
KTBS Documentation
Release 1.0

P.A Champin, F.Conil

July 19, 2022

Contents

1 General concepts 3
1.1 Overview of the General Concepts . 3
1.2 Obsel . 3
1.3 Trace Model . 4
1.4 Trace . 4
1.5 Method . 6
1.6 Monotonicity . 6
1.7 Trace time management . 7
1.8 Abstract KTBS API . 9

2 Tutorials 19
2.1 Installing and running kTBS . 19
2.2 Using kTBS with REST and JSON . 24
2.3 Describing a model in JSON . 29
2.4 Using kTBS with REST and Turtle . 35
2.5 Describing a model in Turtle . 40

3 RESTful API 45
3.1 REST in kTBS . 45
3.2 Ktbs Root . 47
3.3 Base . 48
3.4 Trace . 49
3.5 Obsel . 51
3.6 Stored Trace . 52
3.7 Computed Trace . 52
3.8 Model . 53
3.9 Method . 54
3.10 Authentication . 54

4 Built-in methods 55
4.1 Filter . 55
4.2 Fusion . 56
4.3 Finite State Automaton (FSA) . 56
4.4 Hubble Rules (HRules) . 57
4.5 Incremental Sparql (ISparql) . 59
4.6 Sparql . 60
4.7 Composite methods . 61

i

4.8 External . 62

5 Developers’ documentation 65
5.1 KTBS Client . 65
5.2 KTBS API . 65
5.3 KTBS engine . 66
5.4 KTBS built-in method implementations . 67
5.5 KTBS shipped plugins . 68
5.6 KTBS auxiliary modules . 68

6 Indices and tables 69

Python Module Index 71

Index 73

ii

KTBS Documentation, Release 1.0

kTBS is a specific DBMS dedicated to traces.

This documentation first describes the general concepts of trace-based systems, and how they are implemented in
kTBS. It then describes the RESTful API exposed by kTBS. The last chapter is a developer’s documentation for using
kTBS directly from Python code, or for modifying it.

Contents:

Contents 1

KTBS Documentation, Release 1.0

2 Contents

CHAPTER 1

General concepts

1.1 Overview of the General Concepts

While in classical (relation) DBMSs a database contains tables, in kTBS a base contains traces (as well as other kinds
of objects that we will describe later).

A trace aims at representing an activity as a set of obsels (observed element). Each obsel has, at least, a type and
two timestamps (begin and end). It can also have an arbitrary number of attributes and relations with other obsels.
Basically, this is all there is to know about obsels.

A trace is also linked to a trace model, which can be stored in the same base in the kTBS, or anywhere on the web.
The trace model describes the obsel types that the trace can contain, their attributes and their relations. A trace model
is to a trace roughly what a schema is to a table in an RDBMS —except that a trace model has an identity of its own,
and can be shared by several traces.

Finally, traces can either be stored or computed. While stored traces contain data that is explicitly put there by external
applications, obsels in computed traces are automatically generated based on a computation. That computation is
specified by a method, either built-in or stored in the base together with traces and trace models.

1.2 Obsel

Obsels (short for ‘Observed elements’) are the atomic elements of traces. An obsel is described by the following
elements:

• an obsel type,

• a begin timestamp,

• an end timestamp (that can equal the begin timestamp),

• an optional subject (the agent being traced).

It can also have multiple attributes, and be linked to other obsels of the same trace through binary relations.

The obsel type, the attributes and the relations are described by a trace model.

3

KTBS Documentation, Release 1.0

1.2.1 Obsel total ordering

When obsels of a trace need to be ordered, kTBS uses a total ordering considering

• their end timestamp, then

• their begin timestamp, then

• their identifier.

So obsels with different timestamps will be ordered according to their end timestamps; obsels with the same end
timestamp but different begin timestamps will be ordered according to the latter; obsels with the exact same timestamps
will be ordered according to their identifiers.

1.3 Trace Model

A trace model defines the following elements:

• a hierarchy of obsel types,

• attributes that obsels of each type can have,

• relations that can exist between obsels of each type.

In the future, the trace model will also define the time-unit to be used in the corresponding traces. For the moment,
the only supported unit is the millisecond.

The obsel types are organised in a specialisation hierarchy: each obsel of a subtype also belongs to the supertype. As
a consequence, attributes and relations are inherited from a supertype by its subtypes.

Note also that relations are also structured in a specialisation hierarchy.

In the future, it will be possible for a model to import another model; this will allow a model to refine another one,
or modular models to be combined into complex ones. For the moment, this is possible by copy-pasting models into
each others.

1.3.1 Model validation

A trace complies with its model if the following conditions are met:

• every obsel has an obsel type belonging to the model;

• every attribute belongs to an obsel whose type is (a subtype of) the domain of that attribute;

• every relation links two obsels whose type are (a subtype of) the domain and range (respectively) of the relation.

Note that there is no way for the moment to restrict the cardinality of attributes or relations: any attribute or relation
may be omitted or repeated.

Note that traces are allowed not to comply with their model; kTBS will not prevent the creation of an obsel or the
amendment of a trace causing it to be non-compliant.

1.4 Trace

A trace is a container of obsels, and is described by the following attributes:

• a trace model with which it should complies,

• an origin,

4 Chapter 1. General concepts

KTBS Documentation, Release 1.0

• optionally, one or more RDF graph containing contextual data about that trace.

1.4.1 Model compliance

A trace complies with its model if all its obsels have a type defined by the model, all their attributes are legal for their
type, and all the obsel pairs in relation have types consistent with the domain and range of those relations.

Note that it is not required for a trace to comply with its model at any time. This is intended to let the user decide
whether the trace or the model itself should be fixed.

1.4.2 Origin

Typically, the origin of a trace is a timestamp. However, it can also be an opaque string, meaning that the precise time
when the trace was collected is not known.

This opaque string can nevertheless be reused across several traces (especially computed traces) deriving from another
one), to indicate that timestamps are comparable across those traces.

1.4.3 Contextual data

The contextual data of a trace is any information that can not be captured by the trace model nor the obsels of that
trace, but is useful to interpret the trace. For example, the contextual data may contain information about the subjects
referred to by the obsels (their name, address, occupation. . .).

Obviously, the contextual data of a trace should be valid for the whole duration of that trace. This limits the kind
of information that it can contain: in the example above, if the subjects’ occupation was expected to change in the
time-span of the trace, they should rather be represented as obsels in the trace (with explicit timestamps).

1.4.4 Stored traces

The obsels contained in a stored trace are updated from outside the kTBS. There are two ways a stored trace can be
updated:

• collection: this is the addition of a new obsel, with all its attributes and relations,

• amendment: this is an arbitrary modification of a trace (addition, modification or deletion of obsels, attributes
or relations).

While it is expected that collection is the primary mode of updating stored traces, users may sometime have full control
on their traces and require to amend them. This has some technical implication, as discussed in a further section.

1.4.5 Computed traces

The obsels contained in a computed trace are generated by the kTBS according to a computation Method. More
precisely, a computed trace is described by:

• a method,

• optionnaly, a number of parameters,

• optionnaly, a number of source traces.

1.4. Trace 5

KTBS Documentation, Release 1.0

Which parameters and source traces are possible depend on the method used by the computed trace. In general, the
model and origin of a computed trace are also determined by the method.

Note that the kTBS automatically updates the content of a computed trace each time it is accessed, so nothing is
required to run the computation.

1.5 Method

A method is used by a computed trace to determine its model and origin, and to generate its obsels. The kTBS provides
a number of built-in methods. It is also possible to create user-defined methods, that are stored in a base besides trace
models and traces.

1.5.1 User-defined methods

A user defined method is described by:

• an inherited method (either built-in or user-defined),

• a number of parameters.

For simple methods such as filter, this is merely a way to define a reusable set of parameters. However, for more
generic method such as Sparql or External, it provides a mean to encapsulate a complex transformation, possibly
requiring its own parameters (via extensibility).

1.6 Monotonicity

Monotonicity is, loosely, the property of evolving always in the same “direction”.

Traces have two ways of evolving: by collecting obsels, or by being amended. While amendment allows any kind of
evolution of the content of the trace, collecting is more constrained.

By definition, collecting is restricted to adding new obsels, with their attributes and relations to previously created
obsels. In a sense, those constrained can be considered as a kind of monotonicity, that we call logical monotonicity.

A stronger version of monotonicity is strict monotonicity: it is verified if every newly added obsel has its end
timestamp greater or equal than the end timestamp of any obsel already present in the trace. In other words, a collecting
is strictly monotonic if obsels are added in an order consistent with the internal chronology of the trace.

1.6.1 Why does it matter?

The more constrained the evolution of a trace, the more hypothesis transformations can make, hence the more opti-
mised they can be.

For example, consider a transformation filtering obsels between two timestamp s and f. If the source trace changes
in a strictly monotonic way, once an obsel after f is encountered, the transformation can safely ignore all subsequent
obsels without even checking their timestamps.

On the other hand, if the source trace changes in a (non-strict) logically monotonic way, for every new obsel, the
transformation has to check its timestamp, to decide whether to included it or not in the computed trace.

6 Chapter 1. General concepts

KTBS Documentation, Release 1.0

1.6.2 Monotonicity of computed traces

Monotonicity does not only apply to stored traces, but to computed traces as well. In that case, the monotonicity
depends on two factors: the monotonicity of the source trace(s) (if any), and the applied method.

In the example above (temporal filtering), the method perfectly preserves the monotonicity of its source trace. The
computed trace will evolve in a strict (resp. logical, non) monotonic way if the source trace evolves in a strict (resp.
logical, non) monotonic way.

On the other hand, consider a transformation method that would keep only the last obsel of the source trace. This
kind of transformation does not preserve monotonicity: even if the source trace is strictly monotonic, the transformed
trace will evolve non monotonically. Indeed, each time an obsel is added to the source trace, any existing obsel in the
transformed trace will be removed, and replaced by a copy of the latest obsel.

1.6.3 Current handling in kTBS

Every trace has a number of etags that change at various rates:

standard etag strict mon. etag logical mon. etag
obsels are deleted or modified yes yes yes
an obsel is added anywhere yes yes no
an obsel is added at the end of the trace yes no no

Internally, those etags are used by computed trace to determine how their sources have changed, and hence decide on
which optimisation they can apply.

Externally, those etags are attached to different representations of the trace, to help clients efficiently cache those
representations. For example, considering a trace of 100 obsels, the representation of “the first 10 obsels of that trace”
will not change as long as the trace is modified in a strictly monotonic way. On the other hand, the representation of
“the last 10 obsels of that trace” may be impacted by any kind of change on the trace.

Actually, kTBS uses a fourth etag, related to so-called pseudo monotonicity. This etag changes unless an obsel is
added near the end of a trace (i.e. inside a time window at the end of the trace, called the pseudo-monotonicity range).
The rationale is that in some situations, strict monotonicity can not be completely guaranteed (e.g. when obsels are
collected by several agents with different latencies), but still obsels will not be added at arbitrary times. Hence pseudo
monotonicity is a weaker property than strict monotonicity, but stronger than logical monotonicity.

1.7 Trace time management

As a trace aims at representing an activity, time management is an important concept in the kTBS.

There are several areas where you manipulate timestamps, and we will focus at first on time management for the
Stored trace.

1.7.1 Use ISO 8601 format for datetimes

When you want to specify a real datetime, you MUST use the ISO-8601 format and you should specify the timezone.

If you don’t specify anything the datetime string (1) will be considered as an UTC datetime as when the datetime
string ends with “Z” character (2) because “Z” character is the zone designator for the zero UTC offset.

(1) "2016-01-06T08:15:00"
(2) "2016-01-06T08:15:00Z"

1.7. Trace time management 7

https://tools.ietf.org/html/rfc7232#section-2.3
https://en.wikipedia.org/wiki/ISO_8601

KTBS Documentation, Release 1.0

The timezone is specified as an UTC-time-offset, showing the difference in hours and minutes from Coordinated
Universal Time (UTC), from the westernmost (12:00) to the easternmost (+14:00).

Suppose that it is “09:15 am” in French local time on January 6th 2016, the UTC time is then “08:15 am”. To specify
that your datetime string as a French datetime, you must use the UTC datetime and add the French UTC offset (+ 1
hour) at the end of the UTC datetime string (3).

(3) "2016-01-06T08:15:00+01:00"
"2016-01-06T08:15:00+0100"
"2016-01-06T08:15:00+01"

See ISO-8601 time zones representation

1.7.2 Stored trace origin

Each stored trace must have an origin which should be either:

• a datetime in ISO-8601 format, as specified above;

• the special string now, which will be replaced by the current datetime;

• any other string that can not be interpreted as a datetime, called an opaque origin.

If you do not configure the trace origin explicitly, an random opaque origin will be generated and associated to the
stored trace.

1.7.3 Trace Model time-unit

The Trace time-unit is specified in the Trace Model.

The kTBS supports 3 time-units:

• :millisecond which is the default unit

• :second

• :sequence

1.7.4 Obsels timestamps

For the sake of simplicity, we will only consider the “begin timestamp”.

When you create an Obsel in the kTBS, you may :

• omit the “begin timestamp”

• specify an integer “begin timestamp”

• specify a datetime “begin timestamp”

No timestamp specified

If no timestamp is specified, the kTBS will compute the “begin timestamp”.

If the trace model unit is :second or :millisecond, the “begin timestamp” is the difference between the current
datetime and the trace origin.

8 Chapter 1. General concepts

https://en.wikipedia.org/wiki/List_of_UTC_time_offsets
https://en.wikipedia.org/wiki/ISO_8601#Time_zone_designators

KTBS Documentation, Release 1.0

Warning: If the trace origin is opaque, an error will occur.

If the trace model unit is :sequence, an automatic integer numbering could be generated.

Warning: This is not yet implemented.

Integer begin timestamp

The integer value must be passed in the :hasBegin rdf parameter or in the "begin": parameter if passed in json
format.

The kTBS keeps the integer as :hasBegin value.

Datetime begin timestamp

The datetime value must be passed in the :hasBeginDT rdf parameter or in the "beginDT": parameter if passed
in json format.

The kTBS keeps the datetime as :hasBeginDT value and computes :hasBegin as the difference between the
:hasBeginDT value and the trace origin using the trace model unit. Note that this only happens when the obsel is
created. If after that the obsel is modified, and one of the timestamp (begin or beginDT), the other one will not be
automatically updated.

1.8 Abstract KTBS API

Below is a language independant API that has been designed to document the functionalities of KTBS in a
programmer-friendly way, and guide the implementers of client APIs in other languages.

Warning: TODO

• traceBegin and traceEnd on storedTraces

1.8.1 Resource

get_id()
Return the URI of this resource relative to its “containing” resource; basically, this is short ‘id’ that could have
been used to create this resource in the corresponding ‘create_X’ method

Return type str

get_uri()
Return the absolute URI of this resource.

