

Kintyre’s Splunk CONFiguration tool

Intro

This utility handles a number of common Splunk app maintenance tasks in an installable python
package. Specifically, this tools deals with many of the nuances with storing Splunk apps in a
version control system like git and pointing live Splunk apps to a working tree, merging changes
from the live system’s (local) folder to the version controlled (default) folder, and dealing with
more than one layer of “default” (which splunk can’t handle natively).

Install

pip install kintyre-splunk-conf

Contents:

	Installation Guide
	Quick install

	Requirements

	Installation

	Use the standalone executable

	Validate the install

	Command line completion

	Frequent gotchas

	Resources

	Command line reference
	ksconf

	ksconf check

	ksconf combine

	ksconf diff

	ksconf promote

	ksconf merge

	ksconf minimize

	ksconf sort

	ksconf unarchive

	Developer setup
	Setup tools

	Install ksconf

	Building the docs

	Contributing back
	Pre-commit hook

	Install gitlint

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation Guide

The following doc describes installation options for Kintyre’s Splunk Configuration tool.
This tool is available as a normal Python package that should require very minimal effort to install
and upgrade. However, sometimes Python packaging gets ugly and the one-liner may not work.

A portion of this document is targeted at those who can’t install packages as Admin or are forced to
use Splunk’s embedded Python. For everyone else, please start with the one-liner!

Quick install

Using pip:

pip install kintyre-splunk-conf

System-level install: (For Mac/Linux)

curl https://bootstrap.pypa.io/get-pip.py | sudo python - kintyre-splunk-conf

Note: This will also install/update pip and work around some known TLS/SSL issues

Enable Bash completion

If you’re on a Mac or Linux, and would like to enable bash completion, run these commands:

pip install argcomplete
echo 'eval "$(register-python-argcomplete ksconf)"' >> ~/.bashrc

Requirements

	Python 2.7 [https://www.python.org/downloads/]

	PIP [https://pip.pypa.io/en/stable/installing/] (strongly recommended)

	Tested on Mac, Linux, and Windows

Check Python version

Check your installed python version by running:

python --version

Note that Linux distributions and Mac OS X that ship with multiple version of Python may have
renamed this to python2, python2.7 or similar.

Check PIP Version

pip --version

If you are running a different python interpreter version, you can instead run this as:

python2.7 -m pip --version

Installation

There are several ways to install ksconf. Technically all standard python packaging approaches
should work just fine, there’s no compiled code or external runt-time dependencies so installation
is fairly easy, but for non-python developers there are some gotchas. Installation options are
listed from the most easy and recommended to more obscure and difficult:

Install from PyPI with PIP

The preferred installation method is to install via the standard Python package tool ‘pip’. Ksconf
can be installed via the registered kintyre-splunk-conf package using the standard python process.

There are 2 popular variations, depending on whether or not you would like to install for all users
or just play around with it locally.

Install ksconf into a virtual environment

Use this option if you don’t have admin access

Installing ksconf with virtualenv [https://virtualenv.pypa.io/en/stable/] is a great way to test the tool without requiring
admin privileges and has many advantages for a production install too. Here are the basic steps to
get started.

Please change venv to a suitable path for your environment.

Install Python virtualenv package (if not already installed)
pip install virtualenv

Create and activte new 'venv' virtual environment
virtualenv venv
source venv/bin/activate

pip install kintyre-splunk-conf

Windows users: The above virtual environment activation should be run as
venv\Scripts\activate.bat.

Install ksconf system-wide

Note: This requires admin access.

This is the absolute easiest install method where ‘ksconf’ is available to all users on the system
but it requires root access.

On Mac or Linux, run:

sudo pip install kintyre-splunk-conf

On Windows, run this commands from an Administrator console.

pip install kintyre-splunk-conf

Install from GIT

If you’d like to contribute to ksconf, or just build the latest and greatest, then install from the
git repository is a good choice. (Technically this is still installing with pip, so it’s easy to
switch between a PyPI install, and a local install.)

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

See developer docs for additional details about contributing to ksconf.

Use the standalone executable

Ksconf can be installed as a standalone executable. This works well for testing or when all other
options fail.

From the GitHub releases [https://github.com/Kintyre/ksconf/releases/latest] page , grab the file name ksconf-*-standalone
and copy it to a bin folder and rename it ksconf.

This file is just a zip file, prepended with a shebang that tells the OS to launch Python, and then
Python run the __main__.py module located inside of the zip file. This is more better supported
in Python 3.x, but works as far back as Python 2.6. It worked during testing. Good luck!

