

URL for the Terms of Service of this client, will be displayed to the user

Policy Statement | hitps:/

URL for the Policy Statement of this client, will be displayed to the user

Home Page | hitps://

URL for the client's home page, will be displayed to the user

Software ID | software ID..

Identifier for the software in this client

Software Version 1.0,

Version of the software in this client
Contacts List of contacts for administrators of this client.
new contact ©

admin@iam.test)

List of contacts for administrators of this client.

Software Statement | ¢y[0...

A
A software statement is issued by a trusted third party and locks certain elements of a client's registration

© save @ Cancel
B oo

Powered by MITREId Connect [

_images/client_saved.png
~4" INDIGO IAM for laniakea

ADMINISTRATIVE Home / Self-service Client Registration / Edit an existing client

Manage Clients
Whitelisted Clients
BlacKisted Clients

Edit Client

System Scopes @ Cancel

1AM Dashboard

PERSONAL Main ‘Access Credentials Crypto Other JSON
Manage Approved Sites

Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected

‘Warning! You MUST protect your Client ID, Client Secret (if provided), and your Registration Access Token. If you lose your Client ID or
Registration Access Token, you will no longer have access to your client's registration records and you will need to register a new client.

Client D 4cdq8565-8638-47c8-a68d-96510af8ccIb

resource registration Client Secret RGox8_kzn1c-uWFijcGVpfSXFUedbu_QNpUSFMIL@G004F4@0unnkShcAZkpQETBPODh_b71 kNkuv11JBZ1Qw

Client Configuration URL https: //cloud-90-147-75-207.cloud.ba. infn.it/register/4cda8565-8638-47c8-a68d-96510af8ccob

Registration ACCesS ey raiiQi01 JycZExTiwi YWxnTjoiUIMyNTY1 £Q. ey JhdhQi0iIOYZRODUZNSOANIMALTQ3Y Gt Y TYAZCOSN UXMGF OGN JOWT1 LCIpCIMiOt JodHRuCzZpe
Token | 1y Y2xvaNQEOTAEMTQ3LTC1LTINNYSbGI1ZCS1 YSSpbmzuLml OXC81LCIpYXQi0J EINZEYMZEXMzMS ImpOaST61QZZNEWMDKWLHYOMZ TENGUWOC11 ZTT
4LTC20WVINDZiYWIKZS]9 . ROWVNaBADS Ym3mSgpyRImfuri_s7-38TY cezmS2vN1 B2GkZnpG32H1 1q0omzal6gpmXcFb8HHIFr78D- jPEa_rdaIxCxwdve
q2hdze_M34_eXQbNtYVOXbIS3ALPEMNIPIZ17Quz8IK] Ipk1Uj6knSnIZO8LESGLXATWhWGHS
Client name | new_client

Redirect URI(s)

Logo

Terms of Service

Policy Statement

Home Page

Software ID

Software Version

Contacts

Software Statement

ocess

Powered by MITREId Connect [

Human-readable application name

https:// ©

hitps://localhost)

URIs that the client can be redirected to after the authorization page

https://

URL that points to a logo image, will be displayed on approval page

Enter a logo URL

https://

URL for the Terms of Service of this client, will be displayed to the user

https://

URL for the Policy Statement of this client, will be displayed to the user

https://

URL for the client's home page, will be displayed to the user

software ID..

Identifier for the software in this client

1.0,

Version of the software in this client

List of contacts for administrators of this client.

new contact ©

admin@iam.test)
List of contacts for administrators of this client.

0.

A
A software statement is issued by a trusted third party and locks certain elements of a client's registration

_images/clues_client_access.png
RECAS |AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Self-service Protected Resource Registration / rsreg.new

Manage Clients

Whitelisted Clients @ Cencel

Blacklisted Clients
System Scopes

Main Access Credentials ~ JSON

|AM Dashboard

PERSONAL Scope
Manage Approved Sites

Manage Active Tokens

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Powered by MITREid Connect [T}

new scope °
openid
profile
email
address
phone
offline_access

Scopes that this resource will be able to introspect tokens for.

©2016 INFN

_images/clues_client_main.png
RECAS 1AM Test Instance for RECAS-BARI

ADMINISTRATIVE Home / Self-service Protected Resource Registration / rsreg.new
Manage Clients
Whitelisted Clients @ Cancel
Blackisted Clients
System Scopes

Main Access Credentials JSON
1AM Dashboard
- 1 be ed by th

" generated by the server when the

Manage Approved Sites €D
Manage Active Tokens

Client Secret Will be generated by the server when the
View Profile Information

pRvELorER Cllent Configuration URL Wil1 be generated by the server when the

Self-service client

e Access WLl be ted by th when th
{11 be generated by the server when the

[— ooy

resource registration LD

Client name [clues_test]

'Human-readable application name

Logo | https// |

client is

client is

client is

client is

saved

saved

saved

saved

URL that points to a logo image, will be displayed on approval page

Terms of Service | hitps:// |

URL for the Terms of Service of this client, will be displayed to the user

Policy Statement _ hiips: |

URL for the Policy Statement of this client, will be displayed to the user

Home Page | fitps

URL for the client's home page, will be displayed to the user

X570 Application Type) Native) Web
Contacts
| new contact

ey
admin@iam.test o

List of contacts for administrators of this client.

