

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

v2.2.1 for KSP 1.4.3

	2018-04-28

Changes since the last release

	GUI window would reset to screen center on a game restart if it was hidden in the previous game, now fixed.

	In-Flight trajectory ground target marker would sometimes appear on screen when behind the camera view, now fixed.

For Developers

Known Issues

v2.2.0 for KSP 1.4.2

	2018-04-02

Changes since the last release

	Japanese translation updated. Many thanks to UresiiZo for correcting the mistakes.

	Italian translation updated. All thanks go to Brusura for the translation fix.

	German translation updated. Lots of thanks to nistei for updating the mistakes.

	French translation updated. Huge thanks to d-faure for correcting the syntax.

	GUI settings are now persistent again.

	Black toolbar icons when Texture Settings not set to Full-Res bug fixed.

	In-Flight trajectory ground target marker covering entire screen when camera is close bug fixed.

For Developers

	New API functions added GetTimeTillImpact, two for the Descent Profile ProgradeEntry RetrogradeEntry
and some for the Trajectories version. GetVersion GetVersionMajor GetVersionMinor GetVersionPatch

v2.1.0 for KSP 1.4.1

	2018-03-21

Changes since the last release

	Trajectories license has been changed from MIT to GPL-3.0-or-later. Please see the LICENSE.md file for more details.

	Russian translation updated. Many thanks to Fat-Zer for correcting the mistakes.

	Chinese translation updated. Many thanks to studentmain for rewriting the translation.

	Added Japanese, German, French, Italian and Portuguese languages. If you know any of these languages,
please consider helping out with translations.

	A big cheers and a beer to Jebs_SY for his help in fixing a rendering issue on the MapView and the Target Waypoint bug.

	ModuleManager updated to v3.0.6

For Developers

Known Issues

	Sometimes In-Flight trajectory ground target marker can cover entire screen when camera is close.

v2.0.0 for KSP 1.3.1

	2018-02-15

Changes since the last release

	Completely new and overhauled user interface, based on the DialogGUI system.
Includes (automated) localizations for Russian, Spanish and Chinese (traditional). If you know any of these languages,
please consider helping out with translations. Send all Thanks and Kudos to PiezPiedPy for this amazing contribution!

	In-Flight trajectory vector line and ground marker persistence bug fixed.

	ModuleManager updated to v3.0.3

	When combined with FAR, aerodynamic forces calculated on a packed vessel would lead to NRE’s.
Vessels are now no longer calculated when a vessel is in a packed state. Thanks go to Alex Wang for this bug fix.

	Higher precision and better performance through more advanced numeric techniques using an RK4 integration method.
Try disabling the Cache for more precise predictions, predictions that should not kill your FPS anymore.
Courtesy of fat-lobyte aka Kobymaru.

For Developers

	API changes to help catch NRE’s from improper calling of the API methods.

	New API method HasTarget() checks if a target has been set.

	Flickering entries bug in the Profiler is fixed :)

	Added Reset averages & Show zero calls buttons, a Framerate limiter, avg calls and frame counter to the Profiler.

Known Issues

	Sometimes In-Flight trajectory ground target marker can cover entire screen when camera is close.

v1.7.1 for KSP 1.3.1

	2017-10-13

Changes since the last release

	In-Flight trajectory overlay now uses GLUtils from MechJeb2 for rendering.

	Fixed In-Flight trajectory for non-atmospheric bodies

For Developers

	Added a Jupyter notebook for descent force analysis.

	Added the Bug Reporting section to CONTRIBUTING.md file.

v1.7.0 for KSP 1.3.0

	2017-07-08

Changes since the last release

	Improved precision by accounting for Reynolds number in drag. Fixes Issue #84.

	Fix crash when turning on In-Flight trajectory display while in Map view. Fixes Issue #102. Thanks to PiezPiedPy!

	Prevent click-through in certain situations. Thanks to PiezPiedPy!

	Numbers in the user interface don’t change as quickly anymore, allowing for better readability

	Deviation readout now switches from E to W and from N to S instead of just showing negative numbers

For Developers

	Added a bridge to the newly created Telemetry [https://github.com/fat-lobyte/KSPTelemetry] module,
allowing for nice graphs [https://user-images.githubusercontent.com/173609/27686194-febdbca6-5cd1-11e7-877d-1ab6e5069fb6.png]
and better debugging of prediction precision.

	Updated Profiler UI to new Canvas system. Thanks to PiezPiedPy!

	Added documentation for contributers in CONTRIBUTING.md file with style guidelines,
help for building, debugging and much more.

Known Issues

	In-Flight trajectory for non-atmospheric trajectories is incorrect and jumpy

v1.6.8 for KSP 1.3.0

	2017-06-13

Changes since the last release

	Fixed in-flight targeting cross remaining in scene even after trajectory display was disabled.

	Added toggle for in-flight trajectory display. Fixes Issue #96.

Known Issues

	Trajectory prediction is still fundamentally incorrect. See Issue #84.

	In-Flight trajectory for non-atmospheric trajectories is jerky and jumpy.

v1.6.7 for KSP 1.3.0

	2017-06-09

Changes since the last release

	This release is brought to you by fat-lobyte (aka Kobymaru on the Forums)

	Update ToolbarWrapper for blizzy78’s Toolbar. Fixes Issue #78.

