Lambada Documentation
Release 0.2.1

Superpedestrian, Inc.

October 21, 2016

Contents

1 Quickstart 3

2 Bouncers 5
2.1 Customizing Bouncers e 5

2. 1.1 Releases o o e e e e e 6

2.1.2 Lambada Reference API Documentation 6

3 Indices and tables 9

Python Module Index 11

Lambada Documentation, Release 0.2.1

_ T

e

A

multiple lambdas in one library/package by utilizing lambda-uploader.

A flask like framework for building

Contents 1

http://flask.pocoo.org
https://pypi.python.org/pypi/lambda-uploader

Lambada Documentation, Release 0.2.1

2 Contents

CHAPTER 1

Quickstart

All you’ll need to do to create a minimal lambada application is to add the following to a file called 1ambda.py :

from lambada import Lambada
tune = Lambada (role='arn:aws:iam:xxxxxxx:role/lambda")
@tune.dancer

def test_lambada (event, context):
print ('Event: {}'.format (event))

and a requirements.txt file that includes the lambada package (either lambada or
https://github.com/Superpedestrian/lambada for the latest release or developer version respectively.

Much like a flask app, we now have a python file that is configured to upload a lambda function with the name
test_lambada in your AWS account in the us—east -1 region (since that is the default), and the handler will be
setto lamda . tune, again the default.

So what is this doing over just writing the same thing without this framework?

For one it gives you a command line toolset to test, list, and publish multiple functions to AWS as independant
Lambda’s with one code base.

Now that you have your code, you can run the lambada command line tool after running pip install -r
requirements.txt to do something like lambada list

List of discovered lambda functions/dancers:

test_lambada:
description:

You can also test that lambda with an event passed on the command line using lambada run test_lambada
—-—event ’'Hello’ to get:

Event: Hello

which creates a faked AWS Context object before running the specified dancer.

From there we can also package the functions (the same package works for all defined dancers/Lambda functions).
So without configuring any AWS credentials, we can run lambada package to create a zip file with all your
requirements packaged up (from the earlier created requirements.txt) that you can manually upload to AWS
Lambda through the Web interface or similar.

If you have your AWS API credentials setup, and the correct permissions, you can also run lambada upload to
have the function created and/or versioned with the packaged code for each dancer.

Lambada Documentation, Release 0.2.1

Pretty neat so far, but where it starts to get cool is when there are many dancers with different requirements, VPCs,
timeouts, security configuration, and memory requirements all in the same deployable package similar to the following.
We’re going to go ahead and call our file fouronthefloor.py just as a reference for the customization you can
do, so the contents of fouronthefloor.py would look like:

from lambada import Lambada

chart = Lambada (
handler="'fouronthefloor.chart',
role='arn:aws:liam:xxxxxxXxX:role/lambda',
region='us-west-2"',
timeout=60,
memory=128

@chart .dancer
def test_lambada (event, context):
print ('Event: {}'.format (event))

@chart .dancer (
name='"not_the_function_name',
description='Cool description',
memory=512,
region='us-east-1"',
requirements=['requirements.txt', 'xtra_requirements.txt']

def cool_oneoff (event, context):
print ('Wow, so much memory! in a diff region and extra regs!')

@chart .dancer (memory=1024, timeout=5)
def bob_loblaw(event, _):
print ('Such a great reference!')

Which gives a lambada 1ist that looks like:

List of discovered lambda functions/dancers:

bob_loblaw:
description:
timeout: 5
memory: 1024

test_lambada:
description:

not_the_function_name:
description: Cool description
region: us-east-1
requirements: ['requirements.txt', 'xtra_requirements.txt']
memory: 512

And with a few lines we’ve created three lambdas with different execution requirements all with one lambada
upload command. Such a simple seductive dance .

