

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	kwiver-doctest 1.0 documentation

KWIVER Documentation

Contents:

	Getting Started
	Environment

	Quickstart

	Preview

	Documenting Code
	Python Code

	Module Documentation Example

	Command Documentation Example

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kwiver-doctest 1.0 documentation

Getting Started

We have adopted Sphinx [http://sphinx-doc.org/] as the documentation engine for the KWIVER [http://kwiver.org/]
project. Sphinx’s focus on making writing documentation as easy
as possible while still providing excellent support for generating
documentation was espeially attractive. This project serves as
an example Sphinx documented project and contains meta-documentation
about how the documentation process for KWIVER projects works.

Environment

Sphinx is a Python [http://python.org] based tool and requires a number of Python modules in
addition to the Sphinx module itself. At the KWIVER project, we frequently use
the Miniconda [http://conda.pydata.org/miniconda.html] project from Continuum [https://www.continuum.io/] to provide out Python environment.
This provides a cross-platorm (Windows, Linux and Mac OS X), consistent
environment that’s easy to install and maintain.

Miniconda provides it’s own package manager, conda [http://conda.pydata.org/docs/] which can be used to
install most of the packages required for Sphinx based documnetation. Conda
also supports the creation of Python “sandboxes” or virtual environments. We
typically keep a “Sphinx” environment available, which can be created this way:

conda create -n Sphinx sphinx sphinx_rtd_theme

Which will install the Sphinx tools (and all of Sphinx’s dependencies) and the
Sphinx ReadTheDocs [http://readthedocs.org] theme (which is the current default KWIVER theme)

Once you’ve created the Sphinx environment you activate it this way:

source activate Sphinx

Quickstart

Sphinx provides a command that initializes a project with a Sphinx
configuration file and stubs for some key documentation files called
sphinx-quickstart. We create a docs directory within our KWIVER
projects that contains these files. While you’re at it, you may wish to create a
.gitignore file containing docs/_build (at least) to avoid seeing the projects’
documentation build artificats in your git status results.

When you run sphinx-quickstart in the
docs directory it will ask a you a series of questions. In general
you’ll have to decide on the answers to may of these based on the needs of your
project but there are some key settings that are useful:

	We use .rst as the source file suffix

	We turn on the EPub builder

	We turn on autodoc, intersphinx and viewcode

	We use index.rst as our anchor document

Once you’ve run sphinx-quickstart, you can edit index.rst to begin
writing your documentation. We find the Sphinx reStructuredText Primer [http://sphinx-doc.org/rest.html] to be a useful introduction to the
documentation format used by Sphinx.

For KWIVER projects, we typically edit the conf.py file to change html_theme to sphinx_rtd_theme.

Preview

Since reStructuredText is a mark up syntax that you work with in a text editor, you will need some
means to see what your rendered documentation will look like. While you can simply run make html in your docs directory and open
the resulting .html file, this can become somewhat tedious. If you install the livereload module in your Sphinx environment (pip install livereload should do the trick) you can use the following Python script:

from livereload import Server, shell
server = Server()
server.watch("*.rst", shell('make html', cwd='.')) #'*
server.serve(root='_build/html')

Save this in your docs directory as sphinx_server.py and run it with this command:

python sphinx_server.py

Then, you can browse to http://localhost:5500/ to see your
rendered documentation. The livereload module will notice
whenever you save a new version of one of your *.rst files and will re-run sphinx to provide an updated view of you rendered documentation.

 Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	kwiver-doctest 1.0 documentation

Documenting Code

Python Code

Sphinx started as a Python documentation tool and as a result, has
strong capabilities in this area. In particular, it is capable of extracting
Python “docstrings” and inserting them into your overall documentation collection as you
dictate.

