
KubeEdge Documentation
Release 0.1

KubeEdge

Mar 25, 2019

Contents

1 Welcome to KubeEdge 3
1.1 Why KubeEdge? . 3
1.2 First Steps . 3

2 How to contribute 5
2.1 Email and chat . 5
2.2 Getting started . 5
2.3 Reporting bugs and creating issues . 5

3 Roadmap 7
3.1 Release 1.0 . 7
3.2 Release 2.0 and Future . 7

4 Support 9
4.1 Community . 9

5 What is KubeEdge 11
5.1 Advantages . 11
5.2 Components . 12
5.3 Architecture . 12
5.4 Getting involved . 13

6 Beehive 15
6.1 Beehive Overview . 15
6.2 Message Format . 15
6.3 Register Module . 16
6.4 Channel Context Structure Fields . 16
6.5 Module Operations . 16
6.6 Message Operations . 17

7 EdgeD 19
7.1 Overview . 19
7.2 Pod Management . 20
7.3 Pod Lifecycle Event Generator . 22
7.4 Secret Management . 23
7.5 Probe Management . 24
7.6 ConfigMap Management . 24

i

7.7 Container GC . 25
7.8 Image GC . 26
7.9 Status Manager . 26
7.10 Volume Management . 26
7.11 MetaClient . 27

8 EventBus 29
8.1 Overview . 29
8.2 Topic . 29
8.3 Flow chart . 30

9 MetaManager 33
9.1 Overview . 33
9.2 Insert Operation . 33
9.3 Update Operation . 34
9.4 Delete Operation . 35
9.5 Query Operation . 36
9.6 Response Operation . 37
9.7 NodeConnection Operation . 37
9.8 MetaSync Operation . 38

10 Edgehub 39
10.1 Overview . 39
10.2 Get CloudHub URL . 39
10.3 Keep Alive . 40
10.4 Publish Client Info . 40
10.5 Route To Cloud . 40
10.6 Route To Edge . 41

11 DeviceTwin 43
11.1 Overview . 43
11.2 Operations Performed By Device Twin Controller . 43
11.3 Modules . 44
11.4 Tables . 51

12 Edge Controller 53
12.1 Edge Controller Overview . 53
12.2 Operations Performed By Edge Controller . 53
12.3 Downstream Controller: . 53
12.4 Upstream Controller: . 54
12.5 Controller Manager: . 55

13 CloudHub 57
13.1 CloudHub Overview . 57

14 Pre-requisites 59

15 Setup KubeEdge 61
15.1 Prerequisites . 61
15.2 Install docker . 61
15.3 Install kubeadm/kubectl . 62
15.4 Install Kubernetes . 62
15.5 Install mosquitto . 63
15.6 Authentication . 63
15.7 Build . 64

ii

15.8 Run KubeEdge . 64
15.9 Deploy Application . 65
15.10 Run Edge Unit Tests . 65
15.11 Run Edge Integration Tests . 65

16 Cross Compiling KubeEdge 67
16.1 For ARM Architecture from x86 Architecture . 67

17 Try KubeEdge with HuaweiCloud (IEF) 69
17.1 Intelligent EdgeFabric (IEF) . 69

18 MQTT Message Topics 71
18.1 Subscribe Topics . 71

19 Unit Test Guide 73
19.1 Unit Test . 73
19.2 Mocks . 73
19.3 Ginkgo . 74
19.4 Writing UT using GoMock . 74

20 FAQs 77

iii

iv

KubeEdge Documentation, Release 0.1

KubeEdge is an open source system for extending native containerized application or-
chestration capabilities to hosts at Edge.

Contents 1

https://kubeedge.io

KubeEdge Documentation, Release 0.1

2 Contents

CHAPTER 1

Welcome to KubeEdge

KubeEdge is an open source system for extending native containerized application orchestration capabilities to hosts
at Edge.

1.1 Why KubeEdge?

Learn about KubeEdge and the KubeEdge Mission here

1.2 First Steps

To get the most out of KubeEdge, start by reviewing a few introductory topics:

• Setup - Install KubeEdge

• Integrate with IEF - Integrate with the Intelligent Edge Fabric cloud

• Contributing - Contribute to KubeEdge

• Troubleshooting - Troubleshoot commonly occurring issues. GitHub issues are here

3

../modules/kubeedge.html
../setup/setup.html
../guides/try_kubeedge_with_ief.html
contribute.html
../troubleshooting/troubleshooting.html
https://github.com/kubeedge/kubeedge/issues

KubeEdge Documentation, Release 0.1

4 Chapter 1. Welcome to KubeEdge

CHAPTER 2

How to contribute

Kubeedge is Apache 2.0 licensed and accepts contributions via GitHub pull requests. This document outlines some
of the conventions on commit message formatting, contact points for developers, and other resources to help get
contributions into kubeedge.

2.1 Email and chat

• Email: kubeedge

• Slack: kubeedge

2.2 Getting started

• Fork the repository on GitHub

• Read the setup for build instructions

2.3 Reporting bugs and creating issues

Reporting bugs is one of the best ways to contribute. However, a good bug report has some very specific qualities, so
please read over our short document on reporting bugs before submitting a bug report. This document might contain
links to known issues, another good reason to take a look there before reporting a bug.

2.3.1 Contribution flow

This is a rough outline of what a contributor’s workflow looks like:

• Create a topic branch from where to base the contribution. This is usually master.

5

https://groups.google.com/forum/?hl=en#%21forum/kubeedge
https://join.slack.com/t/kubeedge/shared_invite/enQtNDg1MjAwMDI0MTgyLTQ1NzliNzYwNWU5MWYxOTdmNDZjZjI2YWE2NDRlYjdiZGYxZGUwYzkzZWI2NGZjZWRkZDVlZDQwZWI0MzM1Yzc
../setup/setup.md#build
reporting_bugs.html

KubeEdge Documentation, Release 0.1

• Make commits of logical units.

• Make sure commit messages are in the proper format (see below).

• Push changes in a topic branch to a personal fork of the repository.

• Submit a pull request to kubeedge/kubeedge.

• The PR must receive an approval from two maintainers.

Thanks for contributing!

2.3.2 Code style

The coding style suggested by the Golang community is used in kubeedge. See the style doc for details.

Please follow this style to make kubeedge easy to review, maintain and develop.

2.3.3 Format of the commit message

We follow a rough convention for commit messages that is designed to answer two questions: what changed and why.
The subject line should feature the what and the body of the commit should describe the why.

scripts: add test codes for metamanager

this add some unit test codes to imporve code coverage for metamanager

Fixes #12

The format can be described more formally as follows:

<subsystem>: <what changed>
<BLANK LINE>
<why this change was made>
<BLANK LINE>
<footer>

The first line is the subject and should be no longer than 70 characters, the second line is always blank, and other lines
should be wrapped at 80 characters. This allows the message to be easier to read on GitHub as well as in various git
tools.

6 Chapter 2. How to contribute

https://github.com/golang/go/wiki/CodeReviewComments

CHAPTER 3

Roadmap

3.1 Release 1.0

KubeEdge will provide the fundamental infrastructure and basic functionalities for IOT/Edge workload. This includes:

• K8s Application deployment through kubectl from Cloud to Edge node(s)

• K8s configmap, secret deployment through kubectl from Cloud to Edge node(s) and their applications in Pod

• Bi-directional and multiplex network communication between Cloud and edge nodes

• K8s Pod and Node status querying with kubectl at Cloud with data collected/reported from Edge

• Edge node autonomy when its getting offline and recover post reconnection to Cloud

• Device twin and MQTT protocol for IOT devices talking to Edge node

3.2 Release 2.0 and Future

• Build service mesh with KubeEdge and Istio

• Enable function as a service at Edge

• Support more types of device protocols to Edge node such as AMQP, BlueTooth, ZigBee, etc.

• Evaluate and enable super large scale of Edge clusters with thousands of Edge nodes and millions of devices

• Enable intelligent scheduling of apps. to large scale of Edge nodes

• etc.