B2 ocwe

Powered by MITREId Connect [

©2016 INFN

_images/cluster_history.png
History cul

Unnamed history
5 shown

142.75 MB A X

5: Multicore Tool ondata @ & X
3

Liine
format: txt, database: 2

0T ? > ®
Runring with "4" threads

4: Multicore Toolon data @ & X
3

Liine
format: txt, database: 2

ec

Running with "2 threass

> ®

3FastQCondata lLRaw @ &' X
Data

2FastQCondata L Web ® & X
page

1 hup://159.149.16056 ® & X
Jindigo demoySc IPfast
a

nav.xhtml

 Table of Contents

 		
 Laniakea Documentation

 		
 Overview

 		
 Service architecture

 		
 ELIXIR-IIB: The Italian Infrastructure for Bioinformatics

 		
 INDIGO-DataCloud

 		
 The ELIXIR-IIB use case in INDIGO

 		
 References

 		
 Launch Galaxy

 		
 Galaxy express

 		
 Galaxy live build

 		
 Instantiate Galaxy

 		
 Virtual hardware configuration

 		
 Galaxy configuration

 		
 Galaxy access

 		
 Launch Galaxy Docker

 		
 Instantiate Galaxy

 		
 Virtual hardware configuration

 		
 Galaxy configuration

 		
 Galaxy access

 		
 References

 		
 Launch Galaxy cluster

 		
 Galaxy cluster

 		
 Galaxy cluster Express

 		
 Galaxy cluster Live Build

 		
 Galaxy elastic cluster

 		
 Instantiate Galaxy

 		
 Galaxy access

 		
 Manage an encrypted instance

 		
 Retrieve the encrypted storage passphrase

 		
 Restart Galaxy on an encrypted instance

 		
 Command line interface: luksctl

 		
 Create SSH Keys

 		
 Create your SSH key with Laniakea

 		
 Remove the SSH key from Laniakea

 		
 How to create SSH keys on Linux or macOS

 		
 How to create SSH keys on Windows

 		
 Virtual hardware presets

 		
 Laniakea@ReCaS

 		
 Galaxy Flavours

 		
 Galaxy minimal

 		
 Galaxy CoVaCS

 		
 Galaxy GDC Somatic Variant

 		
 Galaxy RNA workbench

 		
 Galaxy Epigen

 		
 Create new Galaxy flavours

 		
 References

 		
 Submit yout flavour

 		
 Tool list configuration options

 		
 Conda support

 		
 References

 		
 Reference Data

 		
 data.galaxyproject.org

 		
 elixir-italy.covacs.refdata

 		
 elixir-italy.galaxy.refdata

 		
 Supplementary information

 		
 ELIXIR-Italy CVMFS documentation

 		
 Manage CVMFS

 		
 References

 		
 Galaxy production environment

 		
 OS support

 		
 PostgresSQL

 		
 Galaxy database configuration

 		
 PostgresSQL troubleshooting

 		
 Docker configuration

 		
 NGINX

 		
 NGINX options

 		
 NGINX troubleshooting

 		
 uWSGI

 		
 Proftpd

 		
 How to use FTP through FileZilla

 		
 How to use FTP through command line

 		
 Supervisord

 		
 Paths

 		
 Enable Dockerized tools support in job_conf.xml

 		
 Galaxy Docker instance

 		
 Configuration files

 		
 CVMFS configuration

 		
 Galaxy docker usage

 		
 Galaxy docker logs

 		
 Enter in the Docker

 		
 Main directories in the Docker

 		
 Check Galaxy configuration

 		
 Data upload: FTP

 		
 Galaxy Docker usage tutorial

 		
 Cluster configuration

 		
 job_conf.xml configuration

 		
 Shared file system

 		
 Network configuration

 		
 Worker nodes SSH access

 		
 Worker nodes deployment on elastic cluster

 		
 References

 		
 Authentication

 		
 Registration

 		
 Login

 		
 Frequently Asked Questions

 		
 How to manually recover Galaxy after VM reboot

 		
 Iâ��m unable to create users from admin panel

 		
 The encryption layer

 		
 The encryption strategy

 		
 Storage encryption workflow

 		
 File System Encryption Test

 		
 Fast-luks script

 		
 Luksctl: LUKS volumes management

 		
 Dependencies

 		
 Open LUKS volumes

 		
 Close LUKS volumes

 		
 LUKS volumes status

 		
 LUKSctl: APIs

 		
 Volume Status

 		
 Volume Open

 		
 Cryptsetup hints

 		
 Change LUKS password

 		
 References

 		
 Galaxyctl: Galaxy management

 		
 Galaxyctl basic usage

 		
 Logging

 		
 Advanced options

 		
 stop

 		
 start

 		
 restart

 		
 Galaxy first start

 		
 Configuration file

 		
 Features

 		
 Galaxyctl: libraries

 		
 Galaxyctl: APIs

 		
 Laniakea Ansible Roles

 		
 indigo-dc.galaxycloud

 		
 indigo-dc.galaxycloud-os

 		
 indigo-dc.galaxycloud-tools

 		
 indigo-dc.galaxycloud-refdata

 		
 indigo-dc.galaxycloud-fastconfig

 		
 indigo-dc.galaxycloud_docker

 		
 indigo-dc.cvmfs-client

 		
 indigo-dc.cvmfs-server

 		
 TOSCA templates

 		
 Custom types

 		
 GalaxyPortal

 		
 GalaxyPortalAndStorage

 		
 GalaxyShedTool

 		
 GalaxyReferenceData

 		
 GalaxyPortalDocker

 		
 Galaxy template

 		
 Galaxy cluster template

 		
 Build CVMFS server for reference data

 		
 Create CernVM-FS Repository

 		
 Client configuration

 		
 Populate a CernVM-FS Repository (with reference data)