Return type uri

force_state_refresh()
Ensure this resource is up-to-date. While remote resources are expected to perform best-effort to keep in sync
with the server, it may sometimes be required to strongly ensure they are up-to-date.

For local resources, this is has obviously no effect.

1.8. Abstract KTBS API 9

https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

get_readonly()
Return true if this resource is not modifiable.

Return type bool

remove()
Remove this resource from the KTBS. If the resource can not be removed, an exception must be raised.

get_label()
Returns a user-friendly label

Return type str

set_label(str)
Set a user-friendly label.

reset_label()
Reset the user-friendly label to its default value.

1.8.2 Ktbs (Resource)

list_builtin_methods()
List the builtin methods supported by the kTBS.

Return type [Method]

get_builtin_method(uri:str)
Return the builtin method identified by the given URI if supported, or null.

Return type Method

list_bases()

Return type [Base]

get_base(id:uri)
Return the trace base identified by the given URI, or null.

Return type Base

create_base(id:uri?, label:str?)

Return type Base

1.8.3 Base (Base)

get(id:uri)
Return the element of this base identified by the given URI, or null.

Return type Trace|Model|Method|Base|DataGraph

list_traces()

Return type [Trace]

list_models()
List the models stored in that base.

Return type [Model]

list_methods()
List the methods stored in that base.

10 Chapter 1. General concepts

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

Return type [Method]

list_bases()
List the bases stored in that base.

Return type [Base]

list_data_graphs()
List the data graphs stored in that base.

Return type [DataGraph]

create_stored_trace(id:uri?, model:Model, origin:str?, default_subject:str?, label:str?)
Creates a stored trace in that base If origin is not specified, a fresh opaque string is generated

Return type StoredTrace

create_computed_trace(id:uri?, method:Method, parameters:[str=>any]?, sources:[Trace]?, la-
bel:str?)

Creates a computed trace in that base.

Return type ComputedTrace

create_model(id:uri?, parents:[Model]?, label:str?)

Return type Model

create_method(id:uri, parent:Method, parameters:[str=>any]?, label:str?)

Return type Method

create_base(id:uri?, label:str?)

Return type Base

create_data_graph(id:uri?, label:str?)

Return type DataGraph

1.8.4 Trace (Resource)

get_base()

Return type Base

get_model()

Return type Model

get_origin()
An opaque string representing the temporal origin of the trace: two traces with the same origin can be temporally
compared.

Return type str

get_trace_begin()
The timestamp from which this trace was being collected, relative to the origin. This may be omitted (and then
return null).

Return type int

get_trace_begin_dt()
The datetime from which this trace was being collected, relative to the origin. This may be omitted (and then
return null).

Return type str

1.8. Abstract KTBS API 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

get_trace_end()
The timestamp until which this trace was being collected, relative to the origin. This may be omitted (and then
return null).

Return type int

get_trace_end_dt()
The datetime until which this trace was being collected, relative to the origin. This may be omitted (and then
return null).

Return type str

list_source_traces()

Return type [Trace]

list_transformed_traces()
Return the list of the traces of which this trace is a source.

Return type [Trace]

list_contexts()
Return the data graphs providing contextual information for this trace.

Return type [DataGraph]

list_obsels(begin:int?, end:int?, reverse:bool?)
Return a list of the obsel of this trace matching the parameters.

Return type [Obsel]

get_obsel(id:uri)
Return the obsel of this trace identified by the URI, or null.

Return type Obsel

1.8.5 StoredTrace (Trace)

set_model(model:Model)

set_origin(origin:str)

set_trace_begin(begin:int)

set_trace_begin_dt(begin_dt:str)

set_trace_end(end:int)

set_trace_end_dt(end_dt:str)

get_default_subject()
The default subject is associated to new obsels if they do not specify a subject at creation time.

Return type str

set_default_subject(subject:str)

create_obsel(id:uri?, type:ObselType, begin:int, end:int?, subject:str?, at-
tributes:[AttributeType=>any]?, relations:[(RelationType, Obsel)]?, in-
verse_relations:[(Obsel, RelationType)]?, source_obsels:[Obsel]?, label:str?)

Return type Obsel

12 Chapter 1. General concepts

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

1.8.6 ComputedTrace(Trace)

get_method()

Return type Method

set_method(method:Method)

list_parameters(include_inherited:bool?)
List the names of all the parameters of this trace.

Parameters include_inherited – defaults to true and means that parameters inherited from
the method should be included

Return type [str]

get_parameter(key:str)
Get the value of a parameter (own or inherited from the method).

Return type str

set_parameter(key:str, value:any)
Set the value of a parameter. An exception must be raised if the parameter is inherited.

del_parameter(key:str)
Unset a parameter. An exception must be raised if the parameter is inherited.

1.8.7 Model (Resource)

get_base()

Return type Base

get_unit()
TODO find stable reference to unit names

Return type str

set_unit(unit:str)

get(id:uri)
Return the element of this model identified by the URI, or null.

Return type ObselType | AttributeType | RelationType

list_parents(include_indirect:bool?)
List parent models. Note that some of these models may not belong to the same KTBS, and may be readonly
—see get_readonly.

Parameters include_indirect – defaults to false and means that parent’s parents should be
returned as well.

Return type [Model]

list_attribute_types(include_inherited:bool?)

Parameters include_inherited – defaults to true and means that attributes types from inher-
ited models should be included

Return type [AttributeType]

list_relation_types(include_inherited:bool?)

1.8. Abstract KTBS API 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

Parameters include_inherited – defaults to true and means that relation types from inherited
models should be included

Return type [RelationType]

list_obsel_types(include_inherited:bool?)

Parameters include_inherited – defaults to true and means that obsel types from inherited
models should be included

Return type [ObselType]

add_parent(m:Model)

remove_parent(m:Model)

create_obsel_type(id:uri?, supertypes:[ObselType]?, label:str)
NB: if id is not provided, label is used to mint a human-friendly URI

Return type ObselType

create_attribute_type(id:uri?, obsel_types:[ObselType]?, data_types:[uri]?, value_is_list:bool?, la-
bel:str)

NB: if data_type represent a “list datatype”, value_is_list must not be true NB: if id is not provided, label is used
to mint a human-friendly URI TODO specify a minimum list of datatypes that must be supported TODO define
a URI for representing “list of X” for each supported datatype?

Parameters

• data_type – uri is an XML-Schema datatype URI.

• value_is_list – indicates whether the attributes accepts a single value (false, default)
or a list of values (true).

Return type AttributeType

create_relation_type(id:uri?, origins:[ObselType]?, destinations:[ObselType]?, super-
types:[RelationType]?, label:str)

NB: if id is not provided, label is used to mint a human-friendly URI

Return type RelationType

1.8.8 Method (Resource)

get_base()

Return type Base

get_parent()
Return the parent method, or null. Note that returned method may not be stored on this KTBS, or can even be a
built-in method.

Return type Method

set_parent(method:Method)

list_parameters(include_inherited:bool?)
List the names of all the parameters set by this method or its parent.

Parameters include_inherited – defaults to true and means that parameters from the parent
method should be included

Return type [str]

14 Chapter 1. General concepts

https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

get_parameter(key:str)
Get the value of a parameter (own or inherited from the parent method).

Return type str

set_parameter(key:str, value:any)
set the value of a parameter. An exception must be raised if the parameter is inherited.

del_parameter(key:str)
Unset a parameter. An exception must be raised if the parameter is inherited.

1.8.9 DataGraph (Resource)

This class has no additional method.

1.8.10 ObselType (Resource)

get_model()

Return type Model

list_supertypes(include_indirect:bool?)
List the supertypes of this obsel type.

Parameters include_indirect – defaults to false; if true, all supertypes are listed, including
indirect supertypes and this obsel type itself

Return type [ObselType]

add_supertype(ot:ObselType)

remove_supertype(ot:ObselType)

list_subtypes(include_indirect:bool?)
List the subtypes of this obsel type from the same model.

Parameters include_indirect – defaults to false; if true, all subtypes from the same model
are listed, including indirect supertypes and this obsel type itself

Return type [ObselType]

list_attribute_types(include_inherited:bool?)
List the attribute types of this obsel type (direct or inherited).

Parameters include_inherited – defaults to true and means that attributes types inherited
from supertypes should be included

Return type [AttributeType]

list_relation_types(include_inherited:bool?)
List the outgoing relation types of this obsel type (direct or inherited).

Parameters include_inherited – defaults to true and means that relation types inherited from
supertypes should be included

Return type [RelationType]

list_inverse_relation_types(include_inherited:bool?)
List the inverse relation types of this obsel type (direct or inherited).

Parameters include_inherited – defaults to true and means that inverse relation types inher-
ited from supertypes should be included

1.8. Abstract KTBS API 15

https://docs.python.org/3/library/stdtypes.html#str

KTBS Documentation, Release 1.0

Return type [RelationType]

create_attribute_type(id:uri?, data_types:[uri]?, value_is_list:book?, label:str)
Shortcut to get_model().create_attribute_type where this ObselType is the obsel type.

Return type AttributeType

create_relation_type(id:uri?, destinations:[ObselType]?, supertypes:[RelationType]?, label:str)
Shortcut to get_model().create_relation_type where this ObselType is the origin.

Return type RelationType

1.8.11 AttributeType (Resource)

get_model()

Return type Model

list_obsel_types()

Return type [ObselType]

add_obsel_type(ot:ObselType)

remove_obsel_type(ot:ObselType)

list_data_types()

Return type [uri]

add_data_type(data_type:uri, is_list:bool?)
NB: if data_type represent a “list datatype”, value_is_list must not be true

Parameters is_list – indicates whether the attribute accepts a single value (false, default) or a
list of values (true)

remove_data_type(data_type:uri)

1.8.12 RelationType (Resource)

get_model()

Return type Model

list_supertypes(include_indirect:bool?)
List the supertypes of this relation type.

Parameters include_indirect – defaults to false; if true, all supertypes are listed, including
indirect supertypes and this relation type itself

Return type [RelationType]

add_supertype(rt:RelationType)

remove_supertype(rt:RelationType)

list_subtypes(include_indirect:bool?)
List the subtypes of this relation type from the same model.

Parameters include_indirect – defaults to false; if true, all subtypes from the same model
are listed, including indirect supertypes and this relation type itself

Return type [RelationType]

16 Chapter 1. General concepts

KTBS Documentation, Release 1.0

list_origins()

Return type [ObselType]

add_origin(ot:ObselType)

remove_origin(ot:ObselType)

list_destinations()

Return type [ObselType]

add_destination(ot:ObselType)

remove_destination(ot:ObselType)

1.8.13 Obsel (Resource)

get_trace()

Return type Trace

get_obsel_type()

Return type ObselType

get_begin()

Return type int

get_end()

Return type int

list_source_obsels()

Return type [Obsel]

list_attribute_types()

Return type [AttributeType]

list_relation_types()

Return type [RelationType]

list_related_obsels(rt:RelationType)

Return type [Obsel]

list_inverse_relation_types()

Return type [RelationTtype]

get_attribute_value(at:AttributeType)
Return the value of the given attribute type for this obsel.

Return type any

Obsel modification (trace amendment)

set_attribute_value(at:AttributeType, value:any)

del_attribute_value(at:AttributeType)

add_related_obsel(rt:RelationType, value:Obsel)

del_related_obsel(rt:RelationType, value:Obsel)

1.8. Abstract KTBS API 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

KTBS Documentation, Release 1.0

1.8.14 General Rules

• Whenever parameter is named ‘id:uri’, it must be possible to provide a relative URI, which will be resolved
against the URI of the target object.

• The order of the parameter is important. Whenever an optional parameter is to be omitted, it can be set to NULL
or named parameters (language permitting) can be used for the following parameters.

• For all get_X methods accepting a parameter, the result should be null if no object matches the parameter.

• For all create_X methods, an exception must be raised if the given URI is invalid or already in use.

• All modification operations (set_*, remove) on model elements (ObselType, AttributeType, RelationType) actu-
ally modify the model from which they were accessed. If the model is readonly (see the get_readonly method),
those methods must raise an exception.

1.8.15 Design Rationale

• As method-controlled attributes are not possible or easy to implement in some/ languages, this abstract API only
defines methods, in order to provide the least common denominator.

• For the same reason, whenever mutiple values are to be returned, it prescribes the use of a list (or the closest
match in the target language, e.g. Array in javascript).

• However, adaptations are also recommended, depending on the features of the target language. All those adap-
tations should be documented with the given API. Below is a list of recommended adaptations:

– for languages supporting read-only attributes, it is recommended to provide a read-only attribute ‘x’ for
every method get_x(); if get_x has optional parameters, ‘x’ should be equivalent to calling it with 0 pa-
rameters.

It is also recommended to provide a read-only attribute ‘xs’ for every method list_xs(); if list_xs has
optional parameters, ‘xs’ should be equivalent to calling it with 0 parameters.

– for languages supporting method-controlled attributes, it is recommended to make attribute ‘x’ settable
whenever there is a method set_x(val); if set_x has additional optional parameters, ‘x’ should be equivalent
to calling it with only the first parameter.

– for language supporting a notion of iterator (which may be more efficient than lists), it is recommended to
provide a method iter_xs(. . .) for every method list_xs(. . .), acceptin the same parameters.

NB: implementing list_xs(. . .) on top of iter_xs(. . .) should be trivial, and would probably be the way to
do.

– for language having a tradition of using CamelCase instead of underscore, all method may be renamed by
replacing _[a-z] with the corresponding capital letter.

18 Chapter 1. General concepts

CHAPTER 2

Tutorials

This chapter contains an number of tutorials to help you familiarize yourself with different aspects of kTBS.

2.1 Installing and running kTBS

These tutorials aim at helping you install kTBS and running it, either as a standalone service or behind an HTTP server
such as Apache or Nginx.

It has been written using Debian-like systems : Debian strech and Ubuntu server, but should be applicable with only
minor changes (if any) to other flavours of Linux, and a few adaptation on MacOS or MS Windows.

2.1.1 Installing a local kTBS

Make sure you have read and executed the Common Prerequisites instructions, i.e installed all dependencies, and a
Python virtual environment.

Installing the development version (recommended)

Ensure that you have activated your virtual environment. Get the source code and install it in your virtual environment
with pip -e.

(ktbs-env) $ git clone https://github.com/ktbs/ktbs.git
Cloning into 'ktbs'...
remote: Enumerating objects: 53, done.
remote: Counting objects: 100% (53/53), done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 6842 (delta 17), reused 37 (delta 15), pack-reused 6789
Receiving objects: 100% (6842/6842), 2.72 MiB | 1.11 MiB/s, done.
Resolving deltas: 100% (4400/4400), done.