Reasons why this is a non-ideal install approach:

	Lower performance since all python file live in a zip file, and precompiled version’s can be
cached (in Python 2.7).

	No standard install pathway (doesn’t use pip); user must manually copy the executable into place.

	Uses a non-standard build process. (May not be a big deal, but could cause things to break in
the future.)

Install the Wheel manually (offline mode)

Download the latest “Wheel” file file from PyPI [https://pypi.org/project/kintyre-splunk-conf/#files], copy it to the destination server
and install with pip.

Offline pip install:

pip install ~/Downloads/kintyre-splunk-conf-0.4.2-py2.py3-none-any.whl

Install with Splunk’s Python

Splunk Enterprise 6.x and later installs an embedded Python 2.7 environment.
However, Splunk does not provide packing tools (such as pip or the distutils standard library
which is required to bootstrap install pip). For these reasons, it’s typically easier and cleaner
to install ksconf with the system provided Python. However, sometimes the system-provided Python
environment is the wrong version, is missing (like on Windows), or security restrictions prevent the
installation of additional packages. In such cases, Splunk’s embedded Python becomes a beacon of
hope.

On Linux or Mac

Download the latest “Wheel” file file from PyPI [https://pypi.org/project/kintyre-splunk-conf/#files]. The path to this download will be
set in the pkg variable as shown below.

Setup the shell:

export SPLUNK_HOME=/opt/splunk
export pkg=~/Downloads/kintyre_splunk_conf-0.4.9-py2.py3-none-any.whl

Run the following:

cd $SPLUNK_HOME
mkdir Kintyre
cd Kintyre
Unzip the 'kconf' folder into SPLUNK_HOME/Kintyre
unzip "$pkg"

cat > $SPLUNK_HOME/bin/ksconf <<HERE
#!/bin/sh
export PYTHONPATH=$PYTHONPATH:$SPLUNK_HOME/Kintyre
exec $SPLUNK_HOME/bin/python -m ksconf.cli \$*
HERE
chmod +x $SPLUNK_HOME/bin/ksconf

Test the install:

ksconf --version

On Windows

	Open a browser and download the latest “Wheel” file file from PyPI [https://pypi.org/project/kintyre-splunk-conf/#files].

	Rename the .whl extension to .zip. (This may require showing file extensions in Explorer.)

	Extract the zip file to a temporary folder. (This should create a folder named “ksconf”)

	Create a new folder called “Kintyre” under the Splunk installation path (aka SPLUNK_HOME)
By default this is C:\Program Files\Splunk.

	Copy the “ksconf” folder to “SPLUNK_HOME\Kintyre”.

	Create a new batch file called ksconf.bat and paste in the following. Be sure to
adjust for a non-standard %SPLUNK_HOME% value, if necessary.

@echo off
SET SPLUNK_HOME=C:\Program Files\Splunk
SET PYTHONPATH=%SPLUNK_HOME%\bin;%SPLUNK_HOME%\Python-2.7\Lib\site-packages\win32;%SPLUNK_HOME%\Python-2.7\Lib\site-packages;%SPLUNK_HOME%\Python-2.7\Lib
SET PYTHONPATH=%PYTHONPATH%;%SPLUNK_HOME%\Kintyre
CALL "%SPLUNK_HOME%\bin\python.exe" -m ksconf.cli %*

	Move ksconf.bat to the Splunk\bin folder. (This assumes that %SPLUNK_HOME%/bin is part of
your %PATH%. If not, add it, or find an appropriate install location.)

	Test this by running ksconf --version from the command line.

Validate the install

Confirm installation with the following command:

ksconf --help

If this works, it means that ksconf installed and is part of your PATH and should be useable
everywhere in your system. Go forth and conquer!

Command line completion

Bash completion allows for a more intuitive interactive workflow by providing quick access to
command line options and file completions. Often this saves time since the user can avoid mistyping
file names or be reminded of which command line actions and arguments are available without
switching contexts. For example, if the user types ksconf d and hits

 Command line reference

Command line reference

The following documents the CLI options

ksconf

usage: ksconf [-h] [--version] [--force-color]
 {check,combine,diff,promote,merge,minimize,sort,unarchive} ...

Kintyre Splunk CONFig tool.