4 Chapter 1. Quickstart

CHAPTER 2

Bouncers

AWS Lambda doesn’t yet feature a way to add secure configuration items through environment variables (if it ever
will), but there is often a need to have secrets that you don’t want checked into source control such as API keys,
passwords, certificates, etc. Generally it is nice to specify these with an out of source tree configuration file or
environment variables. To achieve that here, we have the concept of Bouncer objects. This configuration object is
created by default when you instantiate the Lambada class with a default configuration that you can use out of the
box. The default 1ambada . Bouncer object looks for YAML configuration files in the following paths:

* Path specified by the environment variable BOUNCER_CONFIG
* The current working directory for 1ambada.yml
* Your HOME directory for . lambada.yml
e /etc/lambada.yml
and it does so in that order, terminating as soon as it successfully finds one.

In addition to those configuration files, it also will automatically add any variable prefixed with BOUNCER__ (again
default, and can be changed to an arbitrary prefix) to the bouncer configuration. This means that without any code you
can add configuration to your Lambada project by just adding say BOUNCER_API_KEY to your local configuration
and referencing it in your code as tune.bouncer.api_key (assuming tune is the variable you chose for your
lambada class.

Similarly, if you define a 1ambada . ym1 configuration file that looks like:

api_key: 1234abcd

it will be accessible in the same way as tune .bouncer.api_key.
It is worth noting that the environment variable will override the same named variable in your yaml file.

How this works in Lamda is that the Bouncer configuration on the Lambada is read when packaged for AWS and
written to a _lambada.yml configuration and is looked for first when running in Lambda.

2.1 Customizing Bouncers

If those defaults don’t work for you, you can also pass in your own Bouncer to the Lambada object on creation. It
allows you to directly pass in the path to the configuration and/or change the environment variable prefix like so:

from lambada import Bouncer, Lambada

bouncer = Bouncer (config='foobar.yml', env_prefix='COOL_")
tune = Lambada (bouncer=bouncer, role=bouncer.role)

Lambada Documentation, Release 0.2.1

@tune.dancer
def test_lambada (event, context):
print (bouncer.role)

as an example, which lets you use bouncer to help configure the Lambada object

2.1.1 Releases

0.2.1

* Fixed relative import bug when searching for Lambada class

0.2.0

* Added bouncer configuration injection feature

0.1.0

First release

2.1.2 Lambada Reference APl Documentation

Lambada package entry point

class 1ambada .Bouncer (config_file=None, env_prefix=u’ BOUNCER_’)
Bases: object

Configuration class for lambda type deployments where you don’t want to keep security information in source
control, but don’t have environment variable configuration as a feature of Lambda. It pairs with the command
line interface to package and serializes the current configuration into the zip file when packaging. This allows
changing with local environment variable changes or different configuration file paths at package time).

Configuration files, if not specified, are loaded in the following order, with the first one found being the only
configuration (they do not layer):

*Path specified by BOUNCER_CONF IG environment variable.
elambada . yml in the current working directory.
*.lambada.yml in your HOME directory
*/etc/lambada.yml

That said no configuration file is required and any environment variable with a certain prefix will be added
to the attributes of this class when instantiated. The default is BOUNCER_ so the environment variable
BOUNCER_THING will be set in the object as bouncer . thing after construction.

These prefixed environment variables will also override whatever value is in the config, so if your config file has
a thing variable in it, and BOUNCER_THING is set, the value of the environment variable will override the
configuration file.

Finds and sets up configuration by yaml file
Parameters

* config_ file (str)— Path to configuration file

Chapter 2. Bouncers

Lambada Documentation, Release 0.2.1

* env_prefix (str)— Prefix of environment variables to use as configuration

export (stream)
Write out the current configuration to the given stream as YAML.

Parameters destination (str)— Path to output file.
Raises

e TOError

e yaml.YAMLError

class 1ambada .Dancer (function, name=None, description=u’", **kwargs)
Bases: object

Simple function wrapping class to add context to the function (i.e. name, description, memory.)
Creates a dancer object to let us know something has been decorated and store the function as the callable.
Parameters
e function (callable)— Function to wrap.
e name (str)— Name of function.
* description (str)— Description of function.