	Enable Trajectories window in flight scene.

	Implement in-flight trajectory line display. Please test and give feedback!

	Fix Parenthesis silliness in .version file to make it valid JSON again. Thanks, ggpeters!

	Update Module Manager to v2.8.0. Thanks to PiezPiedPy!

	Disable Click-through. Thanks to PiezPiedPy!

Known Issues

	Trajectory prediction is still fundamentally incorrect. See Issue #84.

	In-Flight trajectory for non-atmospheric trajectories is jerky and jumpy.

	In-Flight trajectory leaves targeting cross in the scene, even when disabled.

For Developers

	KSP directory path is not hardcoded anymore. You can set up an environment variable in your Operating System named KSPDIR that points to the KSP installation directory.

	Revamped build scripts for Visual Studio. Thanks to PiezPiedPy!

	Added simple profiler class. Thanks to PiezPiedPy!

 Are you here because you want to:

	Report a Bug? Click here.

	Request a feature? Click here.

	Jump in and contribute? Click here.

Table of Contents

	How to Report Bugs

	Removing Mods for Debugging

	How to Suggest Features

	Stay Polite!

	Consider the workload

	Gather feedback from the community

	Make sure that the feature is wanted

	Consider the Impact

	“Why can’t you just add a toggle?”

	What not to suggest

	Where to suggest a feature

	Learn to accept a No

	How to Contribute

	Where to Start

	Using Git and GitHub

	Workflow for the Trajectories mod

	How to submit pull requests

	Code Style

	Debugging with Visual Studio and Unity

	Installation and Environment Setup

	Unity

	Visual Studio

	Visual Studio Tools for Unity

	Editor Settings

	Kerbal Space Program Install

	System Environment Variables

	Development and Debugging

	Project Setup

	Building

	Debugging

	Visual Studio

	MonoDevelop

	Telemetry

	Profiling

	Unity Profiler

	Internal Profiler

	Building Releases

	Release Checklist

	Versioning

How to Report Bugs

Bug reports are a very valuable contribution to the development of this mod - but only if done right.

“Trajectories doesn’t work” is not a good bug report, because it sure works well for me. If it doesn’t work for you, it is your responsibility to make clear which conditions lead to stuff going wrong.
Good bug reports are effort and require time - but putting in that effort helps immensely to not waste developer time and get the bug fixed quickly.

All bugs should be reported on GitHub, under this URL: https://github.com/neuoy/KSPTrajectories/issues

You are free to mention any issues on the forum thread, but in the end, all issues must be registered on GitHub. This is because we use GitHub as a workflow management tool and the issues list as a checklist, and all the information and discussions for one specific issue are in one place as opposed to getting buried under posts in the forums.

All bug reports must contain the following information:

	Which version of trajectories are you using? If in doubt, check out the Trajectories.version file in GameData\Trajectories

	Which version of KSP are you using? Which language are you using (check out the buildID.txt or buildID64.txt)? Are you using the 64-Bit version (KSP_x64.exe) or the 32-Bit version (KSP.exe)?

	Which mods are you running, and which versions do they have? Please note that when reporting a bug, you should only ever have the minimal amount of mods installed that are necessary to reproduce the bug (see below for tips on removing mods).

	Which aerodynamic model are you using? FAR? Stock with cubes? Stock spherical? (The default is cubes)

	The output_log.txt file, from the KSP_x64_Dataor KSP_Data directory. You can either zip it and directly attach it to the bug report or upload to a pastebin service like https://gist.github.com/

If you encounter problems with specific vessels, please attach the craft file and short instructions on how to use it. Remove parts from Mods so we can load them, unless the parts from Mods are crucial for reproducing the problem.

It is recommended to attach Quicksave files that describe the situation. Again, make sure that we can load them and remove all non-Stock crafts (unless they are crucial for the reproduction).

Make clear which conditions have led to the bug: what exactly did you do? What makes the bug go away (workaround), what makes it appear? Some experimentation on your part is very appreciated, so that we can find the problem more easily.

When dealing with precision issues, some there are some additional considerations:

	Try turning off the cache in the settings. This will kill performance, but might increase precision.

	Are your settings correct? Did you set it to prograde/retrograde or set a descent profile? Do you follow your set profile accurately during flight?

	How big is the deviation and in which direction does it go? “Set target to impact” under the “Target” tab is very useful for this: set the target to impact before entering the atmosphere, then fly your entry and let the impact happen. Include the distance (and direction) to target in your bug report

	Craft files are mandatory except for the simplest test crafts. If you have a simple test craft, post a screenshot.

	Describe our entry situation, as detailed as possible (Body, periapsis, apoapsis, orientation). Preferrably, add a quicksave that leads to imprecise predictions.

More on reporting bugs for KSP mods can be found in this forum topic: http://forum.kerbalspaceprogram.com/index.php?/topic/83212

Removing Mods for Debugging

When reporting issues for any mod, your first action should be to cull the list of your mods to the minimal amount of mods where the issue still occurs. Most of the time, this means there will be no mods except Trajectories.

The very first thing you should do is to back up your save file!!! We am not responsible for lost save files. To do this, go into the “saves” folder, right-click on your save with the right name, click Send To -> Zip Compressed folder. Don’t do anything before you did that.

Next, create a backup of your GameData folder (Excluding “Squad”), and delete all mods in there except for Trajectories and ModuleManager (and Squad obviously).

