
FIWARE-Stream-Oriented-GE
Release 6.8.0

Nov 09, 2018

Contents

1 Why Using Kurento in a “Smart Solution”? 3
1.1 KURENTO QUICK START GUIDE . 3
1.2 FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide 4

1.2.1 Introduction . 4
1.2.1.1 Requirements . 4

1.2.2 Installation . 5
1.2.2.1 KMS . 5
1.2.2.2 Built-in modules . 6

1.2.3 Running Kurento from a Docker container . 6
1.2.4 Configuration . 6

1.2.4.1 STUN and TURN Configuration . 7
1.2.4.1.1 STUN Configuration . 7
1.2.4.1.2 TURN Configuration . 8
1.2.4.1.3 Remarks . 8

1.2.4.2 Debug Logging . 8
1.2.4.2.1 KMS Logging levels and components 9

1.2.4.2.1.1 Suggested levels . 10
1.2.4.2.1.2 3rd-party libraries: libnice . 11

1.3 Programmers Manual . 11
1.3.1 Writing Kurento Applications . 12

1.3.1.1 Global Architecture . 12
1.3.1.2 Application Architecture . 13

1.3.1.2.1 Communicating client, server and Kurento 14
1.3.1.2.1.1 1. Media negotiation phase (signaling) 14
1.3.1.2.1.2 2. Media exchange phase . 15

1.3.1.2.2 Real time WebRTC applications with Kurento 15
1.3.1.3 Media Pipeline . 15

1.3.2 Integration with Orion: kurento-fiware java module . 17
1.3.2.1 How to use it . 17
1.3.2.2 Processing Media Streams . 18

1.3.2.2.1 Kurento Events . 18
1.3.2.2.2 MediaEvents to Orion . 18

1.3.2.3 Devices . 19
1.3.2.4 Other entities . 20
1.3.2.5 More . 20

1.3.2.5.1 Java Module - Plate Detector Filter . 21

i

1.3.2.5.1.1 For the impatient: running this example 21
1.3.2.5.1.2 Understanding this example . 21
1.3.2.5.1.3 Dependencies . 24

1.3.3 Writing Kurento Modules . 24
1.3.3.1 OpenCV module . 24
1.3.3.2 GStreamer module . 25
1.3.3.3 For both kind of modules . 25
1.3.3.4 Examples . 26

1.3.4 Tutorials . 27
1.3.4.1 Genal Java Kurento tutorials . 27
1.3.4.2 Kurento modules Java tutorials . 27
1.3.4.3 Smart Solition tutorials . 27

1.4 FIWARE Stream Oriented Generic Enabler - Open API Specification 27
1.4.1 Ping . 27

1.4.1.1 Request . 28
1.4.1.2 Response . 28

1.4.2 Create . 28
1.4.2.1 Request . 28
1.4.2.2 Response . 30

1.4.3 Invoke . 31
1.4.3.1 Request . 31
1.4.3.2 Response . 32

1.4.4 Release . 32
1.4.4.1 Request . 32
1.4.4.2 Response . 33

1.4.5 Subscribe . 33
1.4.5.1 Request . 33
1.4.5.2 Response . 34

1.4.6 Unsubscribe . 35
1.4.6.1 Request . 35
1.4.6.2 Response . 35

1.4.7 OnEvent . 36
1.4.7.1 Request . 36
1.4.7.2 Response . 37

1.5 Glossary . 37

ii

FIWARE-Stream-Oriented-GE, Release 6.8.0

The Stream Oriented Generic Enabler (GE) provides a framework devoted to simplify the development of complex
interactive multimedia applications through a rich family of APIs and toolboxes. It provides a media server and a set
of client APIs making simple the development of advanced video applications for WWW and smartphone platforms.
The Stream Oriented GE features include group communications, transcoding, recording, mixing, broadcasting and
routing of audiovisual flows. It also provides advanced media processing capabilities involving computer vision, video
indexing, augmented reality and speech analysis.

The Stream Oriented GE modular architecture makes simple the integration of third party media processing algorithms
(i.e. speech recognition, sentiment analysis, face recognition, etc.), which can be transparently used by application
developers as the rest of built-in features.

The Stream Oriented GE’s core element is a Media Server, responsible for media transmission, processing, loading
and recording. It is implemented in low level technologies based on GStreamer to optimize the resource consumption.
It provides the following features:

• Networked streaming protocols, including HTTP (working as client and server), RTP and WebRTC.

• Group communications (MCUs and SFUs functionality) supporting both media mixing and media rout-
ing/dispatching.

• Generic support for computational vision and augmented reality filters. - Media storage supporting writing
operations for WebM and MP4 and playing in all formats supported by GStreamer.

• Automatic media transcodification between any of the codecs supported by GStreamer including VP8, H.264,
H.263, AMR, OPUS, Speex, G.711, etc.

Contents 1

FIWARE-Stream-Oriented-GE, Release 6.8.0

2 Contents

CHAPTER 1

Why Using Kurento in a “Smart Solution”?

The Stream-oriented GE provides a suitable structure to multimedia information, so it can be inserted into the context
in an homogeneous way and can be consumed by client application front-ends or application backends just like any
other context information.

Information can be extracted to convert media devices like cameras into IoT devices using the Kurento real-time media
Stream processing GE. Context information can be generated as a result of the media streams analysis or the reception
of context data to take decisions in the way the media is processed.

1.1 KURENTO QUICK START GUIDE

Welcome to the FIWARE Stream GE: Kurento! Here is what you need to do to start working with Kurento.

1. Install KMS and “Built-in modules*” The installation guide explains different ways in which Kurento can be
installed and how to install any built-in modules you would need.

2. Configure KMS KMS is able to run as-is after a normal installation. However, there are several parameters that
you might want to tune in the configuration files.

3. Install and configure Orion You want to make a Smart Solution, so you need to manage the context so you would
want to use Orion Context Broker. Check the Orion Context Broker Installation & Administration Guide.

3

https://doc-kurento.readthedocs.io/en/stable/user/configuration.html
https://fiware-orion.readthedocs.io/en/master/admin/index.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

4. Write an Application Write an application that queries the Kurento API to make use of the capabilities offered by
KMS. The easiest way of doing this is to build on one of the provided Kurento Clients. And integrate it with
Orion Context Broker. In general, you can use any programming language to write your application, as long as
it speaks the Kurento Protocol and it’s able to use the REST API of Orion. Have a look at the features offered
by Kurento, and follow any of the multiple tutorials that explain how to build basic applications.

5. Ask for help If you face any issue with Kurento itself or have difficulties configuring the plethora of mechanisms
that form part of WebRTC, don’t hesitate to ask for help to the Kurento community of users.

6. Enjoy! Kurento is a project that aims to bring the latest innovations closer to the people, and help connect them
together. Make a great application with it, and let us know! We will be more than happy to find out about who
is using Kurento and what is being built with it :-)

* built-in modules are extra modules developed by the Kurento team to enhance the basic capabilities of Kurento
Media Server.

1.2 FIWARE Stream Oriented Generic Enabler - Installation and Ad-
ministration Guide

This guide describes how to install the Stream-Oriented GE - Kurento. Kurento’s core element is the Kurento Media
Server (KMS), responsible for media transmission, processing, loading and recording. It is implemented in low level
technologies based on GStreamer to optimize the resource consumption.

• Introduction - Requirements

• Installation

– KMS

– Built-in modules

• Running Kurento from a Docker container

1.2.1 Introduction

KMS has explicit support for two Long-Term Support (LTS) distributions of Ubuntu: Ubuntu 14.04 (Trusty) and
Ubuntu 16.04 (Xenial). Only the 64-bits editions are supported.

For other OS and versions check Running Kurento from a Docker container

1.2.1.1 Requirements

To guarantee the right working of the enabler RAM memory and HDD size should be at least:

• 4 GB RAM

4 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://doc-kurento.readthedocs.io/en/stable/features/kurento_api.html
https://doc-kurento.readthedocs.io/en/stable/features/kurento_client.html
https://doc-kurento.readthedocs.io/en/stable/features/kurento_protocol.html
https://doc-kurento.readthedocs.io/en/stable/user/features.html
https://doc-kurento.readthedocs.io/en/stable/user/tutorials.html
https://doc-kurento.readthedocs.io/en/stable/user/support.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

• 16 GB HDD (this figure is not taking into account that multimedia streams could be stored in the same machine.
If so, HDD size must be increased accordingly).

1.2.2 Installation

1.2.2.1 KMS

Currently, the main development environment for KMS is Ubuntu 16.04 (Xenial), so if you are in doubt, this is the
preferred Ubuntu distribution to choose. However, all features and bug fixes are still being backported and tested on
Ubuntu 14.04 (Trusty), so you can continue running this version if required.

1. Define what version of Ubuntu is installed in your system. Open a terminal and copy only one of these com-
mands:

KMS for Ubuntu 14.04 (Trusty)
DISTRO="trusty"

KMS for Ubuntu 16.04 (Xenial)
DISTRO="xenial"

2. Add the Kurento repository to your system configuration. Run these two commands in the same terminal you
used in the previous step:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 5AFA7A83

sudo tee "/etc/apt/sources.list.d/kurento.list" >/dev/null <<EOF
Kurento Media Server - Release packages
deb [arch=amd64] http://ubuntu.openvidu.io/6.7.1 $DISTRO kms6
EOF

3. Install KMS:

sudo apt-get update
sudo apt-get install kurento-media-server

This will install the KMS release version that was specified in the previous commands.

The server includes service files which integrate with the Ubuntu init system, so you can use the following commands
to start and stop it:

sudo service kurento-media-server start
sudo service kurento-media-server stop

To verify that KMS is up and running, use this command and look for the kurento-media-serverprocess:

ps -ef | grep kurento-media-server
> nobody 1270 1 0 08:52 ? 00:01:00 /usr/bin/kurento-media-server

Unless configured otherwise, KMS will open the port 8888 to receive requests and send responses by means of the
Kurento Protocol. Use this command to verify that this port is listening for incoming packets:

sudo netstat -tupan | grep kurento

> tcp6 0 0 :::8888 :::* LISTEN 1270/kurento-media-server

1.2. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide 5

https://doc-kurento.readthedocs.io/en/stable/features/kurento_protocol.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

1.2.2.2 Built-in modules

Built-in modules are extra modules developed by the Kurento team to enhance the basic capabilities of Kurento Media
Server. So far, there are four built-in modules, that are installed as follows:

• kms-pointerdetector: Filter that detects pointers in video streams, based on color tracking.

sudo apt-get install kms-pointerdetector

• kms-chroma: Filter that takes a color range in the top layer and makes it transparent, revealing another image
behind.

sudo apt-get install kms-chroma

• kms-crowddetector: Filter that detects people agglomeration in video streams.

sudo apt-get install kms-crowddetector

• kms-platedetector: Filter that detects vehicle plates in video streams.

sudo apt-get install kms-platedetector

1.2.3 Running Kurento from a Docker container

Starting a Kurento media server instance is easy. Kurento media server exposes port 8888 for client access. So,
assuming you want to map port 8888 in the instance to local port 8888, you can start kurento media server with:

Xenial
$ docker run -d --name kms -p 8888:8888 kurento/kurento-media-server:xenial-latest
Trusty
$ docker run -d --name kms -p 8888:8888 kurento/kurento-media-server:trusty-latest

To check that kurento media server is ready and listening, issue the following command (you need to have curl installed
on your system):

$ curl -i -N -H "Connection: Upgrade" -H "Upgrade: websocket" -H "Host: 127.0.0.1:8888
→˓" -H "Origin: 127.0.0.1" http://127.0.0.1:8888/kurento

You will get something like:

HTTP/1.1 500 Internal Server Error
Server: WebSocket++/0.7.0

Don’t worry about the second line (500 Internal Server Error). It’s ok, because we are not talking the
protocol Kurento media server expects, we are just checking that the server is up and listening for connections.