 		
 Reference data download

 		
 Script usage

 		
 References

 		
 Vault configuration

 		
 Vault main concepts

 		
 Vault authentication and authorization flow

 		
 Vault passphrase storage flow

 		
 Passphrase path on Vault

 		
 Laniakea Dashboard

 		
 Configuration

 		
 Overview

 		
 Basic configuration

 		
 Vault configuration

 		
 Add new applications

 		
 Application launcher forms customization

 		
 Application metadata

 		
 Laniakea installation

 		
 Services end-points

 		
 Service installation

 		
 Prerequisites

 		
 Identity Access Manager (IAM)

 		
 Proxy server

 		
 Infrastructure Manager (IM)

 		
 CMDB and CPR

 		
 SLA Manager (SLAM)

 		
 PaaS Orchestrator

 		
 Hashicorp Vault

 		
 Laniakea Dashboard

 		
 The last mile: applications configuration

 		
 Updating Laniakea

_images/cluster_update_complete.png
kea Dashboard

Deployments

My deployments

Show 10 # entries

Instance name Status Creation time
History test 2 2019-10-09 16:33:00
elastic cluster test 2019-10-04 18:32:00

Showing 1to 2 of 2 entries

¥ Galaxy flavour
galaxy-epigen

galaxy-minimal

VM flavour

+ New deployme

Search:

Actions
Previous . Next

Endpoint

http://90.147.75.159/galaxy

http://90.147.102.53/galaxy

_images/cluster_update_in_progress.png
kea Dashboard Deployments

My deployments

Show 10 # entries

Instance name Status
History test 2

clasc clstertest

Showing 1to 2 of 2 entries

Creation time

2019-10-09 16:33:00

2019-10-04 18:32:00

¥ Galaxy flavour

galaxy-epigen

galaxy-minimal

VM flavour

Search:
Endpoint

http://90.147.75.159/galaxy

http://90.147.102.53/galaxy
Previous . Next

_images/cluster_network.png
Instances

Instance Name = j Filter & Launch Instance 1@ Delete Instances More Actions v

Availabili P Ti i
0O Instance Name Image Name IP Address Size Key Pair Status vailability Task ower ime since Actions
Zone State created
public_net
0 Irms_server- CentOS 7 1907 base 90.147.170.108 medium Active nova None Runnin 7 hours, Create Snapshot | +
157096049010 0.1-2nic . 9 21 minutes P
private_net
172.30.66.154
Irms_wn- CentOS 7 1907 base . 3) 7 hours,
(m) 157096048446 0.1-2nic 172.30.66.153 medium - Active nova None Running 21 minutes Create Snapshot
Irms_wn- CentOS 7 1907 base i i) 7 hours,
(m) 157096048446 0.1-2nic 172.30.66.152 medium - Active nova None Running 21 minutes Create Snapshot
(m) Irms_wn- CentOS 71907 base 172.30.66.151 medium - Active nova None Running 7 hours, Create Snapshot | ~

157096048446 0.1-2nic 21 minutes

_images/cluster_outputs.png
aliyir

kea Dashboard Deployments

11e9ed9f-6644-5d9f-9247-02420f5dce16 ‘ € Back || @ Refresh

Description: cluster live

Overview Inputvalues Outputvalues Links

"http://90.147.170.108/galaxy", "cluster_ip": "90.147.170.108", "wn_ips": ["172.30.66.151", "172.30.66.152", "172.30.66.153"]}

_images/configure_galaxy_cluster.png
kea Dashboard Deployments

Galaxy cluster

Description: Deploy Galaxy from a VM image with cluster support (FAST). The basic configuration includes CentOS 7, SLURM, the selected
Galaxy flavour, companion software and reference data. Configure, click on the "Submit" button, wait for the confirmation e-mail(s) and log
in to your new Galaxy instance. If after some hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description
Virtual hardware Galaxy ~ Advanced

Galaxy version

Galaxy release 18.05 M
Galaxy release 18.05 recommended

Instance description
ELIXIR-ITALY

Set Galaxy Brand

Galaxy administrator e-mail
ma tangaro@gmail.com

Type a valid e-mail address.

Galaxy flavours

Galaxy minimal -
Load Galaxy tools preset

Reference data repository

usegalaxy.org Galaxy reference data CVMFS repository -
Select reference data repository

_images/configure_galaxy_docker.png
kea Dashboard Deployments

Galaxy

Description: Deploy Galaxy docker image on a single Virtual Machine.

Instance description

Instance description
Virtual hardware Galaxy ~ Advanced

Instance description
ELIXIR-ITALY

Set Galaxy Brand

Galaxy administrator e-mail
ma tangaro@gmail.com

Type a valid e-mail address.

Galaxy flavours

Official Galaxy docker (19.01) -
Load Galaxy tools preset

Reference data repository

usegalaxy.org Galaxy reference data CVMFS repository -
Select reference data repository

_images/cmdb_config.png
indigo-cmdb-v2

@ New Document € compact &Cleanup... Jump to: [Document ID View: | All documents q Stale views
Key A Value

