

Welcome to Lambda Tools

Lambda Tools is a utility to help you to build, test, deploy, and set up
Continuous Delivery pipelines for Python-based serverless code in AWS Lambda.

Contents:

	Quick start

	Configuration
	version

	functions

	Command line instructions
	ltools build

	ltools deploy

	ltools list

	ltools version

	Using with Terraform

Quick start

To install Lambda Tools, type:

pip install lambda-tools

Note: you need to be using Python 3.5 or later (3.6 preferred).

Now create a file in the root directory of your project called aws-lambda.yml.
A minimal lambda definition file will look something like this:

version: 1

functions:
 hello_world:
 build:
 source: hello_world

 deploy:
 handler: hello.handler
 role: lambda-role
 region: eu-west-2

Create a folder next to your lambda function called hello_world and create
a Python script within it called hello.py. Copy and paste the following
contents into it:

def handler(event, context):
 return 'Hello world'

If you don’t already have an IAM role set up to run AWS Lambda functions, create
one in the AWS console:

	Select the IAM service under “Services”

	Under “Roles”, select “Create Role”

	Under “AWS Service” choose “Lambda” then click “Next: Permissions”

	Select any policies that you want to apply to the role, then choose
“Next: Review”

	Give the role a name — in this case, “lambda-role”

	Click “Create role”

Now run:

ltools build

You will see a file created next to your source directory called
hello_world.zip. This is the package that will be uploaded to AWS Lambda.

Now run:

ltools deploy

All being well, this will deploy your code to AWS, in the eu-west-2 (London)
region.

Configuration

Lambda Tools is configured by a file called aws-lambda.yml placed in your
project’s root directory. This can contain definitions for more than one
Lambda function. A sample Lambda file might look like this:

Configuration schema version 1.

version: 1

functions:
 hello_world:
 runtime: python3.6
 build:
 source: src/hello_world
 requirements:
 - file: requirements.txt
 use_docker: false
 compile_dependencies: false
 package: build/hello_world.zip
 ignore:
 - __pycache__
 - "*.py[cdo]"

 deploy:
 description: A basic Hello World handler
 region: eu-west-1
 handler: hello.handler
 memory_size: 128
 timeout: 60

 # Role, VPC, subnets, security groups and KMS key are all specified by name.
 role: service-role/NONTF-lambda

 vpc_config:
 name: My VPC
 subnets:
 - Public subnet
 - name: Private subnet
 security_groups:
 - name: allow_database

 kms_key:
 name: aws/lambda

 tags:
 wibble: wobble

 environment:
 variables:
 foo: baz
 bar:

 # tracing: PassThrough | Active
 tracing_config:
 mode: PassThrough

 # dead_letter: [ARN of SQS queue or SNS topic]
 dead_letter_config:
 target_arn: some-dead-letter-arn

It is a little known fact that YAML is actually a superset of JSON. This means
that you can also provide your configuration in JSON format if preferred.
As of version 0.1.2, lambda-tools will look for filenames aws-lambda.yml,
aws-lambda.yaml or aws-lambda.json by default.

For example, a minimal JSON configuration file might look like this:

The configuration sections are as follows:

version

This is required; it should be set to 1.

functions

The functions section is required. It contains a list of function
definitions; the name of each definition will be the name of the function as
uploaded to AWS Lambda.

Each function has a number of different options:

runtime

The runtime parameter is optional and defaults to python3.6. It
indicates which language runtime is used by the function.

Note that while you may specify any language supported by AWS, only
python3.6 (the default) is currently fully supported by Lambda Tools.
Support for other AWS-supported runtimes is planned.

build

The build section is required. It tells Lambda Tools what resources are to
be bundled into the zip file that is uploaded to AWS Lambda, how they are to be
collated, and where the package is to be saved to disk.