1.2.4 Configuration

Kurento works by orchestrating a broad set of technologies that must be made to work together. Some of these
technologies can accept different configuration parameters that Kurento makes available through several configuration
files:

• /etc/kurento/kurento.conf.json: The main configuration file. Provides settings for the behavior of
Kurento Media Server itself.

6 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

• /etc/kurento/modules/kurento/MediaElement.conf.ini: Generic parameters for all kinds of
MediaElement.

• /etc/kurento/modules/kurento/SdpEndpoint.conf.ini: Audio/video parameters for Sd-
pEndpoints (i.e. WebRtcEndpointand RtpEndpoint).

• /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini: Specific parameters for WebRt-
cEndpoint.

• /etc/kurento/modules/kurento/HttpEndpoint.conf.ini: Specific parameters for HttpEnd-
point.

• /etc/default/kurento-media-server: This file is loaded by the system’s service init files. Defines
some environment variables, which have an effect on features such as the Debug Logging, or the Kernel Dump
files that are generated when a crash happens.

1.2.4.1 STUN and TURN Configuration

If Kurento Media Server is located behind a NAT you need to use a STUN or TURN in order to achieve NAT traversal.
In most of cases, a STUN server will do the trick. A TURN server is only necessary when the NAT is symmetric.

The connection of these server is configured in the WebRtcEndpoint configuration file: /etc/kurento/modules/
kurento/WebRtcEndpoint.conf.ini

1.2.4.1.1 STUN Configuration

For configuring the STUN Server in Kurento you must (uncomment and) set the following parameters in the WebRt-
cEndPoint configuration file:

stunServerAddress=<stun_ip_address>
stunServerPort=<stun_port>

The parameter stunServerAddress should be an IP address (not domain name).

There is plenty of public STUN servers available, for example:

173.194.66.127:19302
173.194.71.127:19302
74.125.200.127:19302
74.125.204.127:19302
173.194.72.127:19302
74.125.23.127:3478
77.72.174.163:3478
77.72.174.165:3478
77.72.174.167:3478
77.72.174.161:3478
208.97.25.20:3478
62.71.2.168:3478
212.227.67.194:3478
212.227.67.195:3478
107.23.150.92:3478
77.72.169.155:3478
77.72.169.156:3478
77.72.169.164:3478
77.72.169.166:3478
77.72.174.162:3478
77.72.174.164:3478

(continues on next page)

1.2. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide 7

https://en.wikipedia.org/wiki/STUN
https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://en.wikipedia.org/wiki/NAT_traversal

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

77.72.174.166:3478
77.72.174.160:3478
54.172.47.69:3478

1.2.4.1.2 TURN Configuration

For configuring the STUN Server in Kurento you must (uncomment and) set the following parameter in the WebRt-
cEndPoint configuration file:

turnURL=user:password@address:port

As before, TURN address should be an IP address (not domain name).

1.2.4.1.3 Remarks

1. Note that it is somewhat easy to find free STUN servers available on the net, because their functionality is pretty
limited and it is not costly to keep them working for free. However, this doesn’t happen with TURN servers,
which act as a media proxy between peers and thus the cost of maintaining one is much higher. It is rare to find
a TURN server which works for free while offering good performance. Usually, each user opts to maintain their
own private TURN server instances.

2. Coturn is an open source implementation of a TURN/STUN server. In the FAQ section there is a description
about how to install and configure it.

3. In order to check the availability of either TURN and STUN servers you can check here: https://webrtc.github.
io/samples/src/content/peerconnection/trickle-ice/

1.2.4.2 Debug Logging

Kurento Media Server generates log files that are stored in /var/log/kurento-media-server/. The content
of this folder is as follows:

• media-server_<timestamp>.<log_number>.<kms_pid>.log: Output log of a currently running
instance of KMS.

• media-server_error.log: Errors logged by third-party libraries.

• logs: Folder that contains older KMS logs. The logs in this folder are rotated, so they don’t fill up all the space
available in the disk.

Each line in a log produced by KMS has a fixed structure:

[timestamp] [pid] [memory] [level] [component] [filename:loc] [method] [message]

8 Chapter 1. Why Using Kurento in a “Smart Solution”?

http://coturn.net/
https://doc-kurento.readthedocs.io/en/stable/user/faq.html
https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/
https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/

FIWARE-Stream-Oriented-GE, Release 6.8.0

• [timestamp]: Date and time of the logging message (e.g. 2017-12-31 23:59:59,493295).

• [pid]: Process Identifier of kurento-media-sever (e.g. 17521).

• [memory]: Memory address in which the kurento-media-sever component is running (e.g.
0x00007fd59f2a78c0).

• [level]: Logging level. This value typically will be INFO or DEBUG. If unexpected error situations happen,
the WARN and ERROR levels will contain information about the problem.

• [component]: Name of the component that generated the log line. E.g. KurentoModuleManager, webrt-
cendpoint, or qtmux, among others.

• [filename:loc]: Source code file name (e.g. main.cpp) followed by the line of code number.

• [method]: Name of the function in which the log message was generated (e.g. loadModule(), doGarbageCol-
lection(), etc).

• [message]: Specific log information.

For example, when KMS starts correctly, this trace is written in the log file:

[timestamp] [pid] [memory] info KurentoMediaServer main.cpp:255 main() Kurento
→˓Media Server started

1.2.4.2.1 KMS Logging levels and components

Each different component of KMS is able to generate its own logging messages. Besides that, each individual logging
message has a severity level, which defines how critical (or superfluous) the message is.

These are the different message levels, as defined by the GStreamer logging library:

• (1) ERROR: Logs all fatal errors. These are errors that do not allow the core or elements to perform the
requested action. The application can still recover if programmed to handle the conditions that triggered the
error.

• (2) WARNING: Logs all warnings. Typically these are non-fatal, but user-visible problems that are expected to
happen.

• (3) FIXME: Logs all “fixme” messages. Fixme messages are messages that indicate that something in the
executed code path is not fully implemented or handled yet. The purpose of this message is to make it easier to
spot incomplete/unfinished pieces of code when reading the debug log.

• (4) INFO: Logs all informational messages. These are typically used for events in the system that happen only
once, or are important and rare enough to be logged at this level.

• (5) DEBUG: Logs all debug messages. These are general debug messages for events that happen only a limited
number of times during an object’s lifetime; these include setup, teardown, change of parameters, etc.

• (6) LOG: Logs all log messages. These are messages for events that happen repeatedly during an object’s
lifetime; these include streaming and steady-state conditions.

• (7) TRACE: Logs all trace messages. These messages for events that happen repeatedly during an object’s
lifetime such as the ref/unref cycles.

• (8) MEMDUMP: Log all memory dump messages. Memory dump messages are used to log (small) chunks of
data as memory dumps in the log. They will be displayed as hexdump with ASCII characters.

Logging categories and levels can be set by two methods:

• Use the specific command-line argument while launching KMS. For example, run:

1.2. FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide 9

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/gst-running.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

/usr/bin/kurento-media-server \
--gst-debug-level=3 \
--gst-debug=Kurento*:4,kms*:4

• Use the environment variable GST_DEBUG. For example, run:

export GST_DEBUG="3,Kurento*:4,kms*:4"
/usr/bin/kurento-media-server

1.2.4.2.1.1 Suggested levels

Here are some tips on what logging components and levels could be most useful depending on what is the issue to be
analyzed. They are given in the environment variable form, so they can be copied directly into the KMS configuration
file, /etc/default/kurento-media-server:

• Default suggested levels:

export GST_DEBUG="3,Kurento*:4,kms*:4"

• COMEDIA port discovery:

export GST_DEBUG="3,rtpendpoint:4"

• ICE candidate gathering:

export GST_DEBUG="3,kmsiceniceagent:5,kmswebrtcsession:5,webrtcendpoint:4"

Notes:

– kmsiceniceagent shows messages from the Nice Agent (handling of candidates).

– kmswebrtcsession shows messages from the KMS WebRtcSession (decision logic).

– webrtcendpoint shows messages from the WebRtcEndpoint (very basic logging).

• Event MediaFlow{In|Out} state changes:

export GST_DEBUG="3,KurentoMediaElementImpl:5"

• Player:

export GST_DEBUG="3,playerendpoint:5"

• Recorder:

export GST_DEBUG="3,KurentoRecorderEndpointImpl:4,recorderendpoint:5,qtmux:5"

• REMB congestion control:

export GST_DEBUG="3,kmsremb:5"

Notes:

– kmsremb:5 (debug level 5) shows only effective REMB send/recv values.

– kmsremb:6 (debug level 6) shows full handling of all source SSRCs.

• RPC calls:

10 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

export GST_DEBUG="3,KurentoWebSocketTransport:5"

• RTP Sync:

export GST_DEBUG="3,kmsutils:5,rtpsynchronizer:5,rtpsynccontext:5,
→˓basertpendpoint:5"

• SDP processing:

export GST_DEBUG="3,kmssdpsession:4"

• Transcoding of media:

export GST_DEBUG="3,Kurento*:5,kms*:4,agnosticbin*:7"

• Unit tests:

export GST_DEBUG="3,check:5"

1.2.4.2.1.2 3rd-party libraries: libnice

libnice is the GLib implementation of ICE, the standard method used by WebRTC to solve the issue of NAT Traversal.

This library has its own logging system that comes disabled by default, but can be enabled very easily. This can prove
useful in situations where a developer is studying an issue with the ICE process. However, the debug output of libnice
is very verbose, so it makes sense that it is left disabled by default for production systems.

Run KMS with these environment variables defined: G_MESSAGES_DEBUG and NICE_DEBUG. They must have one
or more of these values, separated by commas:

• libnice

• libnice-stun

• libnice-tests

• libnice-socket

• libnice-pseudotcp

• libnice-pseudotcp-verbose

• all

Example:

export G_MESSAGES_DEBUG="libnice,libnice-stun"
export NICE_DEBUG="$G_MESSAGES_DEBUG"
/usr/bin/kurento-media-server

1.3 Programmers Manual

Welcome to Kurento’s Programmer’s Manual!

This User and Programmers Guide relates to the Stream Oriented GE which is part of the Data/Context Management
chapter. Please find more information about this Generic Enabler in the following Open Specification.

1.3. Programmers Manual 11

https://nice.freedesktop.org/
https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-ice
https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-webrtc
https://doc-kurento.readthedocs.io/en/stable/glossary.html#term-nat-traversal

FIWARE-Stream-Oriented-GE, Release 6.8.0

Any feedback on this document is highly welcome, including bug reports, typos or stuff you think should be included
but is not. Please send the feedback through Github. Thanks in advance!

1.3.1 Writing Kurento Applications

1.3.1.1 Global Architecture

Kurento can be used following the architectural principles of the web. That is, creating a multimedia application
based on Kurento can be a similar experience to creating a web application using any of the popular web development
frameworks.

At the highest abstraction level, web applications have an architecture comprised of three different layers:

• Presentation layer (client side): Here we can find all the application code which is in charge of interacting with
end users so that information is represented in a comprehensive way. This usually consists on HTML pages.

• Application logic (server side): This layer is in charge of implementing the specific functions executed by the
application.

• Service layer (server or Internet side): This layer provides capabilities used by the application logic such as
databases, communications, security, etc. These services can be hosted in the same server as the application
logic, or can be provided by external parties.