"55C1f7399d0010085C7534bb2b002e5f" {rev: "1-ae28f853bc590be3f016598f0e7e518a"}

ID: 65CAfT: 2

" deslgn/schema" {rev: "1-02e0cafc9625924a0314dc154292871b"}

hema

"provlder RECAS BARI" {rev: "1-6b3leac27d81dd63ca482df88684fc99"}

"Servlce RECAS-BARI- openstack" {rev: "1-5babc8f2261621c7ecfa521b9513698a"}

Showing 1-4 of 4 rows Previous Pag

| Rows perpage:[10 9§ | NextPage

Aol

CouchDB

relax

Tools
Overview

Configuration
Replicator
Status

Documentation
Manual

Diagnostics
Verify Installation

Recent Databases

Signup or Login
Futon on Apache CouchDB 1.6.1

_images/configure_galaxy.png
kea Dashboard Deployments

Galaxy

Description: Deploy Galaxy on a single Virtual Machine from a VM image (FAST). The basic configuration includes CentOS 7, the selected
Galaxy flavour, companion software and reference data. Configure, click on the "Submit* button, wait for the confirmation e-mail(s) and log
in to your new Galaxy instance. If after some hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description
Virtual hardware ~ Galaxy ~ Advanced

Galaxy version

Galaxy release 19.05 M
Galaxy release 18.05 recommended

Instance description
ELIXIR-ITALY

Set Galaxy Brand

Galaxy administrator e-mail
ma.tangaro@gmail.com

Type a valid e-mail address.

Galaxy flavours

Galaxy minimal -
Load Galaxy tools preset

Reference data repository

usegalaxy.org Galaxy reference data CVMFS repository -
Select reference data repository

_images/configure_virtual_hardware.png
akea Dashboard ~ Deployments

Galaxy

Description: Deploy Galaxy on a single Virtual Machine from a VM image (FAST). The basic configuration includes CentOS 7, the selected
Galaxy flavour, companion software and reference data. Configure, click on the "Submit* button, wait for the confirmation e-mail(s) and log
in to your new Galaxy instance. If after some hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description
Virtual hardware ~ Galaxy Advanced

Instance flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Galaxy instance SSH public key

Leave blank this field to load your default SSH public key
Paste here your SSH public key or configure a default key

Enable encryption

Encrypt instance external storage

Storage volume size

50GB -
Select storage size

_images/configure_virtual_hardware_cluster.png
kea Dashboard Deployments

Galaxy cluster

Description: Deploy Galaxy from a VM image with cluster support (FAST). The basic configuration includes CentOS 7, SLURM, the selected
Galaxy flavour, companion software and reference data. Configure, click on the "Submit" button, wait for the confirmation e-mail(s) and log
in to your new Galaxy instance. If after some hours you do not receive any e-mail please be sure to check your SPAM BOX.

Instance description

Instance description
Virtual hardware ~ Galaxy ~ Advanced

Instance flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Worker nodes number

1 worker node M
Number of worker nodes in the cluster

Worker nodes flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Galaxy instance SSH public key

Leave blank this field to load your default SSH public key
Paste here your SSH public key or configure a default key

Enable encryption

Encrypt instance external storage

Storage volume size

50 GB -
Select storage size

_images/configure_virtual_hardware_docker.png
iakea Dashboard Deployments

Galaxy

Description: Deploy Galaxy docker image on a single Virtual Machine.

Instance description

Instance description
Virtual hardware ~ Galaxy ~ Advanced

Instance flavour

Medium (2 cpu, 4 GB RAM, 20 GB dsk) -
CPUs, memory size (RAM), root disk size

Galaxy instance SSH public key

Leave blank this field to load your default SSH public key
Paste here your SSH public key or configure a default key

Enable encryption

Encrypt instance external storage

Storage volume size

100 GB -
Select storage size

_images/dashboard_admin_client_access.png
RECAS 1AM Test Instance for RECAS-BARI m

ADMINISTRATIVE Home / Manage Clients / Edit Client

Manage Clients

Whitelisted Glients Ed't cl ient

Blackiisted Clients

System Scopes @ Cancel

1AM Dashboard
PERSONAL Main ‘Access Credentials Tokens Crypto Other
Manage Approved Sites
Scope
Manage Active Tokens [=
View Profile Information
openid
oEvELoPER profile
Self-service client]
registration
Self-servioe protected adaress
resource registration phone
offline_access
scim:read o
scim:write (=]
registration:read (a]

registration:write o
scim o

registration a)

OAuth scopes this client is allowed to request

GrantTypes @ authorization code

client credentials

() password
) implicit
() redelegation
[device

token exchange

(X0 Response Types code
[token
[id_token
) token id_token
() code id_token

() code token

code token id_token
Introspection Allow calls to the Introspection Endpoint? [

Subject Type) Public) Pairwise

Sector Identifier URI | hitps://

‘Sector Identifier for JavaScript

Powered by MITREId Connect [©2016 INFN

_images/dashboard_client_access.png
ReCAS

ADMINISTRATIVE Home
Manage Clients
Whitelisted Clients
Blackisted Clients
System Scopes

|AM Dashboard

Main Access

PERSONAL

Manage Approved Sites

Manage Active Tokens Scope

View Profile Information

DEVELOPER

Self-service client
registration

Self-service protected
resource registration

Grant Types

[0 Response Types

Subject Type

Sector Identifier URI

Powered by MITREId Connect [

Self-service Client Registration

Credentials

IAM Test Instance for RECAS-BARI

Register a new client

New Client
Qe

Crypto Other JSON
new scope °

openid

profile.
email

address

phone

offline_access

OAuth scopes this client is allowed to request

© authorization code
) client credentials
implicit

() password

() redelegation

) refresh

device

() token exchange

code

[token

[id_token
token id_token
() code id_token
() code token

) code token id_token

Public ©) Pairwise

https://

‘Sector Identifier for JavaScript

_images/confirmation_alert.png
RECAS

Request submitted successfully

Your registration request has been submitted
successfully.