This utility handles a number of common Splunk app maintenance tasks in a small
and easy to relocate package. Specifically, this tools deals with many of the
nuances with storing Splunk apps in git, and pointing live Splunk apps to a git
repository. Merging changes from the live system's (local) folder to the
version controlled (default) folder, and dealing with more than one layer of
"default" (which splunk can't handle natively) are all supported tasks.

positional arguments:
 {check,combine,diff,promote,merge,minimize,sort,unarchive}
 check Perform basic syntax and sanity checks on .conf files
 combine Merge configuration files from one or more source
 directories into a combined destination directory.
 This allows for an arbitrary number of splunk's
 configuration layers within a single app. Ad-hoc uses
 include merging the 'users' directory across several
 instances after a phased server migration.
 diff Compares settings differences of two .conf files
 ignoring textual and sorting differences
 promote Promote .conf settings from one file into another
 either in batch mode (all changes) or interactively
 allowing the user to pick which stanzas and keys to
 integrate. Changes made via the UI (stored in the
 local folder) can be promoted (moved) to a version-
 controlled directory.
 merge Merge two or more .conf files
 minimize Minimize the target file by removing entries
 duplicated in the default conf(s) provided.
 sort Sort a Splunk .conf file. Sorted output can be echoed
 or files can be sorted inplace.
 unarchive Install or overwrite an existing app in a git-friendly
 way. If the app already exist, steps will be taken to
 upgrade it safely.

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit
 --force-color Force TTY color mode on. Useful if piping the output a
 color-aware pager, like 'less -R'

ksconf check

usage: ksconf check [-h] [--quiet] FILE [FILE ...]

Provide basic syntax and sanity checking for Splunk's .conf files. Use
Splunk's builtin 'btool check' for a more robust validation of keys and
values. Consider using this utility as part of a pre-commit hook.

positional arguments:
 FILE One or more configuration files to check. If the special value
 of '-' is given, then the list of files to validate is read
 from standard input

optional arguments:
 -h, --help show this help message and exit
 --quiet, -q Reduce the volume of output.

ksconf combine

usage: ksconf combine [-h] [--target TARGET] [--dry-run] [--banner BANNER]
 source [source ...]

Merge .conf settings from multiple source directories into a combined target
directory. Configuration files can be stored in a '/etc/*.d' like directory
structure and consolidated back into a single 'default' directory.

This command supports both one-time operations and recurring merge jobs.
For example, this command can be used to combine all users knowledge objects
(stored in 'etc/users') after a server migration, or to merge a single user's
settings after an their account has been renamed. Recurring operations assume
some type of external scheduler is being used. A best-effort is made to only
write to target files as needed.

The 'combine' command takes your logical layers of configs (upstream,
corporate, splunk admin fixes, and power user knowledge objects, ...)
expressed as individual folders and merges them all back into the single
'default' folder that Splunk reads from. One way to keep the 'default'
folder up-to-date is using client-side git hooks.

No directory layout is mandatory, but but one simple approach is to model your
layers using a prioritized 'default.d' directory structure. (This idea is
borrowed from the Unix System V concept where many services natively read
their config files from '/etc/*.d' directories.)

THE PROBLEM:

In a typical enterprise deployment of Splunk, a single app can easily have
multiple logical sources of configuration: (1) The upstream app developer,
(2) local developer app-developer adds organization-specific customizations
or fixes, (3) splunk admin tweaks the inappropriate ''indexes.conf' settings,
and (4) custom knowledge objects added by your subject matter experts.
Ideally we'd like to version control these, but doing so is complicated
because normally you have to manage all 4 of these logical layers in one
'default' folder. (Splunk requires that app settings be located either in
'default' or 'local'; and managing local files with version control leads to
merge conflicts; so effectively, all version controlled settings need to be in
'default', or risk merge conflicts.) So when a new upstream version is
released, someone has to manually upgrade the app being careful to preserve
all custom configurations. The solution provided by the 'combine'
functionality is that all of these logical sources can be stored separately in
their own physical directories allowing changes to be managed independently.
(This also allows for different layers to be mixed-and-matched by selectively
including which layers to combine.) While this doesn't completely remove the
need for a human to review app upgrades, it does lower the overhead enough
that updates can be pulled in more frequently, thus reducing the divergence
potential. (Merge frequently.)

NOTES:

The 'combine' command is similar to running the 'merge' subcommand recursively
against a set of directories. One key difference is that this command will
gracefully handle non-conf files intelligently too.