Following this parallelism, multimedia applications created using Kurento can also be implemented with the same
architecture:

• Presentation layer (client side): Is in charge of multimedia representation and multimedia capture. It is usually
based on specific built-in capabilities of the client. For example, when creating a browser-based application, the
presentation layer will use capabilities such as the <video> HTML tag or the WebRTC JavaScript APIs.

• Application logic: This layer provides the specific multimedia logic. In other words, this layer is in charge of
building the appropriate pipeline (by chaining the desired Media Elements) that the multimedia flows involved
in the application will need to traverse.

• Service layer: This layer provides the multimedia services that support the application logic such as media
recording, media ciphering, etc. The Kurento Media Server (i.e. the specific Media Pipeline of Media Elements)
is in charge of this layer.

The interesting aspect of this discussion is that, as happens with web development, Kurento applications can place the
Presentation layer at the client side and the Service layer at the server side. However the Application logic, in both
cases, can be located at either of the sides or even distributed between them. This idea is represented in the following
picture:

This means that Kurento developers can choose to include the code creating the specific media pipeline required by
their applications at the client side (using a suitable Kurento Client or directly with Kurento Protocol) or can place it
at the server side.

Both options are valid but each of them implies different development styles. Having said this, it is important to
note that in the web developers usually tend to maintain client side code as simple as possible, bringing most of their
application logic to the server. Reproducing this kind of development experience is the most usual way of using
Kurento.

Note: In the following sections it is considered that all Kurento handling is done at the server side. Although this
is the most common way of using Kurento, is important to note that all multimedia logic can be implemented at the
client with the Kurento JavaScript Client.

12 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://github.com/Kurento/doc-fiware-readthedocs

FIWARE-Stream-Oriented-GE, Release 6.8.0

Fig. 1: Layered architecture of web and multimedia applications. Applications created using Kurento (right) can be
similar to standard Web applications (left). Both types of applications may choose to place the application logic at the
client or at the server code.

1.3.1.2 Application Architecture

Kurento, as most multimedia communication technologies out there, is built using two layers (called Planes) to abstract
key functions in all interactive communication systems:

• Signaling Plane. The parts of the system in charge of the management of communications, that is, the modules
that provides functions for media negotiation, QoS parametrization, call establishment, user registration, user
presence, etc. are conceived as forming part of the Signaling Plane.

• Media Plane. Functionalities such as media transport, media encoding/decoding and media processing make the
Media Plane, which takes care of handling the media. The distinction comes from the telephony differentiation
between the handling of voice and the handling of meta-information such as tone, billing, etc.

The following figure shows a conceptual representation of the high level architecture of Kurento:

Fig. 2: Kurento Architecture. Kurento architecture follows the traditional separation between signaling and media
Planes.

The right side of the picture shows the application, which is in charge of the signaling Plane and contains the business

1.3. Programmers Manual 13

FIWARE-Stream-Oriented-GE, Release 6.8.0

logic and connectors of the particular multimedia application being deployed. It can be build with any programming
technology like Java, Node.js, PHP, Ruby, .NET, etc. The application can use mature technologies such as HTTP and
SIP Servlets, Web Services, database connectors, messaging services, etc. Thanks to this, this Plane provides access
to the multimedia signaling protocols commonly used by end-clients such as SIP, RESTful and raw HTTP based
formats, SOAP, RMI, CORBA or JMS. These signaling protocols are used by client side of applications to command
the creation of media sessions and to negotiate their desired characteristics on their behalf. Hence, this is the part of
the architecture, which is in contact with application developers and, for this reason, it needs to be designed pursuing
simplicity and flexibility.

On the left side, we have the Kurento Media Server, which implements the media Plane capabilities providing access
to the low-level media features: media transport, media encoding/decoding, media transcoding, media mixing, media
processing, etc. The Kurento Media Server must be capable of managing the multimedia streams with minimal latency
and maximum throughput. Hence the Kurento Media Server must be optimized for efficiency.

1.3.1.2.1 Communicating client, server and Kurento

As can be observed in the figure above, a Kurento application involves interactions among three main modules:

• Client Application: Involves the native multimedia capabilities of the client platform plus the specific client-
side application logic. It can use Kurento Clients designed for client platforms (for example, Kurento JavaScript
Client).

• Application Server: Involves an application server and the server-side application logic. It can use Kurento
Clients designed to server platforms (for example, Kurento Java Client for Java EE and Kurento JavaScript
Client for Node.js).

• Kurento Media Server: Receives commands to create specific multimedia capabilities (i.e. specific pipelines
adapted to the needs of the application).

The interactions maintained among these modules depend on the specifics of each application. However, in general,
for most applications can be reduced to the following conceptual scheme:

Fig. 3: Main interactions between architectural modules. These occur in two phases: negotiation and media exchange.
Remark that the color of the different arrows and boxes is aligned with the architectural figures presented above. For
example, orange arrows show exchanges belonging to the signaling Pipeline, blue arrows show exchanges belonging
to the Kurento Protocol, red boxes are associated to the Kurento Media Server, and green boxes with the application.

1.3.1.2.1.1 1. Media negotiation phase (signaling)

At a first stage, a client (a browser in a computer, a mobile application, etc.) issues a message to the application re-
questing some kind of multimedia capability. This message can be implemented with any protocol (HTTP, WebSocket,

14 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

SIP, etc.). For instance, that request could ask for the visualization of a given video clip.

When the application receives the request, if appropriate, it will carry out the specific server side application logic,
which can include Authentication, Authorization and Accounting (AAA), CDR generation, consuming some type of
web service, etc.

After that, the application processes the request and, according to the specific instructions programmed by the devel-
oper, commands Kurento Media Server to instantiate the suitable Media Elements and to chain them in an appropriate
Media Pipeline. Once the pipeline has been created successfully, Kurento Media Server responds accordingly and the
application forwards the successful response to the client, showing it how and where the media service can be reached.

During the above mentioned steps no media data is really exchanged. All the interactions have the objective of
negotiating the whats, hows, wheres and whens of the media exchange. For this reason, we call it the negotiation
phase. Clearly, during this phase only signaling protocols are involved.

1.3.1.2.1.2 2. Media exchange phase

After the signaling part, a new phase starts with the aim to produce the actual media exchange. The client addresses a
request for the media to the Kurento Media Server using the information gathered during the negotiation phase.

Following with the video-clip visualization example mentioned above, the browser will send a GET request to the
IP address and port of the Kurento Media Server where the clip can be obtained and, as a result, an HTTP reponse
containing the media will be received.

Following the discussion with that simple example, one may wonder why such a complex scheme for just playing a
video, when in most usual scenarios clients just send the request to the appropriate URL of the video without requiring
any negotiation. The answer is straightforward. Kurento is designed for media applications involving complex media
processing. For this reason, we need to establish a two-phase mechanism enabling a negotiation before the media
exchange. The price to pay is that simple applications, such as one just downloading a video, also need to get through
these phases. However, the advantage is that when creating more advanced services the same simple philosophy will
hold. For example, if we want to add Augmented Reality or Computer Vision features to that video-clip, we just need
to create the appropriate pipeline holding the desired Media Elements during the negotiation phase. After that, from
the client perspective, the processed clip will be received as any other video.

1.3.1.2.2 Real time WebRTC applications with Kurento

The client communicates its desired media capabilities through an SDP Offer/Answer negotiation. Hence, Kurento is
able to instantiate the appropriate WebRTC endpoint, and to require it to generate an SDP Answer based on its own
capabilities and on the SDP Offer. When the SDP Answer is obtained, it is given back to the client and the media
exchange can be started. The interactions among the different modules are summarized in the following picture:

The application developer is able to create the desired pipeline during the negotiation phase, so that the real-time
multimedia stream is processed accordingly to the application needs.

As an example, imagine that you want to create a WebRTC application recording the media received from the client
and augmenting it so that if a human face is found, a hat will be rendered on top of it. This pipeline is schematically
shown in the figure below, where we assume that the Filter element is capable of detecting the face and adding the hat
to it.

1.3.1.3 Media Pipeline

From the application developer perspective, Media Elements are like Lego pieces: you just need to take the elements
needed for an application and connect them, following the desired topology. In Kurento jargon, a graph of connected
media elements is called a Media Pipeline. Hence, when creating a pipeline, developers need to determine the

1.3. Programmers Manual 15

FIWARE-Stream-Oriented-GE, Release 6.8.0

Fig. 4: Interactions in a WebRTC session. During the negotiation phase, an SDP Offer is sent to KMS, requesting the
capabilities of the client. As a result, Kurento Media Server generates an SDP Answer that can be used by the client
for establishing the media exchange.

Fig. 5: Example pipeline for a WebRTC session. A WebRtcEndpoint is connected to a RecorderEndpoint storing the
received media stream and to an Augmented Reality filter, which feeds its output media stream back to the client. As
a result, the end user will receive its own image filtered (e.g. with a hat added onto her head) and the stream will be
recorded and made available for further recovery into a repository (e.g. a file).

16 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

capabilities they want to use (the Media Elements) and the topology determining which Media Element provides
media to which other Media Elements (the connectivity).

Fig. 6: Simple Example of a Media Pipeline

The connectivity is controlled through the connect primitive, exposed on all Kurento Client APIs.

This primitive is always invoked in the element acting as source and takes as argument the sink element following this
scheme:

sourceMediaElement.connect(sinkMediaElement)

For example, if you want to create an application recording WebRTC streams into the file system, you’ll need two
media elements: WebRtcEndpoint and RecorderEndpoint. When a client connects to the application, you will need to
instantiate these media elements making the stream received by the WebRtcEndpoint (which is capable of receiving
WebRTC streams) to be fed to the RecorderEndpoint (which is capable of recording media streams into the file system).
Finally you will need to connect them so that the stream received by the former is transferred into the later:

WebRtcEndpoint.connect(RecorderEndpoint)

To simplify the handling of WebRTC streams in the client-side, Kurento provides an utility called WebRtcPeer. Nev-
ertheless, the standard WebRTC API (getUserMedia, RTCPeerConnection, and so on) can also be used to connect to
WebRtcEndpoints. For further information please visit the Tutorials section.

1.3.2 Integration with Orion: kurento-fiware java module

The Kurento team has developed a small module that you can use in your own application and it would make it easier
to connect with Orion, and make use of it in order to gather the context generated by your application related with
kurento (MediaEvents and Devices). Also it has been designed to be easily extended so you can implement your own
publishers and readers for any other entity.

1.3.2.1 How to use it

1. Clone the gitHub repository.

git clone https://github.com/Kurento/kurento-fiware-java.git

2. Go to the project kurento-fiware (the other folder contains an example of how to use it).

cd kurento-fiware

3. Build and install in your maven local repo (you will need Java >= 1.8).

mvn install

4. Import in your project the dependency

1.3. Programmers Manual 17

FIWARE-Stream-Oriented-GE, Release 6.8.0

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-fiware</artifactId>
<version>2.0-SNAPSHOT</version>

</dependency>

1.3.2.2 Processing Media Streams

Any Media Stream that flows in Kurento can be processed by one or more modules. Some modules would rise Media
Events following the logic they are meant to with associated information. For example, the built-in module “kms-
platedetector” would rise a Media Event whenever a traffic plate is detected, this event would contain the plate number
read from the Media Stream. This Events should be collected by the client application an the application should act
upon them.

1.3.2.2.1 Kurento Events

You can configure to receive Kurento Events into your client application and extract relevant context information that
can be fed to Orion.

Example:

You develop a Client Application with a Kurento attached and the kms-platedetector built-in module. Each time a
traffic plate is detected , Kurento rises a Event and your application reacts by:

• Inserting the Event as a MediaEvent in Orion.