An email with a confirmation link is being sent to the
email address provided in the registration form. Check
your mail!

Back to Login Page

_images/confirmation_mail.png
Confirm your recas-bari registration request Postainarivo x

iam@ba.infn.it
ame v

¥ inglese v > italiano v Traduci messaggio
Dear laniakea.testuser laniakea-elixir-it,
you have requested to be a member of recas-bari.

In order for the registration to proceed, please confirm this
request by going to the following URL:

https://iam.recas.ba.infn.it/registration/verify/2550a255-0db1-4f86-abc1-6b44076a4718

The recas-bari registration service

_images/deployments_page.png
kea Dashboard Deployments

My deployments
Show 10 ¢ entries Search:

Instance name Status Creation time ¥ Galaxy flavour VM flavour Endpoint Actions

galaxy docker test 2019-10-07 10:10:00 bgruening/galaxy-stable:19.01 [medium] http://90.147.75.27
galaxy express test 2019-10-07 09:21:00 galaxy-minimal <D http://90.147.75.219/galaxy
elastic cluster test 2019-10-04 18:32:00 galaxy-minimal [ciuster) http://90.147.102.53/galaxy

Showing 1to 3 of 3 entries Previous . Next

_images/docker_ftp_passive.png
Host: Username:

Local site: /Users/marco/

Password:

Select page:

Connection
FTP
Active mode
Passive mode
FTP Proxy
SFTP
Generic proxy
Transfers
FTP: File Types
File exists action
| Interface
Passwords

[

[Volumes

7 bin

. cores
Filename A Filesize Filetype
m.
7 .Nuance-Om... Directory
[0 Trash Directory

[.anydesk Directory
59 files and 48 directories. Total size: 197512757 bytes

Server/Local file Direction Remote file

Themes
Date/time format
Filesize format
File lists

1 Language
Last m¢ File editing

Filetype associations

08/21/1 Updates
05/28/; Logging
04/22]; Debug

FileZilla

Port: Quickconnect +

Settings
Overview
For more detailed information about what these options do, please run the
network configuration wizard.

Run configuration wizard now...

Transfer Mode

© Passive (recommended)
Active
Allow fall back to other transfer mode on failure

If you have problems to retrieve directory listings or to transfer files, try to k
change the default transfer mode.

FTP Keep-alive

Send FTP keep-alive commands

A proper server does not require this. Contact the server administrator if you
need this.

ssions Owner/Group

Queued files = Failed transfers = Successful transfers

@ Queue: empty

09

_images/dashboard_client_main.png
ReCAS

ADMINISTRATIVE Home

Manage Clients
Whitelisted Clients
BlacKisted Clients

Self-service Client Registration

IAM Test Instance for RECAS-BARI

Register a new client

New Client

System Scopes @ Cancel
1AM Dashboard
— Main Access Credentials Crypto Other JSON
Manage Approved Sites
Manage Active Tokens ClientiD Will be generated by the server when the client is saved
View Profile Information
Will be generated by the server when the client is saved
eveiomen Client Secret 9 y
Sel rvice client

registration

Self-service protected
resource registration

Client Configuration URL

WLl be generated by the server when the client is saved

Registration Access Wil be generated by the server when the client is saved
Token
Ciientname | dashboard test

Redirect URI(s)

Logo

Terms of Service

Policy Statement

Home Page

Software ID

Software Version

Contacts

Software Statement

Powered by MITREId Connect [

Human-readable application name

https://

https://cloud-90-147-170-32.cloud.ba.infn.it/login/iam/authorized

lojlo

URIs that the client can be redirected to after the authorization page

https://

URL that polints to a logo image, will be displayed on approval page

Enter a logo URL

https://

URL for the Terms of Service of this client, will be displayed to the user

https://

URL for the Policy Statement of this client, will be displayed to the user

https://
URL for the client's home page, will be displayed to the user
software ID...
Identifier for the software in this client
10..
Version of the software in this client

List of contacts for administrators of this client.

new contact ©
‘admin@iam.test)
List of contacts for administrators of this client.

eyj0...

A
A software statement is issued by a trusted third party and locks certain elements of a client’s registration

_images/deployments.png
kea Dashboard Deployments

My deployments

Show 10 ¢ entries
Instance name Status
tost

History test 2

Showing 1to 2 of 2 entries

© 2019 ELIXIR-ITALY Laniakea

Laniaka has

Creation time ¥ Galaxy flavour

2019-11-02 16:45:00 galaxy-minimal

2019-10-09 16:33:00 galaxy-epigen

alixir

VM flavour

ELEC| + New depioyme

Search:
Endpoint Actions
Previous . Next

http://90.147.75.134/galaxy

http://90.147.75.159/galaxy

_images/elixir_italy_logo.png
EI?(I"'

_images/encryption_strategy.png
Linux kernel layer

Application layer [cF1F)4Y;

File system layer

Encryption layer

Virtual hardware layer g

Mount point: /export

Logical block device:
/dev/mapper/cryptdev

/dev/vdb

_images/elixir_iib_logo.png
elixir

maLy
INFRASTRUTTURA ITALIANA
DI BIOINFORMATICA

_images/galaxy-testing-PR-accepted.png
Pull requests Issues Marketplace Explore

[Laniakea-elixir-it / Galaxy-flavours @uUnwatch~ 1 Jestar 0 YFork 1

Code Issues 0 T Pull requests 1 Actions Projects 0

Security Insights Settings

add galaxy-testing flavour #1 e

(V] mtangaro merged 1 commit into Laniakes-elixir-it:naster from mtangaro:master E3 NOW

@ Conversation 0 ©Commits 1 B Checks 0 Files changed 2

No eviews

No description provided.
Assignees o
No one—assign yourself

o BB atd sataxy-testing flavour P—
Labels o

The flavour have been tested and enabled. Projects o
None yet

@ B mrangaro merged commit 3sedisz into Laniakea-tixir-i Revert | wilestone o

No milestane

Pull request closed Notications Custorize

Fork settings

If you wish, you can delete this fork of Laniakea-elixir-it/Galaxy-flavours.