7

KubeEdge Documentation, Release 0.1

8 Chapter 3. Roadmap

CHAPTER 4

Support

If you need support, start with the troubleshooting guide, and work your way through the process that we’ve outlined.

4.1 Community

Slack channel:

We use Slack for public discussions. To chat with us or the rest of the community, join us in the KubeEdge Slack team
channel #general. To sign up, use our Slack inviter link here.

Mailing List

Please sign up on our mailing list

9

../troubleshooting/troubleshooting.html
https://kubeedge.slack.com
https://join.slack.com/t/kubeedge/shared_invite/enQtNDg1MjAwMDI0MTgyLTQ1NzliNzYwNWU5MWYxOTdmNDZjZjI2YWE2NDRlYjdiZGYxZGUwYzkzZWI2NGZjZWRkZDVlZDQwZWI0MzM1Yzc
https://groups.google.com/forum/#%21forum/kubeedge

KubeEdge Documentation, Release 0.1

10 Chapter 4. Support

CHAPTER 5

What is KubeEdge

KubeEdge is an open source system extending native containerized application orchestration and device management
to hosts at the Edge. It is built upon Kubernetes and provides core infrastructure support for networking, application
deployment and metadata synchronization between cloud and edge. It also supports MQTT and allows developers to
author custom logic and enable resource constrained device communication at the Edge. Kubeedge consists of a cloud
part and an edge part. Both edge and cloud parts are now opensourced.

5.1 Advantages

The advantages of Kubeedge include mainly:

• Edge Computing

With business logic running at the Edge, much larger volumes of data can be secured & processed locally where
the data is produced. This reduces the network bandwidth requirements and consumption between Edge and
Cloud. This increases responsiveness, decreases costs, and protects customers’ data privacy.

• Simplified development

Developers can write regular http or mqtt based applications, containerize these, and run them anywhere - either
at the Edge or in the Cloud - whichever is more appropriate.

• Kubernetes-native support

With KubeEdge, users can orchestrate apps, manage devices and monitor app and device status on Edge nodes
just like a traditional Kubernetes cluster in the Cloud

• Abundant applications

It is easy to get and deploy existing complicated machine learning, image recognition, event processing and
other high level applications to the Edge.

11

KubeEdge Documentation, Release 0.1

5.2 Components

KubeEdge is composed of these components:

• Edged: an agent that runs on edge nodes and manages containerized applications.

• EdgeHub: a web socket client responsible for interacting with Cloud Service for edge computing (like Edge
Controller as in the KubeEdge Architecture). This includes syncing cloud-side resource updates to the edge and
reporting edge-side host and device status changes to the cloud.

• CloudHub:: A web socket server responsible for watching changes at the cloud side, caching and sending
messages to EdgeHub.

• EdgeController: an extended kubernetes controller which manages edge nodes and pods metadata so that the
data can be targeted to a specific edge node.

• EventBus: an MQTT client to interact with MQTT servers (mosquitto), offering publish and subscribe capabil-
ities to other components.

• DeviceTwin: responsible for storing device status and syncing device status to the cloud. It also provides query
interfaces for applications.

• MetaManager: the message processor between edged and edgehub. It is also responsible for storing/retrieving
metadata to/from a lightweight database (SQLite).

5.3 Architecture

KubeEdge
Architecture

12 Chapter 5. What is KubeEdge

edge/edged.html
edge/edgehub.html
cloud/cloudhub.html
cloud/controller.html
edge/eventbus.html
edge/devicetwin.html
edge/metamanager.html

KubeEdge Documentation, Release 0.1

5.4 Getting involved

There are many ways to contribute to Kubeedge, and we welcome contributions!

Read the contributor’s guide to get started on the code.

5.4. Getting involved 13

../getting-started/contribute.html

KubeEdge Documentation, Release 0.1

14 Chapter 5. What is KubeEdge

CHAPTER 6

Beehive

6.1 Beehive Overview

Beehive is a messaging framework based on go-channels for communication between modules of KubeEdge. A
module registered with beehive can communicate with other beehive modules if the name with which other beehive
module is registered or the name of the group of the module is known. Beehive supports following module operations:

1. Add Module

2. Add Module to a group

3. CleanUp (remove a module from beehive core and all groups)

Beehive supports following message operations:

1. Send to a module/group

2. Receive by a module

3. Send Sync to a module/group

4. Send Response to a sync message

6.2 Message Format

Message has 3 parts

1. Header:

1. ID: message ID (string)

2. ParentID: if it is a response to a sync message then parentID exists (string)

3. TimeStamp: time when message was generated (int)

4. Sync: flag to indicate if message is of type sync (bool)

2. Route:

15

KubeEdge Documentation, Release 0.1

1. Source: origin of message (string)

2. Group: the group to which the message has to be broadcasted (string)

3. Operation: what’s the operation on the resource (string)

4. Resource: the resource to operate on (string)

3. Content: content of the message (interface{})

6.3 Register Module

1. On starting edge_core, each module tries to register itself with the beehive core.

2. Beehive core maintains a map named modules which has module name as key and implementation of module
interface as value.

3. When a module tries to register itself with beehive core, beehive core checks from already loaded modules.yaml
config file to check if the module is enabled. If it is enabled, it is added in the modules map or else it is added in
the disabled modules map.

6.4 Channel Context Structure Fields

6.4.1 (Important for understanding beehive operations)

1. channels: channels is a map of string(key) which is name of module and chan(value) of message which will
used to send message to the respective module.

2. chsLock: lock for channels map

3. typeChannels: typeChannels is is map of string(key)which is group name and (map of string(key) to
chan(value) of message) (value) which is map of name of each module in the group to the channels of cor-
responding module.

4. typeChsLock: lock for typeChannels map

5. anonChannels: anonChannels is a map of string(parentid) to chan(value) of message which will be used for
sending response for a sync message.

6. anonChsLock: lock for anonChannels map

6.5 Module Operations

6.5.1 Add Module

1. Add module operation first creates a new channel of message type.

2. Then the module name(key) and its channel(value) is added in the channels map of channel context structure.

3. Eg: add edged module

coreContext.Addmodule(“edged”)

16 Chapter 6. Beehive

KubeEdge Documentation, Release 0.1

6.5.2 Add Module to Group

1. addModuleGroup first gets the channel of a module from the channels map.

2. Then the module and its channel is added in the typeChannels map where key is the group and in the value is a
map in which (key is module name and value is the channel).

3. Eg: add edged in edged group. Here 1st edged is module name and 2nd edged is the group name.

coreContext.AddModuleGroup(“edged”,”edged”)

6.5.3 CleanUp

1. CleanUp deletes the module from channels map and deletes the module from all groups(typeChannels map).

2. Then the channel associated with the module is closed.

3. Eg: CleanUp edged module

coreContext.CleanUp(“edged”)

6.6 Message Operations

6.6.1 Send to a Module

1. Send gets the channel of a module from channels map.

2. Then the message is put on the channel.

3. Eg: send message to edged.

coreContext.Send(“edged”,message)

6.6.2 Send to a Group

1. Send2Group gets all modules(map) from the typeChannels map.

2. Then it iterates over the map and sends the message on the channels of all modules in the map.

3. Eg: message to be sent to all modules in edged group.

coreContext.Send2Group(“edged”,message) message will be sent to all modules in edged
→˓group.

6.6.3 Receive by a Module

1. Receive gets the channel of a module from channels map.

2. Then it waits for a message to arrive on that channel and returns the message. Error is returned if there is any.

3. Eg: receive message for edged module

msg, err := coreContext.Receive("edged")

6.6. Message Operations 17

KubeEdge Documentation, Release 0.1

6.6.4 SendSync to a Module

1. SendSync takes 3 parameters, (module, message and timeout duration)

2. SendSync first gets the channel of the module from the channels map.

3. Then the message is put on the channel.

4. Then a new channel of message is created and is added in anonChannels map where key is the messageID.

5. Then it waits for the message(response) to be received on the anonChannel it created till timeout.

6. If message is received before timeout, message is returned with nil error or else timeout error is returned.

7. Eg: send sync to edged with timeout duration 60 seconds

response, err := coreContext.SendSync("edged",message,60*time.Second)

6.6.5 SendSync to a Group

1. Get the list of modules from typeChannels map for the group.

2. Create a channel of message with size equal to the number of modules in that group and put in anonChannels
map as value with key as messageID.