Create a new Savegame, build a craft with Stock parts that triggers the problem and launch it. Don’t be afraid to use the Cheat menu to get the craft into the situation that you need (Set orbit, rendezvous, infinite fuel…). In the animal kingdom, Alpacas of the “dirty cheating” variety are the most successful when it comes to debugging.

Most of the time the bug will occur with only trajectories installed.

Sometimes, you will require other mods to reproduce it, such as FAR or RSS. In that case, try to delete all mods that are uninvolved and state clearly which mods (and which versions of them) are required.

If you are sure that the problem doesn’t happen with only Trajectories but don’t know which is responsible, you have to search for it.
The simplest method is to add mods one by one. If you have few installed, you should do that.

However, “binary search” is more effective: Add half your mods and see if the problem occurs. If not, add the other half. If yes, split the first half again and add the first quarter. If that doesn’t cause the problem, remove it again and add the second quarter.
Keep halving the number of mods that you are testing until you arrived at one single mod. This might sound complicated, but if you have a big number of mods, you will find the culprit a lot faster than by linear search.

How to Suggest Features

While we value all input and suggestions for improvement, a few things should be considered to make sure that your suggestion is understood
and to increase the chances of adoption.

Stay Polite!

Never forget that all contributors and maintainers are doing this Mod for fun, and do not get paid. If you want a feature, it is
in your best interest to remain on good terms with the contributors and keep them motivated to work on the project.

Therefor, it is also in your best interest to not demand features, to not pressure us to implement a feature and not to insult any previous work -
that includes not crapping on the current state of affairs, no matter how frustrated you might be.

In German there is a saying:

Der Ton macht die Musik

Which is literally translated to “the tone makes the music” and means that the tone of conversation is paramount to reach a good result.
A demanding or bitter tone is a sure way to shut down even the best intentioned request. Stay polite and keep your tone positive.

Consider the workload

As mentioned, none of us get paid to work on this project. Please consider this, when you try to suggest features that take a lot of work.
Even the best idea in the world might not be implemented, simply because there is nobody around with the time to implement it.

This shouldn’t prevent you from making it in the first place, but try to asses how much work a feature would be, state that in your suggestion, and don’t be too disappointed if it’s doesn’t get implemented.

What would be best, of course, is to implement the feature yourself and submit a pull request! We have a guide for new contributors right here.

Gather feedback from the community

When you are requesting feature, even when it is for “personal use”, it can still be good to bring in the community.
Suggest the feature on the Forums, ask for Feedback from other users, create an issue on GitHub. Be responsive, and accept feedback and suggestions to make your suggestion even better ;)

Make sure that the feature is wanted

An important part of gathering feedback is: is your feature even necessary? Sometimes when you think that you can’t live without a certain feature or change,
it is good to ask the community: is there a way to achieve the desired result with current tools?

Ask other users if they also believe that this feature is necessary, and gather support. When many users claim that they want something, the chances of adoption increase
(but there’s still no guarantee!).

Consider the Impact

Whenever a new feature is introduced, no matter how big the benefits, there are some drawbacks as well. This includes (but is not limited to) the following:

	Performance: every calculation takes time, needs a processor to execute it and consumes energy. Consider that your feature will potentially run on many users machines, for multiple hours, for around 30 times per second.
You don’t want to be the guy who’s responsible for melting our planets ice caps, are you? ;)
Sometimes this is negligible. Sometimes, it is not. Think about which it is when you suggest a feature.

	Changing workloads: People are creatures of habit, and so are this mods users. When you introduce a change in “the way they do things”,
be aware that many people (who your are currently unaware of, because they are content and happy) will suddenly have to change their behavior and that they
might not be as happy about the change as you are.

When you submit a feature request, please make sure to think about the drawbacks that your feature could have and specify and explain them clearly.

“Why can’t you just add a toggle?”

If your feature request would introduce a change that makes the Mod do something differently, you might be tempted to add toggles and switches
to revert back to the old behavior, or when your feature is rejected because of the impact it has, you might exclaim “why can’t you just add a toggle?”.
No, generally we can’t. Here is why:

While it might make perfect sense from an individual point of view,
where you consider one single feature and one single switch, changing the perspective to that of the maintainer makes things more complicated.

A maintainer has to consider the entirety of all switches, options and toggles. What is “just one more switch” for you might be the twenty first switch to the maintainer.
While there is undoubtedly value in a “configurable” product, it also incurs a cost!

	It’s harder to learn how the mod works, harder to write manuals and therefor produces more support requests.

	Adding switches requires an increased amount of testing. If we had a testing matrix, adding switches increases the workload quadratically! (But we don’t, so that point is a bit moot.)

	Adding switches increases the complexity of code, adds more corner situations, more potential for bugs and makes debugging harder (not least because it’s yet another thing that users have to specify)

	A program full of toggle buttons, half of which are in the same state for most users for most of the time anyway is plain ugly.

Last but not least, we have to consider the overall “usability” of the mod, the “feel” of the mod and the “user stories”. When adding a feature, we should not take
the cheap and easy way out (“just add a toggle”), but think about how people use the mod and how to make their lives better. Sometimes it might be better to change
the user experience completely or even remove features to avoid confusion.

What not to suggest

Some features have been suggested many times, but cannot be included for technical reasons.
Below is a list of these features and the reasons why they will probably never make it into Trajectories.