Its parameters are as follows:

source

The folder containing your function’s source code. This is specified relative to
the aws-lambda.yml file. Required

requirements

A list of requirements.txt files specifying the Python packages to be
downloaded from PyPI for inclusion with your function.

compile_dependencies

Compile the Python files in dependent packages into .pyc files.
Default: false

By default, .py files in your dependencies are not compiled into .pyc
files. This may increase the startup time of your lambda function,
especially if the number of dependencies that you have specified is large
but it does mean that the same build will produce exactly the same binary.
This is important, for example, if you are using ltools in conjunction with
Terraform, which looks for changes in your build output.

package

The filename where your function’s bundled package should be saved, ready to
upload to AWS. This is relative to the aws-lambda.yml file.

If not specified, it will be saved into a zip file next to the folder
containing your source code.

use_docker

Build the lambda in a Docker container. Default: false

You will normally not need to use Docker, unless you are building your
lambda function on OSX or Windows and some of your dependencies are written
partly in C. If you get “Invalid ELF header” errors in AWS after uploading
your lambda to AWS, change this setting to true. For more information see
this article [https://medium.freecodecamp.org/escaping-lambda-function-hell-using-docker-40b187ec1e48].

ignore

Specifies a list of file patterns to ignore when bundling the source code for
your lambda function.

This allows you to specify, for example, compiled Python scripts (*.pyc
files or __pycache__ folders) or your requirements.txt file if it is
located in the same folder as your source code.

deploy

The deploy section tells Lambda Tools how to deploy your code to AWS Lambda.
It is optional; you only need it if you are using ltools deploy itself to
deploy your function to AWS Lambda. If you are using a different mechanism, such
as Terraform, you can omit it.

The parameters are as follows:

handler

The function’s entry point into your code. For Python, this is specified in the
format module.handler. Required.

role

The name of the IAM role attached to the lambda function. This
determines who or what can run your function, as well as what resources it can
access. Required.

source

The folder containing your function’s source code. This is specified relative
to the aws-lambda.yml file. Required.

description

A short description of what your function does.

memory_size

The amount of memory that your function can use at runtime, in gigabytes. Must
be a multiple of 64 gigabytes. Default: 128.

region

The AWS region into which your function is to be deployed.

If not specified, it will be taken from either the environment variables
or the configuration information that you have set using aws configure.

timeout

The maximum time, in seconds, that your function is allowed to run before being
terminated. Default: 3 seconds.

dead_letter_config

Configures your lambda function’s dead letter queue, to which notifications of
failed invocations are sent. This can be either an SNS topic or an SQS queue,
and it can be specified either by name or by ARN.

It can be configured in one of the following ways:

dead_letter_config:
 target_arn: (the ARN of your queue or topic)

dead_letter_config:
 target:
 sns: (the name of your SNS topic)

dead_letter_config:
 target:
 sqs: (the name of your SQS queue)

environment

The environment variables to be passed to your function. It is configured as follows:

environment:
 variables:
 VARIABLE: some value
 PASSTHROUGH_VARIABLE:

Variables whose value is left blank will be passed through to the function
configuration from the environment which invokes ltools.

kms_key

The KMS key used to encrypt the environment variables. This can be
specified either by name or by ARN:

kms_key:
 name: aws/lambda

kms_key:
 arn: "arn:aws:kms:eu-west-1:123456789012:key:01234567-89ab-cdef-0123-456789abcdef"

If no key is specified, the default key, aws/lambda, will be used.

tags

The tags to be assigned to your lambda function. For example:

tags:
 Account: marketing
 Application: newsletters

tracing_config

The tracing settings for your application. This contains a single argument, mode:

tracing_config:
 mode: PassThrough

mode can be set to either PassThrough or Active. If PassThrough,
Lambda will only trace the request from an upstream service if it contains a
tracing header with sampled=1. If Active, Lambda will respect any tracing
header it receives from an upstream service. If no tracing header is received,
Lambda will call X-Ray for a tracing decision.

vpc_config

Add this section if you want your lambda function to access your VPC. You will
need to specify subnets and security groups:

vpc_config:
 subnets:
 - id: subnet-12345678
 - name: public-subnet
 - another-subnet
 security_groups:
 - id: sg-12345678
 - name: some-group
 - another-group

Security groups and subnets can be specified either by ID or by name, as shown
above. As a shortcut, you can omit name: when specifying it by name.