3. Send the message on channels of all the modules.

4. Wait till timeout. If the length of anonChannel = no of modules in that group, check if all the messages in the
channel have parentID = messageID. If no return error else return nil error.

5. If timeout is reached,return timeout error.

6. Eg: send sync message to edged group with timeout duration 60 seconds

err := coreContext.Send2GroupSync("edged",message,60*time.Second)

6.6.6 SendResp to a sync message

1. SendResp is used to send response for a sync message.

2. The messageID for which response is sent needs to be in the parentID of the response message.

3. When SendResp is called, it checks if for the parentID of response message , there exists a channel is anon-
Channels.

4. If channel exists, message(response) is sent on that channel.

5. Or else error is logged.

coreContext.SendResp(respMessage)

18 Chapter 6. Beehive

CHAPTER 7

EdgeD

7.1 Overview

EdgeD is an edge node module which manages pod lifecycle. It helps user to deploy containerized workloads or
applications at the edge node. Those workloads could perform any operation from simple telemetry data manipulation
to analytics or ML inference and so on. Using kubectl command line interface at the cloud side, user can issue
commands to launch the workloads.

Docker container runtime is currently supported for container and image management. In future other runtime support
shall be added, like containerd etc.,

There are many modules which work in tandom to achive edged’s functionalities.

19

KubeEdge Documentation, Release 0.1

EdgeD
OverAll

Fig 1: EdgeD Functionalities

7.2 Pod Management

It is handles for pod addition, deletion and modification. It also tracks the health of the pods using pod status manager
and pleg. Its primary jobs are as follows:

• Receives and handles pod addition/deletion/modification messages from metamanager.

• Handles separate worker queues for pod addition and deletion.

• Handles worker routines to check worker queues to do pod operations.

• Keeps separate cache for config map and secrets respectively.

• Regular cleanup of orphaned pods

20 Chapter 7. EdgeD

KubeEdge Documentation, Release 0.1

Pod
Addition Flow

Fig 2: Pod Addition Flow

Pod
Deletion Flow

Fig 3: Pod Deletion Flow

7.2. Pod Management 21

KubeEdge Documentation, Release 0.1

Pod
Updation Flow

Fig 4: Pod Updation Flow

7.3 Pod Lifecycle Event Generator

This module helps in monitoring pod status for edged. Every second, using probe’s for liveliness and readyness, it
updates the information with pod status manager for every pod.

PLEG
Design

Fig 5: PLEG at EdgeD

22 Chapter 7. EdgeD

KubeEdge Documentation, Release 0.1

7.4 Secret Management

At edged, Secrets are handled separately. For its operations like addition, deletion and modifications; there are separate
set of config messages or interfaces. Using these interfaces, secrets are updated in cache store. Below flow diagram
explains the message flow.

Secret
Message Handling

Fig 6: Secret Message Handling at EdgeD

Also edged uses MetaClient module to fetch secret from Metamanager (if available with it) else cloud. Whenever
edged queries for a new secret which Metamanager doesn’t has, the request is forwared to cloud. Before sending the
response containing the secret, it stores a copy of it and send it to edged. Hence the subsequent query for same secret
key will be responded by Metamanger only, hence reducing the response delay. Below flow diagram shows, how secret
is fetched from metamanager and cloud. The flow of how secret is saved in metamanager.

7.4. Secret Management 23

KubeEdge Documentation, Release 0.1

Query
Secret

Fig 7: Query Secret by EdgeD

7.5 Probe Management

Probe management creates to probes for readiness and liveliness respectively for pods to monitor the containers.
Readiness probe helps by monitoring when the pod has reached to running state. Liveliness probe helps in monitoring
the health of pods, if they are up or down. As explained earlier PLEG module uses its services.

7.6 ConfigMap Management

At edged, ConfigMap are also handled separately. For its operations like addition, deletion and modifications; there
are separate set of config messages or interfaces. Using these interfaces, configMaps are updated in cache store. Below
flow diagram explains the message flow.

24 Chapter 7. EdgeD

KubeEdge Documentation, Release 0.1

ConfigMap
Message Handling

Fig 8: ConfigMap Message Handling at EdgeD

Also edged uses MetaClient module to fetch configmap from Metamanager (if available with it) else cloud. Whenever
edged queries for a new configmaps which Metamanager doesn’t has, the request is forwared to cloud. Before sending
the response containing the configmaps, it stores a copy of it and send it to edged. Hence the subsequent query
for same configmaps key will be responded by Metamanger only, hence reducing the response delay. Below flow
diagram shows, how configmaps is fetched from metamanager and cloud. The flow of how configmaps is saved in
metamanager.

Query
Configmaps

Fig 9: Query Configmaps by EdgeD

7.7 Container GC

Container garbage collector is an edged routine which wakes up every minute, collecting and removing dead containers
using the specified container gc policy The policy for garbage collecting containers we apply takes on three variables,
which can be user-defined. MinAge is the minimum age at which a container can be garbage collected, zero for

7.7. Container GC 25

KubeEdge Documentation, Release 0.1

no limit. MaxPerPodContainer is the max number of dead containers any single pod (UID, container name) pair is
allowed to have, less than zero for no limit. MaxContainers is the max number of total dead containers, less than zero
for no limit as well. Gernerally the oldest containers are removed first.

7.8 Image GC

Image garbage collector is an edged routine which wakes up every 5 secs, collects information about disk usage
based on the policy used. The policy for garbage collecting images we apply takes two factors into consideration,
HighThresholdPercent and LowThresholdPercent. Disk usage above the high threshold will trigger garbage collection,
which attempts to delete unused images until the low threshold is met. Least recently used images are deleted first.

7.9 Status Manager

Status manager is as an independent edge routine, which collects pods statuses every 10 seconds and forwards this
information with cloud using metaclient interface to the cloud.

Status
Manager Flow

Fig 10: Status Manager Flow

7.10 Volume Management

Volume manager runs as an edge routine which brings out the information of which volume(s) are to be at-
tached/mounted/unmounted/detached based on pods scheduled on the edge node.

Before starting the pod, all the specified volumes referenced in pod specs are attached and mounted, Till then the flow
is blocked and with it other operations.

26 Chapter 7. EdgeD

KubeEdge Documentation, Release 0.1

7.11 MetaClient

Metaclient is an interface of Metamanger for edged. It helps edge to get configmap and secret details from metaman-
ager or cloud. It also sends sync messages, node status and pod status towards metamanger to cloud.

7.11. MetaClient 27

KubeEdge Documentation, Release 0.1

28 Chapter 7. EdgeD

CHAPTER 8

EventBus

8.1 Overview

Eventbus acts as an interface for sending/receiving messages on mqtt topics.

It supports 3 kinds of mode:

• internalMqttMode

• externalMqttMode

• bothMqttMode

8.2 Topic

eventbus subscribes to the following topics:

- $hw/events/upload/#
- SYS/dis/upload_records
- SYS/dis/upload_records/+
- $hw/event/node/+/membership/get
- $hw/event/node/+/membership/get/+
- $hw/events/device/+/state/update
- $hw/events/device/+/state/update/+
- $hw/event/device/+/twin/+

Note: topic wildcards

29

KubeEdge Documentation, Release 0.1

8.3 Flow chart

8.3.1 1. eventbus sends messages from external client

eventbus
sends messages from external client

30 Chapter 8. EventBus

KubeEdge Documentation, Release 0.1

8.3.2 2. eventbus sends response messages to external client

eventbus
sends response messages to external client

8.3. Flow chart 31

KubeEdge Documentation, Release 0.1

32 Chapter 8. EventBus

CHAPTER 9

MetaManager

9.1 Overview

MetaManager is the message processor between edged and edgehub. It’s also responsible for storing/retrieving meta-
data to/from a lightweight database(SQLite).