(ktbs-env) $ pip install -e ktbs/

19

http://httpd.apache.org/
http://nginx.org/
https://www.debian.org/
http://www.ubuntu.com/download/server

KTBS Documentation, Release 1.0

Note: The -e option makes pip install the current project in editable mode. It means that whenever you update the
repository with git pull, of if you edit the code, the changes will be taken into account automatically.

If you intend to contribute, you might also want to install the developer’s dependencies:

(ktbs-env) $ pip install -r ktbs/requirements.d/dev.txt

Installing the stable version

Instead of installing kTBS from the source code, you can install it and its dependencies from PyPI. Ensure that you
have activated your virtual environment, and simply type:

(ktbs-env) $ pip install ktbs

Note however that the stable version is not updated very often, and so might very quickly be outdated compared to the
development version. Hence, this option is not recommended.

Testing the installed kTBS

Once installed, just run the ktbs command, it launches an internal HTTP server on the 8001 port (by default).

(ktbs-env) $ ktbs
INFO 2019-09-15 14:28:18 CEST ktbs.server PID: 26566
INFO 2019-09-15 14:28:18 CEST ktbs.server listening on http://
→˓localhost:8001/

You stop kTBS with Ctrl-C.

Make the trace bases persistent

By default, kTBS stores the trace bases in memory, so they will not be retained after you stop kTBS. To make the trace
bases persistent, you need to configure a repository.

This can be done with the -r option.

(ktbs-env) $ ktbs -r <dirname>

A directory named <dirname> will be used to store the trace bases; if it does not exist, it will be automatically
created and initialized.

Note: You must not create the directory for the store; if the directory already exists, kTBS will assume that it is
correctly initialized, and fail if it is not the case (e.g. if it is empty).

Advanced configuration

There are a lot more configuration options that you can set on the command lines (type ktbs --help for a list). But
a safer way to configure your kTBS instance is to store those options in a configuration file. An example is provided
in the example/conf/ directory of the source code. Then, pass the configuration file as an argument to kTBS:

20 Chapter 2. Tutorials

https://pypi.python.org/pypi
https://github.com/ktbs/ktbs/tree/develop/examples/conf/

KTBS Documentation, Release 1.0

(ktbs-env) $ ktbs my.conf
INFO 2019-09-15 14:28:18 CEST ktbs.server PID: 26567
INFO 2019-09-15 14:28:18 CEST ktbs.server listening on http://
→˓localhost:1234/

2.1.2 Installing kTBS behing an Apache HTTP server

Apache can be used as a proxy in front of a running instance of kTBS. This has a number of advantages:

• adds HTTPS support;

• allows kTBS to co-exist with other services under the same domain name and port number;

• allows to add access control.

kTBS configuration

kTBS must first be installed and run independently, listening on a local port. It must also be aware of the public URI
under which it is published (in the example above: https://your.domain.com/path/to/ktbs/). This is achieved with the
following configuration directives:

[server]
scheme = http
host-name = localhost
port = 8002

fixed-root-uri = https://your.domain.com/path/to/ktbs/

Apache configuration

A dedicated configuation file can be created, typically in /etc/apache2/conf.d, with the following directives:

file: /etc/apache2/conf.d/ktbs.conf

<Location /path/to/ktbs/>
ProxyPass http://localhost:8002/
ProxyPassReverse http://localhost:8002/

</Location>

This configuration requires that Apache modules proxy and proxy_http are enabled; this can be ensured with:

$ a2enmod proxy proxy_http

Then Apache must be restarted to load the new configuration file:

$ apache2ctl graceful

Restricting access to kTBS with Apache

Traces can contain very sensitive information, so you will probably want to restrict access to your kTBS. To do this,
you will need to add some access control directives to the Apache configuration file described above.

For the following examples, we use the htpasswd utility provided with Apache to create (-c) a password file that will
be used as source for Apache authentication.

2.1. Installing and running kTBS 21

https://httpd.apache.org/docs/2.4/programs/htpasswd.html
https://httpd.apache.org/docs/2.4/en/howto/auth.html

KTBS Documentation, Release 1.0

$ htpasswd -c ktbs-users jdoe
New password:
Re-type new password:
Adding password for user jdoe

Later on, you can add users to your password file with the same utility:

$ htpasswd /opt/ktbs-data/ktbs-users aduran
New password:

Basic global restriction

In order to restrict access to kTBS as a whole, the Apache configuration file above can be augmented to restrict access
to kTBS, as illustrated below.

<Location /path/to/ktbs/>
ProxyPass http://localhost:8002/
ProxyPassReverse http://localhost:8002/

AuthType Basic
AuthName "kTBS"
AuthBasicProvider file
AuthUserFile /path/to/ktbs-users
Require valid-user

</Location>

Finer-grain restriction

It might be tempting to define finer-grained ACL through multiple Location directives, to allow different users to
access different part of your kTBS. Note however the following drawbacks:

• kTBS is not aware of these different ACL, and it may leak some information from one user to another one;

• when the structure of your trace bases changes in kTBS, you must reflect the changes in the Apache configura-
tion.

Eventually, kTBS will provide its own authorization mechanisms, making this workaround moot.

What about mod_wsgi?

mod_wsgi is an Apache module dedicated to hosting Python WSGI applications entirely in Apache. In previous
versions of kTBS, this was the recommended method for integrating with Apache.

The problem with mod_wsgi is that it must be compiled with the exact same version of Python as the one used by
kTBS. Not only is it a problem if your distribution does not have the correct version of mod_wsgi, but it also prevents
using different applications based on different versions of Python in the same Apache instance.

2.1.3 Installing kTBS behind an Nginx HTTP server

Nginx can be used as a proxy in front of a running instance of kTBS. This has a number of advantages:

• adds HTTPS support;

• allows kTBS to co-exist with other services under the same domain name and port number;

22 Chapter 2. Tutorials

http://webpython.codepoint.net/wsgi_tutorial

KTBS Documentation, Release 1.0

• allows to add access control (not documented yet).

kTBS configuration

kTBS must first be installed and run independently, listening on a local port. It must also be aware of the public URI
under which it is published (in the example above: https://your.domain.com/path/to/ktbs/). This is achieved with the
following configuration directives:

[server]
scheme = http
host-name = localhost
port = 8002

fixed-root-uri = https://your.domain.com/path/to/ktbs/

Nginx configuration

Here is an example Nginx configuration file:

server {
server_name your.domain.com;
listen 443;
ssl on;
... other parameters

location /path/to/ktbs {
proxy_pass http://localhost:8002/;

}
}

2.1.4 Common Prerequisites

Dependencies

kTBS is a Python application, so you need Python installed; more precisely, you need version 3.7 of Python. kTBS is
not compatible anymore with Python 2.

As some dependencies need to be compiled, you will need

• the gcc compiler

• the Python developer files,

• the Berkeley DB developer files.

If you intend to install kTBS from the source (which is the recommended way), you will also need git.

On a Debian or Ubuntu, you should be able to get these dependencies by typing:

$ sudo apt-get install python3 gcc python3-dev libdb5.3-dev git

2.1. Installing and running kTBS 23

http://python.org/

KTBS Documentation, Release 1.0

Create the Python vitual environment

A Python virtual environment creates an isolated version of Python, where you can install a Python application (such
as kTBS) and all its dependencies without “polluting” your operating system. Conversely, the Python libraries already
installed in your system do not interfere with the virtual environment.

Let us create a virtual environment for kTBS.

$ python3 -m venv ktbs-env

This will create a directory named ktbs-env (but you can choose another name, it makes no difference to kTBS).

The virtual environnement is then activated by sourcing the activate script. Once it is done, you can notice that

• the prompt has changed to remind you that the virtual environment is active, and

• the default Python interpreter is the one from the virtual environment.

$ source ktbs-env/bin/activate

(ktbs-env) $ which python
/current-dir/ktbs-env/bin/python

You “leave” the virtual environment by running the deactivate command.

(ktbs-env) $ deactivate

$ which python
/usr/bin/python

2.2 Using kTBS with REST and JSON

This tutorial aims at showing how to create kTBS elements directly through the REST API with JSON descriptions. If
you are familiar with Turtle or RDF, you might prefer the Turtle version of that tutorial.

2.2.1 Tools

For interacting with the kTBS, we will use the simple HTTP client that is embeded within every HTML page generated
by kTBS.

Don’t forget, though, that this embeded client is only a convenience shortcut for easily interacting with kTBS. You can
just as well use any HTTP client, either interactive (such as curl) or programmatic.

Note also that the JSON code displayed by the editor might differ from the one presented in those examples, for
example in the order of the properties. However, they represent the same data.

2.2.2 Create and populate a Stored Trace

In this first part, we will create and populate a stored trace. But for this, we first need to create a Base that will host
our traces.

24 Chapter 2. Tutorials

https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments
http://en.wikipedia.org/wiki/Representational_state_transfer
http://json.org/
http://www.w3.org/RDF/
http://curl.haxx.se/

KTBS Documentation, Release 1.0

The kTBS Root

The kTBS root is where all bases live. It is automatically created when the kTBS is first launched. Its URI is that of
the kTBS server, in our case: http://localhost:8001/ .

Create a new base

To create a new base in our kTBS root, we have to perform an HTTP POST request to it.

Visit the kTBS root. Select the POST operation (this opens a text-area), and ensure that the selected content-type is
application/json. Then copy the following JSON code in the text-area, and press Send.

{
"@id": "base1/",
"@type": "Base",
"label": "My new base"

}

The URI of the newly created base should appear below the text-area (in our example: http://localhost:8001/base1/).
By clicking on it, you will see a JSON description of your base.

You will notice that, besides the properties that you set when posting, the kTBS created two other properties,
@context and inRoot. The latter links the base to the kTBS root it belongs to. We will explain the @context
property later in this tutorial.

Note: A number of JSON properties expect URIs, as for example @id or inBase. In the example above, all URIs
are relative to the URI of the resource to which we post it; for example:

• base1/ is interpreted as http://localhost:8001/base1/;

this rule is true for all POST and PUT requests to the kTBS.

Create a stored trace

Creating a stored trace inside a base is very similar to creating a base in the kTBS root. We first need to visit the base
(you should already be there after the previous step).

Again, select the POST operation, ensure that the content-type is application/json, copy the following JSON
code in the text-area, and click Send. Then click on the link appearing between the text-area.

{
"@id": "t01/",
"@type": "StoredTrace",
"hasModel": "http://liris.cnrs.fr/silex/2011/simple-trace-model",
"origin": "1970-01-01T00:00:00Z"

}

You will notice that, besides the properties that you set for the new trace, the kTBS created three other properties:

• @context (which we will explain later, be patient),

• inBase linking to the base containing this trace, and

• hasObselList pointing to http://localhost:8001/base1/t01/@obsels. This is where all the obsels that we are
going to add to this trace will be created.

2.2. Using kTBS with REST and JSON 25

http://localhost:8001/
http://localhost:8001
http://localhost:8001/base1/
http://localhost:8001/base1/
http://localhost:8001/base1/t01/@obsels

KTBS Documentation, Release 1.0

Add obsels to trace

Adding an obsel to a trace should be no surprise to you at this point: it is simply done by POSTing a description of the
obsel to the trace itself.

Simply visit the trace and POST the following content to it:

{
"@id": "obs1",
"@type": "m:SimpleObsel"

}

Note that m:SimpleObsel is a so-called compact URI, where the prefix m: stands for the URI of the model of the
trace (followed by a hash #). So the type of the obsel is actually http://liris.cnrs.fr/silex/2011/simple-trace-model#
SimpleObsel .

In the description of the new obsel, you will notice that this time the kTBS added a number of properties in addition
to the ones you specified above. More precisely:

• The begin and end of the obsel have been automatically set based on the moment you posted the obsel; this
is expressed in milliseconds since the origin of the trace.

• The hasTrace links the obsel to the trace containing it.

• The @context property.

It would have been possible to specify some of those properties explicitly, if we wanted to override the values auto-
matically computed by the kbBS.

For example, let’s go back to the trace and POST the following content to it:

{
"@id": "obs0",
"@type": "m:SimpleObsel",
"begin": 1361462605000,
"end": 1361462647000

}

We also note that, as with the base and the trace earlier, we had to mint a URI for our new obsels. As we are likely to
create a large number of obsels, it sounds like a good idea to leave it to the kTBS to mint a fresh URI for each of them.
For our third obsel, we will therefore use a blank node. We will also add attributes and relations to our new obsel to
make it more interesting.

Let’s go back to the trace and POST the following content to it:

{
"@type": "m:SimpleObsel",
"m:value": "a new obsel",
"m:hasRelatedObsel": { "@id": "obs1" }

}

Note: Every element of the kTBS can be created with a blank node instead of an explicit URI. The URI minted by
kTBS is returned by the POST operation.

If we follow the hasObselCollection link from our trace, to the obsel collection, we can see the three obsels we have
created so far (your timestamps will obviously differ):

26 Chapter 2. Tutorials

http://localhost:8001/base1/t01/
http://liris.cnrs.fr/silex/2011/simple-trace-model#SimpleObsel
http://liris.cnrs.fr/silex/2011/simple-trace-model#SimpleObsel
http://localhost:8001/base1/t01/
http://www.w3.org/TR/rdf-concepts/#section-blank-nodes
http://localhost:8001/base1/t01/
http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection
http://localhost:8001/base1/t01/
http://localhost:8001/base1/t01/@obsels

KTBS Documentation, Release 1.0

{

"@context": [
"http://liris.cnrs.fr/silex/2011/ktbs-jsonld-context",
{ "m": "http://liris.cnrs.fr/silex/2011/simple-trace-model#" }

],
"@id": "./",
"hasObselList": {"@id":"", "@type": "StoredTraceObsels" },
"obsels": [

{
"@id": "obs0",
"@type": "m:SimpleObsel",
"begin": 1361462605000,
"end": 1361462647000

},
{

"@id": "obs1",
"@type": "m:SimpleObsel",
"begin": 1394791006055,
"end": 1394791006055,
"@reverse": {

"m:hasRelatedObsel": {"hasTrace": "./", "@id": "o-8g"}
}

},
{

"@id": "o-8g",
"@type": "m:SimpleObsel",
"begin": 1394791489228,
"end": 1394791489228,
"m:hasRelatedObsel": {"hasTrace": "./", "@id": "obs1"},
"m:value": "a new obsel"

}
]

}

2.2.3 Creating computed traces

The kTBS has a number of builtin methods to create Computed Traces. As their name implies, computed trace differ
from stored trace by the fact that their obsels are computed by the kTBS (in application of the corresponding method)
rather than provided by external collectors.