• Looking for the plate in Orion, and update the location of the vehicle associated.

1.3.2.2.2 MediaEvents to Orion

MediaEvent is a generic FIWARE DataModel (still under approval process) that allows any application using Kurento
to insert in Orion any type or Kurento Event risen by any module If you are using Java for implementing your client
application you can use kurento-fiware module to simplify all the integration.

While using the provided library you need just to:

1. Configure the connection to the Orion instance by:

final OrionConnectorConfiguration orionConnectorConfiguration = new
→˓OrionConnectorConfiguration();

By default the configuration points to http://localhost:1026

2. Define how to exactly match the detected Event to the MediaEvent DataModel extending the
MediaEventPublisher defining a mapEntityToOrionEntity. E.g.

public MediaEvent mapEntityToOrionEntity(DevicePlateDetectedEvent kurentoEvent) {
MediaEvent orion_entity = new MediaEvent();
orion_entity.setId(...);
orion_entity._getGsmaCommons().setDateCreated(kurentoEvent.getTimestamp());

(continues on next page)

18 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://github.com/naevatec/kurento-fiware-java/tree/master/kurento-fiware

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

orion_entity.setData(kurentoEvent.getPlate());
if (kurentoEvent.getCamera() != null) {

orion_entity.setDeviceSource(kurentoEvent.getCamera().getId());
}
orion_entity.setMediasource(mapKurentoMediaSource(kurentoEvent.getSource()));
return orion_entity;

}

3. And publish the event.

plateDetectedEventPublisher.publish(extendedEvent);

You can check the specifics of the MediaEvent DataModel here.

1.3.2.3 Devices

The cameras used for generating the Media Streams are also part of the context so we expect them to be also part of the
information that can be found in Orion. Devices are an an integral part of the common entities found in Orion and they
are defined as a very generic FIWARE DataModel, so any kind of “camera” used in the Kurento Client application can
be represented in this DataModel.

If your Client Kurento Application is developed in Java you can also make use of the provided kurento-fiware module
to simplify all the integration.

The essential steps for inserting Devices into Orion are similar to the Media Events’ ones:

1. Configure the connection to the Orion instance by:

final OrionConnectorConfiguration orionConnectorConfiguration = new
→˓OrionConnectorConfiguration();

By default the configuration points to http://localhost:1026

2. Define how to exactly match the custom Camera used in the application to the Device DataModel extending the
DevicePublisher defining a mapEntityToOrionEntity. E.g.

public Device mapEntityToOrionEntity(Camera cam) {

String[] supportedProtocol = { "WebRTC" };

Device entity = new Device();

entity.setControlledAsset(cam.getControlledAsset());
entity.setDateInstalled(cam.getCreationDate());
entity.setDeviceState(cam.getState());
entity._getDeviceCommons().setSupportedProtocol(supportedProtocol);
entity._getGsmaCommons().setId(cam.getId());
entity._getGsmaCommons().setDateCreated(cam.getCreationDate());
entity._getGsmaCommons().setDescription("Plate detector camera example");
entity._getGsmaCommons().setName(cam.getName());
entity.setIpAddress(cam.getIp());

(continues on next page)

1.3. Programmers Manual 19

https://github.com/Fiware/dataModels
https://fiware-datamodels.readthedocs.io/en/latest/Device/Device/doc/spec/index.html
https://github.com/naevatec/kurento-fiware-java/tree/master/kurento-fiware

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

return entity;
}

3. Publish the Device.

CamPublisher cameraPublisher = new CamPublisher(orionConnectorConfiguration);
cameraPublisher.publish(cam);

4. Update the Device for each change of state (e.g. “PAUSED” / “PROCESSING”) or each last value detected.

final OrionConnectorConfiguration orionConnectorConfiguration = new
→˓OrionConnectorConfiguration();
CamPublisher cameraPublisher = new CamPublisher(orionConnectorConfiguration);
CamReader cameraReader = new CamReader(orionConnectorConfiguration);
Camera cam = cameraReader.readObject(id);
/* Update values of cam */
cameraPubliser.update(cam);

1.3.2.4 Other entities

While developing your Smart Solution you would need to work with other Entities in Orion, for example Vehicles,
Alerts, places such as museums, gardens, etc. While Kurento Entities aren’t directly related to these, the kurento-
fiware module, provides an easy way of extending its functionality to any other DataModel and any other custom
Object.

In this case you can replicate the structure that the module provides for the Device and MediaEvent entities in your
project. This means to provide the following classes:

• YourOrionEntity.java: That is the class to map the OrionEntity you need. This class must implement the
OrionEntity Interface.

• <YourOrionEntity>OrionPublisher.java: This needs to be an extension of the DefaultOrionPublisher. You
will need to define:

– O: the OrionEntity that will be published in orion in this case <YourOrionEntity>.

– T: a custom class that can be mapped to <YourOrionEntity>.

– mapEntityToOrionEntity is the method that would be able to map from T to O.

• <YourOrionEntity>OrionReader.java: This needs to be an extension of the DefaultOrionReader. As for the
publisher you will need to define:

– O: the OrionEntity that will be published in orion in this case <YourOrionEntity>.

– T: a custom class that can be mapped to <YourOrionEntity>.

– mapOrionEntityToEntity; is the method that would be able to map from O to P.

In case YourOrionEntity needs some processing for presenting a plain JSON to Orion or for reading it you may need
to provide also a <YourOrionEntity>JsonManager to the OrionConnector.

1.3.2.5 More

Follow the links for more information about the kurento-fiware module:

20 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

1.3.2.5.1 Java Module - Plate Detector Filter

This web application consists on a WebRTC video communication in mirror (loopback) with a plate detector filter
element.

Note: This tutorial has been configured to use https. Follow the instructions to secure your application.

1.3.2.5.1.1 For the impatient: running this example

First of all, you should have available:

• An instance of kurento running with the kms-platedetector module. Further information on the installation
guide.

• An instance of orion running. See: Orion installation guide.

To launch the application, you need:

1. To clone the GitHub project where this demo is hosted:

git clone https://github.com/Kurento/kurento-fiware-java

2. Install the kurento-fiware module:

cd kurento-fiware-java/kurento-fiware
mvn install

3. Run the application

cd ../kurento-tutorial-java/kurento-platedetector-fiware
mvn -U clean spring-boot:run -Dkms.url=ws://localhost:8888/kurento

The web application starts on port 8443 in the localhost by default. Therefore, open the URL https://localhost:8443/
in a WebRTC compliant browser (Chrome, Firefox).

Note: These instructions work only if both Kurento Media Server and Orion are up and running in the same machine
as the tutorial.

1.3.2.5.1.2 Understanding this example

This application uses computer vision and augmented reality techniques to detect a plate in a WebRTC stream on
optical character recognition (OCR).

The interface of the application (an HTML web page) is composed by a HTML5 video tag that is activated once the
camera is registered in orion. The video camera stream (the local client-side stream) is sent to Kurento Media Server,
which processes it and registers the events rised in Orion. To implement this, we need to create a Media Pipeline
composed by the following Media Element s:

The complete source code of this demo can be found in GitHub.

This example is a modified version of the Plate Detector Module Tutorial. A screenshot of the running example is
shown in the following picture:

1.3. Programmers Manual 21

/features/security.html#configure-java-applications-to-use-https
https://fiware-orion.readthedocs.io/en/master/admin/install/index.html
https://localhost:8443/
https://github.com/Kurento/kurento-fiware-java.git
https://doc-kurento.readthedocs.io/en/stable/tutorials/java/module-platedetector.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

doc/tutorials/../../images/WebRTC-platedetector-noOut.png

Fig. 7: WebRTC with plateDetector filter Media Pipeline

doc/tutorials/../../images/orion-platedetector.png

Fig. 8: Plate detector demo in action

The following snippet shows how the media pipeline is implemented in the Java server-side code of the
demo. An important issue in this code is that a listener is added to the PlateDetectorFilter object
(addPlateDetectedListener). This way, each time a plate is detected in the stream, a message is sent to
the client side and the event is registered in Orion. As shown in the screenshot above, this event is printed in the
console of the GUI.

private void start(final WebSocketSession session, JsonObject jsonMessage) {
try {
// Media Logic (Media Pipeline and Elements)
UserSession user = new UserSession();
MediaPipeline pipeline = kurento.createMediaPipeline();
user.setMediaPipeline(pipeline);
WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint.Builder(pipeline).build();
user.setWebRtcEndpoint(webRtcEndpoint);
users.put(session.getId(), user);

webRtcEndpoint.addIceCandidateFoundListener(new EventListener
→˓<IceCandidateFoundEvent>() {

@Override
public void onEvent(IceCandidateFoundEvent event) {
JsonObject response = new JsonObject();
response.addProperty("id", "iceCandidate");
response.add("candidate", JsonUtils.toJsonObject(event.

→˓getCandidate()));
try {

synchronized (session) {
session.sendMessage(new TextMessage(response.toString()));

}
} catch (IOException e) {

log.debug(e.getMessage());
}

}
});

PlateDetectorFilter plateDetectorFilter = new PlateDetectorFilter.
→˓Builder(pipeline).build();

(continues on next page)

22 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

webRtcEndpoint.connect(plateDetectorFilter);
plateDetectorFilter.connect(webRtcEndpoint);

plateDetectorFilter.addPlateDetectedListener(new EventListener
→˓<PlateDetectedEvent>() {

@Override
public void onEvent(PlateDetectedEvent event) {

final OrionConnectorConfiguration orionConnectorConfiguration = new
→˓OrionConnectorConfiguration();

final PlateDetectedEventPublisher plateDetectedEventPublisher = new
→˓PlateDetectedEventPublisher(

orionConnectorConfiguration);

DevicePlateDetectedEvent extendedEvent = new
→˓DevicePlateDetectedEvent(event, null);

// TODO add the camera information (from {@link: CameraSession}

JsonObject response = new JsonObject();
response.addProperty("id", "plateDetected");
response.addProperty("plate", event.getPlate());
log.debug("plateDetectorFilter.onEvent({}) => {}", event.getPlate(),

→˓response.toString());
try {

session.sendMessage(new TextMessage(response.toString()));
plateDetectedEventPublisher.publish(extendedEvent);
log.debug("");

} catch (OrionConnectorException e) {
log.warn("Could not publish event in ORION");
sendError(session, e.getMessage());

} catch (Throwable t) {
log.warn("Thowable: {}", t.getLocalizedMessage());
sendError(session, t.getMessage());

}
}

});

// SDP negotiation (offer and answer)
String sdpOffer = jsonMessage.get("sdpOffer").getAsString();
String sdpAnswer = webRtcEndpoint.processOffer(sdpOffer);

// Sending response back to client
JsonObject response = new JsonObject();
response.addProperty("id", "startResponse");
response.addProperty("sdpAnswer", sdpAnswer);

synchronized (session) {
session.sendMessage(new TextMessage(response.toString()));

}

webRtcEndpoint.gatherCandidates();

} catch (Throwable t) {
sendError(session, t.getMessage());

(continues on next page)

1.3. Programmers Manual 23

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

}
}

1.3.2.5.1.3 Dependencies

This Java Spring application is implemented using Maven. The relevant part of the pom.xml is where Kurento depen-
dencies are declared. As the following snippet shows, we need four dependencies: the Kurento Client Java dependency
(kurento-client) and the JavaScript Kurento utility library (kurento-utils) for the client-side, the KMS platedetector
module (platedetector) and the kurento-fiware module (kurento-fiware).