In the KWIVER project we use docstrings to document individual module, classes, members and functions. To
include this text in our documentation, we need to make sure that Sphinx can “import” our modules without side effects.
Primarily this means that there should be no executable code (beyond function, class and variable definitions) in your
modules. If you want to make your module executable on the command line for convenience or testing purposes, use the
following construct to guard that code:

if __name__ == "__main__":
 # executable code when your module is called directly on the command line goes here

You’ll also need to make sure that Sphinx can find your modules by making sure their locations are on the Python path. You can do this by editing conf.py in your docs directory. Since Sphinx’s configuration file is
an actual Python file, you can use sys.path to adjust the Python path. Typically for KWIVER projects we
keep python code in the the python directory and python based commands in the bin directory, both of which
are peers of the docs directory. Given this, we can add the following lines to top of our conf.py file:

import sys
import os

sys.path.insert(0,"../python")
sys.path.insert(0,"../bin")

Sphinx runs with the docs directory as its current working directory, so these relative paths work.

Module Documentation Example

To include a module’s documentation you use Sphinx’s automodule command like this:

.. automodule:: kwiver_doctest
 :members:

What follows is documentation found in the kwiver_doctest.py module included with this repository.

kwiver_doctest Module

The module level documentation can contain reStructuredText in it just like the .rst files that make up
a documenation collection.

	
kwiver_doctest.sample_function(foo)[source]

	This is sample function documentation

	Parameters:	foo (string [https://docs.python.org/library/string.html#module-string]) – A sample parameter

	Returns:	True on success, or False on failure

	Return type:	bool [https://docs.python.org/library/functions.html#bool]

	Raises:	AttributeError, KeyError

Function documentation has special tags. Click on the “source” link associated with this
function to see how this function was documented. See the Sphinx info field [http://sphinx-doc.org/domains.html#signatures] documentation
for further details:

Command Documentation Example

For the KWIVER project, we use the argparse module to parse our command line arguments. Among other things, this allows
us to use the sphinx-argparse [https://sphinx-argparse.readthedocs.org/en/latest/] extension which will automatically document commands based on the help text included when the
parser is built. In order to use it you’d invoke it like this:

.. argparse::
 :ref: kwiver-doctest-command.cli_parser
 :prog: kwiver-doctest-command

Which results in output like this:

Compute compute something useful based on input and argurments.

usage: kwiver-doctest-command [-h] [-o OUTPUT_FILEPATH] [-v] [-c CONFIG]
 input_file

	Positional arguments:

	

	
input_file
	Input Data file

	Options:

	

	
-o, --output-filepath

		Path to a file to output feature vector to. Otherwise the feature vector is printed to standard out. Output is saved in numpy binary format (.npy suffix recommended).

	
-v=False, --verbose=False

		Print additional debugging messages. All logging goes to standard error.

	
-c, --config
	Configuration file

In order for this to work, you command mus tbe on the Python path that you set up in conf.py and there must be a symbol (either
a function call or a variable) at the root level of the module that Sphinx can use to access the argparse object so that it
can introspect the help text. If you use a function (like we have here with cli_parser()) make sure that the function only creates the argparse object
becuase it will be exectued within the Sphinx process when the documentation is generated.

 Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	kwiver-doctest 1.0 documentation

 Python Module Index

 k

 			

 		
 k	

 	
 	
 kwiver_doctest	

 Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	kwiver-doctest 1.0 documentation

Index

 K
 | S

K

 	

 	kwiver_doctest (module)

S

 	

 	sample_function() (in module kwiver_doctest)

 Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		kwiver-doctest 1.0 documentation »

 All modules for which code is available

		kwiver_doctest

 © Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

_modules/kwiver_doctest.html

 Navigation

 		
 index

 		
 modules |

 		kwiver-doctest 1.0 documentation »

 		Module code »

 Source code for kwiver_doctest

"""
``kwiver_doctest`` Module
+++++++++++++++++++++++++

The module level documentation can contain reStructuredText in it just like the ``.rst`` files that make up
a documenation collection.
"""

Import numpy as an example of a C based extension that Read The Docs can't support
import numpy

[docs]def sample_function(foo):
 """This is sample function documentation

 :param foo: A sample parameter
 :type foo: string
 :returns: True on success, or False on failure
 :rtype: bool
 :raises: AttributeError, KeyError

 Function documentation has special tags. Click on the "source" link associated with this
 function to see how this function was documented. See the Sphinx `info field`_ documentation
 for further details:

 .. _`info field`: http://sphinx-doc.org/domains.html#signatures
 """

 © Copyright 2015, Keith Fieldhouse.
 Created using Sphinx 1.3.1.