Create a Computed Trace with a filter method

Let’s go back to the base and create a new computed trace by POSTing the following:

{
"@id": "filtered1/",
"@type": "ComputedTrace",
"hasMethod": "filter",
"hasSource": ["t01/"],
"parameter": ["after=1361462641000"]

}

This create a computed trace named filtered1 based on a temporal filter which copies the obsels from t01 obsels
situated after timestamp 1361462641000. You may notice that we did not provide any model nor origin for the

2.2. Using kTBS with REST and JSON 27

http://localhost:8001/base1/

KTBS Documentation, Release 1.0

computed trace; those are automatically computed.

If you go and check the obsel collection of this computed trace, you will find two obsels. More precisely, all ob-
sels from t01 have been copied, except for obs0 which has been filtered out, as it is not entierly after timestamp
1361462641000.

Create a Computed Trace with a SPARQL query

We will now define a more sophisticated computed trace, using the powerful query language SPARQL.

Let’s go back to the base and create a new computed trace by POSTing the following:

{
"@id": "joinRelated1/",
"@type": "ComputedTrace",
"hasMethod": "sparql",
"hasSource": ["t01/"],
"parameter": ["sparql= PREFIX : <http://liris.cnrs.fr/silex/2009/ktbs#>

→˓\nPREFIX m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#>\n\nCONSTRUCT {\n
→˓ [a m:SimpleObsel ;\n m:value ?value ;\n :hasTrace <%(__destination__
→˓)s> ;\n :hasBegin ?begin ;\n :hasEnd ?end ;\n :hasSourceObsel ?o1, ?
→˓o2 ;\n] .\n} WHERE {\n ?o1 :hasBegin ?begin .\n ?o2 :hasEnd ?end ;\n
→˓ m:hasRelatedObsel ?o1 .\n OPTIONAL { ?o2 m:value ?value }\n}\n"]
}

This create a computed trace named joinRelated1 using a SPARQL construct query to builds an obsel for each
pair of related obsels in t01, inheriting its begin and end timestamps respectively from each of them.

As the SPARQL query is not very legible when encoded as a JSON string, it is provided below:

PREFIX : <http://liris.cnrs.fr/silex/2009/ktbs#>
PREFIX m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#>

CONSTRUCT {
[a m:SimpleObsel ;

m:value ?value ;
:hasTrace <%(__destination__)s> ;
:hasBegin ?begin ;
:hasEnd ?end ;
:hasSourceObsel ?o1, ?o2 ;

] .
} WHERE {

?o1 :hasBegin ?begin .
?o2 :hasEnd ?end ;

m:hasRelatedObsel ?o1 .
OPTIONAL { ?o2 m:value ?value }

}

Note: It is frequent that SPARQL construct queries build obsels that comply with a model different from the source
trace’s. The target model can be specified with the special model parameter supported by the sparql method.

Create a Computed Trace with a fusion method

We will now use the fusion method, used to aggregate in a computed trace the obsels from several source traces.

Let’s go back to the base and create a new computed trace by POSTing the following:

28 Chapter 2. Tutorials

http://localhost:8001/base1/filtered1/@obsels
http://www.w3.org/TR/rdf-sparql-query/
http://localhost:8001/base1/
http://localhost:8001/base1/

KTBS Documentation, Release 1.0

{
"@id": "fusioned1/",
"@type": "ComputedTrace",
"hasMethod": "fusion",
"hasSource": ["filtered1/", "joinRelated1/"]

}

This creates a computed trace named fusioned1 which is a merge of the filtered1 and the joinRelated1
traces.

2.2.4 So what about this @context thing?

Internally, kTBS uses RDF to represent its data. The JSON representations are therefore converted to/from RDF data.
For this, kTBS uses a technology called JSON-LD. The @context property is JSON-LD specific, and provides the
additional information required for the conversion to/from RDF.

It is worth noting that kTBS accepts both content types application/json (generic JSON) and application/
ld+json (JSON-LD). When posting application/json, you may omit the @context property (as well as
other properties, such as inRoot, inBase and inTrace), as we have done along this tutorial, but your JSON has
to comply more closely to the structure expected by kTBS. When posting application/json-ld, you are free to
structure your JSON as you wish as long as it translates into an RDF graph acceptable by kTBS; this usually implies
that you provide the @context property explicitly.

2.3 Describing a model in JSON

This tutorial explains how to describe a trace model for kTBS.

2.3.1 Preparation

First, you have to create a new base as described in the REST tutorial. We will assume that this base is named
http://localhost:8001/base01/.

2.3.2 Running example

Here is a UML representation of the Trace Model we will create. This is a minimal trace model of a typical online
chat activity.

2.3. Describing a model in JSON 29

http://www.w3.org/RDF/
http://json-ld.org/

KTBS Documentation, Release 1.0

EnterChatRoom

room:string

SendMsg

message:string
inRoom

MsgResseived

message:string
from:string

inRoom

LeaveRoom

inRoom

2.3.3 Creating the model

On the page of your base, select the POST request, the application/json content type, and copy the following
data in the text area:

{
"@id": "model1",
"@type": "TraceModel"

}

then press the Send button. The model is created and is now available at http://localhost:8001/base1/model1 .

If you visit that IRI, you will notice two things.

• The JSON object we have just POSTed is embeded in another object, with two attributes @context and
@graph. The former has been described in a previous tutorial, we will come back to the latter further in this
tutorial.

• In addition to its original properties, our object has a new property "hasUnit": "millisecond". Every
trace model must have a unit, specifying how time will be represented in the traces complying with this model
(see Trace time management).

2.3.4 Modifying the model

Creating obsel types

We will first create the obsel types. Visit the model at http://localhost:8001/base1/model1 , select the PUT request, the
application/json content type, and modify the code with the following:

{
"@context": "http://liris.cnrs.fr/silex/2011/ktbs-jsonld-context",
"@graph": [

{

(continues on next page)

30 Chapter 2. Tutorials

http://localhost:8001/base1/model1
http://localhost:8001/base1/model1

KTBS Documentation, Release 1.0

(continued from previous page)

"@id": "http://localhost:8001/base1/model1",
"@type": "TraceModel",
"inBase": "./" ,
"hasUnit": "millisecond"

},
{

"@id": "#EnterChatRoom",
"@type": "ObselType"

},
{

"@id": "#SendMsg",
"@type": "ObselType"

},
{

"@id": "#MsgReceived",
"@type": "ObselType"

},
{

"@id": "#LeaveRoom",
"@type": "ObselType"

}
]

}

then press the Send button. The page should reload and show the new obsel types.

Since the obsel types are not explicitly linked to the model (apart from being defined in the same HTTP resource), we
need to root the JSON representation in a single object, holding the set of resources together in its @graph attribute.

Note: Note that all relative IRIs in this example are interpreted against the IRI of the model (as it is the target IRI of
the PUT request). For the sake of clarity, the @id of the obsel contains its full IRI, but the empty relative IRI "" would
work as well. All components of the models have their IRI starting with #, so #EnterChatRoom is a shorthand for
http://localhost:8001/base1/model1#EnterChatRoom, for example.

Note that you could not have POSTed the JSON code above as is, as relative IRIs in a POST are interpreted against
the IRI of the base (http://localhost:8001/base01/ in this case).

It is still possible to create the obsel types together with the model at POST time, but then you need change the relative
IRIs accordingly, model1#EnterChatRoom instead of #EnterChatRoom, etc.

Adding attributes

We will now associate attributes to our newly created obsel types.

As obsel types, each attribute has a unique IRI, relative to that of the model: #room, #message and #from. It is
related to the obsel type(s) in which it may appear by the hasAttributeObselType attribute.

The datatype(s) of an attribute is specified using hasAttributeDatatype. kTBS supports a subset of the primi-
tive datatypes defined in XML-Schema, including the most usual datatypes such as xsd:string, xsd:integer,
xsd:boolean and xsd:float.

{
"@context": "http://liris.cnrs.fr/silex/2011/ktbs-jsonld-context",
"@graph": [

{
(continues on next page)

2.3. Describing a model in JSON 31

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

KTBS Documentation, Release 1.0

(continued from previous page)

"@id": "http://localhost:8001/base1/model1",
"@type": "TraceModel",
"inBase": "./" ,
"hasUnit": "millisecond"

},
{

"@id": "#EnterChatRoom" ,
"@type": "ObselType"

},
{

"@id": "#SendMsg" ,
"@type": "ObselType"

},
{

"@id": "#MsgReceived" ,
"@type": "ObselType"

},
{

"@id": "#LeaveRoom" ,
"@type": "ObselType"

},
{

"@id": "#room" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#EnterChatRoom"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "room"

},
{

"@id": "#message" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#SendMsg", "#MsgReceived"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "message"

},
{

"@id": "#from" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#MsgReceived"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "from"

}
]

}

Note: In UML, attributes belong to a given class, and their name is scoped to that class. It is therefore possible to have
two different classes A and B, both having an attribute named foo, and still have A.foo mean something completely
different from B.foo (they could for example have different datatypes).

In kTBS on the other hand, attributes are first-class citizens of the model, their name (IRI) is scoped to the entire model.
In our example above, the attribute <#message> is shared by two obsel types, it is therefore the same attribute, with
the same meaning and the same datatype1.

1 In order to achieve this in UML, we would need an abstract class (e.g. WithMessage) defining the attribute message, and have both classes
SendMsg and MsgReceived inherit that abstract class.

Note that this design is still possible with kTBS, and can be useful when multiple attributes and/or relations are shared together in several obsel
types (see (using Inheritance of obsel types).

32 Chapter 2. Tutorials

KTBS Documentation, Release 1.0

If we wanted to consider SendMsg.message and MsgReceived.message as two distinct attributes more in the
line of UML design, then we would need to create two attribute types with distinct IRIs, for example <#SendMsg/
message> and <#MsgReceived/message>.

Adding relations

We now define the types of relation that may exist between obsels in our model. Just like obsel types and attributes,
relation types are named with an IRI relative to that of the model. The type(s) of the obsels from which the relation
can originate is specified with :hasRelationDomain. The type(s) of the obsels to which the relation can point is
specified with :hasRelationRange.

{
"@context": "http://liris.cnrs.fr/silex/2011/ktbs-jsonld-context",
"@graph": [

{
"@id": "http://localhost:8001/base1/model1",
"@type": "TraceModel",
"inBase": "./" ,
"hasUnit": "millisecond"

},
{

"@id": "#EnterChatRoom" ,
"@type": "ObselType"

},
{

"@id": "#SendMsg" ,
"@type": "ObselType"

},
{

"@id": "#MsgReceived" ,
"@type": "ObselType"

},
{

"@id": "#LeaveRoom" ,
"@type": "ObselType"

},
{

"@id": "#room" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#EnterChatRoom"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "room"

},
{

"@id": "#message" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#SendMsg", "#MsgReceived"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "message"

},
{

"@id": "#from" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#MsgReceived"] ,
"hasAttributeDatatype": ["xsd:string"] ,

(continues on next page)

2.3. Describing a model in JSON 33

KTBS Documentation, Release 1.0

(continued from previous page)

"label": "from"
},
{

"@id": "#inRoom" ,
"@type": "RelationType" ,
"hasRelationOrigin": ["#MsgReceived", "#LeaveRoom", "#SendMsg"] ,
"hasRelationDestination": ["#EnterChatRoom"]

}
]

}

Inheritance of obsel types

While we can be satisfied with the model above and keep it that way, we can also notice that obsel types SendMsg
and MsgReceived share a lot of things (namely the attribute message and being in the domain of inRoom). This
creates some redundancy in the model definition.

To avoid that redundancy, and capture explicitly the commonalities between those obsel types, we can refactor those
commonalities into a new obsel type MsgEvent which both SendMsg and MsgReceived would inherit.

{
"@context": "http://liris.cnrs.fr/silex/2011/ktbs-jsonld-context",
"@graph": [

{
"@id": "http://localhost:8001/base1/model1",
"@type": "TraceModel",
"inBase": "./" ,
"hasUnit": "millisecond"

},
{

"@id": "#MsgEvent" ,
"@type": "ObselType"

},
{

"@id": "#EnterChatRoom" ,
"@type": "ObselType"

},
{

"@id": "#SendMsg" ,
"@type": "ObselType" ,
"hasSuperObselType": ["#MsgEvent"]

},
{

"@id": "#MsgReceived" ,
"@type": "ObselType" ,
"hasSuperObselType": ["#MsgEvent"]

},
{

"@id": "#LeaveRoom" ,
"@type": "ObselType"

},
{

"@id": "#room" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#EnterChatRoom"] ,

(continues on next page)

34 Chapter 2. Tutorials

KTBS Documentation, Release 1.0

(continued from previous page)

"hasAttributeDatatype": ["xsd:string"] ,
"label": "room"

},
{

"@id": "#message" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#MsgEvent"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "message"

},
{

"@id": "#from" ,
"@type": "AttributeType" ,
"hasAttributeObselType": ["#MsgReceived"] ,
"hasAttributeDatatype": ["xsd:string"] ,
"label": "from"

},
{

"@id": "#inRoom" ,
"@type": "RelationType" ,
"hasRelationOrigin": ["#MsgEvent", "#LeaveRoom"] ,
"hasRelationDestination": ["#EnterChatRoom"]

}
]

}

This new trace model can be represented by the following UML diagram:

EnterChatRoom

room:string

MsgEvent

message:stringinRoom

SendMsg

MsgResseived

from:string
LeaveRoom

inRoom

2.4 Using kTBS with REST and Turtle

This tutorial aims at showing how to create kTBS elements directly through the REST API with Turtle descriptions. If
you are not familiar with Turtle or RDF, you might prefer the JSON version of that tutorial.

2.4. Using kTBS with REST and Turtle 35

http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.w3.org/2007/02/turtle/primer/
http://www.w3.org/RDF/

KTBS Documentation, Release 1.0

2.4.1 Tools

For interacting with the kTBS, we will use the simple HTTP client that is embeded within every HTML page generated
by kTBS.

Don’t forget, though, that this embeded client is only a convenience shortcut for easily interacting with kTBS. You can
just as well use any HTTP client, either interactive (such as curl) or programmatic.

Note also that the Turtle code displayed by the editor might differ from the one presented in those examples; this is
because the namespace declarations may not be used in the exact same way. However, they represent the same data.

2.4.2 Create and populate a Stored Trace

In this first part, we will create and populate a stored trace. But for this, we first need to create a Base that will host
our traces.

The kTBS Root

The kTBS root is where all bases live. It is automatically created when the kTBS is first launched. Its URI is that of
the kTBS server, in our case: http://localhost:8001/ .

Create a new base

To create a new base in our kTBS root, we have to perform an HTTP POST request to it.

Visit the kTBS root and open the embeded HTTP client by clicking to edit at the lower-left of the page.