1.3.3 Writing Kurento Modules

You can expand the Kurento Media Server developing your own modules. There are two flavors of Kurento modules:

• Modules based on OpenCV . This kind of modules are recommended if you would like to develop a filter pro-
viding Computer Vision or Augmented Reality features.

• Modules based on GStreamer. This kind of modules provide a generic entry point for media processing with
the GStreamer framework. Such modules are more powerful but also they are more difficult to develop. Skills
in GStreamer development are necessary.

The starting point to develop a filter is to create the filter structure. For this task, you can use the
kurento-module-scaffold tool. This tool is distributed with the kurento-media-server-dev pack-
age. To install this tool run this command:

sudo apt-get install kurento-media-server-dev

The tool usage is different depending on the chosen flavor:

1. OpenCV module:

kurento-module-scaffold.sh <module_name> <output_directory> opencv_filter

2. Gstreamer module:

kurento-module-scaffold.sh <module_name> <output_directory>

The tool generates the folder tree, all the needed CmakeLists.txt files, and example files of Kurento module
descriptor files (.kmd). These files contain the description of the modules, the constructor, the methods, the properties,
the events and the complex types defined by the developer.

Once kmd files are completed it is time to generate the corresponding code. The tool kurento-module-creator
generates glue code to server-side. Run this from the root directory:

cd build
cmake ..

The following sections detail how to create your module depending on the filter type you chose (OpenCV or
GStreamer).

1.3.3.1 OpenCV module

We have four files in src/server/implementation/:

24 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://github.com/Kurento/kurento-tutorial-java/blob/master/kurento-show-data-channel/pom.xml

FIWARE-Stream-Oriented-GE, Release 6.8.0

ModuleNameImpl.cpp
ModuleNameImpl.hpp
ModuleNameOpenCVImpl.cpp
ModuleNameOpenCVImpl.hpp

The first two files should not be modified. The last two files will contain the logic of your module.

The file ModuleNameOpenCVImpl.cpp contains functions to deal with the methods and the parameters (you must
implement the logic). Also, this file contains a function called process. This function will be called with each new
frame, thus you must implement the logic of your filter inside it.

1.3.3.2 GStreamer module

In this case, we have two directories inside the src/ folder:

• The gst-plugins/ folder contains the implementation of your GStreamer Element (the
kurento-module-scaffold generates a dummy filter).

• Inside the server/objects/ folder you have two files:

ModuleNameImpl.cpp
ModuleNameImpl.hpp

In the file ModuleNameImpl.cpp you have to invoke the methods of your GStreamer element. The module logic
will be implemented in the GStreamer Element.

1.3.3.3 For both kind of modules

If you need extra compilation dependencies you can add compilation rules to the kurento-module-creator using the
function generate_code in the CmakeLists.txt file, located in src/server/.

The following parameters are available:

• SERVER_STUB_DESTINATION (required) The generated code that you may need to modify will be generated
on the folder indicated by this parameter.

• MODELS (required) This parameter receives the folders where the models (.kmd files) are located.

• INTERFACE_LIB_EXTRA_SOURCES INTERFACE_LIB_EXTRA_HEADERS
INTERFACE_LIB_EXTRA_INCLUDE_DIRS INTERFACE_LIB_EXTRA_LIBRARIES These
parameters allow to add additional source code to the static library. Files included in
INTERFACE_LIB_EXTRA_HEADERS will be installed in the system as headers for this library. All
the parameters accept a list as input.

• SERVER_IMPL_LIB_EXTRA_SOURCES SERVER_IMPL_LIB_EXTRA_HEADERS
SERVER_IMPL_LIB_EXTRA_INCLUDE_DIRS SERVER_IMPL_LIB_EXTRA_LIBRARIES
These parameters allow to add additional source code to the interface library. Files included in
SERVER_IMPL_LIB_EXTRA_HEADERS will be installed in the system as headers for this library. All
the parameters accept a list as input.

• MODULE_EXTRA_INCLUDE_DIRS MODULE_EXTRA_LIBRARIES These parameters allow to add extra in-
clude directories and libraries to the module.

• SERVER_IMPL_LIB_FIND_CMAKE_EXTRA_LIBRARIES This parameter receives a list of strings. Each
string has this format: libname[libversion range] (possible ranges can use symbols AND OR < <=
> >= ^ and ~).

– ^ indicates a version compatible using Semantic Versioning.

1.3. Programmers Manual 25

FIWARE-Stream-Oriented-GE, Release 6.8.0

– ~ Indicates a version similar, that can change just last indicated version character.

Once the module logic is implemented and the compilation process is finished, you need to install your module in your
system. You can follow two different ways:

1. You can generate the Debian package (debuild -us -uc) and install it (dpkg -i). 2. You can define the
following environment variables in the file /etc/default/kurento:

KURENTO_MODULES_PATH=<module_path>/build/src
GST_PLUGIN_PATH=<module_path>/build/src

Now, you need to generate code for Java or JavaScript to use your module from the client-side.

• For Java, from the build directory you have to execute cmake ..
-DGENERATE_JAVA_CLIENT_PROJECT=TRUE command, that generates a Java folder with client
code. You can run make java_install and your module will be installed in your Maven local repository.
To use the module in your Maven project, you have to add the dependency to the pom.xml file:

<dependency>
<groupId>org.kurento.module</groupId>
<artifactId>modulename</artifactId>
<version>moduleversion</version>

</dependency>

• For JavaScript, you should run cmake .. -DGENERATE_JS_CLIENT_PROJECT=TRUE. This command
generates a js/ folder with client code. Now you can manually add the JavaScript library to use your module
in your application. Alternatively, you can use Bower (for Browser JavaScript) or NPM (for Node.js). To do
that, you should add your JavaScript module as a dependency in your bower.json or package.json file
respectively, as follows:

"dependencies": {
"modulename": "moduleversion"

}

1.3.3.4 Examples

Simple examples for both kind of modules are available in GitHub:

• OpenCV module.

• GStreamer module.

There are a lot of examples showking how to define methods, parameters or events in all our public built-in modules:

• kms-pointerdetector.

• kms-crowddetector.

• kms-chroma.

• kms-platedetector.

Moreover, all our modules are developed using this methodology. For that reason you can take a look to our main
modules:

• kms-core.

• kms-elements.

• kms-filters.

26 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://github.com/Kurento/kms-opencv-plugin-sample
https://github.com/Kurento/kms-plugin-sample
https://github.com/Kurento/kms-pointerdetector/tree/master/src/server/interface
https://github.com/Kurento/kms-crowddetector/tree/master/src/server/interface
https://github.com/Kurento/kms-chroma/tree/master/src/server/interface
https://github.com/Kurento/kms-platedetector/tree/master/src/server/interface
https://github.com/Kurento/kms-core
https://github.com/Kurento/kms-elements
https://github.com/Kurento/kms-filters

FIWARE-Stream-Oriented-GE, Release 6.8.0

1.3.4 Tutorials

Here you can check the different tutorials/examples available to comprehend Kurento and start using it for your benefit.

1.3.4.1 Genal Java Kurento tutorials

1.3.4.2 Kurento modules Java tutorials

1.3.4.3 Smart Solition tutorials

1.4 FIWARE Stream Oriented Generic Enabler - Open API Specifica-
tion

The Stream Oriented API is a resource-oriented API accessed via WebSockets that uses JSON-RPC V2.0 based rep-
resentations for information exchange. An RPC call is represented by sending a request message to a server. Each
request message has the following members:

• jsonrpc: a string specifying the version of the JSON-RPC protocol. It must be exactly 2.0.

• id: an unique identifier established by the client that contains a string or number. The server must reply with the
same value in the response message. This member is used to correlate the context between both messages.

• method: a string containing the name of the method to be invoked.

• params: a structured value that holds the parameter values to be used during the invocation of the method.

When an RPC call is made by a client, the server replies with a response object. In the case of a success, the response
object contains the following members:

• jsonrpc: it must be exactly 2.0.

• id: it must match the value of the id member in the request object.

• result: structured value which contains the invocation result.

In the case of an error, the response object contains the following members:

• jsonrpc: it must be exactly 2.0.

• id: it must match the value of the id member in the request object.

• error: object describing the error through the following members:

– code: integer number that indicates the error type that occurred

– message: string providing a short description of the error.

– data: primitive or structured value that contains additional information about the error. It may be omitted.
The value of this member is defined by the server.

Therefore, the value of the method parameter in the request determines the type of request/response to be exchanged
between client and server. The following section describes each pair of messages depending of the type of method
(namely: Ping, Create, Invoke, Release, Subscribe, Unsubscribe, and OnEvent).

1.4.1 Ping

In order to warranty the WebSocket connectivity between the client and the Kurento Media Server, a keep-alive method
is implemented. This method is based on a ping method sent by the client, which must be replied with a pong message

1.4. FIWARE Stream Oriented Generic Enabler - Open API Specification 27

FIWARE-Stream-Oriented-GE, Release 6.8.0

from the server. If no response is obtained in a time interval, the client is aware that the connectivity with the media
server has been lost.

1.4.1.1 Request

A ping request contains the following parameters:

• method (required, string). Value: ping.

• params (required, object). Parameters for the invocation of the ping message, containing these member:

– interval (required, number). Time out to receive the pong message from the server, in milliseconds. By
default this value is 240000 (i.e. 40 seconds).

This is an example of ping:

• Body (application/json)

{
"id": 1,
"method": "ping",
"params": {

"interval": 240000
},
"jsonrpc": "2.0"

}

1.4.1.2 Response

The response to a ping request must contain a result object with a value parameter with a fixed name: pong. The
following snippet shows the pong response to the previous ping request:

• Body (application/json)

{
"id": 1,
"result": {

"value": "pong"
},
"jsonrpc": "2.0"

}

1.4.2 Create

Create message requests the creation of an Media Pipelines and Media Elements in the Media Server. The parameter
type specifies the type of the object to be created. The parameter params contains all the information needed to create
the object. Each message needs different parameters to create the object.

Media Elements have to be contained in a previously created Media Pipeline. Therefore, before creating Media
Elements, a Media Pipeline must exist. The response of the creation of a Media Pipeline contains a parameter called
sessionId, which must be included in the next create requests for Media Elements.

1.4.2.1 Request

A create request contains the following parameters:

28 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

• method (required, string). Value: create.

• params (required, object). Parameters for the invocation of the create message, containing these members:

– type (required, string). Media pipeline or media element to be created. The allowed values are the follow-
ing:

* MediaPipeline: Media Pipeline to be created.

* WebRtcEndpoint: This media element offers media streaming using WebRTC.

* RtpEndpoint: Media element that provides bidirectional content delivery capabilities with remote
networked peers through RTP protocol. It contains paired sink and source MediaPad for audio and
video.

* HttpPostEndpoint: This type of media element provides unidirectional communications. Its Media-
Source are related to HTTP POST method. It contains sink MediaPad for audio and video, which
provide access to an HTTP file upload function.

* PlayerEndpoint: It provides function to retrieve contents from seekable sources in reliable mode (does
not discard media information) and inject them into KMS. It contains one MediaSource for each media
type detected.

* RecorderEndpoint: Provides function to store contents in reliable mode (doesn’t discard data). It
contains MediaSink pads for audio and video.

* FaceOverlayFilter: It detects faces in a video feed. The face is then overlaid with an image.

* ZBarFilter: This Filter detects QR and bar codes in a video feed. When a code is found, the filter
raises a CodeFound.

* GStreamerFilter: This is a generic Filter interface, that creates GStreamer filters in the media server.

* Composite: A Hub that mixes the audio stream of its connected sources and constructs a grid with the
video streams of its connected sources into its sink.