Metamanager receives different types of messages based on the operations listed below :

• Insert

• Update

• Delete

• Query

• Response

• NodeConnection

• MetaSync

9.2 Insert Operation

Insert operation messages are received via the cloud when new objects are created. An example could be a new
user application pod created/deployed through the cloud.

33

KubeEdge Documentation, Release 0.1

Insert
Operation

The insert operation request is received via the cloud by edgehub. It dispatches the request to the metamanager
which saves this message in the local database. metamanager then sends an asynchronous message to edged. edged
processes the insert request e,g. by starting the pod and populates the response in the message. metamanager inspects
the message, extracts the response and sends it back to edged which sends it back to the cloud.

9.3 Update Operation

Update operations can happen on objects at the cloud/edge.

The update message flow is similar to an insert operation. Additionally, metamanager checks if the resource being
updated has changed locally. If there is a delta, only then the update is stored locally and the message is passed to
edged and response is sent back to the cloud.

34 Chapter 9. MetaManager

KubeEdge Documentation, Release 0.1

Update
Operation

9.4 Delete Operation

Delete operations are triggered when objects like pods are deleted from the cloud.

9.4. Delete Operation 35

KubeEdge Documentation, Release 0.1

Delete
Operation

9.5 Query Operation

Query operations let you query for metadata either locally at the edge or for some remote resources like config
maps/secrets from the cloud. edged queries this metadata from metamanager which further handles local/remote
query processing and returns the response back to edged. A Message resource can be broken into 3 parts
(resKey,resType,resId) based on separator ‘/’.

36 Chapter 9. MetaManager

KubeEdge Documentation, Release 0.1

Query
Operation

9.6 Response Operation

Responses are returned for any operations performed at the cloud/edge. Previous operations showed the response
flow either from the cloud or locally at the edge.

9.7 NodeConnection Operation

NodeConnection operation messages are received from edgeHub to give information about the cloud connection
status. metamanager tracks this state in-memory and uses it in certain operations like remote query to the cloud.

9.6. Response Operation 37

KubeEdge Documentation, Release 0.1

9.8 MetaSync Operation

MetaSync operation messages are periodically sent by metamanager to sync the status of the pods running on the
edge node. The sync interval is configurable in conf\edge.yaml (defaults to 60 seconds).

meta:
sync:

podstatus:
interval: 60 #seconds

38 Chapter 9. MetaManager

CHAPTER 10

Edgehub

10.1 Overview

Edge hub is a web socket client, which is responsible for interacting with Huawei Cloud IEF service. It supports
functions like sync cloud side resources update, report edged side host and device status changes.

It acts as the communication link between the edge and the cloud. It forwards the messages received from the cloud
to the corresponding module at the edge and vice-versa.

The main functions performed by edgehub are :-

• Get CloudHub URL

• Keep Alive

• Publish Client Info

• Route to Cloud

• Route to Edge

10.2 Get CloudHub URL

The main responsibility of get cloudHub URL is to contact the placement server and get the URL of cloudHub.

1. A HTTPS client is created using the certificates provided

2. A get request is sent to the placement URL

3. ProjectID and NodeID are added to the body of the response received from the placement URL to form the
cloudHub URL.

bodyBytes, _ := ioutil.ReadAll(resp.Body)
url := fmt.Sprintf("%s/%s/%s/events", string(bodyBytes), ehc.config.ProjectID, ehc.
→˓config.NodeID)

39

KubeEdge Documentation, Release 0.1

10.3 Keep Alive

A keep-alive message or heartbeat is sent to cloudHub after every heartbeatPeriod.

10.4 Publish Client Info

• The main responsibility of publish client info is to inform the other groups or modules regarding the status of
connection to the cloud.

• It sends a beehive message to all groups (namely metaGroup, twinGroup and busGroup), informing them
whether cloud is connected or disconnected.

10.5 Route To Cloud

The main responsibility of route to cloud is to receive from the other modules (through beehive framework), all the
messages that are to be sent to the cloud, and send them to cloudHub through the websocket connection.

The major steps involved in this process are as follows :-

1. Continuously receive messages from beehive Context

2. Send that message to cloudHub

3. If the message received is a sync message then :

3.1 If response is received on syncChannel then it creates a map[string] chan containing the messageID of the
message as key

3.2 It waits for one heartbeat period to receive a response on the channel created, if it does not receive any
response on the channel within the specified time then it times out.

3.3 The response received on the channel is sent back to the module using the SendResponse() function.

Route

40 Chapter 10. Edgehub

KubeEdge Documentation, Release 0.1

to Cloud

10.6 Route To Edge

The main responsibility of route to edge is to receive messages from the cloud (through the websocket connection)
and send them to the required groups through the beehive framework.

The major steps involved in this process are as follows :-

• Receive message from cloudHub

• Check whether the route group of the message is found.

• Check if it is a response to a SendSync() function.

• If it is not a response message then the message is sent to the required group

• If it is a response message then the message is sent to the syncKeep channel

Route
to Edge

10.6. Route To Edge 41

KubeEdge Documentation, Release 0.1

42 Chapter 10. Edgehub

CHAPTER 11

DeviceTwin

11.1 Overview

DeviceTwin module is responsible for storing device status, dealing with device attributes, handling device twin oper-
ations, creating a membership between the edge device and edge node, syncing device status to the cloud and syncing
the device twin information between edge and cloud. It also provides query interfaces for applications. Device twin
consists of four sub modules (namely membership module, communication module, device module and device twin
module) to perform the responsibilities of device twin module.

11.2 Operations Performed By Device Twin Controller

The following are the functions performed by device twin controller :-

• Sync metadata to/from db (Sqlite)

• Register and Start Sub Modules

• Distribute message to Sub Modules

• Health Check

11.2.1 Sync Metadata to/from db (Sqlite)

For all devices managed by the edge node , the device twin performs the below operations :-

• It checks if the device in the device twin context (the list of devices are stored inside the device twin context), if
not it adds a mutex to the context.

• Query device from database

• Query device attribute from database

• Query device twin from database

43

KubeEdge Documentation, Release 0.1

• Combine the device, device attribute and device twin data together into a single structure and stores it in the
device twin context.

11.2.2 Register and Start Sub Modules

Registers the four device twin modules and starts them as separate go routines

11.2.3 Distribute Message To Sub Modules

1. Continuously listen for any device twin message in the beehive framework.

2. Send the received message to the communication module of device twin

3. Classify the message according to the message source, i.e. whether the message is from eventBus, edgeManager
or edgeHub, and fills the action module map of the module (ActionModuleMap is a map of action to module)

4. Send the message to the required device twin module

11.2.4 Health Check

The device twin controller periodically (every 60 s) sends ping messages to submodules. Each of the submodules
updates the timestamp in a map for itself once it receives a ping. The controller checks if the timestamp for a module
is more than 2 minutes old and restarts the submodule if true.

11.3 Modules

DeviceTwin consists of four modules, namely :-

• Membership Module

• Twin Module

• Communication Module

• Device Module

11.3.1 Membership Module

The main responsibility of the membership module is to provide membership to the new devices added through the
cloud to the edge node. This module binds the newly added devices to the edge node and creates a membership
between the edge node and the edge devices.

The major functions performed by this module are:-

1. Initialize action callback map which is a map[string]Callback that contains the callback functions that can be
performed

2. Receive the messages sent to membership module

3. For each message the action message is read and the corresponding function is called

4. Receive heartbeat from the heartbeat channel and send a heartbeat to the controller

The following are the action callbacks which can be performed by the membership module :-

• dealMembershipGet

44 Chapter 11. DeviceTwin

KubeEdge Documentation, Release 0.1

• dealMembershipUpdated

• dealMembershipDetail

dealMembershipGet: dealMembershipGet() gets the information about the devices associated with the particular
edge node, from the cache.