Visit the kTBS root. Select the POST operation (this opens a text-area), and ensure that the selected content-type is
text/turtle. Then copy the following Turtle code in the text-area, and press Send.

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<> :hasBase <base1/>.

<base1/>
a :Base ;
skos:prefLabel "My new base" .

The URI of the newly created base should appear below the text-area (in our example: http://localhost:8001/base1/).
By clicking on it, you will see a Turtle description of your base.

Note: All URIs in the example above are relative to the URI of the resource to which we post it; for example:

• <> is interpreted as <http://localhost:8001/>,

• <base1/> is interpreted as <http://localhost:8001/base1/>;

this rule is true for all POST and PUT requests to the kTBS.

36 Chapter 2. Tutorials

http://curl.haxx.se/
http://localhost:8001/
http://localhost:8001
http://localhost:8001
http://localhost:8001/base1/

KTBS Documentation, Release 1.0

Create a stored trace

Creating a stored trace inside a base is very similar to creating a base in the kTBS root. We first need to visit the base
(you should already be there after the previous step).

Again, select the POST operation, ensure that the content-type is text/turtle, copy the following Turtle code in
the text-area, and click Send. Then click on the link appearing between the text-area.

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .

<> :contains <t01/> .

<t01/>
a :StoredTrace ;
:hasModel <http://liris.cnrs.fr/silex/2011/simple-trace-model> ;
:hasOrigin "1970-01-01T00:00:00Z" .

You will notice that, besides the properties that you set for the new trace, the kTBS created another property, hasOb-
selCollection, pointing to http://localhost:8001/base1/t01/@obsels. This is where all the obsels that we are going to
add to this trace will be created.

Add obsels to trace

Adding an obsel to a trace should be no surprise to you at this point: it is simply done by POSTing a description of the
obsel to the trace itself.

Simply visit the trace and POST the following content to it:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#> .

<obs1> a m:SimpleObsel ;
:hasTrace <> .

In the description of the new obsel, you will notice that this time the kTBS added a number of properties in addition
to the ones you specified above. More precisely, the begin and end of the obsel have been automatically set based
on the moment you posted the obsel; this is expressed in milliseconds since the origin of the trace.

It would have been possible to specify those properties explicitly, if we wanted to override the values automatically
computed by the kTBS.

For example, let’s go back to the trace and POST the following content to it:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#> .

<obs0> a m:SimpleObsel ;
:hasTrace <> ;
:hasBegin 1361462605000 ;
:hasEnd 1361462647000 .

We also note that, as with the base and the trace earlier, we had to mint a URI for our new obsels. As we are likely to
create a large number of obsels, it sounds like a good idea to leave it to the kTBS to mint a fresh URI for each of them.
For our third obsel, we will therefore use a blank node. We will also add attributes and relations to our new obsel to
make it more interesting.

Let’s go back to the trace and POST the following content to it:

2.4. Using kTBS with REST and Turtle 37

http://localhost:8001/base1/
http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection
http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection
http://localhost:8001/base1/t01/@obsels
http://localhost:8001/base1/t01/
http://localhost:8001/base1/t01/
http://www.w3.org/TR/rdf-concepts/#section-blank-nodes
http://localhost:8001/base1/t01/

KTBS Documentation, Release 1.0

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#> .

[a m:SimpleObsel ;
:hasTrace <> ;
m:value "a new obsel" ;
m:hasRelatedObsel <obs1> ;

].

Note: Every element of the kTBS can be created with a blank node instead of an explicit URI. The URI minted by
kTBS is returned by the POST operation.

If we follow the hasObselCollection link from our trace, to the obsel collection, we can see the three obsels we have
created so far (your timestamps will obviously differ):

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#> .

<@obsels> a :StoredTraceObsels .
<.> :hasObselCollection <@obsels> .

<obs0> a m:SimpleObsel;
:hasBegin 1361462605000;
:hasEnd 1361462647000;
:hasTrace <.> .

<obs1> a m:SimpleObsel;
:hasBegin 1361462685837;
:hasEnd 1361462685837;
:hasTrace <.> .

<o-3k> a m:SimpleObsel;
:hasBegin 1361462707201;
:hasEnd 1361462707201;
:hasTrace <.>;
m:hasRelatedObsel <obs1>;
m:value "a new obsel" .

2.4.3 Creating computed traces

The kTBS has a number of builtin methods to create Computed Traces. As their name implies, computed trace differ
from stored trace by the fact that their obsels are computed by the kTBS (in application of the corresponding method)
rather than provided by external collectors.

Create a Computed Trace with a filter method

Let’s go back to the base and create a new computed trace by POSTing the following:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .

<> :contains <filtered1/> .

(continues on next page)

38 Chapter 2. Tutorials

http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection
http://localhost:8001/base1/t01/
http://localhost:8001/base1/t01/@obsels
http://localhost:8001/base1/

KTBS Documentation, Release 1.0

(continued from previous page)

<filtered1/>
a :ComputedTrace ;
:hasMethod :filter ;
:hasSource <t01/> ;
:hasParameter "after=1361462641000" .

This create a computed trace named filtered1 based on a temporal filter which copies the obsels from t01 obsels
situated after timestamp 1361462641000. You may notice that we did not provide any model nor origin for the
computed trace; those are automatically computed.

If you go and check the obsel collection of this computed trace, you will find two obsels. More precisely, all ob-
sels from t01 have been copied, except for obs0 which has been filtered out, as it is not entierly after timestamp
1361462641000.

Create a Computed Trace with a SPARQL query

We will now define a more sophisticated computed trace, using the powerful query language SPARQL.

Let’s go back to the base and create a new computed trace by POSTing the following:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .

<> :contains <joinRelated1/> .

<joinRelated1/>
a :ComputedTrace ;
:hasMethod :sparql ;
:hasSource <t01/> ;
:hasParameter """sparql=

PREFIX : <http://liris.cnrs.fr/silex/2009/ktbs#>
PREFIX m: <http://liris.cnrs.fr/silex/2011/simple-trace-model#>

CONSTRUCT {
[a m:SimpleObsel ;

m:value ?value ;
:hasTrace <%(__destination__)s> ;
:hasBegin ?begin ;
:hasEnd ?end ;
:hasSourceObsel ?o1, ?o2 ;

] .
} WHERE {

?o1 :hasBegin ?begin .
?o2 :hasEnd ?end ;

m:hasRelatedObsel ?o1 .
OPTIONAL { ?o2 m:value ?value }

}""" .

This create a computed trace named joinRelated1 using a SPARQL construct query to builds an obsel for each
pair of related obsels in t01, inheriting its begin and end timestamps respectively from each of them.

Note: It is frequent that SPARQL construct queries build obsels that comply with a model different from the source
trace’s. The target model can be specified with the special model parameter supported by the sparql method.

2.4. Using kTBS with REST and Turtle 39

http://localhost:8001/base1/filtered1/@obsels
http://www.w3.org/TR/rdf-sparql-query/
http://localhost:8001/base1/

KTBS Documentation, Release 1.0

Create a Computed Trace with a fusion method

We will now use the fusion method, used to aggregate in a computed trace the obsels from several source traces.

Let’s go back to the base and create a new computed trace by POSTing the following:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .

<> :contains <fusioned1/> .

<fusioned1/>
a :ComputedTrace ;
:hasMethod :fusion ;
:hasSource <filtered1/>, <joinRelated1/> .

This creates a computed trace named fusioned1 which is a merge of the filtered1 and the joinRelated1
traces.

2.5 Describing a model in Turtle

This tutorial explains how to describe a trace model for kTBS.

2.5.1 Preparation

First, you have to create a new base as described in the REST tutorial. We will assume that this base is named
http://localhost:8001/base01/.

2.5.2 Running example

Here is a UML representation of the Trace Model we will create. This is a minimal trace model of a typical online
chat activity.

EnterChatRoom

room:string

SendMsg

message:string
inRoom

MsgResseived

message:string
from:string

inRoom

LeaveRoom

inRoom

40 Chapter 2. Tutorials

http://localhost:8001/base1/

KTBS Documentation, Release 1.0

2.5.3 Creating the model

On the page of your base, select the POST request, the text/turtle content type, and copy the following data in
the text area:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .

<.> :contains <model1> .
<model1> a :TraceModel .

then press the Send button. The model is created and is now available at http://localhost:8001/base1/model1 .

If you visit that IRI, you will notice that the new model has an additional property: :hasUnit :millisecond.
Every trace model must have a unit, specifying how time will be represented in the traces complying with this model
(see Trace time management).

2.5.4 Modifying the model

Creating obsel types

We will first create the obsel types. Visit the model at http://localhost:8001/base1/model1 , select the PUT request, the
text/turtle content type, and modify the code with the following:

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

<.> :contains <model1> .

<model1> a :TraceModel ;
:hasUnit :millisecond .

<#EnterChatRoom> a :ObselType .
<#SendMsg> a :ObselType .
<#MsgReceived> a :ObselType .
<#LeaveRoom> a :ObselType .

then press the Send button. The page should reload and show the new obsel types.

Note: Note that all relative IRIs in this example are interpreted against the IRI of the model (as it is the target IRI
of the PUT request). For the sake of readability, we keep <model1> to identify the model itsel, but <> would work
as well. All components of the models have their IRI starting with #, so <#EnterChatRoom> is a shorthand for
<http://localhost:8001/base1/model1#EnterChatRoom>, for example.

Note that you could not have POSTed the Turtle code above as is, as relative IRIs in a POST are interpreted against
the IRI of the base (<http://localhost:8001/base01/> in this case).

It is still possible to create the obsel types together with the model at POST time, but then you need change the relative
IRIs accordingly, <model1#EnterChatRoom> instead of <#EnterChatRoom>, etc.

Adding attributes

We will now associate attributes to our newly created obsel types.

As obsel types, each attribute has a unique IRI, relative to that of the model: <#room>, <#message> and <#from>.
It is related to the obsel type(s) in which it may appear by the :hasAttributeDomaine property.

2.5. Describing a model in Turtle 41

http://localhost:8001/base1/model1
http://localhost:8001/base1/model1

KTBS Documentation, Release 1.0

The datatype of an attribute is specified using :hasAttributeRange. kTBS supports a subset of the primi-
tive datatypes defined in XML-Schema, including the most usual datatypes such as xsd:string, xsd:integer,
xsd:boolean and xsd:float.

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<.> :contains <model1> .

<model1> a :TraceModel ;
:hasUnit :millisecond .

<#EnterChatRoom> a :ObselType .
<#SendMsg> a :ObselType .
<#MsgReceived> a :ObselType .
<#LeaveRoom> a :ObselType .

<#room> a :AttributeType ;
skos:prefLabel "room" ;
:hasAttributeDomain <#EnterChatRoom> ;
:hasAttributeRange xsd:string .

<#message> a :AttributeType ;
skos:prefLabel "message" ;
:hasAttributeDomain <#SendMsg>, <#MsgReceived> ;
:hasAttributeRange xsd:string .

<#from> a :AttributeType ;
skos:prefLabel "from" ;
:hasAttributeDomain <#MsgReceived> ;
:hasAttributeRange xsd:string .

Note: In UML, attributes belong to a given class, and their name is scoped to that class. It is therefore possible to have
two different classes A and B, both having an attribute named foo, and still have A.foo mean something completely
different from B.foo (they could for example have different datatypes).

In kTBS on the other hand, attributes are first-class citizens of the model, their name (IRI) is scoped to the entire model.
In our example above, the attribute <#message> is shared by two obsel types, it is therefore the same attribute, with
the same meaning and the same datatype1.

If we wanted to consider SendMsg.message and MsgReceived.message as two distinct attributes more in the
line of UML design, then we would need to create two attribute types with distinct IRIs, for example <#SendMsg/
message> and <#MsgReceived/message>.

Adding relations

We now define the types of relation that may exist between obsels in our model. Just like obsel types and attributes,
relation types are named with an IRI relative to that of the model. The type(s) of the obsels from which the relation
can originate is specified with :hasRelationDomain. The type(s) of the obsels to which the relation can point is
specified with :hasRelationRange.

1 In order to achieve this in UML, we would need an abstract class (e.g. WithMessage) defining the attribute message, and have both classes
SendMsg and MsgReceived inherit that abstract class.

Note that this design is still possible with kTBS, and can be useful when multiple attributes and/or relations are shared together in several obsel
types (see (using Inheritance of obsel types).

42 Chapter 2. Tutorials

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

KTBS Documentation, Release 1.0

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<.> :contains <model1> .

<model1> a :TraceModel ;
:hasUnit :millisecond .

<#EnterChatRoom> a :ObselType .
<#SendMsg> a :ObselType .
<#MsgReceived> a :ObselType .
<#LeaveRoom> a :ObselType .

<#room> a :AttributeType ;
skos:prefLabel "room" ;
:hasAttributeDomain <#EnterChatRoom> ;
:hasAttributeRange xsd:string .

<#message> a :AttributeType ;
skos:prefLabel "message" ;
:hasAttributeDomain <#SendMsg>, <#MsgReceived> ;
:hasAttributeRange xsd:string .

<#from> a :AttributeType ;
skos:prefLabel "from" ;
:hasAttributeDomain <#MsgReceived> ;
:hasAttributeRange xsd:string .

<#inRoom> a :RelationType ;
:hasRelationDomain <#SendMsg>, <#MsgReceived>, <#LeaveRoom> ;
:hasRelationRange <#EnterChatRoom> .

Inheritance of obsel types

While we can be satisfied with the model above and keep it that way, we can also notice that obsel types SendMsg
and MsgReceived share a lot of things (namely the attribute message and being in the domain of inRoom). This
creates some redundancy in the model definition.

To avoid that redundancy, and capture explicitly the commonalities between those obsel types, we can refactor those
commonalities into a new obsel type MsgEvent which both SendMsg and MsgReceived would inherit.

@prefix : <http://liris.cnrs.fr/silex/2009/ktbs#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<.> :contains <model1> .

<model1> a :TraceModel ;
:hasUnit :millisecond .

<#EnterChatRoom> a :ObselType .
<#MsgEvent> a :ObselType .
<#SendMsg> a :ObselType ;

:hasSuperObselType <#MsgEvent> .
<#MsgReceived> a :ObselType ;

(continues on next page)

2.5. Describing a model in Turtle 43

KTBS Documentation, Release 1.0

(continued from previous page)

:hasSuperObselType <#MsgEvent> .
<#LeaveRoom> a :ObselType .

<#room> a :AttributeType ;
skos:prefLabel "room" ;
:hasAttributeDomain <#EnterChatRoom> ;
:hasAttributeRange xsd:string .

<#message> a :AttributeType ;
skos:prefLabel "message" ;
:hasAttributeDomain <#MsgEvent> ;
:hasAttributeRange xsd:string .