* Dispatcher: A Hub that allows routing between arbitrary port pairs.

* DispatcherOneToMany: A Hub that sends a given source to all the connected sinks.

– constructorParams (required, object). Additional parameters. For example:

* mediaPipeline (optional, string): This parameter is only mandatory for Media Elements. In that case,
the value of this parameter is the identifier of the media pipeline which is going to contain the Media
Element to be created.

* uri (optional, string): This parameter is only required for Media Elements such as PlayerEndpoint
or RecorderEndpoint. It is an URI used in the Media Element, i.e. the media to be played (for
PlayerEndpoint) or the location of the recording (for RecorderEndpoint).

* properties (optional, object): Array of additional objects (key/value).

– sessionId (optional, string). Session identifier. This parameter is not present in the first request (typically
the media pipeline creation).

The following example shows a request message requesting the creation of an object of the type MediaPipeline:

• Body (application/json)

{
"id": 2,
"method": "create",
"params": {

"type": "MediaPipeline",

(continues on next page)

1.4. FIWARE Stream Oriented Generic Enabler - Open API Specification 29

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

"constructorParams": {},
"properties": {}

},
"jsonrpc": "2.0"

}

The following example shows a request message requesting the creation of an object of the type WebRtcEndpoint
within an existing Media Pipeline (identified by the parameter mediaPipeline). Notice that in this request, the sessionId
is already present, while in the previous example it was not (since at that point was unknown for the client):

• Body (application/json)

{
"id": 3,
"method": "create",
"params": {

"type": "WebRtcEndpoint",
"constructorParams": {

"mediaPipeline": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.
→˓MediaPipeline"

},
"properties": {},
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

1.4.2.2 Response

The response message contains the identifier of the new object in the field value. As usual, the message id must match
with the request message. The sessionId is also returned in each response. A create response contains the following
parameters:

• result (required, object). Result of the create invocation:

– value (required, number). Identifier of the created media element.

– sessionId (required, string). Session identifier.

The following examples shows the responses to the previous request messages (respectively, the response to the Me-
diaPipeline create message, and then the response to the to WebRtcEndpoint create message). In the first example, the
parameter value identifies the created Media Pipelines, and sessionId is the identifier of the current session.

• Body (application/json)

{
"id": 2,
"result": {

"value": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline",
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

In the second response example, the parameter value identifies the created Media Element (a WebRtcEndpoint
in this case). Notice that this value also identifies the Media Pipeline in which the Media Element is contained. The
parameter sessionId is also contained in the response.

30 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

• Body (application/json)

{
"id": 3,
"result": {

"value": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/087b7777-
→˓aab5-4787-816f-f0de19e5b1d9_kurento.WebRtcEndpoint",

"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
},
"jsonrpc": "2.0"

}

1.4.3 Invoke

Invoke message requests the invocation of an operation in the specified object. The parameter object indicates the
identifier of the object in which the operation will be invoked. The parameter operation carries the name of the
operation to be executed. Finally, the parameter operationParams contains the parameters needed to execute the
operation.

1.4.3.1 Request

An invoke request contains the following parameters:

• method (required, string). Value is invoke.

• params (required, object)

– object (required, number). Identifier of the source media element.

– operation (required, string). Operation invoked. Allowed Values:

* connect. Connect two media elements.

* play. Start the play of a media (PlayerEndpoint).

* record. Start the record of a media (RecorderEndpoint).

* setOverlayedImage. Set the image that is going to be overlaid on the detected faces in a media stream
(FaceOverlayFilter).

* processOffer. Process the offer in the SDP negotiation (WebRtcEndpoint).

* gatherCandidates. Start the ICE candidates gathering to establish a WebRTC media session (WebRt-
cEndpoint).

* addIceCandidate. Add ICE candidate (WebRtcEndpoint).

– operationParams (optional, object).

* sink (required, number). Identifier of the sink media element.

* offer (optional, string). SDP offer used in the WebRTC SDP negotiation (in WebRtcEndpoint).

– sessionId (required, string). Session identifier.

The following example shows a request message requesting the invocation of the operation connect on a PlayerEnd-
point connected to a WebRtcEndpoint:

• Body (application/json)

1.4. FIWARE Stream Oriented Generic Enabler - Open API Specification 31

FIWARE-Stream-Oriented-GE, Release 6.8.0

{
"id": 5,
"method": "invoke",
"params": {

"object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/
→˓76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",

"operation": "connect",
"operationParams": {

"sink": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/
→˓087b7777-aab5-4787-816f-f0de19e5b1d9_kurento.WebRtcEndpoint"

},
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

1.4.3.2 Response

The response message contains the value returned while executing the operation invoked in the object or nothing if the
operation doesn’t return any value.

An invoke response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

– value (optional, object). Additional object which describes the result of the Invoke operation. For example,
in a WebRtcEndpoint this field is the SDP response (WebRTC SDP negotiation).

The following example shows a typical response while invoking the operation connect:

• Body (application/json)

{
"id": 5,
"result": {

"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
},
"jsonrpc": "2.0"

}

1.4.4 Release

Release message requests the release of the specified object. The parameter object indicates the id of the object to be
released:

1.4.4.1 Request

A release request contains the following parameters:

• method (required, string). Value is release.

• params (required, object).

– object (required, number). Identifier of the media element or pipeline to be released.

32 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

– sessionId (required, string). Session identifier.

• Body (application/json)

{
"id": 36,
"method": "release",
"params": {

"object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline",
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

1.4.4.2 Response

A release response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

The response message only contains the sessionId. The following example shows the typical response of a release
request:

• Body (application/json)

{
"id": 36,
"result": {

"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
},
"jsonrpc": "2.0"

}

1.4.5 Subscribe

Subscribe message requests the subscription to a certain kind of events in the specified object. The parameter object
indicates the id of the object to subscribe for events. The parameter type specifies the type of the events. If a client is
subscribed for a certain type of events in an object, each time an event is fired in this object, a request with method
onEvent is sent from Kurento Media Server to the client. This kind of request is described few sections later.

1.4.5.1 Request

A subscribe request contains the following parameters:

• method (required, string). Value is subscribe.

• params (required, object). Parameters for the invocation of the subscribe message, containing these members:

– type (required, string). Media event to be subscribed. The allowed values are the following:

* CodeFoundEvent: raised by a ZBarFilter when a code is found in the data being streamed.

* ConnectionStateChanged: Indicates that the state of the connection has changed.

* ElementConnected: Indicates that an element has been connected to other.

1.4. FIWARE Stream Oriented Generic Enabler - Open API Specification 33

FIWARE-Stream-Oriented-GE, Release 6.8.0

* ElementDisconnected: Indicates that an element has been disconnected.

* EndOfStream: Event raised when the stream that the element sends out is finished.

* Error: An error related to the MediaObject has occurred.

* MediaSessionStarted: Event raised when a session starts. This event has no data.

* MediaSessionTerminated: Event raised when a session is terminated. This event has no data.

* MediaStateChanged: Indicates that the state of the media has changed.

* ObjectCreated: Indicates that an object has been created on the media server.

* ObjectDestroyed: Indicates that an object has been destroyed on the media server.

* OnIceCandidate: Notify of a new gathered local candidate.

* OnIceComponentStateChanged: Notify about the change of an ICE component state.

* OnIceGatheringDone: Notify that all candidates have been gathered.

– object (required, string). Media element identifier in which the event is subscribed.

– sessionId (required, string). Session identifier.

The following example shows a request message requesting the subscription of the event type EndOfStream on a
PlayerEndpoint Media Element:

• Body (application/json)

{
"id": 11,
"method": "subscribe",
"params": {

"type": "EndOfStream",
"object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/

→˓76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

1.4.5.2 Response

The response message contains the subscription identifier. This value can be used later to remove this subscription.

A subscribe response contains the following parameters:

• result (required, object). Result of the subscription invocation. This object contains the following members:

– value (required, number). Identifier of the media event.

– sessionId (required, string). Session identifier.

The following example shows the response of subscription request. The value attribute contains the subscription
identifier:

• Body (application/json)

{
"id": 11,
"result": {

"value": "052061c1-0d87-4fbd-9cc9-66b57c3e1280",
(continues on next page)

34 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
},
"jsonrpc": "2.0"

}

1.4.6 Unsubscribe

Unsubscribe message requests the cancellation of a previous event subscription. The parameter subscription contains
the subscription id received from the server when the subscription was created.

1.4.6.1 Request

An unsubscribe request contains the following parameters:

• method (required, string). Value is unsubscribe.

• params (required, object).

– object (required, string). Media element in which the subscription is placed.

– subscription (required, number). Subscription identifier.

– sessionId (required, string). Session identifier.

The following example shows a request message requesting the cancellation of the subscription 353be312-b7f1-4768-
9117-5c2f5a087429:

• Body (application/json)

{
"id": 38,
"method": "unsubscribe",
"params": {

"subscription": "052061c1-0d87-4fbd-9cc9-66b57c3e1280",
"object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/

→˓76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"

},
"jsonrpc": "2.0"

}

1.4.6.2 Response

The response message only contains the sessionId. The following example shows the typical response of an unsub-
scription request:

An unsubscribe response contains the following parameters:

• result (required, object)

– sessionId (required, string). Session identifier.

For example:

• Body (application/json)

1.4. FIWARE Stream Oriented Generic Enabler - Open API Specification 35

FIWARE-Stream-Oriented-GE, Release 6.8.0

{
"id": 38,
"result": {

"sessionId": "bd4d6227-0463-4d52-b1c3-c71f0be68466"
},
"jsonrpc": "2.0"

}

1.4.7 OnEvent

When a client is subscribed to a type of events in an object, the server sends an onEvent request each time an event of
that type is fired in the object. This is possible because the Stream Oriented open API is implemented with WebSockets
and there is a full duplex channel between client and server.

1.4.7.1 Request

An OnEvent request contains the following parameters:

• method (required, string). Value is onEvent.

• params (required, object).

– value (required, object)

* data (required, object)

· source (required, string). Source media element.

· tags (optional, string array). Metadata for the media element.

· timestamp (required, number). Media server time and date (in Unix time, i.e., number of seconds
since 01/01/1970).

· type (required, string). Same type identifier described on subscribe message (i.e.: Code-
Found, ConnectionStateChanged, ElementConnected, ElementDisconnected, EndOfStream, Er-
ror, MediaSessionStarted, MediaSessionTerminated, MediaStateChanged, ObjectCreated, Ob-
jectDestroyed, OnIceCandidate, OnIceComponentStateChanged, OnIceGatheringDone)

* object (required, object).Media element identifier.

* type (required, string). Type identifier (same value than before)

The following example shows a notification sent for server to client to notify an event of type EndOfStream in a
PlayerEndpoint object:

• Body (application/json)

{
"jsonrpc": "2.0",
"method": "onEvent",
"params": {

"value": {
"data": {

"source": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/
→˓76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",

"tags": [],
"timestamp": "1461589478",
"type": "EndOfStream"

(continues on next page)

36 Chapter 1. Why Using Kurento in a “Smart Solution”?

FIWARE-Stream-Oriented-GE, Release 6.8.0

(continued from previous page)

},
"object": "6ba9067f-cdcf-4ea6-a6ee-d74519585acd_kurento.MediaPipeline/

→˓76dcb8d7-5655-445b-8cb7-cf5dc91643bc_kurento.PlayerEndpoint",
"type": "EndOfStream"

}
}

}

Notice that this message has no id field due to the fact that no response is required.

1.4.7.2 Response

There is no response to the onEvent message.