. Write | Preview MBI KO

x Unsubscribe

You're receiving notifications because
you're watching this repository.

1 participant

BiLock conversation

m) Allow edits from maintainers.
Learn more

Attach files by dragging & dropping, selecting or pasti

Q ProTip! Add comments to specific lines under Files changed.

©2019 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing APl Training Blog About

_images/galaxy-testing-PR.png
Pull requests Issues Marketplace Explore

Laniakea-elixir-it / Galaxy-flavours @unwatch~ 1 kstar 0 YFork 1

<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security Insights. Settings

Comparing changes

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

L) | base repository: Laniakea-elixi-it/Galaxy-flavo... » | base: master~ % | head repository: mtangaro/Galaxy-flavours ~ | compare: master ~

+ Able to merge. These branches can be automatically merged.

(ISP Discuss and review the changes in this comparison with others. ®

<1 commit

2 files changed 3 0 commit comments 221 contributor

[Commits on Dec 19, 2019

BB mtangaro add galaxy-testing flavour 2bc262d

Showing 2 changed files with 30 additions and O deletions. Unified | Split

v 29 m

m galaxy-testing/tool-list.yaml El

L. @e-9,0 41,29 @@

api_key: admin
galaxy_instance: http://localhost:8080
install_resolver_dependencies: true
install_tool_dependencies: false

tools:

- name: fastqc
owner: devtean
tool_panel_section_label: "tools"

name: bowtie2
owner: devtean
tool_panel_section_label: "tools"

- name: bowtie_wrappers
owner: devtean
tool_panel_section_label: "tools"

- name: sam_to_bam
owner: devtean
tool_panel_section_label: "tools"

- name: bam_to_sam
owner: devtean
tool_panel_section_label: "tools"

vim galaxy-testing/workf Low/Galaxy-Workf low-test.ga

. @ -0,0+1c
+ {"uuid": "18b915ea-50d2-4eab-8721-797f25557003", “tags": [,
“steps": {"0": {"tool_id": "toolshed.g2.bx.psu.edu/repos/devtean/fastqc/Tastqc/0. 72+galaxyl", "tool_version":
"8.72+galaxy1", “outputs": [{"type": "html", html_file'}, {"type": "txt", “name": “text_file'},
"workflow_outputs": [{"output_nane": 43ec4700-521-4418-begb-d6512845756¢", “label”: null},
{"output_name": “text_file", "uuid": "690eb9le-1ad6-41e2-9c98-305208922888", "label": null}], "input_connections": {},
“tool_state": “{\"min_length\": \"\\\"\\\"\", \"kners\": \"\\\"7A\\"\", \"Linits\": \"{\\\"__class_\\"
\\\"Runt imeValue\\\" I, \"input_file\": \"{\\\"_class_\\\": \\\"RuntineValue\\"}\", \"_page_\": null,
\"_rerun_remap_job_id_\": null, \"contaminants\": \"{\\\"__class_\\\": \\\"Runtinevalue\\\"\\", \"adapters\":
A"{AW"__class_\\\": \\\"RuntimeValue\\\"}\", \"nogroup\": \"\\\"false\\\"\"}", "id": 0, "tool_shed_repository"
{"owner": "devtean", "changeset_revision": "e7b2202befea", "name": "fastqc", "tool shed": "toolshed.g2.bx.psu.ed
"uuid": “aff2fcf2-6b65-4918-9d05-1cc71304Tb15", “errors": null, FastqC", “post_job_actions": {}, "label": null,
“inputs": [{"name": "linits", "description": “runtine parameter for tool FastQC'}, {"name": “input_file", “descriptio
“runtine parameter for tool FastQC"}, {name": "contaminants", "description”: "runtime parameter for tool FastC"},
{"name": “adapters", "description”: "runtine parameter for tool FastQC"}, "position": {"top": 200, “left": 203.5},
“annotation”: "", “content_id": "toolshed.g2.bx.psu.edu/repos/devtean/fastqc/fastqc/0.72+galaxyl", "type"s "tool"}, "1":
{"tool_id": "toolshed.g2.bx.psu. edu/repos/devtean/bowt ie_wrappers/botie wrapper/1.2.0", "toolversion": "1.2.0",
“outputs": [{"type" output"}], "workflow_outputs": [{"output_name": “output", "uuid"
"9bb5b027-6014-4a43-8524-76d9CT88ba20", "label": null}l, "input_connections": {}, " {\"_page_\'
\"singlePaired\": \"{\\\"__current_case_\\\": 8, \\"SINpUt1\\\": {\\\"__class_\\\": \\\"Runtinevalue\\\"},
\\\"sPaired\\\": \\\"single\\\", \\\"sParams\\\": {\\\"__current_case_ \\\": @, \\\"sSettingsType\\\": \\\"preset
\\"FN", \"__rerun_renap_job_id_\": null, \"save mapping_stats\": \"\\\"false\\\"\", \"suppressHeader\": \"\\\"false
A\\"\", \"refGenomeSource\": \"{\\\"__current_case_\\\": 8, \\\"genomeSource\\\": \\\"indexed\\\", \\\"index\\\"
\\\"/cvnfs/data. galaxyproject. org/byhand/hg19/bowt ie_index/hg19\\\"I\"}", "id": 1, "tool_shed_repository": {“owner"
“devtean", "changeset_revision": "b4ge7d4go76a", "name": "bowtie wrappers", "tool_shed": "toolshed.g2.bx.psu.edu"},
"uuid": "22136443-66ae-46ch-a3a7-g5a66c9e2ab6", “errors": null, iap with Bowtie for Illunina",
“post_job_actions": {}, "label": null, inglepaired”, "description”: "runtine parameter for tool
Map with Bowtie for Illumina"}, "position” 505, "left": 200}, “annotation": ", "content_id":
“toolshed.g2.bx. psu.edu/ repos/devtean/bowt ie_wrappers/bowt ie_wrapper/1.2.8", "type": "tool"}, "2": {"tool id":
“toolshed.g2.bx. psu.edu/ repos/devtean/san_to_bam/san_to_ban/2.1.1", "toolversion": "2.1.1", “outputs": [{"type"
output1”}], "workflow_outputs": [{"output_name": "outputl", "wuid": "4cdabdcd-c247-4929-9c07-a1a2b56T0Ta8!
“label": null}], “input_connections": {"source|inputl": {"output_name": “output", "id": 1}}, “tool_state": "{\"source\
\"{\\\"__current_case_\\\": 9, \\\"index\\\": \\\"hgI9\\\", \\\"index_source\\\": \\\"cached\\\", \\\"inputI\\\":
{\"_class_\\\": \\\"Runtinevalue\\\"}\", \"__rerun_remap_job_id_\": null, \"_page_\": null}", "id": 2,
"tool_shed_repository": {"owner": "devtean", "changeset_revision": "cf1ffdg8f8os", "name": “san_to_ban", "tool shed":
“toolshed.g2.bx.psu.edu"}, "uuid": "d0093e83-4dae-43b7-ba59-5517fa73fcO4", “errors": null, “name": "SAH-to-BAM",
“post_job_actions": {}, "label": null, "inputs": [{"name": "source", "description": “runtine parameter for tool SAM-to-
BAM'}], “position”: {"top": 509, "left": 543.5}, “annotation" ‘toolshed. g2.bx. psu. edu/ repos/devtean
/sam_to_ban/san_to_ban/2.1.1", "type' {"tool_id": "toolshed.g2.bx.psu. edu/repos/devtean/ban_to_sam
/bam_to_san/2.0.1", "tool_version": © [{"type": “san, "name": "output1"}l, "workflow_outputs":