If you disagree with this assessment, the best way to convince me otherwise is to provide a working implementation that fits well with the rest of the mod.

	Predicting the trajectory after future staging events. We need the DragCubeList of a vessel to correctly calculate the drag it will produce. Currently, we get this DragCubeList from KSP as the one that is returned for the current vessel in the now. There is no way to create a “vessel after staging” or retrieve the “DragCubeList after staging”. That means that we would have to duplicate a good deal of the KSP-internal staging and DragCube code, which is just not a good idea.

Where to suggest a feature

Please suggest features by posting both in the development Forum thread [http://forum.kerbalspaceprogram.com/index.php?/topic/94370-13] (so that users can also participate in the discussion) and create a GitHub issue on our tracker [https://github.com/neuoy/KSPTrajectories/issues].

Make sure to explain the purpose of this feature, the advantages and the potential impact on the mod.

Please try to also think of a way how to implement the feature in a way that makes sense both from the users and the developers perspective.

Learn to accept a No

Sometimes, requests cannot be met - either because they don’t match the Mods core idea or because their impact is too high or simply because the contributors don’t have enough time.

Consider forking the project and implementing the feature into your private builds, and playing with it in your private game. With more experience and testing and even “finished” code,
your case for adoption into the main mod is a lot stronger! Even if that doesn’t work, you’ll have the feature for yourself ;)

If after all has been said and discussed and weighed the community or the maintainers have come to the conclusion that your suggestion doesn’t fit the bill,
please accept that and move on. Do not start to repeat yourself - this only serves to poison the discussion.

This is not a reason to be discouraged, your suggestion is still considered valuable!

How to Contribute

Are you a pro and know all the things already? Here’s are the links to the info specific to Trajectories:

	Workflow for the Trajectories mod

	How to submit pull requests

	Code Style

Where to Start

If you like using the Trajectories mod, please consider contributing!

There are many ways to contribute to the mod:

	Write documentation! We could use a good manual, better code comments, an API documentation inside the code.

	Report bugs - but do it well. Well-written bug reports are very appreciated. Make sure to follow the guidelines above.

	Help testing, reproducing and narrowing down existing bugs

	Help with code-cleanup, make the code more readable, reduce inefficiencies (but make sure you don’t break anything!)

	Write new features! We have a few much-requested features on our issue tracker that you could implement. Or, just solve your pet problem!

Especially before writing new features, communication is paramount! Please visit our
development thread [http://forum.kerbalspaceprogram.com/index.php?/topic/94370-13], let other people know what you are working on,
ask for Feedback, talk about the mod. This is crucial to avoid merge conflicts, duplicated or unnecessary work.

Using Git and GitHub

Git is a distributed version control system used by a myriad of projects, including big players like the Linux Kernel, Android or even Windows!
While Git in its simplest form is “only” a version control system, it also enables collaboration in a way that no other version control system ever could.

To aid with this collaboration GitHub was created. GitHub is first and foremost a hoster for Git repositories. But it also includes tools for bug tracking,
documentation, and even some light project management.

If you want to contribute to the Trajectories Mod, it is highly recommended to familiarize yourself with Git and GitHub. Luckily, there are many good guides out there.
GitHub itself provides a good entry point for Git and GitHub novices:

	https://guides.github.com/activities/hello-world/

	https://help.github.com/articles/set-up-git/

	https://guides.github.com/activities/forking/

More information to specific question can be found here:

	https://help.github.com/

If you want to get into the depths of Git, this (online) book is recommended:

	https://git-scm.com/book/

Note: Git itself is a command line tool and has many many commands and options.
This can be a bit daunting, so tools were created to help with that.
You can use GitHub Desktop [https://desktop.github.com/] or the GitHub web interface to do many tasks that can be done on the command line.

Personally, I find that these tools don’t offer the fine-grained control that I came to expect from the command line tools.
In the future, you should consider learning the intricacies of Git in its entirety. It’ll probably give you bonus points in your next interview ;)

Workflow for the Trajectories mod

To start contributing, you have to first set up your Trajectories repository by forking it.

Before doing any work, you should create and switch to a branch. The name of the branch should reflect the “topic” of your work (these are often called “topic branches”).
If you want to work on multiple areas/topics at the same time, it is better to create multiple branches! Don’t just mush all of your work into one single branch.

Commit your work early and often! It’s better to have too many commits than to lose work.

	For Git pro users: Before making a pull request, please Squash your commits into more-or-less consistent, self-contained chunks that can be reverted if necessary.

	For Git novices: Please do not squash your commits! The risk of losing your work is too high, so please just make your pull request and we’ll take it from there.

When you are finished with your work, it is possible that work on the master branch has moved on. To simplify the merge process, you should make sure that your branch is merge-able.
Try merging your topic branch into the most up-to-date master branch (from the main repository, not from your fork!).
Make sure that you actually build and test the mod, don’t just assume that “it’s fine”.

If you get merge conflicts, please resolve them [https://help.github.com/articles/addressing-merge-conflicts/] before submitting a pull request. If you are having trouble with that, speak up!
Other contributers can help you with the merge process, and it’s no shame especially since resolving merge conflicts is tricky.

	For Git pro users: Please rebase your pull request branches on the latest master branch.