<#from> a :AttributeType ;
skos:prefLabel "from" ;
:hasAttributeDomain <#MsgReceived> ;
:hasAttributeRange xsd:string .

<#inRoom> a :RelationType ;
:hasRelationDomain <#MsgEvent>, <#LeaveRoom> ;
:hasRelationRange <#EnterChatRoom> .

This new trace model can be represented by the following UML diagram:

EnterChatRoom

room:string

MsgEvent

message:stringinRoom

SendMsg

MsgResseived

from:string
LeaveRoom

inRoom

44 Chapter 2. Tutorials

CHAPTER 3

RESTful API

This chapter describes the API of kTBS. The alternative is to use a dedicated API in your programming language of
choice, ideally mapped to the abstract API. The developper’s section of this documentation contains a (still incom-
plete) client API for Python, but Java, ActionScript and PHP implementations are also in development.

3.1 REST in kTBS

3.1.1 REST basic notions

The central notion in REST is the notion of resource. Each resource is identified by an URI and accessed through
HTTP operations to that URI. Those operations manipulate representations of the resource; the resource itself is an
abstract entity that is never directly reached.

GET: Return a representation of the resource.

PUT: Alter a resource by submitting a new representation.

POST: Creates a new resource by submitting its representation to a “parent” resource.

DELETE: Deletes a resource.

For more information on the REST architecture, refer to http://en.wikipedia.org/wiki/Representational_state_transfer.

3.1.2 Resource relations

kTBS uses two special relations between resources: parent/child resource and aspect resource.

Parent/child resource

Resources in kTBS are organized in a hierarchy, and every resource (except for the Ktbs Root), has exactly one parent.
This hierarchy is naturally reflected by the path of the resources’ URIs.

45

https://github.com/ktbs/ktbs4j
https://github.com/ktbs/ktbs4as
http://liris.cnrs.fr/~sbt-dev/ktbs/php-client
http://en.wikipedia.org/wiki/Representational_state_transfer

KTBS Documentation, Release 1.0

Although the description of the parent resource may contain references to its children resource and some information
about them, the general rule is that this information can not be altered by PUT requests to the parent resource. Instead,
child resources are:

• created by a POST request to the parent resource;

• altered by a PUT request to themselves;

• deleted by a DELETE request to themselves.

Aspect resources

Some resources are too complex to be handled only through the four HTTP verbs. Those resources are therefore linked
to one or several aspect resources, each of them representing an additional aspect of the original resource.

As a convention, a resource with aspect resources will have a URI ended with ‘/’, and all its aspect resources will have
a suffix starting with ‘@’. The number, types and names of aspect resources depends only on the type of the original
resource. Aspect resources are automatically created and deleted with the original resource and can not be created or
deleted independandly.

example

A trace has exactly two aspect resources called @obsels and @stats. If the URI of the trace is http://example.com/
ws1/t01/, the URI of the aspect resources will be http://example.com/ws1/t01/@obsels and http://example.com/ws1/
t01/@stats, respectively. The first one holds its obsel collection, while the second one holds some general statistics
about the trace.

Although each type defines the name of its aspect resources, it is consider a better practice to discover their names
through inspection of the resource descriptions, rather than relying on their naming convention. The semantics of the
description vocabulary is indeed considered more stable across implementations than the naming conventions.

3.1.3 Representations

Resource representations in kTBS are typically in RDF (except for some aspect resources), and represented by default
in JSON-LD. Through content-negotoation, other syntaxes can be used, such as RDF/XML, Turtle or N-Triples.
Support for additional mimetypes can be added to kTBS by using the plugin mechanism.

The representations in GET and PUT requests are about existing resources with a known URI. It is therefore quite
straightforward to represent those resources in RDF: they appear in the graph as a URI node, and the arcs in the graph
represent their relations with other resources and literals. Depending on the type of the represented resources, some
representation constraints (see below) may apply to the structure of the graph.

On the other hand, the representation of a created resource (POST request) deserves more explanations, since their
URI is not necessarily known in advance. The POSTed RDF graph must comply with the following rules:

• the target URI of the POST request must be present in the graph as a URI node;

• it must be linked, through exactly one postable property (see below), to a URI or blank node presenting the
to-be-created resource;

• appart from the arc described above, the graph must be a valid description of the to-be-created resource (i.e. be
compliant with the constraints imposed by its type).

The list of postable properties, i.e. property which can be used to link a target resource to a newly created resource, is
determined by the type of the target resource.

46 Chapter 3. RESTful API

http://example.com/ws1/t01/
http://example.com/ws1/t01/
http://example.com/ws1/t01/@obsels
http://example.com/ws1/t01/@stats
http://example.com/ws1/t01/@stats
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/

KTBS Documentation, Release 1.0

example

Traces have only one postable property: has_trace, which links theirs obsels (created resources) to themselves.

If the node representing the resource to create is a blank node, kTBS will make a fresh URI for it. If it is a URI node,
kTBS will check that the URI is not in use, or the creation will fail. In any case, the URI of the newly created resource
will be provided in the Location header field of the response, as specified by HTTP.

TODO

Document how it works with JSON, as it is slightly different.

Representation constraints

A common constraint imposed by resource types on the description of their instances is that the graph be star-shaped.
This implies that:

• every arc in the graph involved the resource being described by the graph;

• the other node in every arc is either a URI or literal node (i.e. no blank node).

Additionnaly, there may be some restrictions on the properties belonging to the following namespaces, since they have
a special meaning for kTBS:

• http://liris.cnrs.fr/silex/2009/rdfrest#

• http://liris.cnrs.fr/silex/2009/ktbs#

Properties from those namespaces may be:

GET-only: those properties are automatically generated by kTBS. They are part of the GET description, but can not
be part of the POSTed description. They may be included in the payload of a PUT only if their value is not
modified.

POST-only: those properties can be initialized at POST time, but after that, they behave exactly like GET-only prop-
erties.

3.2 Ktbs Root

This class has exactly one instance in each kTBS, whose URI is the base URI of the kTBS.

3.2.1 GET

Retrieve a description of the root. This description contains configuration settings of the kTBS, and references to its
children resources, of type Base.

It is also possible to enrich the graph returned by GET with information about the bases in this root, using the property
prop containing a comma-separated list of the following properties:

• comment to display the rdfs:comments of bases,

• label to display the rdfs:labels of skos:prefLabel of bases.

3.2. Ktbs Root 47

http://liris.cnrs.fr/silex/2009
http://liris.cnrs.fr/silex/2009

KTBS Documentation, Release 1.0

3.2.2 PUT

Alters the configuration settings of the kTBS. Children resources can not be modified, and may therefore be ommitted
from the payload.

3.2.3 POST

Creates a new Base.

3.2.4 Description constraints

The description of a kTBS root must be star shaped.

3.3 Base

Base resources represent the trace bases hosted by the system.

3.3.1 Creation

A base is created by a POST query to the KtbsRoot. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#hasBase linking from the KtbsRoot

3.3.2 GET

Retrieve a description of the base. This description contains information about the base (label, owner, etc.) and the list
of items (Trace, Model, Method) it contains, with their types.

It is also possible to enrich the graph returned by GET with information about the items of the base, using the property
prop containing a comma-separated list of the following properties:

• comment to display the rdfs:comments of items,

• hasModel to display the model of traces,

• hasSource to display the sources of traces,

• label to display the rdfs:labels of skos:prefLabel of items,

• obselCount to display the number of obsels of traces.

3.3.3 PUT

This allows to change some information about the base. Items of a base can not be modified that way, and may
therefore be ommitted from the payload.

3.3.4 DELETE

Deletes the base.

TODO: decide whether a base can be deleted if it is not empty.

48 Chapter 3. RESTful API

http://liris.cnrs.fr/silex/2009/ktbs#hasBase

KTBS Documentation, Release 1.0

3.3.5 Description constraints

The description of a base must be star shaped.

3.4 Trace

This class is the base class of Stored Trace and Computed Trace. It has no direct instances (only the two subclasses
above can be instantiated), but everything described here is valid for any indirect instance.

Traces have two aspect resource:

• @obsels, linked through http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection

• @stats, linked through http://liris.cnrs.fr/silex/2009/ktbs#hasTraceStatistics

3.4.1 Original resource

GET

Retrieve the description of the trace, augmented with the following generated properties:

• http://liris.cnrs.fr/silex/2009/ktbs#compliesWithModel can be either “yes”, “no” or “?” (if the model is not avail-
able)

• links to the @obsel aspect resource.

PUT

This allows to change the description of the trace itself.

DELETE

Deletes the trace and its aspect resources.

TODO: what happens if the trace is the source of a computed trace?

Description Constraints

The description of a trace must be star shaped.

3.4.2 @obsels

This aspect resource stands for the obsel collection of the trace.

GET

Return the description of all the obsels of the trace. This description can be filtered by passing the following query-
string arguments:

after an obsel URI, only obsels after this one will be returned

before an obsel URI, only obsels before this one will be returned

3.4. Trace 49

http://liris.cnrs.fr/silex/2009/ktbs#hasObselCollection
http://liris.cnrs.fr/silex/2009/ktbs#hasTraceStatistics
http://liris.cnrs.fr/silex/2009/ktbs#compliesWithModel

KTBS Documentation, Release 1.0

limit an int, only that many obsels (at most) will be returned

minb an int, the minimum begin value for returned obsels

mine an int, the minimum end value for returned obsels

maxb an int, the maximum begin value for returned obsels

maxe an int, the maximum end value for returned obsels

offset an int, skip that many obsels

reverse a boolean1, reverse the order (see below)

For example http://localhost:8001/base1/t01/@obsels?minb=42&maxe=101 will return only those obsel beginning at
or after 42 and ending at or before 101.

Some of these parameters (after, before, limit, offset and reverse) rely on the Obsel total ordering. For
example, @obsels?limit=10 will return the first ten obsels, while @obsels?reverse&limit=10 will return
the last ten obsels. Remember however that most RDF serializations have no notion of order (they convey a set of
triples) so the representation of those resources may appear unordered. The JSON-LD serializer in kTBS is a notable
exception: the obsel list is sorted according to the obsel ordering.

Even with unordered serializations, however, this still allows to retrieve obsels of a big trace in a paginated fashion,
using limit to specify the size of the page, and after to browse from one page to another (setting its value to
the latest obsel of the previous page), or before when paginating in the reverse order2. To make it easier, kTBS
provides a next Link HTTP header (per RFC 5988) pointing to the next page.

Representation completeness

Obsels with a complex structure (see below) may not be entirely described in the representations of @obsels. More
precisely, all attributes (i.e. outgoing properties) of obsels, and all inter-obsel relations will always be represented.
However, if an attribute has a complex value, represented as a blank node with its own properties, then the representa-
tions of @obsels will usually3 truncate such property paths to a length of 3.

This limitation has been introduced to ensure good performances, and is deemed acceptable as obsels typically have a
flat structure (depth of 1), and occasionnally a depth of 2. In order to get the full description of an obsel, you can of
course still get it from the obsel URI.

Also, note that transformation methods sill have access to the whole structure of obsels

PUT

This method can be used to modify the obsels of a trace. Be aware that kTBS performs absolutely no control on the
put graph, so this is at your own risks.

DELETE

This method deletes the obsel collection, and with it all the obsels of the trace.

Note that a trace must always have an obsel collection, so a new (empty) one will immediately be created. Hence, this
method can be thought of as simply deleting all obsels, and leaving the obsel collection resource intact.

1 The value is case insensitive, and any value different from false, no or 0 will be considered true. Note that the empty string is considered
true, so that this parameter can be used without any value, as in @obsels?reverse&limit=10.

2 The offset option would be simpler to use, but its use is not always allowed on big traces (for example, Virtuoso forbids it beyond a certain
amount of obsels), so using after/before is more robust (and potentially more efficient).

3 You may retrieve longer paths in some situations, but this should not be relied upon.

50 Chapter 3. RESTful API

http://localhost:8001/base1/t01/@obsels?minb=42&maxe=101
https://tools.ietf.org/html/rfc5988.html
http://virtuoso.openlinksw.com/

KTBS Documentation, Release 1.0

3.4.3 @stats

This aspect resource provides general statistics about the trace.

GET

Provide the statistics; by default, those statistics include:

• the total number of obsels,

• the time-span of the obsels of the traces (min and max timestamp, and duration).

Plugins can add more information to the statistics.

3.5 Obsel

3.5.1 Creation

An obsel is created by a POST query to a StoredTrace. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#hasTrace linking to the Trace

Optionally, it may have the following properties:

• rdf:type valued with one or several obsel type defined by the trace model

• http://liris.cnrs.fr/silex/2009/ktbs#hasBegin (see below)

• http://liris.cnrs.fr/silex/2009/ktbs#hasBeginDT (see below)

• http://liris.cnrs.fr/silex/2009/ktbs#hasEnd (see below)

• http://liris.cnrs.fr/silex/2009/ktbs#hasEndDT (see below)

• http://liris.cnrs.fr/silex/2009/ktbs#hasSubject identifying the person/agent being traced

• any attribute or relation defined by the trace model.

Specifying temporal bounds

If the trace’s origin is opaque:

• hasBegin must be specified;

• hasBeginDT and hasEndDT must not used;

• if hasEnd is not specified, the obsel will be considered to end at the same timestamp as its begin.

Otherwise, the trace’s origin is a timestamp:

• if neither hasBegin nor hasBeginDT is specified, the obsel will be considered to begin at the current time;

• if neither hasEnd nor hasEndDT is specified, the obsel will be considered to end at the same timestamp as its
begin.

3.5.2 GET

Return the description of this obsel.

3.5. Obsel 51

http://liris.cnrs.fr/silex/2009/ktbs#hasTrace
http://liris.cnrs.fr/silex/2009/ktbs#hasBegin
http://liris.cnrs.fr/silex/2009/ktbs#hasBeginDT
http://liris.cnrs.fr/silex/2009/ktbs#hasEnd
http://liris.cnrs.fr/silex/2009/ktbs#hasEndDT
http://liris.cnrs.fr/silex/2009/ktbs#hasSubject

KTBS Documentation, Release 1.0

3.5.3 DELETE

Deletes this obsel from the trace. Note that this is a non-monotonic change.

NB: any other modification to an obsel is made through an amendment (PUT) of the whole obsel collection.

3.6 Stored Trace

A trace whose obsels are created externally by POSTing them to the trace, and stored by the system. In addition to the
interface specified by its superclass Trace, this class accepts the following requests.

3.6.1 Original resource

Creation

A stored trace is created by a POST query to a Base. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#contains linking from the Base

• http://liris.cnrs.fr/silex/2009/ktbs#hasModel

• http://liris.cnrs.fr/silex/2009/ktbs#hasOrigin

POST

Add an obsel to that trace. See the section about Monotonicity for a discussion on the constraints.