test, "version": 2,

‘nane’

“nane

00l_state"

nut,

ame'

nane®

ontent_id"

ool
2.0.1%,

[{"output_name": “output: 80539730-b820-493e-bd59-378ee06e8156", "label": null}], "input_connections":
{"input1": {"output_name’ "id": 2}}, "tool_state": "{\"header\": \"\\\"-h\\\"\", \"__rerun_renap_job_id_
nULL, \"inpUTI\": \"{\\\"_¢ \\\"ConnectedValue\\\"1\", \"_page__\": null}", "id"

"tool_shed_repository": {"owner": "devtean", "changeset_revision": "8Beedbdabead", "name": “bam_to_san", "tool_shed":
"toolshed.g2.bx.psu.edu"}, "uuid": "9d9t7cb5-7f17-4db4-8b89-941821389594", “errors”: null, “name": "BAM-to-SAM",
"post_job_actions": {}, "label”: null, "inputs": [], “position": {"top": 514, "left": 878.5}, “annotation"
“content_id": "toolshed.g2.bx.psu.edu/repos/devtean/ban_to_san/bam_to_san/2.0.1", "type": "tool"}}, “annotation"
"a_galaxy_workflow": "true"} ou

No commit comments for this range

©2019 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub Pricing APl Training Blog About

_images/ftp_copy.png
Download from web or upload from disk

Regular Composite Collection

FTP files [x]

This Galaxy server allows you to upload files via FTP. To upload some files, log in to
the FTP server at 90.147.102.82 using your Galaxy credentials (email address and
password).

Available files: [2 1 files & 140 MB
O Name Size Created

O Sc_Ip.fastq 140 MB 08/12/2017 09:29:51 AM

Type (set al | Species ... z]

A A

O Choose local file = Choose FTP file (&' Paste/Fetch data Pause Reset Start

_images/ftp_filezilla.png
I8 QOWlWO k.

Nome utente: | ma.tangaro®ibi Password:

90.147.170.108

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWsjbiomas_inputs/short 5000_R1 fasta
Trasferimento file completato; trasferit 262. 001 byte in 1 secondo

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs|biomas_inputs/short 5000_R2fastq
Trasferimento file completato; trasferit 655. 001 byte in 1 secondo

Awio upload di [Users/marcojELIXIR]Marine Metagenomics ITSoneWs|biomas_inputs/short 15000_R1 fasta
Trasferimento file completato; trasferit 655. 001 byte in 1 secondo

Awio upload di [Users/marcofELIXIR]Marine Metagenomics ITSoneWs|biomas_inputs/short 15000_R2.fastq
Trasferimento file completato; trasferit 1. 965. 001 byte in 1 secondo

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs|biomas_inputs/short 100000_R1.fasta
Trasferimento file completato; trasferit 13. 087. 245 byte i 1 secondo.