	For Git novices: Please do not rebase anything! The risk of losing your work is too high, so please just make your pull request and we’ll take it from there.

How to submit pull requests

A pull request is a request from a contributor (you) to the maintainer (me) for inclusion of the contributors changes into the master branch of the main repository.
While your time spent on contributions is valuable and much appreciated, please consider that the time spent by the maintainer on reviewing, testing and merging your changes is also valuable.

To ensure smooth sailing with pull requests, please follow these guidelines:

	Communicate early on what you are working. Let other people know what you are up to, explain what you want to do and why. Gather Feedback!
This is crucial to avoid merge conflicts, duplicated or unnecessary work. The mod development thread [http://forum.kerbalspaceprogram.com/index.php?/topic/94370-13] is a good place for that.

	Don’t submit your master branch, only submit named feature branches!

	Keep the code compilable and working!

	Do sufficient testing to make sure that no new bugs are introduced. Since we neither have a QA department nor a test suite, testing will be manual.
It is recommended to use your version of the Mod in your main KSP save for a while, before submitting a pull request.

	Be considerate of our users KSP installs! We are most likely not gonna be the only mod in KSP’s memory space, so make sure your changes don’t deteriorate performance, use too much memory and don’t cause crashes!

	In your pull request, please explain your changes, why they are necessary and how they make Trajectories better.

	If you are adding a feature, please provide a little section of text that could go into a manual (if we had one).

	Please follow the code style guidelines

	Please submit readable, high-quality code!

Once you followed the guidelines above, please submit your pull request to the main repository [https://github.com/neuoy/KSPTrajectories/pulls].
Please select “allow edits from maintainers” so that the maintainer can help you with your pull request.

Adding commits after you submitted the pull request is not forbidden - after all, if you gotta change something, you gotta change something.
However, please make sure that your pull request is complete and high-quality before submitting it. If you find an oversight after submitting it,
please make abundantly clear what you changed after you add commits.

Code Style

Please observe some basic style rules for your contributions:

	Follow the naming guidelines put out by Microsoft [https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines]

	Per indentation level, use 4 spaces and no tabs

	Use Carriage-Return & Line Feed (CRLF) line endings in all C# and Visual Studio source code files.
Source files or config files for tools that do not work on Windows and/or can’t handle CRLF line endings are exempt.

	Avoid trailing whitespace

	Please document your code briefly with inline-comments. If you add new functions, provide summaries that explain parameters, return values and side effects.

Debugging with Visual Studio and Unity

This section will guide you through setting up your development environment so that it’s suitable for the Development of KSP mods.

Installation and Environment Setup

Unity

For building and/or debugging KSPTrajectories with Visual Studio or Unity Editor you will need to download and install the exact version of Unity Editor that was used to build the version of KSP you are working with.
You can find out which Unity version your current KSP install is using by looking at the first line of C:\Users\YOURUSERNAME\AppData\LocalLow\Squad\Kerbal Space Program/output_log.txt. It should read something like this:

Initialize engine version: 2017.1.3p1 (02d73f71d3bd)

In this case, the Unity version for your KSP version is 2017.1.3p1.

The Unity Editor for KSP v1.4.x is Unity v2017.1.3p1 and can be downloaded here: UnityDownloadAssistant-2017.1.3p1.exe [https://beta.unity3d.com/download/02d73f71d3bd/UnityDownloadAssistant-2017.1.3p1.exe]

Visual Studio

It is recommended to use Visual Studio 2017. Any version should work (including the free Community version).
To save on disk space and installation time, you should only select the “Game development with Unity” component. In the right hand side, uncheck the “Unity 5.6-Editor” component, since this is the wrong version of the Editor anyway.

Visual Studio Tools for Unity

If you want to debug with Visual Studio then you will need the Visual Studio Tools for Unity Extension.

If you selected the “Game development with Unity” component above, this should already be installed.
If it is not, you download and install by using the Tools->Extensions and Updates window in Visual Studio, selecting the “Online” tab on the left hand column and then searching for “Unity” in the search bar in the upper right corner.

Editor Settings

Please install the Trailing Whitespace Visualizer Plugin [https://marketplace.visualstudio.com/items?itemName=MadsKristensen.TrailingWhitespaceVisualizer]
and make sure that you don’t add trailing whitespace.

The Trajectories repository contains a file called .editorconfig which should configure your editor automatically if you use Visual Studio 2017.
If you use Visual Studio 2015 or older, please set the following options in Visual Studio:

Under Tools -> Options -> Text Editor -> C# -> Tabs:

	Indenting: Smart

	Tab Size: 4

	Indent Size: 4

	Insert Spaces

Kerbal Space Program Install

You should create a KSP install just for Development that is separate from your install that you use for gaming.

To do that, you follow these steps:

	Copy your game install to another location

	Remove everything but the Squad directory from GameData

	Find your Unity install, and go into the subdirectory Unity\Editor\Data\PlaybackEngines\windowsstandalonesupport\Variations\win64_development_mono.
Copy the file player_win.exe into your KSP main directory

	Delete or rename KSP_x64.exe in your KSP main directory

	Rename the player_win.exe to KSP_x64.exe

	Download the PlayerConnectionConfigFile [https://www.sarbian.com/sarbian/PlayerConnectionConfigFile] file and put it into your KSP dev KSP_x64_Data folder.