• The eventbus first receives a message on its subscribed topic (membership-get topic).

• This message arrives at the devicetwin controller, which further sends the message to membership module.

• The membership module gets the devices associated with the edge node from the cache (context) and sends the
information to the communication module. It also handles errors that may arise while performing the aforemen-
tioned process and sends the error to the communication module instead of device details.

• The communication module sends the information to the eventbus component which further publishes the result
on the specified MQTT topic (get membership result topic).

Membership
Get()

dealMembershipUpdated: dealMembershipUpdated() updates the membership details of the node. It adds the de-
vices, that were newly added, to the edge group and removes the devices, that were removed, from the edge group and
updates device details, if they have been altered or updated.

• The eventbus module receives the message that arrives on the subscribed topic and forwards the message to
devicetwin controller which further forwards it to the membership module.

• The membership module adds devices that are newly added, removes devices that have been recently deleted
and also updates the devices that were already existing in the database as well as in the cache.

• After updating the details of the devices a message is sent to the communication module of the device twin,
which sends the message to eventbus module to be published on the given MQTT topic.

11.3. Modules 45

KubeEdge Documentation, Release 0.1

Membership
Update

dealMembershipDetail: dealMembershipDetail() provides the membership details of the edge node, providing infor-
mation about the devices associated with the edge node, after removing the membership details of recently removed
devices.

• The eventbus module receives the message that arrives on the subscribed topic,the message is then forwarded to
the devicetwin controller which further forwards it to the membership module.

• The membership module adds devices that are mentioned in the message, removes devices that that are not
present in the cache.

• After updating the details of the devices a message is sent to the communication module of the device twin.

Membership
Detail

11.3.2 Twin Module

The main responsibility of the twin module is to deal with all the device twin related operations. It can perform
operations like device twin update, device twin get and device twin sync-to-cloud.

46 Chapter 11. DeviceTwin

KubeEdge Documentation, Release 0.1

The major functions performed by this module are:-

1. Initialize action callback map (which is a map of action(string) to the callback function that performs the re-
quested action)

2. Receive the messages sent to twin module

3. For each message the action message is read and the corresponding function is called

4. Receive heartbeat from the heartbeat channel and send a heartbeat to the controller

The following are the action callbacks which can be performed by the twin module :-

• dealTwinUpdate

• dealTwinGet

• dealTwinSync

dealTwinUpdate: dealTwinUpdate() updates the device twin information for a particular device.

• The devicetwin update message can either be received by edgehub module from the cloud or from the MQTT
broker through the eventbus component (mapper will publish a message on the device twin update topic) .

• The message is then sent to the device twin controller from where it is sent to the device twin module.

• The twin module updates the twin value in the database and sends the update result message to the communica-
tion module.

• The communication module will in turn send the publish message to the MQTT broker through the eventbus.

Device
Twin Update

dealTwinGet: dealTwinGet() provides the device twin information for a particular device.

• The eventbus component receives the message that arrives on the subscribed twin get topic and forwards the
message to devicetwin controller, which further sends the message to twin module.

• The twin module gets the devicetwin related information for the particular device and sends it to the communi-
cation module, it also handles errors that arise when the device is not found or if any internal problem occurs.

• The communication module sends the information to the eventbus component, which publishes the result on the
topic specified .

11.3. Modules 47

KubeEdge Documentation, Release 0.1

Device
Twin Get

dealTwinSync: dealTwinSync() syncs the device twin information to the cloud.

• The eventbus module receives the message on the subscribed twin cloud sync topic .

• This message is then sent to the devicetwin controller from where it is sent to the twin module.

• The twin module then syncs the twin information present in the database and sends the synced twin results to
the communication module.

• The communication module further sends the information to edgehub component which will in turn send the
updates to the cloud through the websocket connection.

• This function also performs operations like publishing the updated twin details document, delta of the device
twin as well as the update result (in case there is some error) to a specified topic through the communication
module, which sends the data to edgehub, which will send it to eventbus which publishes on the MQTT broker.

Sync
to Cloud

48 Chapter 11. DeviceTwin

KubeEdge Documentation, Release 0.1

11.3.3 Communication Module

The main responsibility of communication module is to ensure the communication functionality between device twin
and the other components.

The major functions performed by this module are:-

1. Initialize action callback map which is a map[string]Callback that contains the callback functions that can be
performed

2. Receive the messages sent to communication module

3. For each message the action message is read and the corresponding function is called

4. Confirm whether the actions specified in the message are completed or not, if the action is not completed then
redo the action

5. Receive heartbeat from the heartbeat channel and send a heartbeat to the controller

The following are the action callbacks which can be performed by the communication module :-

• dealSendToCloud

• dealSendToEdge

• dealLifeCycle

• dealConfirm

dealSendToCloud: dealSendToCloud() is used to send data to the cloudHub component. This function first ensures
that the cloud is connected, then sends the message to the edgeHub module (through the beehive framework), which
in turn will forward the message to the cloud (through the websocket connection).

dealSendToEdge: dealSendToEdge() is used to send data to the other modules present at the edge. This function
sends the message received to the edgeHub module using beehive framework. The edgeHub module after receiving
the message will send it to the required recipient.

dealLifeCycle: dealLifeCycle() checks if the cloud is connected and the state of the twin is disconnected, it then
changes the status to connected and sends the node details to edgehub. If the cloud is disconnected then, it sets the
state of the twin as disconnected.

dealConfirm: dealConfirm() is used to confirm the event. It checks whether the type of the message is right and then
deletes the id from the confirm map.

11.3.4 Device Module

The main responsibility of the device module is to perform the device related operations like dealing with device state
updates and device attribute updates.

The major functions performed by this module are :-

1. Initialize action callback map (which is a map of action(string) to the callback function that performs the re-
quested action)

2. Receive the messages sent to device module

3. For each message the action message is read and the corresponding function is called

4. Receive heartbeat from the heartbeat channel and send a heartbeat to the controller

The following are the action callbacks which can be performed by the device module :-

• dealDeviceUpdated

11.3. Modules 49

KubeEdge Documentation, Release 0.1

• dealDeviceStateUpdate

dealDeviceUpdated: dealDeviceUpdated() deals with the operations to be performed when a device attribute update
is encountered. It updates the changes to the device attributes, like addition of attributes, updation of attributes and
deletion of attributes, in the database. It also sends the result of the device attribute update to be published to the
eventbus component through the communicate module of devicetwin. The eventbus component further publishes the
result on the specified topic.

Device
Update

dealDeviceStateUpdate: dealDeviceStateUpdate() deals with the operations to be performed when a device status
update is encountered. It updates the state of the device as well as the last online time of the device in the database. It
also sends the update state result, through the communication module, to the cloud through the edgehub module and
to the eventbus module which in turn publishes the result on the specified topic of the MQTT broker.

