

Welcome to LACE’s documentation!

Contents:

	LACE
	What is LACE?

	How to use?

	Bibtex

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Maintainer

	Contributors

	History

Indices and tables

	Index

	Module Index

	Search Page

LACE

[image: _images/LACE.svg]
 [https://travis-ci.org/Ginfung/LACE]
	Free software: MIT license

	Documentation: http://lace.readthedocs.io/en/latest/readme.html

	Algorithm design: Dr. Fayola Peters [http://www.fayolapeters.com/] @ Univ of Limerick, Ireland

	Package development: Jianfeng Chen [http://www4.ncsu.edu/~jchen37] @ NC State Univ, United States

What is LACE?

LACE, or Large-scale Assurance Configuration Environment, was firsed introduced by Dr. Peters in ICSE2013. In a short, LACE is a data preprocess algorithm. It can help user to remove the sensitive information and implicit association rules inside the date sets, while keep the utility of the data sets, typically for machine learning or big data mining. In our published articiles, we used the data to train learning models and do the prediction.

There are two versions of LACE at this time. The first version, or lace1 is constructed by two parts– CLIFF and MORPH. CLIFF is to find the most valuable subset among the dataset. MORPH is to “shake” the data so that someone else can not reveal the original data and remove the implicit association rules among the attributes.

The second version of LACE, or lace2, assumes there is a bin which contains the privatized data set from other people or insititutions. And lace2 can allow the user to determine what he or she should add to the bin so that it can improve the diversity of the bin. To pratitize the data, MORPH is also used in lace2.

To explore more details of the lace1 and lace2, please see the two papers listed in Bibtex.

How to use?

LACE can be easily installed by pip. Check Installation and Usage.

Bibtex

@inproceedings{peters2015lace2,
 title={LACE2: better privacy-preserving data sharing for cross project defect prediction},
 author={Peters, Fayola and Menzies, Tim and Layman, Lucas},
 booktitle={Proceedings of the 37th International Conference on Software Engineering-Volume 1},
 pages={801--811},
 year={2015},
 organization={IEEE Press}
}

@article{peters2013balancing,
 title={Balancing privacy and utility in cross-company defect prediction},
 author={Peters, Fayola and Menzies, Tim and Gong, Liang and Zhang, Hongyu},
 journal={IEEE Transactions on Software Engineering},
 volume={39},
 number={8},
 pages={1054--1068},
 year={2013},
 publisher={IEEE}
}

Installation

At the command line:

$ pip install git+git://github.com/Ginfung/LACE

Just a kind reminder, the package may be installed into some other folder, which is not included in PYTHONPATH, such as /usr/local/lib/python2.7/site-packages/ . Python can only recongnize the packages in PYTHONPATH or the current working directory. If you come across this situation, please check http://stackoverflow.com/questions/12311085/how-to-permanently-append-a-directory-to-pythonpath .

If you don’t know where LACE is installed, just run “pip uninstall lace” . You will get the answer.

Usage

To use LACE in a project:

import lace # or
from lace import cliff, morph, lace1, add_to_bin, lace2_simulator

The CLIFF func:

cliff(attribute_names, data_matrix, independent_attrs, objective_attr, objective_as_binary=False, cliff_percentage=0.4)

	param attribute_names

	the attribute names. This should match the data_matrix

	param data_matrix

	the data to trim

	param independent_attrs

	set up the independent attributes in the dataset. Note: ‘name’, ‘id’, etc. might not be
considered as independent attributes

	param objective_attr

	marking which attribute is the objective to be considered

	param objective_as_binary

	signal to set up whether treat the objective as a binary attribute. Default: False

	param cliff_percentage

	set up how many records to be remained. By default, it is 0.4

	return

	the survived (valued) records

The MORPH func:

morph(attribute_names, data_matrix, independent_attrs, objective_attr, objective_as_binary=False, data_has_normalized=False, alpha=0.15, beta=0.35)

	param attribute_names

	the names of attributes, should match the data_matrix

	param data_matrix

	original data

	param independent_attrs

	set up the independent attributes in the dataset. Note: ‘name’, ‘id’, etc. might not be considered as independent attributes

	param objective_attr

	marking which attribute is the objective to be considered

	param objective_as_binary

	signal to set up whether treat the objective as a binary attribute. Default: False

	param data_has_normalized

	telling whether the data matrix has been normalized.