This will turn your KSP install into a Development version only. If you want to use this install as a regular (non-Development) install as well, then instead of deleting or renaming KSP_x64.exe, you can do the following:

	Rename the copied file player_win.exe now in your KSP dev install folder to KSP_x64_Dbg.exe.

	Create a junction in your KSP dev install folder named KSP_x64_Dbg_Data linking to your KSP dev KSP_x64_Data folder.
This is done by opening a command prompt in your KSP dev install folder and running the following command:

mklink /J KSP_x64_Dbg_Data KSP_x64_Data

Now you can choose between the Development version (launch KSP_x64_Dbg.exe) and the regular non-Development version (run KSP_x64.exe).

System Environment Variables

To make your life a little easier, the Trajectories Visual Studio Project respects an environment variable called KSPDIR.
If you set its value to the path of your KSP development install, the reference and debugging paths inside the project should be set automatically.
If it is not set, your reference paths and the Debugging paths have to be set manually.

To set the variable, follow the instructions in this link, before starting a Visual Studio instance:

https://superuser.com/a/949577

Development and Debugging

Project Setup

Before you can build Trajectories, your Visual Studio has to know where the Unity and KSP assemblies are that it references.
If you set your KSPDIR variable as mentioned above, then this should already be set. If not, then please:

	Double-Click the “Properties” page in the Solution Explorer in Visual Studio

	Change to the Reference Paths tab and select the \KSP_x64_Data\Managed subdirectory of your KSP dev install

	Click “Add” to actually add the selected path

To be able to quicklaunch KSP using F5 (or Ctrl-F5), you have to set which external program should start. This should already be set if you set your KSPDIR environment variable. If not,

	Double-Click the “Properties” page in the Solution Explorer in Visual Studio

	Change to the Debug tab, select “Start External Program” and select the KSP executable that you want to start.

	In the Working Directory, select the KSP root directory

Building

If your reference paths are set up correctly, then building the project should be as simple as Clicking Build -> Build Solution.
If KSPDIR is set, then the output path will be the \GameData\Trajectories\Plugin\ subdirectory of your KSP install. If not, you have to configure the output path yourself in Properties -> Build -> Output Path.

When you are building in Debug mode, one additional file with the ending .mdb is created. This file is required for unity debugging.

Debugging

To debug KSP, you have to enable the “Background Simulation” option inside the game, by going to KSP Main Menu -> Settings -> General -> Simulate In Background and setting it to ON.
It is recommended to debug KSP in a window rather than fullscreen, so turn off full screen by going to KSP Main Menu -> Settings -> Graphics and unchecking “Full screen”.
To save startup time, seconds of our life and the environment, it is recommended to set the Graphics options way down. For that, go to KSP Main Menu -> Settings -> Graphics and set:

	Render Quality: Fastest

	Texture Quality: Eigth Res

	Aerodynamic FX Quality: Minimal

	Anti-Aliasing: Disabled

	V-Sync: Don’t sync

	Frame-Limit: Whatever you’re comfortable with (I use 60 FPS)

	Pixel Light Count: 0

	Shadow Cascades: 0

Before building Trajectories, consider turning on a few conditional compilation symbols, that may or may not aid you in development and debugging:

	DEBUG_FASTSTART: Turn on DebugFastStart module that quickloads you into the first Vessel of a save named “default” right after Game Start.

	DEBUG_TELEMETRY: Turn on “Telemetry” (see below)

	DEBUG_PROFILER: Turn on Trajectories internal profiler (see below)

Visual Studio

For debugging, switch to the debug configuration and build the project. Then, you can start KSP in the regular way using the Debug executable.

You can also directly build and start the project with the “Start Without Debugging” hotkey Ctrl-F5.
The reason you should use Ctrl-F5 over F5 (“Start Debugging”) is that in the latter case, Visual Studio attaches to the KSP process - but in the wrong way.
We need to attach the KSP process using the Visual Studio tools for Unity.

We can do this by Selecting “Debug -> Attach Unity Debugger” from the Visual Studio menu, and then selecting the “WindowsPlayer” process.
If the “WindowsPlayer” process doesn’t show up in this menu, check that

	Both KSP and Visual Studio are allowed to communicate through the local firewall

	That you created or downloaded the PlayerConnectionConfigFile described above

You should now be able to create breakpoints, step through the execution and inspect variables.
If that doesn’t happen (the debugger just doesn’t halt where you want it to), make sure that the debugging symbols (.mdb and .pdb) are available in the GameData directory, along with the Trajectories.dll file.

Note that while you are halting at a breakpoint, the KSP will become unresponsive. If you try to open it while halted, Windows will suggest to kill it. This is not what you want when debugging ;)

MonoDevelop

For Monodevelop debugging you need the .mdb files and will have to attach to the KSP dev install debug executable, to do this start Monodevelop and then start your KSP dev install debug executable, now use Monodevelop’s Run Menu->Attach to Process option to open the process attach window. Unity Debugger should be selected in the lower left selection box, now you can select KSP’s process called “WindowsPlayer” and click OK to attach to it. Monodevelop should now switch into debugging mode.

Telemetry

Trajectories “core business” is the calculation of the trajectory itself.
Since this happens within a numeric simulation, this can be rather hard to debug: usually there are no compiler errors or crashes, and the only information you have is that the prediction is “wrong”.