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs/biomas_inputs/short 100000_R2 fastq
Trasferimento file completato; trasferit 13. 087. 245 byte i 1 secondo.

Awio upload di [Users/marco/ELIXIR Marine Metagenomics ITSoneWs/biomas_inputs/short_200000_R1.fasta
Trasferimento file completato; trasferit 1. 965. 001 byte in 1 secondo

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs|biomas_inputs/short_200000_R2 fastq
Trasferimento file completato; trasferit 26. 194. 480 byte in 1 secondo

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs/biomas_inputs/short 500000_R1 fasta
Trasferimento file completato; trasferit 26. 194. 480 byte in 1 secondo

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWB|biomas_inputs/short 500000_R2 fastq
Trasferimento file completato; trasferit 65. 501. 225 byte in 2 secondi

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs/biomas_inputs/fungi-iluminaifa
Trasferimento file completato; trasferit 65. 501. 225 byte in 2 secondi

Awio upload di [Users/marco/ELIXIR]Marine Metagenomics ITSoneWs/biomas_inputs/fungi-iluminatfo_reduced

Connessione rapida

Sito locale: | /bin/ ~ || sitoremoto: / -
— =
0 cores.
W dev
T~
Nome file A Dimensione fil Tipo file Uttima modifica Nome file A Dimensione fi Tipo file _ Ultima modifica _ Permessi _ Proprietariojar
- -
i 22.672 File 01.06.2017 01:5... 13.101 fasta-file
bash 626.272 File 01.06.2017 01:5... fungi-i 13.101 fasta-file
cat 23.584 File 01.06.2017 O1:5. short 1. fasto-file
chmod 34,080 File 16.07.2017 06:2.. short 1., fasto-file
cp 28.912 File 15.07.2017 06:2... short L. 131001 fastg-file
csh 375.632 File 01.06.2017 O1:5... short L. 131001 fastg-file

36 file - cimensione totale: 4. 970. 268 byte
File serverflocale
¥ ma.tangaro%40ibiom.c..
IUsers/marco/ELIXIR). -
Trascorsi 00:00:00

Direzione _File remoto

> ffungi-illuminaifq
allafine W 10.3%

[Users/marco/ELIXIRL.. =->> [fungi-illuminalfo_reduced

Trascorsi 00:00:00

Isersimarco/FLIXIRL. __-->> _ffunai
File in coda (3) | Trasferimenti non completati

allafine | 25%
jumina2fa

Trasferimenti completati (18)

Dimensione Pririt

8 file - dimensione totale: 215. 742. 832 byte

Normale Trasferimento in corso

27.256. 787 byte (2 BJs)
Normale Trasferimento in corso

6.754. 889 byte (2 8/s)

Coda: 7570MB @ @

_images/galaxy_400.png
eoe | The page is temporarily unavaila “’\+ a

€ | (D 90.147.102.33/galaxy/ & Q cerca w B 3 A ® & =

nginx error!

The page you are looking for is temporarily unavailable. Please try again later.

Website Administrator

Something has triggered an error on your website. This is the default error page for nginx that is distributed with Fedora. It is
located /usr/share/nginx/html/50x.html

You should customize this error page for your own site or edit the error_page directive in the nginx configuration file /etc/nginx
/nginx.conf.

NGiNX

_images/galaxy-testing-flavour.png
Galaxy / testing

Tools RA 3 3

search tools

Get Data
Send Data
Collection Operations
Lift-Over
Text Manipulation
Convert Formats
Filter and Sort
Join, Subtract and Group
Fetch Alignments/Sequences
Operate on Genomic Intervals
Statistics
Graph/Display Data
Phenotype Association
tools

FastQC Read Quality reports.

Map with Bowtie for lllumina

BAM-to-SAM convert BAM to SAM

SAM-to-BAM convert SAM to BAM

Workflows

Al workflows.

()

He

Toc

Taks

Gal

The

_images/galaxy_200.png
e0e0 | — \+ = |

€ | (D 90.147.102.33/galaxy/ c Q cerca w B 3 A ABP) =
= Galaxy / ELIXIR-IT\A FESTING Using 1.9 GB
Tools £ History [s X - Xiil|
) . .)
Hello, Galaxy is running!
G e Unnamed history
Send Data To customize this page edit 19 shown
. .
Collection Operations) 1.91GB v oe
Lift-Over static/welcome.html
Text Manipulation 19: bamCoverage on IOYW AR
Filter and Sort Configuring Galaxy » Installing Tools » data 18
Join, Subtract and Group 18: SAM-to-BAMondata @ 4 x
Convert Formats 17: converted BAM
Extract Features Take an interactive tour: Galaxy ul | | History | Scratchbook 17: Map with Bowtie for @ ¢ | %
Fetch Sequences lllumina on data 9:
Fetch Alignments mapped reads
Statistics @ 16: FastQC on data x
Graph/Display Data Galaxy is an open platform for supporting data intensive research. 13: RawData
. .
Tools Galax.y is developed by The Galaxy Team with the support of many © 15: FastQC on data =
Reviewitools contributors. 13: Webpage
ECEEEEIOE The Galaxy Project is supported in part by NHGRI, NSF, The Huck Institutes of the @ 14: bamCoverage on x
Workflows Lifg Scie.nces, The Institute for CyberScience at Penn State, and Johns Hopkins data 13
University.
= All workflows 11 13: SAM-to-BAM on IOW AR
data 12: converted BAM
€ 12: Map with Bowtie @ 4 x
for lllumina on data 9:
mapped reads
T
javascript:void(0) >