	param alpha

	morph algorithm parameter

	param beta

	morph algorithm parameter

	return

	handled records

The most convenient way to use LACE1 is:

lace1(attribute_names, data_matrix, independent_attrs, objective_attr, objective_as_binary=False, cliff_percentage=0.4, alpha=0.15, beta=0.35)

	param attribute_names

	the names of attributes, should match the data_matrix

	param data_matrix

	original data

	param independent_attrs

	set up the independent attributes in the dataset. Note: ‘name’, ‘id’, etc. might not be considered as independent attributes

	param objective_attr

	marking which attribute is the objective to be considered

	param objective_as_binary

	signal to set up whether treat the objective as a binary attribute. Default: False

	param cliff_percentage

	prune rate

	param alpha

	parameter 1 in morph, defining the shaking degree

	param beta

	parameter 2 in morph, defining the shaking degree

The data selection and processor in LACE2:

add_to_bin(attribute_names, try2add_data_matrix, independent_attrs, objective_attr, objective_as_binary=False, cliff_percentage=0.4, morph_alpha=0.15, morph_beta=0.35, passing_bin=None)

	param attribute_names

	the names of attributes, should match the data_matrix

	param try2add_data_matrix

	the data anyone is holding

	param independent_attrs

	set up the independent attributes in the dataset. Note: ‘name’, ‘id’, etc. might not be considered as independent attributes

	param objective_attr

	marking which attribute is the objective to be considered

	param objective_as_binary

	signal to set up whether treat the objective as a binary attribute. Default: False

	param cliff_percentage

	prune rate

	param morph_alpha

	parameter 1 in morph, defining the shaking degree

	param morph_beta

	parameter 2 in morph, defining the shaking degree

	param passing_bin

	the data get from someone else. Set None if no passing data

	return

	the new passing_bin. NOTE: the result must be assigned to another variable. The parameter pointer will NOT be changed

LACE also provides a simple LACE2 application simulator. It automatically distribute all data to different members UNEQUALLY.:

lace2_simulator(attribute_names, data_matrix, independent_attrs, objective_attr, objective_as_binary=False, cliff_percentage=0.4, morph_alpha=0.15, morph_beta=0.35, number_of_holder=5)

Here we have a complete simple example to propess the data [https://gist.github.com/Ginfung/f0a9adc43aa28670e7c006d0d9da8906]. This data is from Data.Gov

import lace
import csv

with open('example.csv', 'r') as f:
 reader = csv.reader(f)
 header = next(reader)
 data = list()
 for line in reader:
 data.append(line)

attribute_names = header
data_matrix = data
independent_attrs = ['ADM_RATE', 'SAT_AVG', 'TUITFTE', 'RET_FT4', 'PCTFLOAN', 'PCTPELL', 'DEBT_MDN', 'C150_4', 'CDR3']
objective_attr = 'mn_earn_wne_p7'

aftercliff = lace.cliff(attribute_names, data_matrix, independent_attrs, objective_attr, False, 0.4)
assert len(aftercliff) < 600

aftermorph = lace.morph(attribute_names, aftercliff, independent_attrs, objective_attr, False, False, 0.15, 0.35)
assert len(aftermorph)==len(aftercliff) and aftermorph[0] != aftercliff[0]

lace1res = lace.lace1(attribute_names, data_matrix, independent_attrs, objective_attr, False, 0.4, 0.15,0.35)
assert len(lace1res) < len(data)*0.5

bins = [header] + data[:50]
try2add_data_matrix = data[200:700]
bins = lace.add_to_bin(attribute_names, try2add_data_matrix, independent_attrs, objective_attr, False, 0.4, 0.15, 0.35, bins)
assert len(bins) < 550

lace2res = lace.lace2_simulator(attribute_names, data_matrix, independent_attrs, objective_attr, False, 0.4, 0.15, 0.35, number_of_holder=5)
assert len(lace2res)<len(lace1res)

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Ginfung/LACE/issues.

If you are reporting a bug, please include:

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

LACE could always use more documentation, whether
as part of the official LACE docs, in docstrings,
or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Ginfung/LACE/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up LACE for local development.

	Fork the LACE repo on GitHub.

	Clone your fork locally:

$ git clone https://github.com/Ginfung/LACE.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv LACE
$ cd LACE/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 lace tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, 3.4, 3.5 and for PyPy. Check
https://travis-ci.org/Ginfung/LACE/pull_requests
and make sure that the tests pass for all supported Python versions.

Credits

Maintainer

	Jianfeng Chen <jchen37@ncsu.edu>

Contributors

None yet. Why not be the first? See: CONTRIBUTING.rst

History

Pre-release

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to LACE’s documentation!

 		
 LACE

 		
 What is LACE?

 		
 How to use?

 		
 Bibtex

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Credits

 		
 Maintainer

 		
 Contributors

 		
 History

_static/up-pressed.png

_static/up.png