To aid debugging such “numeric” problems, the Telemetry module was created. It records certain specified numeric values in a Tab-Separated file that can be read by other tools such as Jupyter, MATLAB, R or even EXCEL.

Here are the steps on how to use the telemetry module:

	Download the Telemetry.dll assembly from here: https://github.com/fat-lobyte/KSPTelemetry/releases

	Place the assembly somewhere in the GameData folder of your KSP install

	Enable the DEBUG_TELEMETRY compilation symbol inside the Trajectories project

	Within the Trajectories source code, find or create an Awake() method of a KSPAddon class, and set up the data channel:

Telemetry.AddChannel<double>("yourvalue");

	Within your code, call this method to update your value

Telemetry.Send("yourvalue", the_actual_value);

	Start your debugging session. As soon as you are in the flight scene, a file called “Trajectories.csv” should appear in the same location where you put the Telemetry.dll file.
This file will contain the values of “yourvalue” over the course of time.

Profiling

Unity Profiler

You can use the Unity Editor profiler by starting the Unity Editor, opening a blank project (or any project for that matter) and then use the Window Menu->Profiler option to open the Profiler Window. Now you can start your KSP dev install debug executable either standalone or with Visual Studio.

By default you will only see the MonoBehavior methods (Update, FixedUpdate, etc…) but you can add calls in your code to profile anything you like. To do this, add to your code pairs of Profiler.BeginSample("MyLabel"); and Profiler.EndSample();. Be aware that if a frame takes too long to execute the profiler will skip it.

Here’s an example applied inside the Trajectories.MapOverlay.Render method:
setDisplayEnabled(true); Profiler.BeginSample("MapOverlay.Render_refreshMesh"); refreshMesh(); Profiler.EndSample();

For more information see the KSP Forum thread KSP Plugin debugging and profiling for Visual Studio and Monodevelop on all OS [http://forum.kerbalspaceprogram.com/index.php?/topic/102909-ksp-plugin-debugging-and-profiling-for-visual-studio-and-monodevelop-on-all-os/&page=1].

Internal Profiler

In addition, there is a simple “frame-based” profiler included in the KSPTrajectories code base here [https://github.com/neuoy/KSPTrajectories/tree/master/Plugin/Utilities/Profiler.cs], that is appropriate for performance measurements.

In the code, wrap the code you want in pairs of Trajectories.Profiler.Start("MyLabel") and Trajectories.Profiler.Stop("MyLabel").

In-game, start it by pressing Ctrl-P. It shows each code entry belonging to one label as one line. The columns show:

	NAME: The Label for the code being profiled.

	LAST: Code runtime for a call in the last executed frame.

	AVG: Code runtime averaged over all the calls since start or reset.

	CALLS: Number of calls in the last executed frame.

	AVG: Number of calls divided by the number of frames since start or reset.

You can reset these counters with the Reset button.
You can enable/disable the display of any calls not called in the last frame with the Show zero calls button.

Building Releases

Making releases is as simple as updating two version files and the clicking build. Below is a small checklist for releases.

However, before creating a release, make sure that you are actually authorized to make one.
While the code is open source and you could theoretically do what you want, it would be very, very, very appreciated that you don’t create new releases unless the current maintainer has either stepped back or has gone missing for a long time and doesn’t reply to requests.

If you want to distribute your own version for testing, please do so by making it very clear to everyone that it’s not an official release, and CHANGE THE VERSION NUMBER according to the versioning scheme below.

Release Checklist

	Complete the CHANGELOG.md file, and fill out the release date field. Make sure to credit all contributors.

	Adjust the compatible KSP version numbers in Trajectories.version. Actually test if they work in all the KSP version claimed compatible.

	Bump the version number in Trajectories.version and Plugin\Properties\AssemblyInfo.cs according the the versioning rules below.

	Check with Git that your working directory is clean. No Changes are allowed, everything must be committed.

	Build the Project in release mode

	Clean out the GameData folder of your KSP install, only the ´Squad` folder should remain.

	Extract the Trajectories-<version>.zip that was created during the Release build into your GameData folder

	Launch KSP in the non-Developer mode and verify the functionality. Check the output_log.txt for errors.

	Create a Tag with Git, push all commits and the tag to GitHub.

	On GitHub, draft a new release selecting the newly created tag

	Upload the Trajectories-<version>.zip file to GitHub, paste the changelog there

	On SpaceDock, draft a new release and upload the Trajectories-<version>.zip.

	On the KSP forums, create a new post with the changelog and links to both GitHub and SpaceDock.

	On http://ksp-avc.cybutek.net, update the version and compatibility numbers according to the AVC version file

Versioning

The rules for versioning are rather lax, except for the main most important #1 rule:

DO NOT RELEASE DIFFERENT PRODUCTS UNDER THE SAME VERSION NUMBER

While the rules below are guidelines and can be ignored rather arbitrarily by the maintainer, the rule above is THE LAW.
If you let a build slip out that differs from another build by as little as one bit but has the same version number, kittens will die and Krakens shall eat your ship.
Increment the version number even if the change is minuscule.

If the Version is MAJOR.MINOR.PATCH, then

	MAJOR is the major version number, to be incremented when a major code restructuring and/or change in functionality has taken place.