Device
State Update

50 Chapter 11. DeviceTwin

KubeEdge Documentation, Release 0.1

11.4 Tables

DeviceTwin module creates three tables in the database, namely :-

• Device Table

• Device Attribute Table

• Device Twin Table

11.4.1 Device Table

Device table contains the data regarding the devices added to a particular edge node. The following are the columns
present in the device table :

Operations Performed :-

The following are the operations that can be performed on this data :-

• Save Device: Inserts a device in the device table

• Delete Device By ID: Deletes a device by its ID from the device table

• Update Device Field: Updates a single field in the device table

• Update Device Fields: Updates multiple fields in the device table

• Query Device: Queries a device from the device table

• Query Device All: Displays all the devices present in the device table

• Update Device Multi: Updates multiple columns of multiple devices in the device table

• Add Device Trans: Inserts device, device attribute and device twin in a single transaction, if any of these
operations fail, then it rolls back the other insertions

• Delete Device Trans: Deletes device, device attribute and device twin in a single transaction, if any of these
operations fail, then it rolls back the other deletions

11.4.2 Device Attribute Table

Device attribute table contains the data regarding the device attributes associated with a particular device in the edge
node. The following are the columns present in the device attribute table :

Operations Performed :-

The following are the operations that can be performed on this data :

• Save Device Attr: Inserts a device attribute in the device attribute table

• Delete Device Attr By ID: Deletes a device attribute by its ID from the device attribute table

• Delete Device Attr: Deletes a device attribute from the device attribute table by filtering based on device id and
device name

• Update Device Attr Field: Updates a single field in the device attribute table

• Update Device Attr Fields: Updates multiple fields in the device attribute table

• Query Device Attr: Queries a device attribute from the device attribute table

• Update Device Attr Multi: Updates multiple columns of multiple device attributes in the device attribute table

11.4. Tables 51

KubeEdge Documentation, Release 0.1

• Delete Device Attr Trans: Inserts device attributes, deletes device attributes and updates device attributes in a
single transaction.

11.4.3 Device Twin Table

Device twin table contains the data related to the device device twin associated with a particular device in the edge
node. The following are the columns present in the device twin table :

Operations Performed :-

The following are the operations that can be performed on this data :-

• Save Device Twin: Inserts a device twin in the device twin table

• Delete Device Twin By Device ID: Deletes a device twin by its ID from the device twin table

• Delete Device Twin: Deletes a device twin from the device twin table by filtering based on device id and device
name

• Update Device Twin Field: Updates a single field in the device twin table

• Update Device Twin Fields: Updates multiple fields in the device twin table

• Query Device Twin: Queries a device twin from the device twin table

• Update Device Twin Multi: Updates multiple columns of multiple device twins in the device twin table

• Delete Device Twin Trans: Inserts device twins, deletes device twins and updates device twins in a single
transaction.

52 Chapter 11. DeviceTwin

CHAPTER 12

Edge Controller

12.1 Edge Controller Overview

Controller(also known as edgecontroller) is the bridge between Kubernetes Api-Server and edgecore

12.2 Operations Performed By Edge Controller

The following are the functions performed by Edge controller :-

• Downstream Controller:Sync add/update/delete event to edgecore from K8s Api-server

• Upstream Controller:Sync watch and Update status of resource and events(node, pod and configmap) to K8s-
Api-server and also subscribe message from edgecore

• Controller Manager:Creates manager Interface which implements events for managing ConfigmapManager Lo-
cationCache and podManager

12.3 Downstream Controller:

12.3.1 Sync add/update/delete event to edge

• Downstream controller:Watches K8S-Api-server and send updates to edgecore via cloudHub

• Sync (pod,configmap,secret) add/update/delete event to edge via cloudHub

• Creates Respective manager (pod, configmap, secret) for handling events by calling manager interface

• Locates configmap and secret should be send to which node

53

KubeEdge Documentation, Release 0.1

Downstream
Controller

12.4 Upstream Controller:

12.4.1 Sync watch and Update status of resource and events

• UpstreamController receives messages from edgecore and sync the updates to K8S-Api-server

• Creates stop channel to dispatch and stop event to handle pods, configMaps, node and secrets

• Creates message channel to update Nodestatus, Podstatus, Secret and configmap related events

• Gets Podcondition information like Ready, Initialized, Podscheduled and Unschedulable details

• Below is the information for PodCondition

– Ready:PodReady means the pod is able to service requests and should be added to the load balancing
pools for all matching services

– PodScheduled:It represents status of the scheduling process for this pod

– Unschedulable:It means scheduler cannot schedule the pod right now, may be due to insufficient resources
in the cluster

– Initialized:It means that all Init containers in the pod have started sucessfully

– ContainersReady:It indicates whether all containers in the pod are ready

• Below is the information for PodStatus

54 Chapter 12. Edge Controller

KubeEdge Documentation, Release 0.1

– PodPhase:Current condition of the pod

– Conditions:Details indicating why the pod is in this condition

– HostIP:IP address of the host to which pod is assigned

– PodIp:IP address allocated to the Pod

– QosClass:Assigned to the pod based on resource requirement

Upstream
Controller

12.5 Controller Manager:

12.5.1 Creates manager Interface and implements ConfigmapManager Location-
Cache and podManager

• Manager defines the Interface of a manager, ConfigManager, Podmanager, secretmanager implements it

• Manages OnAdd, OnUpdate and OnDelete events which will be updated to the respective edge node from the
K8s-Api-server

• Creates an eventManager(configMaps, pod, secrets) which will start a CommonResourceEventHandler,
NewListWatch and a newShared Informer for each event to Sync(add/update/delete)event(pod, configmap, se-
cret) to edgecore via cloudHub

• Below is the List of handlers created by controller Manager

– CommonResourceEventHandler:NewcommonResourceEventHandler creates CommonResourceEven-
tHandler used for Configmap and pod Manager

12.5. Controller Manager: 55

KubeEdge Documentation, Release 0.1

– NewListWatch:Creates a new ListWatch from the specified client resource namespace and field selector

– NewSharedInformer:Creates a new Instance for the Listwatcher

56 Chapter 12. Edge Controller

CHAPTER 13

CloudHub

13.1 CloudHub Overview

CloudHub is a web socket client, which is the mediator between EdgeController and the Edge side. Its function is
enable the communication between edge and the EdgeController.

The connection to the edge(through EdgeHub module) is done through the HTTP over websocket connection. For
internal communication it directly communicates with the EdgeController. All the request send to CloudHub are of
context object which are stored in channelQ along with the mapped channels of event object marked to its nodeID.

The main functions performed by CloudHub are :-

• Get message context and create ChannelQ for events

• Create http connection over websocket

• Serve websocket connection

• Read message from edge

• Write message to edge

• Publish message to Controller

13.1.1 Get message context and create ChannelQ for events:

The context object is stored in a channelQ. For all nodeID channel is created and the message is converted to event
object Event object is then passed through the channel.

13.1.2 Create http connection over websocket:

• TLS certificates are loaded through the path provided in the context object

• HTTP server is started with TLS configurations

• Then HTTP connection is upgraded to websocket connection receiving conn object.

57

KubeEdge Documentation, Release 0.1

• ServeConn function the serves all the incoming connections

13.1.3 Read message from edge:

• First a deadline is set for keepalive interval

• Then the JSON message from connection is read

• After that Message Router details are set

• Message is then converted to event object for cloud internal communication

• In the end the event is published to EdgeController

13.1.4 Write Message to Edge:

• First all event objects are received for the given nodeID

• The existence of same request and the liveness of the node is checked

• The event object is converted to message structure

• Write deadline is set. Then the message is passed to the websocket connection

13.1.5 Publish Message to EdgeController:

• A default message with timestamp, clientID and event type is sent to controller every time a request is made to
websocket connection

• If the node gets disconnected then error is thrown and an event describing node failure is published to the
controller.

58 Chapter 13. CloudHub

CHAPTER 14

Pre-requisites

For best understanding of the guides, it’s useful to have some knowledge of the following systems:

• Kubernetes

• Mosquitto

• Docker

59

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://github.com/eclipse/mosquitto
https://docs.docker.com/v17.09/engine/docker-overview/#docker-engine

KubeEdge Documentation, Release 0.1

60 Chapter 14. Pre-requisites

CHAPTER 15

Setup KubeEdge

15.1 Prerequisites

To use KubeEdge, you will need to have docker installed. If you don’t, please follow these steps to install docker.