3.6.2 @obsels

PUT

This allows to amend the content of the trace.

Note that this allows to modify obsels, although they appear to be child resources of the trace. This is an exception to
the rule stating that a resource can not be modified by altering its parent resource.

3.7 Computed Trace

A trace whose obsels are computed according to a Method, either from a number of source traces (transformed trace),
or from external information (automatically collected trace). Although its obsel collection may be stored for perfor-
mance issues, it can be assumed to be computed dynamically and always up-to-date w.r.t. the sources.

3.7.1 Original resource

Creation

A computed trace is created by a POST query to a Base. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#contains linking from the Base

52 Chapter 3. RESTful API

http://liris.cnrs.fr/silex/2009/ktbs#contains
http://liris.cnrs.fr/silex/2009/ktbs#hasModel
http://liris.cnrs.fr/silex/2009/ktbs#hasOrigin
http://liris.cnrs.fr/silex/2009/ktbs#contains

KTBS Documentation, Release 1.0

• http://liris.cnrs.fr/silex/2009/ktbs#hasMethod

It can optionally have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#hasSource

• http://liris.cnrs.fr/silex/2009/ktbs#hasParameter

3.7.2 @obsels

GET

In addition to the query-string parameters accepted by any trace, computed traces allow for the parameter refresh
to control the computation process. Recognized values are:

• default (which is the default value!) will refresh the trace only if needed (i.e. if its method, its parameters
or its sources have changed).

• no will prevent any re-computation.

• yes or force will force the re-computation of the trace, even if nothing has changed.

• recursive will recursively force the re-computation of all the sources of the trace, then of the trace itself.

3.8 Model

A model is a simple RDF graph defining the obsel types, attributes and relations according to the kTBS vocabulary.

3.8.1 Creation

A model is created by a POST query to a Base. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#contains linking from the Base

• http://liris.cnrs.fr/silex/2009/ktbs#hasParentModel

It can optionally have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#hasParameter

3.8.2 GET

Return the content of the graph.

3.8.3 PUT

Change the content of the model.

3.8.4 DELETE

Not implemented yet. TODO decide what to do if computed traces use this model.

3.8. Model 53

http://liris.cnrs.fr/silex/2009/ktbs#hasMethod
http://liris.cnrs.fr/silex/2009/ktbs#hasSource
http://liris.cnrs.fr/silex/2009/ktbs#hasParameter
http://liris.cnrs.fr/silex/2009/ktbs#contains
http://liris.cnrs.fr/silex/2009/ktbs#hasParentModel
http://liris.cnrs.fr/silex/2009/ktbs#hasParameter

KTBS Documentation, Release 1.0

3.9 Method

3.9.1 Creation

A computed trace is created by a POST query to a Base. It must have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#contains linking from the Base

• http://liris.cnrs.fr/silex/2009/ktbs#inherits

It can optionally have the following properties:

• http://liris.cnrs.fr/silex/2009/ktbs#hasParameter

3.9.2 GET

In addition to the query-string parameters accepted by any trace, computed traces allow for the parameter quick to
force the retrieval of the current state of the trace, even if its content is not up to date.

3.9.3 PUT

Not implemented yet.

3.9.4 DELETE

Not implemented yet. TODO decide what to do if computed traces use this method.

3.10 Authentication

For the moment, kTBS does not include any authentication mechanism. However, as a WSGI application, it can be
either:

• wrapped in a WSGI middleware managing authentication (see the WSGI website);

• hosted by a standard web server, such as Apache, with its own authentication mechanism.

54 Chapter 3. RESTful API

http://liris.cnrs.fr/silex/2009/ktbs#contains
http://liris.cnrs.fr/silex/2009/ktbs#inherits
http://liris.cnrs.fr/silex/2009/ktbs#hasParameter
http://wsgi.org/
http://wsgi.org/
http://httpd.apache.org/

CHAPTER 4

Built-in methods

4.1 Filter

This method copies the obsels of the source trace if they pass the filter.

sources 1

parameters

model the model of the computed trace

origin the origin of the computed trace

after the integer timestamp below which obsels are filtered out

before the integer timestamp above which obsels are filtered out

afterDT the datetime timestamp below which obsels are filtered out

beforeDT the datetime timestamp above which obsels are filtered out

otypes space-separated list of obsel type URIs; only obsels of these types (or their sub-
types) will be kept

bgp a SPARQL Basic Graph Pattern used to express additional criteria (see below)

extensible no

If parameter model (resp. origin) is not provided, the model (resp. origin) of the source trace will be used instead.

All filtering parameters are optional. If not specified, they will not constrain the obsels at all. For example, if otypes
is not provided, obsels will be kepts regardless of their type; on the other hand, if otypes is provided, only obsels
with their type in the list will be kept.

Datetime timestamps can only be used if the source origin is itself a datetime. If a temporal boundary is given both
as an integer and a datetime timestamp, the datetime will be ignored. Note that temporal boundaries are inclusive, but
obsels must be entirely contained in them.

55

KTBS Documentation, Release 1.0

The bgp parameter accepts any SPARQL BGP (i.e. triple patterns, FILTER clauses) used to add further criteria to the
obsels to keep in the computed trace. The SPARQL variables ?obs, ?b and ?e are bound respectively to the obsel,
its begin timestamp and its end timestamp. The prefix m: is bound to the source trace model URI.

4.2 Fusion

This method merges the content of all its sources.

sources any number

parameters

model the model of the computed trace

origin the origin of the computed trace

extensible no

If all source traces have the same model (resp. origin), then parameter model (resp. origin) is not required, and in
that case the computed trace will have the same model (resp. origin) as its source(s).

4.3 Finite State Automaton (FSA)

This method applies a Finite State Automaton to detect patterns of obsels in the source trace, and produce an obsel in
the transformed trace for each pattern occurence. It is based on the FSA4streams library.

sources 1

parameters

model the model of the computed trace

origin the origin of the computed trace

fsa the description of the FSA

extensible no

If parameter model (resp. origin) is not provided, the model (resp. origin) of the source trace will be used instead.

The fsa parameter expects a JSON description of the FSA, as described in the FSA4streams documentation, with the
following specificities:

• The default matcher (even if not explicitly specified) is obseltype: each transition.condition is
interpreted as an obsel type URI (either absolute or relative to the source trace’s model URI), and an obsel
matches the transition if it has the corresponding obsel type.

• An additional matcher is also provided: sparql-ask, which allows for more expressive condition as the
previous one. It interprets conditions as the WHERE clause of a SPARQL ASK query, where

– prefix : is bound to the kTBS namespace,

– prefix m: is bound to the source trace model,

– variable ?obs is bound to the considered obsel,

– variable ?pred is bound to the previous matching obsel (if any),

– variable ?first is bound to the first matching obsel of the current match (if any).

• The max_duration constraints (as specified in the documentation) apply to the end timestamps of the obsels.

56 Chapter 4. Built-in methods

https://pypi.python.org/pypi/fsa4streams
http://fsa4streams.readthedocs.org/en/latest/syntax.html

KTBS Documentation, Release 1.0

• Terminal states may have two additional attributes ktbs_obsel_type and ktbs_attribute, described
below.

For each match found by the FSA, a new obsel is generated:

• The source obsels of the new obsel are all the obsels contributing to the match.

• The begin and end timestamps of the new obsel are, respectively, the begin of the first source obsel and the end
of the last source obsel.

• The type of the new obsel is the value of the ktbs_obsel_type of the terminal state, interpreted as a URI
relative to the computed trace’s model URI. If this attribute is omitted, the state identifier is used instead. If this
attribute is null, no obsel will be generated for the corresponding match.

• If the terminal state has a ktbs_attributes model, additional attributes will be generated for the new
obsel. The value of ktbs_attributes must be a JSON object, whose keys are the target attribute type
URIs (relative to the computed trace’s model URI), and whose values are source attribute type URIs (relative to
the source trace’s model URI). Each target attribute will receive the value of the source attribute of the source
obsels. If several values are available, the value of the latest source obsel will be kept. If none of the source
obsel has a source attribute, the corresponding target attribute will not be set.

Additionally, the source attributes can be preceded by one of the following operators, in which case the value
of the target operator will be the result of applying the operator to all the values of the source attributes in the
source obsels:

– last: returns the last value in chronological order (this is the default, see above);

– first: returns the first value in chronological order;

– count: returns the number of source obsel having the source attribute;

– sum: returns the sum of all values;

– avg: returns the average of all values;

– min: returns the minimum value;

– max: returns the maximum value;

– span: returns the difference between the maximum and the minimum values;

– concat: returns a space-separated concatenation of all the values.

4.4 Hubble Rules (HRules)

This method is named after the Hubble project, in which they have been proposed. Those rules can be used both as a
stylesheet in the Taaabs timeline component, and as a transformation, thanks to this method. A benefit is that such a
transformation can be built interactively in the timeline, with a direct visual feedback of its effect, then “materialized”
as a user-defined method and applied to other traces.

sources 1

parameters

model the model of the computed trace

origin the origin of the computed trace

rules the description of the rules

extensible no

4.4. Hubble Rules (HRules) 57

http://hubblelearn.imag.fr/
https://github.com/TaaabsElements/taaabs-trace-timeline

KTBS Documentation, Release 1.0

If parameter origin is not provided, the origin of the source trace will be used instead.

The parameter model specified the model of the computed trace. It must be specified (as traces computed from rules
generally hava a different model from their source trace).

The parameter rules is a JSON string complying with the model below.

4.4.1 Structure of the rules parameter

The rule parameter contains a JSON array. Each item of this array is called a rule.

Each rule is a JSON object with the following attributes:

• id is an obsel type IRI (from the target model), no two rules must have the same id.

• rules is an array of subrules.

• visible is an optional boolean, defaulting to true.

Each subrule is a JSON object with the following attributes:

• type is an optional obsel type IRI (from the source trace’s model).

• attribute is an optional JSON array of attribute constraints.

Each attribute constraint is a JSON object with the following attributes:

• uri is an attribute type IRI (from the source trace’s model).

• operator is one of the following strings:

– ==, !=, <, >, <=, >= have their usual meaning;

– contains checks that a string attribute contains the given value as a substring.

• value is either a JSON string or a JSON-LD value object.

4.4.2 Semantics of Hubble rules

• An obsel (from the source trace) matches an attribute constraint if it has the corresponding attribute, and its
value satisfies the corresponding operator and value.

If the value of the attribute constraint is a string, and if the attribute has a single datatype as its range in the
source model, then the value will be cast to that datatype before the comparison is computed. Otherwise, it will
be converted to a literal as specified by JSON-LD.

• An obsel matches a subrule with a type if it matches all the attribute constraints of the subrule.

• An obsel matches a subrule with a type if

– it has the corresponding obsel type, and

– it matches all the attribute constraints of the subrule.

• An obsel matches a rule if it matches at least one of its subrule.

This method produces a new obsel for each source obsel matching a rule (unless this rule has visible set to false);
the obsel type of the new obsel is the id of the matching rule; the attributes of the source obsel are copied in the new
obsel.

58 Chapter 4. Built-in methods

http://json-ld.org/spec/latest/json-ld/#value-objects

KTBS Documentation, Release 1.0

4.4.3 Precedence of subrules

Whenever an obsel matches several subrules (belonging to different rules), the following precedence applies:

• a subrule which specifies an obsel type has precedence over a subrule which does not, regardless of their number
of attribute constraints or position in the rule structure;

• a subrules with more attribute constraints has precedence over a subrule with less attributes constraints, regard-
less of their position in the rule structure;

• a subrule higher in the rule structure has precedence over a subrule lower in the rule structure.

These criteria induce a total order on subrules, making the process totally deterministic.

4.5 Incremental Sparql (ISparql)

This method applies a SPARQL SELECT query to the source trace, and builds new obsels with the result.

sources 1

parameters

model the model of the computed trace

origin the origin of the computed trace

sparql a SPARQL SELECT query (required)

extensible yes (see below)

The SPARQL query must be a SELECT query. Its WHERE clause must contain the magic string
%(__subselect__)s, which will be replaced with a subquery. For each obsel of the source trace, this subquery
will yield its URI, begin timestamp and end timestamp as ?sourceObsel, ?sourceBegin and ?sourceEnd.
You may then complement the WHERE clause as you see fit.

Each row returned by your SELECT query will create a new obsel in the computed trace; each variable will add
information to the obsel, based on the name of the variable, as explained by the table below. Note that variables
followed with a star (*) are mandatory :

sourceObsel * a source obsel (ktbs:hasSourceObsel), also used to mint the URI of the
computed obsel

type * the obsel type (rdf:type)
begin * the begin timestamp (ktbs:hasBegin)
end the end timestamp (ktbs:hasEnd), copied from begin if not provided
beginDT the begin datetime (ktbs:hasBeginDT); note that kTBS does not check the

consistency with begin
endDT the end datetime (ktbs:hasEndDT), note that kTBS does not check the con-

sistency with end
subject the subject of the obsel (ktbs:hasSubject)
(any name starting with
sourceObsel)

an additional source obsel (ktbs:hasSourceObsel)

(any other name) an attribute built by concatenating the variable name to the namespace of the
computed trace’s model

If parameter model (resp. origin) is not provided, the model (resp. origin) of the source trace will be used instead.

The SPARQL query can contain magic strings of the form %(param_name)s, that will be replaced by the value of
an additional parameter named param_name.

4.5. Incremental Sparql (ISparql) 59

https://www.w3.org/TR/sparql11-query/#subqueries

KTBS Documentation, Release 1.0

Important: For the sake of performance, this method works incrementally: everytime the trace is re-computed, the
subquery inserted at %(__subselect__)s magically selects only source obsels that have not been considered yet.

As a consequence, each results of the query should not depend on information that appears “later” in the trace than
?sourceObsel. Otherwise, the content of the computed trace may vary unpredictably, depending on when the trace
is actually computed.

If you can not guarantee the property above, then you should probably use the sparql method below instead, under-
standing that it will not behave as well performancewise.

4.6 Sparql

Important: Unlike other methods, this method does not work incrementally: each time the source trace is modified,
the whole computed trace is re-generated.

Therefore, you should consider using the incremental sparql method instead, unless its limitations are too constraining
for your needs.

This method applies a SPARQL CONSTRUCT query to the source trace.

sources 1

parameters

model the model of the computed trace

origin the origin of the computed trace

sparql a SPARQL CONSTRUCT query (required)

scope graph against which the SPARQL query must be executed (see below)

inherit inherit properties from source obsel (see below)

extensible yes (see below)

If parameter model (resp. origin) is not provided, the model (resp. origin) of the source trace will be used instead.