* kwargs — See OPTIONAL_CONF IG for options, if not specified in dancer, the Lambada
objects configuration is used, and if that is unspecified, the defaults listed there are used.

config
A dictionary of configuration variables that can be merged in with the Lambada object

class 1ambada . Lambada (handler=u’lambda.tune’, bouncer=<lambada.Bouncer object>, **kwargs)
Bases: object

Lambada class for managing, discovery and calling the correct lambda dancers.

Setup the data structure of dancers and do some auto configuration for us with deploying to AWS using
lambda_uploader. See OPTIONAL_CONFIG for arguments and defaults.

dancer (name=None, description=u’", **kwargs)
Wrapper that adds a given function to the dancers dictionary to be called.

Parameters

* name (str) — Optional lambda function name (default uses the name of the function
decorated.

* description (str)— Description field in AWS of the function.

* kwargs — Key/Value overrides of either defaults or Lambada class configuration values.
See OPTIONAL_CONFIG for available options.

Returns
Object with configuration and callable that is the function being wrapped
Return type Dancer

lambada.get_config from_env (env_prefix=u’BOUNCER_’)
Get any and all environment variables with given prefix, remove prefix, lower case the name, and add as a
dictionary item that is returned.

Parameters env_prefix (str)— environemnt variable prefix.

Returns

2.1. Customizing Bouncers 7

Lambada Documentation, Release 0.2.1

empty if no environment variables were found, or the dictionary of found variables that

match the prefix.
Return type dict

lambada.get_config from file (config_file=None)
Finds configuration file and returns the python object in it or raises on parsing failures.

Parameters config_file (str) — Optional path to configuration file,
CONFIG_PATHS if none is specified.

Raises yaml.YAMLError
Returns
empty if no configuration file was found, or the contents of that file.

Return type dict

lambada.cli module

Command line interface for running, packaging, and uploading commands to AWS.

lambada.cli.create_package (path, tune, requirements, destination="lambada.zip’)
Creates and returns the package using lambda_uploader.

lambada.common module

Common classes, functions, etc.

class lambada . common . LambadaConfig (path, config)
Bases: lambda_uploader.config.Config

Small override to load config from dictionary instead of from a configuration file.

Takes config dictionary directly instead of retrieving it from a configuration file.

runs through

class 1ambada.common . LambdaContext (function_name, function_version=None, n-
voked_function_arn=None, memory_limit_in_mb=None,
aws_request_id=None, log_group_name=None,

log_stream_name=None,

client_context=None, timeout=None)
Bases: object

Convenient class duplication of the one passed in by Amazon as defined at:
http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html
Setup all the attributes of the class.

get_remaining time_in millis()
If we have a timeout return the amount of time left.

lambada.common.get_lambada_class (path)
Given the path, find the lambada class label by dir () ing for that type.

Parameters path (click.Path)— Path to folder or file

lambada.common.get_time millis ()
Returns the current time in milliseconds since epoch.

identity=None,

8 Chapter 2. Bouncers

http://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

CHAPTER 3

Indices and tables

¢ genindex
* modindex

e search

Lambada Documentation, Release 0.2.1

10 Chapter 3. Indices and tables

Python Module Index

lambada, 6
lambada.cli, 8
lambada.common, 8

11

Lambada Documentation, Release 0.2.1

12 Python Module Index

Index

B

Bouncer (class in lambada), 6

C

config (lambada.Dancer attribute), 7
create_package() (in module lambada.cli), 8

D

Dancer (class in lambada), 7
dancer() (lambada.LLambada method), 7

E

export() (lambada.Bouncer method), 7

G

get_config_from_env() (in module lambada), 7
get_config_from_file() (in module lambada), 8
get_lambada_class() (in module lambada.common), 8

get_remaining_time_in_millis() (lam-
bada.common.LambdaContext method),
8

get_time_millis() (in module lambada.common), 8

L

Lambada (class in lambada), 7

lambada (module), 6

lambada.cli (module), 8

lambada.common (module), 8
LambadaConfig (class in lambada.common), 8
LambdaContext (class in lambada.common), 8

13

	Quickstart
	Bouncers
	Customizing Bouncers
	Releases
	Lambada Reference API Documentation

	Indices and tables
	Python Module Index