15.2 Install docker

For ubuntu:

Install Docker from Ubuntu's repositories:
apt-get update
apt-get install -y docker.io

or install Docker CE 18.06 from Docker's repositories for Ubuntu or Debian:
apt-get update && apt-get install apt-transport-https ca-certificates curl software-
→˓properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

apt-get update && apt-get install docker-ce=18.06.0~ce~3-0~ubuntu

For centOS:

Install Docker from CentOS/RHEL repository:
yum install -y docker

or install Docker CE 18.06 from Docker's CentOS repositories:
yum install yum-utils device-mapper-persistent-data lvm2
yum-config-manager \

--add-repo \
(continues on next page)

61

KubeEdge Documentation, Release 0.1

(continued from previous page)

https://download.docker.com/linux/centos/docker-ce.repo
yum update && yum install docker-ce-18.06.1.ce

KubeEdge’s Cloud(edgecontroller) connects to Kubernetes master to sync updates of node/pod status. If you don’t
have Kubernetes setup, please follow these steps to install Kubernetes using kubeadm.

15.3 Install kubeadm/kubectl

For Ubuntu:

apt-get update && apt-get install -y apt-transport-https curl
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb https://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl
apt-mark hold kubelet kubeadm kubectl

For CentOS:

at <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.
→˓google.com/yum/doc/rpm-package-key.gpg
exclude=kube*
EOF

Set SELinux in permissive mode (effectively disabling it)

setenforce 0
sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config

yum install -y kubelet kubeadm kubectl --disableexcludes=kubernetes

systemctl enable --now kubelet

15.4 Install Kubernetes

To initialize Kubernetes master, follow the below step:

kubeadm init

After initializing Kubernetes master, we need to expose insecure port 8080 for edgecontroller/kubectl to work with
http connection to api-server Please follow below steps to enable http port in apiserver

62 Chapter 15. Setup KubeEdge

KubeEdge Documentation, Release 0.1

vi /etc/kubernetes/manifests/kube-apiserver.yaml
Add the following flags in spec: containers: -command section
- --insecure-port=8080
- --insecure-bind-address=0.0.0.0

KubeEdge uses MQTT for communication between deviceTwin and devices. KubeEdge supports 3 MQTT modes:

• 0 - internalMqttMode: internal mqtt broker is enabled

• 1 - bothMqttMode: internal as well as external broker are enabled

• 2 - externalMqttMode: only external broker is enabled

Use mode field in edge.yaml to select the desired mode

mqtt:
server: tcp://127.0.0.1:1883 # external mqtt broker url.
internal-server: tcp://127.0.0.1:1884 # internal mqtt broker url.
mode: 0 # 0: internal mqtt broker enable only. 1: internal and external mqtt

→˓broker enable. 2: external mqtt broker enable only.
qos: 0 # 0: QOSAtMostOnce, 1: QOSAtLeastOnce, 2: QOSExactlyOnce.
retain: false # if the flag set true, server will store the message and can be

→˓delivered to future subscribers.
session-queue-size: 100 # A size of how many sessions will be handled. default to

→˓100.

To use kubeedge in double mqtt or external mode, make sure you have mosquitto in your environment. If you do not
already have it, you may install as follows.

15.5 Install mosquitto

For ubuntu:

apt install mosquitto

For centOS:

yum install mosquitto

See mosquitto official website for more information.

15.6 Authentication

KubeEdge has certificate based authentication/authorization between cloud and edge. Certificates can be generated
using openssl. Please follow the steps below to generate certificates.

15.6.1 Install openssl

If openssl is not already present using below command to install openssl

apt-get install openssl

15.5. Install mosquitto 63

https://github.com/kubeedge/kubeedge/blob/master/edge/conf/edge.yaml
https://mosquitto.org/download/

KubeEdge Documentation, Release 0.1

15.6.2 Generate Certificates

RootCA certificate and a cert/key pair is required to have a setup for KubeEdge. Same cert/key pair can be used in
both cloud and edge.

Generete Root Key
openssl genrsa -des3 -out rootCA.key 4096
Generate Root Certificate
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.crt
Generate Key
openssl genrsa -out kubeedge.key 2048
Generate csr, Fill required details after running the command
openssl req -new -key kubeedge.key -out kubeedge.csr
Generate Certificate
openssl x509 -req -in kubeedge.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -
→˓out kubeedge.crt -days 500 -sha256

15.7 Build

15.7.1 Clone KubeEdge

git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/
→˓kubeedge
cd $GOPATH/src/github.com/kubeedge/kubeedge

15.7.2 Build Cloud

cd $GOPATH/src/github.com/kubeedge/kubeedge/cloud/edgecontroller
make # or `make edgecontroller`

15.7.3 Build Edge

cd $GOPATH/src/github.com/kubeedge/kubeedge/edge
make # or `make edgecontroller`

KubeEdge can also be cross compiled to run on ARM based processors. Please click Cross Compilation for the
instructions.

15.8 Run KubeEdge

15.8.1 Run Cloud

cd $GOPATH/src/github.com/kubeedge/kubeedge/cloud/edgecontroller
run edge controller
`conf/` should be in the same directory as the binary
verify the configurations before running cloud(edgecontroller)
./edgecontroller

64 Chapter 15. Setup KubeEdge

cross-compilation.html

KubeEdge Documentation, Release 0.1

15.8.2 Run Edge

We have provided a sample node.json to add a node in kubernetes. Please make sure edge-node is added in kubernetes.
Run below steps to add edge-node

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/node.json

run mosquitto
mosquitto -d -p 1883

run edge_core
`conf/` should be in the same directory as the binary
verify the configurations before running edge(edge_core)
./edge_core
or
nohup ./edge_core > edge_core.log 2>&1 &

If you are using HuaweiCloud IEF, then the edge node you created should be running (check it in the IEF console
page).

15.9 Deploy Application

Try out a sample application deployment by following below steps

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml

Note: Currently, for edge node, we must use hostPort in the Pod container spec so that the pod comes up normally, or
the pod will be always in ContainerCreating status. The hostPort must be equal to containerPort and can not be 0.

15.10 Run Edge Unit Tests

make edge_test

To run unit tests of a package individually

export GOARCHAIUS_CONFIG_PATH=$GOPATH/src/github.com/kubeedge/kubeedge/edge
cd <path to package to be tested>
go test -v

15.11 Run Edge Integration Tests

make edge_integration_test

15.11.1 Details and use cases of integration test framework

Please find the link to use cases of intergration test framework for kubeedge

15.9. Deploy Application 65

https://github.com/kubeedge/kubeedge/tree/master/edge/test/integration

KubeEdge Documentation, Release 0.1

66 Chapter 15. Setup KubeEdge

CHAPTER 16

Cross Compiling KubeEdge

16.1 For ARM Architecture from x86 Architecture

Clone KubeEdge

Build and run KubeEdge on a ARMv6 target device.

git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/
→˓kubeedge
cd $GOPATH/src/github.com/kubeedge/kubeedge/edge
sudo apt-get install gcc-arm-linux-gnueabi
export GOARCH=arm
export GOOS="linux"
export GOARM=6 #Pls give the appropriate arm version of
→˓your device
export CGO_ENABLED=1
export CC=arm-linux-gnueabi-gcc
make # or `make edge_core`

67

KubeEdge Documentation, Release 0.1

68 Chapter 16. Cross Compiling KubeEdge

CHAPTER 17

Try KubeEdge with HuaweiCloud (IEF)

17.1 Intelligent EdgeFabric (IEF)

Note: The HuaweiCloud IEF is only available in China now.

1. Create an account in HuaweiCloud.

2. Go to IEF and create an Edge node.

3. Download the node configuration file (<node_name>.tar.gz).

4. Run cd $GOPATH/src/github.com/kubeedge/kubeedge/edge to enter edge directory.

5. Run bash -x hack/setup_for_IEF.sh /PATH/TO/<node_name>.tar.gz to modify the con-
figuration files in conf/.

69

https://www.huaweicloud.com
https://www.huaweicloud.com/product/ief.html

KubeEdge Documentation, Release 0.1

70 Chapter 17. Try KubeEdge with HuaweiCloud (IEF)

CHAPTER 18

MQTT Message Topics

KubeEdge uses MQTT for communication between deviceTwin and devices/apps. EventBus can be started in multiple
MQTT modes and acts as an interface for sending/receiving messages on relevant MQTT topics.