The scope parameter accepts three values:

• trace (the default): the SPARQL query only has access to the obsels of the source trace.*

• base: the default graph is the union of all the information contained in the base (including subbases). The
GRAPH keyword can be used to filter information per graph. Note that this is concetually clean, but very
inefficient with the current implementation.

• store: the default graph is the entire content of the underlying triple-sore. The GRAPH keyword can be
used to filter information per graph. Note that this is only safe if all users are allowed to access any stored
information. For this reason, this option is disable by default. To enable it, the configuration sparql.
allow-scope-store must be set to true.

If inherit is set (with any value), then the produced obsels will inherit from their source obsel all the properties that
are not explicitly set by the CONSTRUCT. That includes properties in the ktbs namespace. This allows to greatly
simplify SPARQL queries that are mostly filtering and or augmenting obsels, rather than synthetizing new ones. Note
however that if the obsel has several source obsels, the behabiour is unspecified. Note also that this mechanism can
access the source obsels regardless of the scope.

60 Chapter 4. Built-in methods

https://www.w3.org/TR/sparql11-query/#subqueries

KTBS Documentation, Release 1.0

The SPARQL query can contain magic strings of the form %(param_name)s, that will be replaced by the value of
an additional parameter named param_name. Note that the following special parameters are automatically provided:

special parameter name replaced by
__destination__ The URI of the computed trace.
__source__ The URI of the source trace.

4.7 Composite methods

Composite methods are useful to name a given combination of other methods, in order to make this combination
reusable.

There are two distinct methods in this category. Both are currently experimental, and have the following limitations.

Warning:

• They create intermediate traces named _x_name where x is a number, and name is the name of the com-
puted trace using the combined method.

• These intermediate traces are currently like any other trace in the base; they can be read, modified, or
even deleted. Of course, tampering with them is unadvisable, as composite methods are not robust to such
unexpected changes.

• When a computed trace using a composite method is deleted, the intermediate traces are not cleaned up; they
must be deleted manually.

• For the moment, composite methods do not allow to set parameters in their component methods.

All composite methods have a required parameter method, which is the list of methods that it combines. It is encoded
as a space-separated list of absolute URIs.

4.7.1 Pipe

This method applies the component methods in sequence.

sources any number

parameters

methods a space-separated list of absolute URIs

extensible no

Unlike most methods, the pipe method does not accept the model or origin parameters, as those are specified by
the last component method.

4.7.2 Parallel

This method applies the component methods in parallel, and merges all resulting traces.

sources any number

parameters

methods a space-separated list of absolute URIs

4.7. Composite methods 61

KTBS Documentation, Release 1.0

model the model of the computed trace

origin the origin of the computed trace

extensible no

The model and origin parameters are handled exactly as the Fusion method does it; they are required whenever
the outcome of the component methods have a different model (resp. origin).

4.8 External

Important: Unlike other methods, this method does not work incrementally: each time the source trace is modified,
the whole computed trace is re-generated.

Also, this method can raise security issues, as it allows users to run arbitrary commands on the kTBS server. For this
reason, this method is not anymore provided by default. It is available as a plugin, which must be explicitly enabled.

This method invokes an external program to compute a computed trace. The external program is given as a command
line, expected to produce the obsels graph of the computed trace.

sources any number

parameters

model the model of the computed trace

origin the origin of the computed trace

command-line the command line to execute (required)

format the format expected and produced by the command line

min-sources the minimum number of sources expected by the command-line

max-sources the maximum number of sources expected by the command-line

feed-to-stdin whether to use the external command standard input (see below)

extensible yes (see below)

If parameter model (resp. origin) is not provided, the model (resp. origin) of the source trace will be used instead.

The command line query can contain magic strings of the form %(param_name)s, that will be replaced by the
value of an additional parameter named param_name. Note that the following special parameters are automatically
provided:

special parameter name replaced by
__destination__ The URI of the computed trace.
__sources__ The space-separated list of the source traces’ URIs.

Parameter format is used to inform the kTBS of the format produced by the command line. Default is turtle.

Parameters min-sources and max-sources are used to inform the kTBS of the minimum (resp. maximum)
number of sources traces expected by the command line. This is especially useful in user-defined methods, to control
that the computed traces using them are consistent with their expectations.

In the general case, the command line is expected to receive the source trace(s) URI(s) as arguments, and query the
kTBS to retrieve their obsels. As an alternative, parameter feed-to-stdin can be set to have the kTBS send the

62 Chapter 4. Built-in methods

KTBS Documentation, Release 1.0

source trace obsels directly to the standard input of the external command process. Note that this is only possible when
there is exactly one source, and the format used to serialize the obsels will be the same as parameter format.

4.8. External 63

KTBS Documentation, Release 1.0

64 Chapter 4. Built-in methods

CHAPTER 5

Developers’ documentation

KTBS: Kernel for Trace-Based Systems.

5.1 KTBS Client

5.2 KTBS API

I provide an implementation of the Abstract KTBS API.

This implementation is defined as a set of mix-in classes that rely on the uniform interface of rdfrest.cores.
ICore. This allows to use those classes in different ways:

• as local instances (for a standalone kTBS embeded in one’s application),

• as an HTTP client to a remote kTBS,

• or even as a client through any protocol implemented on top of rdfrest.

5.2.1 Extensions to the abstract API

I implement the following extensions to the default Abstract KTBS API.

Extensions suggested by the abstract API

• read-only or read-write properties corresponding to get/set methods

• read-only properties corresponding to list methods

• iter methods corresponding to list methods

Note also that those adaptations are automatically generated by the extend_api() class decorator.

65

KTBS Documentation, Release 1.0

Specific extensions for function parameters

• Anytime a kTBS element is expected, passing a URI should also work (including a URI relative to the target
object). For example, the ‘model’ argument of create_stored_trace() can be a URI (as a unicode or an
URIRef) rather than an instance of TraceModel.

• Datetimes can be used instead of integers for representing timecodes in traces when the trace model and origin
allow the conversion.

Specific extensions for creation methods

• The id parameter is specified in the Abstract KTBS API in all creation methods: it is often optional but can be
used to set the URI of the resource to create (else, the KTBS will generate a URI). If provided, it must of course
be an acceptable URI (not already in use, and subordinated to the parent’s URI). As specified by the Abstract
KTBS API, id can be provided as character string, representing a URI either absolute or relative to the parent’s
URI. The Python implementation also accepts a rdflib.URIRef or any object with a uri attribute returning
a URIRef.

• Creation methods also accept an additional parameter graph where the user can specify arbitrary properties for
the resource to create. This assumes that the resource can be identified in the graph, which is trivial is id is
provided. However, if the user wants to provide a graph but also wants to let the KTBS mint a URI for the
created resource, they can use a blank node) to represent the resource in graph, and pass it to id.

5.2.2 Resource API

5.2.3 KtbsRoot API

5.2.4 Base API

5.2.5 TraceModel API

5.2.6 Trace API

5.2.7 Obsel API

5.2.8 Method API

5.2.9 BuiltinMethod API

5.2.10 TraceObsels API

5.3 KTBS engine

I provide an implementation of the kTBS engine.

This implementation is defined as a rdfrest.cores.local.Service; it reuses the mix-in classes defined in
ktbs.api.

To obtain a KTBS engine conforming with the Ktbs interface of the Abstract KTBS API, use service.
make_ktbs().

66 Chapter 5. Developers’ documentation

KTBS Documentation, Release 1.0

5.3.1 Service implementation

5.3.2 Resource implementation

5.3.3 KtbsRoot implementation

5.3.4 Base implementation

5.3.5 TraceModel implementation

5.3.6 Trace implementation

5.3.7 Obsel implementation

5.3.8 Method implementation

5.3.9 BuiltinMethod implementation

5.3.10 TraceObsels implementation

5.4 KTBS built-in method implementations

Implementation of the built-in methods shipped with kTBS.

5.4.1 Interface

I define the interface of a method implementation.

class ktbs.methods.interface.IMethod
I define the interface of a method implementation.

compute_trace_description(computed_trace)
I set the computed properties (model, origin) of the given trace

Parameters computed_trace – a engine.trace.ComputedTrace

Return type rdfrest.util.Diagnosis

The returned diagnosis must be non-empty if the model and/or the origin could not be set, or if it is
predicatable that compute_obsels will fail. It can be non-empty in other situations, but the message should
then make it clear that it is a mere warning (rather than an error).

Note also that after this method is called, compute_obsels() is expected to start afresh.

compute_obsels(computed_trace, from_scratch=False)
I update the obsels of the given computed trace

Parameters

• computed_trace – a engine.trace.ComputedTrace

• from_scratch – force a complete recalculation, regardless of the state of the sources

Return type rdfrest.util.Diagnosis

5.4. KTBS built-in method implementations 67

KTBS Documentation, Release 1.0

5.4.2 Filter

5.4.3 Fusion

5.4.4 FSA

5.4.5 SPARQL

5.4.6 External

5.4.7 Utilities for implementing method

5.5 KTBS shipped plugins

I contain plugins for kTBS.

Additional plugins can be provided by third party. A plugin is a python module containing:

• a start_plugin(config) function (accepting a service config, see rdfrest/config.py)

• a stop_plugin() if the plugin can be stopped dynamically

(none for the moment)

5.6 KTBS auxiliary modules

5.6.1 KTBS Namespace

5.6.2 KTBS Standalone

5.6.3 KTBS Time library

5.6.4 KTBS utilities

68 Chapter 5. Developers’ documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

Note: This documentation is kept as reStructuredText documents, managed with Sphinx.

69

http://sphinx.pocoo.org/

KTBS Documentation, Release 1.0

70 Chapter 6. Indices and tables

Python Module Index

k
ktbs, 65
ktbs.api, 65
ktbs.engine, 66
ktbs.methods, 67
ktbs.methods.interface, 67
ktbs.plugins, 68

71

KTBS Documentation, Release 1.0

72 Python Module Index

Index

A
add_data_type() (built-in function), 16
add_destination() (built-in function), 17
add_obsel_type() (built-in function), 16
add_origin() (built-in function), 17
add_parent() (built-in function), 14
add_related_obsel() (built-in function), 17
add_supertype() (built-in function), 15, 16

C
compute_obsels() (ktbs.methods.interface.IMethod

method), 67
compute_trace_description()

(ktbs.methods.interface.IMethod method),
67

create_attribute_type() (built-in function), 14,
16

create_base() (built-in function), 10, 11
create_computed_trace() (built-in function), 11
create_data_graph() (built-in function), 11
create_method() (built-in function), 11
create_model() (built-in function), 11
create_obsel() (built-in function), 12
create_obsel_type() (built-in function), 14
create_relation_type() (built-in function), 14,

16
create_stored_trace() (built-in function), 11

D
del_attribute_value() (built-in function), 17
del_parameter() (built-in function), 13, 15
del_related_obsel() (built-in function), 17

F
force_state_refresh() (built-in function), 9

G
get() (built-in function), 10, 13
get_attribute_value() (built-in function), 17

get_base() (built-in function), 10, 11, 13, 14
get_begin() (built-in function), 17
get_builtin_method() (built-in function), 10
get_default_subject() (built-in function), 12
get_end() (built-in function), 17
get_id() (built-in function), 9
get_label() (built-in function), 10
get_method() (built-in function), 13
get_model() (built-in function), 11, 15, 16
get_obsel() (built-in function), 12
get_obsel_type() (built-in function), 17
get_origin() (built-in function), 11
get_parameter() (built-in function), 13, 14
get_parent() (built-in function), 14
get_readonly() (built-in function), 9
get_trace() (built-in function), 17
get_trace_begin() (built-in function), 11
get_trace_begin_dt() (built-in function), 11
get_trace_end() (built-in function), 11
get_trace_end_dt() (built-in function), 12
get_unit() (built-in function), 13
get_uri() (built-in function), 9

I
IMethod (class in ktbs.methods.interface), 67

K
ktbs (module), 65
ktbs.api (module), 65
ktbs.engine (module), 66
ktbs.methods (module), 67
ktbs.methods.interface (module), 67
ktbs.plugins (module), 68

L
list_attribute_types() (built-in function), 13,

15, 17
list_bases() (built-in function), 10, 11
list_builtin_methods() (built-in function), 10

73

KTBS Documentation, Release 1.0

list_contexts() (built-in function), 12
list_data_graphs() (built-in function), 11
list_data_types() (built-in function), 16
list_destinations() (built-in function), 17
list_inverse_relation_types() (built-in

function), 15, 17
list_methods() (built-in function), 10
list_models() (built-in function), 10
list_obsel_types() (built-in function), 14, 16
list_obsels() (built-in function), 12
list_origins() (built-in function), 16
list_parameters() (built-in function), 13, 14
list_parents() (built-in function), 13
list_related_obsels() (built-in function), 17
list_relation_types() (built-in function), 13,

15, 17
list_source_obsels() (built-in function), 17
list_source_traces() (built-in function), 12
list_subtypes() (built-in function), 15, 16
list_supertypes() (built-in function), 15, 16
list_traces() (built-in function), 10
list_transformed_traces() (built-in function),

12

R
remove() (built-in function), 10
remove_data_type() (built-in function), 16
remove_destination() (built-in function), 17
remove_obsel_type() (built-in function), 16
remove_origin() (built-in function), 17
remove_parent() (built-in function), 14
remove_supertype() (built-in function), 15, 16
reset_label() (built-in function), 10
RFC

RFC 5988, 50

S
set_attribute_value() (built-in function), 17
set_default_subject() (built-in function), 12
set_label() (built-in function), 10
set_method() (built-in function), 13
set_model() (built-in function), 12
set_origin() (built-in function), 12
set_parameter() (built-in function), 13, 15
set_parent() (built-in function), 14
set_trace_begin() (built-in function), 12
set_trace_begin_dt() (built-in function), 12
set_trace_end() (built-in function), 12
set_trace_end_dt() (built-in function), 12
set_unit() (built-in function), 13

74 Index

	General concepts
	Overview of the General Concepts
	Obsel
	Trace Model
	Trace
	Method
	Monotonicity
	Trace time management
	Abstract KTBS API

	Tutorials
	Installing and running kTBS
	Using kTBS with REST and JSON
	Describing a model in JSON
	Using kTBS with REST and Turtle
	Describing a model in Turtle

	RESTful API
	REST in kTBS
	Ktbs Root
	Base
	Trace
	Obsel
	Stored Trace
	Computed Trace
	Model
	Method
	Authentication

	Built-in methods
	Filter
	Fusion
	Finite State Automaton (FSA)
	Hubble Rules (HRules)
	Incremental Sparql (ISparql)
	Sparql
	Composite methods
	External

	Developers’ documentation
	KTBS Client
	KTBS API
	KTBS engine
	KTBS built-in method implementations
	KTBS shipped plugins
	KTBS auxiliary modules

	Indices and tables
	Python Module Index
	Index