	MINOR is incremented when there are notable and visible changes and/or additions to functionality

	PATCH is incremented for smaller and/or invisible changes

I believe that 3 version numbers are precise enough, so even when creating bugfix releases with tiny changes,
don’t add another version number - increment the PATCH number instead.

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of
a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:

	a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

	b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to “keep intact all notices”.

	c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

	d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

	a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

	b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

	c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

	d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

	e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:

	a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

	b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

	c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

	d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or

	e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

	f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w’ and `show c’ should show the
appropriate parts of the General Public License. Of course, your
program’s commands might be different; for a GUI interface, you would
use an “about box”.

You should also get your employer (if you work as a programmer) or
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read https://www.gnu.org/licenses/why-not-lgpl.html.

Trajectories mod for KSP (Kerbal Space Program)

Copyright© (c) 2014-2017 Youen Toupin, (aka neuoy).Copyright© (c) 2014-2018 A.Korsunsky, (aka fat-lobyte).Copyright© (c) 2017-2018 S.Gray, (aka PiezPiedPy).

Trajectories is available under the terms of GPL-3.0-or-later.See the GNU General Public License contained in the COPYING.md file
for details.

Trajectories is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Trajectories is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You should have received a copy of the GNU General Public License
along with Trajectories.If not, see http://www.gnu.org/licenses/.

Trajectories

A Kerbal Space Program mod to display trajectory predictions, accounting for atmospheric drag, lift, etc.

This mod will display a new trajectory on the map, which should match the KSP regular trajectory, excepted if your spacecraft encounters an atmosphere. Drag and lift are predicted and the resulting modified trajectory is displayed. It is compatible with the aerodynamic model of the original game, but also with Ferram Aerospace Research (automatic selection at game startup).

This mod is designed to help with aerobraking maneuvers (trajectory after aerobrake is displayed), and to help reach a precise point on the ground (for example to land exactly at the Kerbal Space Center).

It is possible to configure a descent profile for space planes, so that you can tweak how you intend to fly at different altitudes. When you actually follow the trajectory, indicators will be displayed on the nav ball to show how the descent profile is configured for your current altitude, and also how you should correct your descent angle to reach your target ground impact.

The mod can also help reaching a precise location on any celestial body. Even when there is no atmosphere, the original game does not display where you’ll arrive according to the body rotation. This mod adds a small cross on the body showing you’re estimated impact location.

Features

	Display atmospheric trajectories

	Display crash/landing location (accounting for body rotation)

	Display trajectory after an aerobraking maneuver

	Display fixed-body trajectory (i.e. trajectory in the closest body rotating frame)

Supported Aerodynamic models

	Stock Kerbal Space Program aerodynamic model

	Ferram Aerospace Research

Installation

	Download Trajectories.zip from the latest release (https://github.com/neuoy/KSPTrajectories/releases)

	Unzip the contents into your GameData folder.

TODO

Documentation

GitHub

	Finish CONTRIBUTING.md

	Bug reporting section

	Git/Newline section

	Rewrite README.md

Forum Thread

	Redo Imgur Album

	Simplify and update “manual”

Numerical

	Improve cache

	find better ordinate distribution?

	Extract implicit verlet integrator from the code, make it explicit

	Add Runge-Kutta 4 integrator

	Play around with time-delta. Make configurable?

	Implement binary search for impact position?

Debugging

Performance

	Find worst offenders for cache-less computation. Maybe we can improve that.

Telemetry

	Implement telemetry for single simulation instances

Old todo

Youen’s old TODO list points

Auto-pilot

	./ auto-pilot UI next to the navball (both in flight view and map view)

	./ disengage auto-pilot when touching an input, or enabling SAS

	smooth avoidance of mountains

	add guidance and auto-pilot for aerobraking (specify desired Pe either from current trajectory or in a text box)

	detect auto-pilot failures (can’t steer as needed, or can’t correct the trajectory to reach the target)

	display auto-pilot status (On track, Correcting, Avoiding mountain, Can’t steer, Can’t correct trajectory)

	./ test auto-pilot on capsules (prograde and retrograde)

	move auto-pilot feature in a module, as a separate part, add in research tree for career mode (or embed in probe cores of high-enough tech-level)

	make auto-pilot align with the runway (for spaceplane landing)

Staging

	check if it’s possible to use FAR to predict aerodynamic forces for a future stage of the rocket

Refactoring

	VesselAerodynamicModel: each model (stock and FAR) in a different class that derives from VesselAerodynamicModel, and add a static function that instantiates the correct model for the installed mods

	Implement the cache system separately from the VesselAerodynamicModel, and allow storing multiple caches for different bodies

ModuleManager

Original (c) from Ialdabaoth (https://github.com/Ialdabaoth)

Modified by // Modifications by // Maintained by sarbian (https://github.com/sarbian)

The original licence requirement was:

under a CC share-alike license. Anyone is free to do anything they like with ModuleManager’s source, with two caveats:

	You credit me as the original creator that your code is based on

	You make it ABSOLUTELY CLEAR that your code is not the original ModuleManager, and that any problems that people have with your fork should be taken up with YOU, not me.

THIS IS NOT THE ORIGINAL MODULEMANAGER CODE.

Do not bother Ialdabaoth about any problems with it.

Dependencies

	mono resgen2

	Fedora: sudo dnf install mono-devel

	Mono C# Compiler

	Fedora: sudo ln -s /usr/bin/mcs /usr/bin/gmcs

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