The purpose of this document is to describe the topics which KubeEdge uses for communication. Please read Beehive
documentation for understanding about message format used by KubeEdge.

18.1 Subscribe Topics

On starting EventBus, it subscribes to these 5 topics:

1. "$hw/events/node/+/membership/get"
2. "$hw/events/device/+/state/update"
3. "$hw/events/device/+/twin/+"
4. "$hw/events/upload/#"
5. "SYS/dis/upload_records"

If the the message is received on first 3 topics, the message is sent to deviceTwin, else the message is sent to cloud via
edgeHub.

We will focus on the message expected on the first 3 topics.

1. "$hw/events/node/+/membership/get": This topics is used to get membership details of a node i.e
the devices that are associated with the node. The response of the message is published on "$hw/events/
node/+/membership/get/result" topic.

2. "$hw/events/device/+/state/update”: This topic is used to update the state of the device. + symbol
can be replaced with ID of the device whose state is to be updated.

3. "$hw/events/device/+/twin/+": The two + symbols can be replaced by the deviceID on whose twin
the operation is to be performed and any one of(update,cloud_updated,get) respectively.

Following is the explanation of the three suffix used:

1. update: this suffix is used to update the twin for the deviceID.

71

../modules/beehive.html

KubeEdge Documentation, Release 0.1

2. cloud_updated: this suffix is used to sync the twin status between edge and cloud.

3. get: is used to get twin status of a device. The response is published on "$hw/events/device/+/twin/
get/result" topic.

72 Chapter 18. MQTT Message Topics

CHAPTER 19

Unit Test Guide

The purpose of this document is to give introduction about unit tests and to help contributors in writing unit tests.

19.1 Unit Test

Read this article for a simple introduction about unit tests and benefits of unit testing. Go has its own built-in package
called testing and command called go test.For more detailed information on golang’s builtin testing package read
this document.

19.2 Mocks

The object which needs to be tested may have dependencies on other objects. To confine the behavior of the object
under test, replacement of the other objects by mocks that simulate the behavior of the real objects is necessary. Read
this article for more information on mocks.

GoMock is a mocking framework for Go programming language. Read godoc for more information about gomock.

Mock for an interface can be automatically generated using GoMocks mockgen package.

Note There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of
tagged version v1.1.1 of GoMocks github repository to install mockgen and generate mocks. Using higher version
may cause errors/panics during execution of you tests.

There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of tagged
version v1.1.1 of GoMocks github repository to install mockgen and generate mocks. Using higher version may cause
errors/panics during execution of you tests.

Read this article for a short tutorial of usage of gomock and mockgen.

73

http://softwaretestingfundamentals.com/unit-testing/
https://golang.org/pkg/testing/%5D
https://medium.com/@piraveenaparalogarajah/what-is-mocking-in-testing-d4b0f2dbe20a
https://godoc.org/github.com/golang/mock/gomock
https://github.com/golang/mock
https://github.com/golang/mock
https://github.com/golang/mock
https://blog.codecentric.de/en/2017/08/gomock-tutorial/

KubeEdge Documentation, Release 0.1

19.3 Ginkgo

Ginkgo is one of the most popular framework for writing tests in go.

Read godoc for more information about ginkgo.

See a sample in kubeedge where go builtin package testing and gomock is used for writing unit tests.

See a sample in kubeedge where ginkgo is used for testing.

19.4 Writing UT using GoMock

19.4.1 Example : metamanager/dao/meta.go

After reading the code of meta.go, we can find that there are 3 interfaces of beego which are used. They are Ormer,
QuerySeter and RawSeter.

We need to create fake implementations of these interfaces so that we do not rely on the original implementation of
this interface and their function calls.

Following are the steps for creating fake/mock implementation of Ormer, initializing it and replacing the original with
fake.

1. Create directory mocks/beego.

2. use mockgen to generate fake implementation of the Ormer interface

mockgen -destination=mocks/beego/fake_ormer.go -package=beego github.com/astaxie/
→˓beego/orm Ormer

• destination : where you want to create the fake implementation.

• package : package of the created fake implementation file

• github.com/astaxie/beego/orm : the package where interface definition is there

• Ormer : generate mocks for this interface

1. Initialize mocks in your test file. eg meta_test.go

mockCtrl := gomock.NewController(t)
defer mockCtrl.Finish()
ormerMock = beego.NewMockOrmer(mockCtrl)

1. ormermock is now a fake implementation of Ormer interface. We can make any function in ormermock return
any value you want.

2. replace the real Ormer implementation with this fake implementation. DBAccess is variable to type Ormer
which we will replace with mock implemention

dbm.DBAccess = ormerMock

1. If we want Insert function of ormer interface which has return types as (int64,err) to return (1 nil), it can be done
in 1 line in your test file using gomock.

ormerMock.EXPECT().Insert(gomock.Any()).Return(int64(1), nil).Times(1)

74 Chapter 19. Unit Test Guide

https://onsi.github.io/ginkgo/
https://godoc.org/github.com/onsi/ginkgo
https://github.com/kubeedge/kubeedge/blob/master/pkg/metamanager/dao/meta_test.go
https://github.com/kubeedge/kubeedge/blob/master/pkg/devicetwin/dtmodule/dtmodule_test.go
https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go
https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go
https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go

KubeEdge Documentation, Release 0.1

Expect() : is to tell that a function of ormermock will be called.

Insert(gomock.Any()) : expect Insert to be called with any parameter.

Return(int64(1), nil) : return 1 and error nil

Times(1): expect insert to be called once and return 1 and nil only once.

So whenever insert is called, it will return 1 and nil, thus removing the dependency on external implementation.

19.4. Writing UT using GoMock 75

KubeEdge Documentation, Release 0.1

76 Chapter 19. Unit Test Guide

CHAPTER 20

FAQs

This page contains a few commonly occuring questions. For further support please contact us using the support page

77

../getting-started/support.html

	Welcome to KubeEdge
	Why KubeEdge?
	First Steps

	How to contribute
	Email and chat
	Getting started
	Reporting bugs and creating issues

	Roadmap
	Release 1.0
	Release 2.0 and Future

	Support
	Community

	What is KubeEdge
	Advantages
	Components
	Architecture
	Getting involved

	Beehive
	Beehive Overview
	Message Format
	Register Module
	Channel Context Structure Fields
	Module Operations
	Message Operations

	EdgeD
	Overview
	Pod Management
	Pod Lifecycle Event Generator
	Secret Management
	Probe Management
	ConfigMap Management
	Container GC
	Image GC
	Status Manager
	Volume Management
	MetaClient

	EventBus
	Overview
	Topic
	Flow chart

	MetaManager
	Overview
	Insert Operation
	Update Operation
	Delete Operation
	Query Operation
	Response Operation
	NodeConnection Operation
	MetaSync Operation

	Edgehub
	Overview
	Get CloudHub URL
	Keep Alive
	Publish Client Info
	Route To Cloud
	Route To Edge

	DeviceTwin
	Overview
	Operations Performed By Device Twin Controller
	Modules
	Tables

	Edge Controller
	Edge Controller Overview
	Operations Performed By Edge Controller
	Downstream Controller:
	Upstream Controller:
	Controller Manager:

	CloudHub
	CloudHub Overview

	Pre-requisites
	Setup KubeEdge
	Prerequisites
	Install docker
	Install kubeadm/kubectl
	Install Kubernetes
	Install mosquitto
	Authentication
	Build
	Run KubeEdge
	Deploy Application
	Run Edge Unit Tests
	Run Edge Integration Tests

	Cross Compiling KubeEdge
	For ARM Architecture from x86 Architecture

	Try KubeEdge with HuaweiCloud (IEF)
	Intelligent EdgeFabric (IEF)

	MQTT Message Topics
	Subscribe Topics

	Unit Test Guide
	Unit Test
	Mocks
	Ginkgo
	Writing UT using GoMock

	FAQs