1.5 Glossary

This is a glossary of terms that often appear in discussion about multimedia transmissions. Some of the terms are spe-
cific to GStreamer or Kurento, and most of them are described and linked to their RFC, W3C or Wikipedia documents.

Agnostic media One of the big problems of media is that the number of variants of video and audio codecs, formats
and variants quickly creates high complexity in heterogeneous applications. So Kurento developed the concept
of an automatic converter of media formats that enables development of agnostic elements. Whenever a media
element’s source is connected to another media element’s sink, the Kurento framework verifies if media adaption
and transcoding is necessary and, if needed, it transparently incorporates the appropriate transformations making
possible the chaining of the two elements into the resulting Pipeline.

AVI Audio Video Interleaved, known by its initials AVI, is a multimedia container format introduced by Microsoft
in November 1992 as part of its Video for Windows technology. AVI files can contain both audio and video
data in a file container that allows synchronous audio-with-video playback. AVI is a derivative of the Resource
Interchange File Format (RIFF).

See also:

Bower Bower is a package manager for the web. It offers a generic solution to the problem of front-end package
management, while exposing the package dependency model via an API that can be consumed by a build stack.

Builder Pattern The builder pattern is an object creation software design pattern whose intention is to find a solution
to the telescoping constructor anti-pattern. The telescoping constructor anti-pattern occurs when the increase of
object constructor parameter combination leads to an exponential list of constructors. Instead of using numerous
constructors, the builder pattern uses another object, a builder, that receives each initialization parameter step by
step and then returns the resulting constructed object at once.

See also:

CORS Cross-origin resource sharing is a mechanism that allows JavaScript code on a web page to make XMLHttpRe-
quests to different domains than the one the JavaScript originated from. It works by adding new HTTP headers
that allow servers to serve resources to permitted origin domains. Browsers support these headers and enforce
the restrictions they establish.

See also:

enable-cors.org Information on the relevance of CORS and how and when to enable it.

DOM Document Object Model is a cross-platform and language-independent convention for representing and inter-
acting with objects in HTML, XHTML and XML documents.

1.5. Glossary 37

http://bower.io/
http://enable-cors.org/

FIWARE-Stream-Oriented-GE, Release 6.8.0

EOS End Of Stream is an event that occurs when playback of some media source has finished. In Kurento, some
elements will raise an EndOfStream event.

GStreamer GStreamer is a pipeline-based multimedia framework written in the C programming language.

H.264 A Video Compression Format. The H.264 standard can be viewed as a “family of standards” composed of a
number of profiles. Each specific decoder deals with at least one such profiles, but not necessarily all.

See also:

RFC 6184 RTP Payload Format for H.264 Video (This RFC obsoletes RFC 3984)

HTTP The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative, hypermedia
information systems. HTTP is the foundation of data communication for the World Wide Web.

See also:

RFC 2616 Hypertext Transfer Protocol – HTTP/1.1

ICE Interactive Connectivity Establishment (ICE) is a technique used to achieve NAT Traversal. ICE makes use of
the STUN protocol and its extension, TURN. ICE can be used by any aplication that makes use of the SDP
Offer/Answer model..

See also:

RFC 5245 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols

IMS IP Multimedia Subsystem (IMS) is the 3GPP’s Mobile Architectural Framework for delivering IP Multimedia
Services in 3G (and beyond) Mobile Networks.

See also:

RFC 3574 Transition Scenarios for 3GPP Networks

jQuery jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML.

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is designed to be easy to
understand and write for humans and easy to parse for machines.

JSON-RPC JSON-RPC is a simple remote procedure call protocol encoded in JSON. JSON-RPC allows for notifi-
cations and for multiple calls to be sent to the server which may be answered out of order.

Kurento Kurento is a platform for the development of multimedia-enabled applications. Kurento is the Esperanto
term for the English word ‘stream’. We chose this name because we believe the Esperanto principles are in-
spiring for what the multimedia community needs: simplicity, openness and universality. Some components of
Kurento are the Kurento Media Server, the Kurento API, the Kurento Protocol, and the Kurento Client.

Kurento API An object oriented API to create media pipelines to control media. It can be seen as and interface to
Kurento Media Server. It can be used from the Kurento Protocol or from Kurento Clients.

Kurento Client A programming library (Java or JavaScript) used to control an instance of Kurento Media Server
from an application. For example, with this library, any developer can create a web application that uses Kurento
Media Server to receive audio and video from the user web browser, process it and send it back again over
Internet. The Kurento Client libraries expose the Kurento API to application developers.

Kurento Protocol Communication between KMS and clients by means of JSON-RPC messages. It is based on
WebSocket that uses JSON-RPC v2.0 messages for making requests and sending responses.

KMS

Kurento Media Server Kurento Media Server is the core element of Kurento since it responsible for media trans-
mission, processing, loading and recording.

Maven Maven is a build automation tool used primarily for Java projects.

38 Chapter 1. Why Using Kurento in a “Smart Solution”?

http://gstreamer.freedesktop.org/
https://tools.ietf.org/html/rfc6184.html
https://tools.ietf.org/html/rfc3984.html
https://tools.ietf.org/html/rfc2616.html
https://tools.ietf.org/html/rfc5245.html
https://tools.ietf.org/html/rfc3574.html
http://jquery.com/
http://json.org/
http://www.jsonrpc.org/
http://kurento.org
http://maven.apache.org/

FIWARE-Stream-Oriented-GE, Release 6.8.0

Media Element A Media Element is a module that encapsulates a specific media capability. For example
RecorderEndpoint, PlayerEndpoint, etc.

Media Pipeline A Media Pipeline is a chain of media elements, where the output stream generated by one element
(source) is fed into one or more other elements input streams (sinks). Hence, the pipeline represents a “machine”
capable of performing a sequence of operations over a stream.

Media Plane In a traditional IP Multimedia Subsystem, the handling of media is conceptually splitted in two layers.
The layer that handles the media itself -with functionalities such as media transport, encoding/decoding, and
processing- is called Media Plane.

See also:

Signaling Plane

MP4 MPEG-4 Part 14 or MP4 is a digital multimedia format most commonly used to store video and audio, but can
also be used to store other data such as subtitles and still images.

See also:

Multimedia Multimedia is concerned with the computer controlled integration of text, graphics, video, animation,
audio, and any other media where information can be represented, stored, transmitted and processed digitally.
There is a temporal relationship between many forms of media, for instance audio, video and animations. There
2 are forms of problems involved in

• Sequencing within the media, i.e. playing frames in correct order or time frame.

• Synchronization, i.e. inter-media scheduling. For example, keeping video and audio synchronized or
displaying captions or subtitles in the required intervals.

See also:

Multimedia container format Container or wrapper formats are meta-file formats whose specification describes how
different data elements and metadata coexist in a computer file. Simpler multimedia container formats can
contain different types of audio formats, while more advanced container formats can support multiple audio and
video streams, subtitles, chapter-information, and meta-data, along with the synchronization information needed
to play back the various streams together. In most cases, the file header, most of the metadata and the synchro
chunks are specified by the container format.

See also:

NAT

Network Address Translation Network address translation (NAT) is the technique of modifying network address
information in Internet Protocol (IP) datagram packet headers while they are in transit across a traffic routing
device for the purpose of remapping one IP address space into another.

See also:

NAT-T

NAT Traversal NAT traversal (sometimes abbreviated as NAT-T) is a general term for techniques that establish and
maintain Internet protocol connections traversing network address translation (NAT) gateways, which break
end-to-end connectivity. Intercepting and modifying traffic can only be performed transparently in the absence
of secure encryption and authentication.

See also:

NAT Types and NAT Traversal Entry in Kurento Knowledge Base.

NAT Traversal White Paper White paper on NAT-T and solutions for end-to-end connectivity in its presence

1.5. Glossary 39

https://doc-kurento.readthedocs.io/en/stable/knowledge/nat.html
http://www.nattraversal.com/

FIWARE-Stream-Oriented-GE, Release 6.8.0

Node.js Node.js is a cross-platform runtime environment for server-side and networking applications. Node.js appli-
cations are written in JavaScript, and can be run within the Node.js runtime on OS X, Microsoft Windows and
Linux with no changes.

npm npm is the official package manager for Node.js.

OpenCL OpenCL is the standard framework for cross-platform, parallel programming of heterogeneous platforms
consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs) and other processors.

OpenCV OpenCV (Open Source Computer Vision Library) is a BSD-licensed open source computer vision and
machine learning software library. OpenCV aims to provide a common infrastructure for computer vision
applications and to accelerate the use of machine perception.

Pad, Media A Media Pad is is an element’s interface with the outside world. Data streams from the MediaSource pad
to another element’s MediaSink pad.

See also:

GStreamer Pad Definition of the Pad structure in GStreamer

PubNub PubNub is a publish/subscribe cloud service for sending and routing data. It streams data to global audiences
on any device using persistent socket connections. PubNub has been designed to deliver data with low latencies
to end-user devices. These devices can be behind firewalls, NAT environments, and other hard-to-reach network
environments. PubNub provides message caching for retransmission of lost signals over unreliable network
environments. This is accomplished by maintaining an always open socket connection to every device.

QR QR code (Quick Response Code) is a type of two-dimensional barcode. that became popular in the mobile phone
industry due to its fast readability and greater storage capacity compared to standard UPC barcodes.

See also:

REMB Receiver Estimated Maximum Bitrate (REMB) is a type of RTCP feedback message that a RTP receiver can
use to inform the sender about what is the estimated reception bandwidth currently available for the stream itself.
Upon reception of this message, the RTP sender will be able to adjust its own video bitrate to the conditions of
the network. This message is a crucial part of the Google Congestion Control (GCC) algorithm, which provides
any RTP session with the ability to adapt in cases of network congestion.

The GCC algorithm is one of several proposed algorithms that have been proposed by an IETF Working Group
named RTP Media Congestion Avoidance Techniques (RMCAT).

See also:

What is RMCAT congestion control, and how will it affect WebRTC?

draft-alvestrand-rmcat-remb RTCP message for Receiver Estimated Maximum Bitrate

draft-ietf-rmcat-gcc A Google Congestion Control Algorithm for Real-Time Communication

REST Representational state transfer (REST) is an architectural style consisting of a coordinated set of constraints
applied to components, connectors, and data elements, within a distributed hypermedia system. The term repre-
sentational state transfer was introduced and defined in 2000 by Roy Fielding in his doctoral dissertation.

See also:

RTCP The RTP Control Protocol (RTCP) is a sister protocol of the RTP, that provides out-of-band statistics and
control information for an RTP flow.

See also:

RFC 3605 Real Time Control Protocol (RTCP) attribute in Session Description Protocol (SDP)

40 Chapter 1. Why Using Kurento in a “Smart Solution”?

http://www.nodejs.org/
https://www.npmjs.org/
http://www.khronos.org/opencl/
https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html
http://www.pubnub.com/
https://blog.mozilla.org/webrtc/what-is-rmcat-congestion-control/
https://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03
https://tools.ietf.org/html/draft-ietf-rmcat-gcc-02
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://tools.ietf.org/html/rfc3605.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

RTP Real-time Transport Protocol (RTP) is a standard packet format designed for transmitting audio and video
streams on IP networks. It is used in conjunction with the RTP Control Protocol. Transmissions using the RTP
audio/video profile (RTP/AVP) typically use SDP to describe the technical parameters of the media streams.

See also:

RFC 3550 RTP: A Transport Protocol for Real-Time Applications

Same-origin policy The “same-origin policy” is a web application security model. The policy permits scripts running
on pages originating from the same domain to access each other’s DOM with no specific restrictions, but prevents
access to DOM on different domains.