If you have two or more security groups or subnets with the same name in
different VPCs, you will also need to specify the ID or name of the VPC in
order to disambiguate them:

vpc_config:
 name: My VPC
 subnets:
 - id: subnet-12345678
 - name: public-subnet
 - another-subnet
 security_groups:
 - id: sg-12345678
 - name: some-group
 - another-group

Command line instructions

Lambda Tools is run from the command line by using the ltools command.
If you type ltools --help, you will be shown a list of the available
commands. These are as follows.

ltools build

Usage: ltools build [OPTIONS] [FUNCTIONS]...

Build the specified lambda functions into packages ready for manual upload
to AWS.

	Options:

	
	-s, --source TEXT

	Specifies the source file containing the lambda definitions. Default: aws-lambda.yml.

	--terraform

	Renders output suitable for Terraform’s external data source.

	--help

	Show this message and exit.

ltools deploy

Usage: ltools deploy [OPTIONS] [FUNCTIONS]...

Deploy the specified lambda functions to AWS.

	Options:

	
	-s, --source TEXT

	Specifies the source file containing the lambda
definitions. Default aws-lambda.yml.

	--help

	Show this message and exit.

Note

The lambda functions being deployed must already have been built using
ltools build.

ltools list

Usage: ltools list [OPTIONS] [FUNCTIONS]...

Lists the lambda functions in the definition file.

	Options:

	
	-s, --source TEXT

	Specifies the source file containing the lambda
definitions. Default aws-lambda.yml.

	--help

	Show this message and exit.

ltools version

Usage: ltools version [OPTIONS]

Print the version number and exit.

	Options:

	
	--help

	Show this message and exit.

Using Lambda Tools with Terraform

If you are using Terraform [https://www.terraform.io/] to build up your
infrastructure, you may want to use Lambda Tools to create the zip files to be
uploaded to AWS.

Lambda Tools includes a “Terraform mode” switch in ltools build which allows
you to use it in conjunction with Terraform’s external data source [https://www.terraform.io/docs/providers/external/data_source.html].

The setup for the external data source will look something like this:

data "external" "lambda" {
 program = [
 "ltools",
 "build",
 "--terraform",
 "-s",
 "${path.module}/aws-lambda.yml",
 "${var.lambda_name}",
]
}

resource "aws_lambda_function" "my_lambda" {
 function_name = "${var.lambda_name}"

 filename = "${lookup(data.external.lambda.result, "${var.lambda_name}")}"
 source_code_hash = "${base64sha256(file(lookup(data.external.lambda.result, "${var.lambda_name}")))}"
 role = "${aws_iam_role.github-user-management.arn}"

 handler = "main.handler"
 runtime = "python3.6"
 timeout = 30
}

What this is doing is passing an extra parameter, --terraform, to
ltools build, which instructs it to render its output in the format required
by Terraform’s external data source — specifically, a JSON dictionary of strings.
The dictionary so returned will list the names of the functions which have been
built, together with the paths to their respective build artefacts. You can then
use Terraform’s lookup function [https://www.terraform.io/docs/configuration/interpolation.html#lookup-map-key-default-] to get the filename to be passed to the
aws_lambda_function [https://www.terraform.io/docs/providers/aws/r/lambda_function.html] resource.

Note

The --terraform option also redirects any output from ltools build
from stdout to stderr. This output will only be rendered by Terraform
if the build fails for any reason.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Lambda Tools

 		
 Quick start

 		
 Configuration

 		
 version

 		
 functions

 		
 runtime

 		
 build

 		
 deploy

 		
 Command line instructions

 		
 ltools build

 		
 ltools deploy

 		
 ltools list

 		
 ltools version

 		
 Using with Terraform

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