See also:

SDP

Session Description Protocol

SDP Offer/Answer The Session Description Protocol (SDP) is a text document that describes the parameters of
a streaming media session. It is commonly used to describe the characteristics of RTP streams (and related
protocols such as RTSP).

The SDP Offer/Answer model is a negotiation between two peers of a unicast stream, by which the sender and
the receiver share the set of media streams and codecs they wish to use, along with the IP addresses and ports
they would like to use to receive the media.

This is an example SDP Offer/Answer negotiation. First, there must be a peer that wishes to initiate the negoti-
ation; we’ll call it the offerer. It composes the following SDP Offer and sends it to the other peer -which we’ll
call the answerer-:

v=0
o=- 0 0 IN IP4 127.0.0.1
s=Example sender
c=IN IP4 127.0.0.1
t=0 0
m=audio 5006 RTP/AVP 96
a=rtpmap:96 opus/48000/2
a=sendonly
m=video 5004 RTP/AVP 103
a=rtpmap:103 H264/90000
a=sendonly

Upon receiving that Offer, the answerer studies the parameters requested by the offerer, decides if they can be
satisfied, and composes an appropriate SDP Answer that is sent back to the offerer:

v=0
o=- 3696336115 3696336115 IN IP4 192.168.56.1
s=Example receiver
c=IN IP4 192.168.56.1
t=0 0
m=audio 0 RTP/AVP 96
a=rtpmap:96 opus/48000/2
a=recvonly
m=video 31278 RTP/AVP 103
a=rtpmap:103 H264/90000
a=recvonly

The SDP Answer is the final step of the SDP Offer/Answer Model. With it, the answerer agrees to some of the
parameter requested by the offerer, but not all.

1.5. Glossary 41

https://tools.ietf.org/html/rfc3550.html

FIWARE-Stream-Oriented-GE, Release 6.8.0

In this example, audio 0 means that the answerer rejects the audio stream that the offerer intended to send;
also, it accepts the video stream, and the a=recvonly acknowledges that the answerer will exclusively act as
a receiver, and won’t send any stream back to the other peer.

See also:

Anatomy of a WebRTC SDP

RFC 4566 SDP: Session Description Protocol

RFC 4568 Session Description Protocol (SDP) Security Descriptions for Media Streams

Semantic Versioning Semantic Versioning is a formal convention for specifying compatibility using a three-part
version number: major version; minor version; and patch.

Signaling Plane It is the layer of a media system in charge of the information exchanges concerning the establishment
and control of the different media circuits and the management of the network, in contrast to the transfer of me-
dia, done by the Signaling Plane. Functions such as media negotiation, QoS parametrization, call establishment,
user registration, user presence, etc. as managed in this plane.

See also:

Media Plane

Sink, Media A Media Sink is a MediaPad that outputs a Media Stream. Data streams from a MediaSource pad to
another element’s MediaSink pad.

SIP Session Initiation Protocol (SIP) is a signaling plane protocol widely used for controlling multimedia commu-
nication sessions such as voice and video calls over Internet Protocol (IP) networks. SIP works in conjunction
with several other application layer protocols:

• SDP for media identification and negotiation.

• RTP, SRTP or WebRTC for the transmission of media streams.

• A TLS layer may be used for secure transmission of SIP messages.

See also:

Source, Media A Media Source is a Media Pad that generates a Media Stream.

SPA

Single-Page Application A single-page application is a web application that fits on a single web page with the goal
of providing a more fluid user experience akin to a desktop application.

Sphinx Sphinx is a documentation generation system. Text is first written using reStructuredText markup language,
which then is transformed by Sphinx into different formats such as PDF or HTML. This is the documentation
tool of choice for the Kurento project.

See also:

Easy and beautiful documentation with Sphinx

Spring Boot Spring Boot is Spring’s convention-over-configuration solution for creating stand-alone, production-
grade Spring based applications that can you can “just run”. It embeds Tomcat or Jetty directly and so there is
no need to deploy WAR files in order to run web applications.

SRTCP SRTCP provides the same security-related features to RTCP, as the ones provided by SRTP to RTP. Encryp-
tion, message authentication and integrity, and replay protection are the features added by SRTCP to RTCP.

See also:

SRTP

42 Chapter 1. Why Using Kurento in a “Smart Solution”?

https://webrtchacks.com/anatomy-webrtc-sdp/
https://tools.ietf.org/html/rfc4566.html
https://tools.ietf.org/html/rfc4568.html
http://semver.org/
http://www.sphinx-doc.org/en/stable/
http://docutils.sourceforge.net/rst.html
http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat
http://projects.spring.io/spring-boot/

FIWARE-Stream-Oriented-GE, Release 6.8.0

SRTP Secure RTP is a profile of RTP (Real-time Transport Protocol), intended to provide encryption, message au-
thentication and integrity, and replay protection to the RTP data in both unicast and multicast applications.
Similarly to how RTP has a sister RTCP protocol, SRTP also has a sister protocol, called Secure RTCP (or
SRTCP).

See also:

RFC 3711 The Secure Real-time Transport Protocol (SRTP)

SSL Secure Socket Layer. See TLS.

STUN STUN stands for Session Traversal Utilities for NAT. It is a standard protocol (IETF RFC 5389) used by NAT
traversal algorithms to assist hosts in the discovery of their public network information. If the routers between
peers use full cone, address-restricted, or port-restricted NAT, then a direct link can be discovered with STUN
alone. If either one of the routers use symmetric NAT, then a link can be discovered with STUN packets only if
the other router does not use symmetric or port-restricted NAT. In this later case, the only alternative left is to
discover a relayed path through the use of TURN.

Trickle ICE Extension to the ICE protocol that allows ICE agents to send and receive candidates incrementally rather
than exchanging complete lists. With such incremental provisioning, ICE agents can begin connectivity checks
while they are still gathering candidates and considerably shorten the time necessary for ICE processing to
complete.

See also:

draft-ietf-ice-trickle Trickle ICE: Incremental Provisioning of Candidates for the Interactive Connectivity Es-
tablishment (ICE) Protocol

TLS Transport Layer Security (TLS) and its predecessor Secure Socket Layer (SSL).

See also:

RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2

TURN TURN stands for Traversal Using Relays around NAT. Like STUN, it is a network protocol (IETF RFC
5766) used to assist in the discovery of paths between peers on the Internet. It differs from STUN in that it
uses a public intermediary relay to act as a proxy for packets between peers. It is used when no other option
is available since it consumes server resources and has an increased latency. The only time when TURN is
necessary is when one of the peers is behind a symmetric NAT and the other peer is behind either a symmetric
NAT or a port-restricted NAT.

VP8 VP8 is a video compression format created by On2 Technologies as a successor to VP7. Its patents rights are
owned by Google, who made an irrevocable patent promise on its patents for implementing it and released a
specification under the Creative Commons Attribution 3.0 license.

See also:

RFC 6386 VP8 Data Format and Decoding Guide

WebM WebM is an open media file format designed for the web. WebM files consist of video streams compressed
with the VP8 video codec and audio streams compressed with the Vorbis audio codec. The WebM file structure
is based on the Matroska media container.

WebRTC WebRTC is a set of protocols, mechanisms and APIs that provide browsers and mobile applications with
Real-Time Communications (RTC) capabilities over peer-to-peer connections.

See also:

WebRTC Working Draft

WebSocket WebSocket specification (developed as part of the HTML5 initiative) defines a full-duplex single socket
connection over which messages can be sent between client and server.

1.5. Glossary 43

https://tools.ietf.org/html/rfc3711.html
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/draft-ietf-ice-trickle-15
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/rfc5766
https://tools.ietf.org/html/rfc5766
https://creativecommons.org/licenses/by/3.0/
https://tools.ietf.org/html/rfc6386.html
http://www.webmproject.org/
https://webrtc.org/
http://www.w3.org/TR/webrtc/
https://www.websocket.org/

FIWARE-Stream-Oriented-GE, Release 6.8.0

44 Chapter 1. Why Using Kurento in a “Smart Solution”?

Index

A
Agnostic media, 37
AVI, 37

B
Bower, 37
Builder Pattern, 37

C
CORS, 37

D
DOM, 37

E
EOS, 38

G
GStreamer, 38

H
H.264, 38
HTTP, 38

I
ICE, 38
IMS, 38

J
jQuery, 38
JSON, 38
JSON-RPC, 38

K
KMS, 38
Kurento, 38
Kurento API, 38
Kurento Client, 38
Kurento Media Server, 38

Kurento Protocol, 38

M
Maven, 38
Media

Pad, 40
Pipeline, 39
Sink, 42
Source, 42

Media Element, 39
Media Pipeline, 39
Media Plane, 39
MP4, 39
Multimedia, 39
Multimedia container format, 39

N
NAT, 39
NAT Traversal, 39
NAT-T, 39
Network Address Translation, 39
Node.js, 40
npm, 40

O
OpenCL, 40
OpenCV, 40

P
Pad, Media, 40
Plane

Media, 39
Signaling, 42

PubNub, 40

Q
QR, 40

R
REMB, 40

45

FIWARE-Stream-Oriented-GE, Release 6.8.0

REST, 40
RFC

RFC 2616, 38
RFC 3550, 41
RFC 3574, 38
RFC 3605, 40
RFC 3711, 43
RFC 3984, 38
RFC 4566, 42
RFC 4568, 42
RFC 5245, 38
RFC 5246, 43
RFC 6184, 38
RFC 6386, 43

RTCP, 40
RTP, 41

S
Same-origin policy, 41
SDP, 41
SDP Offer/Answer, 41
Semantic Versioning, 42
Session Description Protocol, 41
Signaling Plane, 42
Single-Page Application, 42
Sink, Media, 42
SIP, 42
Source, Media, 42
SPA, 42
Sphinx, 42
Spring Boot, 42
SRTCP, 42
SRTP, 43
SSL, 43
STUN, 43

T
TLS, 43
Trickle ICE, 43
TURN, 43

V
VP8, 43

W
WebM, 43
WebRTC, 43
WebSocket, 43

46 Index

	Why Using Kurento in a “Smart Solution”?
	KURENTO QUICK START GUIDE
	FIWARE Stream Oriented Generic Enabler - Installation and Administration Guide
	Introduction
	Requirements

	Installation
	KMS
	Built-in modules

	Running Kurento from a Docker container
	Configuration
	STUN and TURN Configuration
	STUN Configuration
	TURN Configuration
	Remarks

	Debug Logging
	KMS Logging levels and components
	Suggested levels
	3rd-party libraries: libnice

	Programmers Manual
	Writing Kurento Applications
	Global Architecture
	Application Architecture
	Communicating client, server and Kurento
	1. Media negotiation phase (signaling)
	2. Media exchange phase

	Real time WebRTC applications with Kurento

	Media Pipeline

	Integration with Orion: kurento-fiware java module
	How to use it
	Processing Media Streams
	Kurento Events
	MediaEvents to Orion

	Devices
	Other entities
	More
	Java Module - Plate Detector Filter
	For the impatient: running this example
	Understanding this example
	Dependencies

	Writing Kurento Modules
	OpenCV module
	GStreamer module
	For both kind of modules
	Examples

	Tutorials
	Genal Java Kurento tutorials
	Kurento modules Java tutorials
	Smart Solition tutorials

	FIWARE Stream Oriented Generic Enabler - Open API Specification
	Ping
	Request
	Response

	Create
	Request
	Response

	Invoke
	Request
	Response

	Release
	Request
	Response

	Subscribe
	Request
	Response

	Unsubscribe
	Request
	Response

	OnEvent
	Request
	Response

	Glossary