EXAMPLE:

 Splunk_CiscoSecuritySuite/
 ├── README
 ├── default.d
 │ ├── 10-upstream
 │ │ ├── app.conf
 │ │ ├── data
 │ │ │ └── ui
 │ │ │ ├── nav
 │ │ │ │ └── default.xml
 │ │ │ └── views
 │ │ │ ├── authentication_metrics.xml
 │ │ │ ├── cisco_security_overview.xml
 │ │ │ ├── getting_started.xml
 │ │ │ ├── search_ip_profile.xml
 │ │ │ ├── upgrading.xml
 │ │ │ └── user_tracking.xml
 │ │ ├── eventtypes.conf
 │ │ ├── macros.conf
 │ │ ├── savedsearches.conf
 │ │ └── transforms.conf
 │ ├── 20-my-org
 │ │ └── savedsearches.conf
 │ ├── 50-splunk-admin
 │ │ ├── indexes.conf
 │ │ ├── macros.conf
 │ │ └── transforms.conf
 │ └── 70-firewall-admins
 │ ├── data
 │ │ └── ui
 │ │ └── views
 │ │ ├── attacks_noc_bigscreen.xml
 │ │ ├── device_health.xml
 │ │ └── user_tracking.xml
 │ └── eventtypes.conf

Commands:

 cd Splunk_CiscoSecuritySuite
 ksconf combine default.d/* --target=default

positional arguments:
 source The source directory where configuration files will be
 merged from. When multiple sources directories are
 provided, start with the most general and end with the
 specific; later sources will override values from the
 earlier ones. Supports wildcards so a typical Unix
 conf.d/##-NAME directory structure works well.

optional arguments:
 -h, --help show this help message and exit
 --target TARGET, -t TARGET
 Directory where the merged files will be stored.
 Typically either 'default' or 'local'
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 show what changes would be made to it in the form of a
 'diff'. If TARGET doesn't exist, then show the merged
 file.
 --banner BANNER, -b BANNER
 A warning banner telling discouraging editing of conf
 files.

ksconf diff

usage: ksconf diff [-h] [-o FILE] [--comments] CONF1 CONF2

Compares the content differences of two .conf files

This command ignores textual differences (like order, spacing, and comments)
and focuses strictly on comparing stanzas, keys, and values. Note that spaces
within any given value will be compared. Multiline fields are compared in are
compared in a more traditional 'diff' output so that long savedsearches and
macros can be compared more easily.

positional arguments:
 CONF1 Left side of the comparison
 CONF2 Right side of the comparison

optional arguments:
 -h, --help show this help message and exit
 -o FILE, --output FILE
 File where difference is stored. Defaults to standard
 out.
 --comments, -C Enable comparison of comments. (Unlikely to work
 consistently)

ksconf promote

usage: ksconf promote [-h] [--batch | --interactive] [--force] [--keep]
 [--keep-empty]
 SOURCE TARGET

Propagate .conf settings applied in one file to another. Typically this is
used to take local changes made via the UI and push them into a default (or
default.d/) location.

NOTICE: By default, changes are *MOVED*, not just copied.

Promote has two different modes: batch and interactive. In batch mode all
changes are applied automatically and the (now empty) source file is removed.
In interactive mode the user is prompted to pick which stanzas and keys to
integrate. This can be used to push changes made via the UI, which are
stored in a 'local' file, to the version-controlled 'default' file. Note that
the normal operation moves changes from the SOURCE file to the TARGET,
updating both files in the process. But it's also possible to preserve the
local file, if desired.

If either the source file or target file is modified while a promotion is
under progress, changes will be aborted. And any custom selections you made
will be lost. (This needs improvement.)

positional arguments:
 SOURCE The source configuration file to pull changes from.
 (Typically the 'local' conf file)
 TARGET Configuration file or directory to push the changes into.
 (Typically the 'default' folder) When a directory is
 given instead of a file then the same file name is
 assumed for both SOURCE and TARGET

optional arguments:
 -h, --help show this help message and exit
 --batch, -b Use batch mode where all configuration settings are
 automatically promoted. All changes are moved from the
 source to the target file and the source file will be
 blanked or removed.
 --interactive, -i Enable interactive mode where the user will be prompted
 to approve the promotion of specific stanzas and keys.
 The user will be able to apply, skip, or edit the changes
 being promoted. (This functionality was inspired by 'git
 add --patch').
 --force, -f Disable safety checks.
 --keep, -k Keep conf settings in the source file. This means that
 changes will be copied into the target file instead of
 moved there.
 --keep-empty Keep the source file, even if after the settings
 promotions the file has no content. By default, SOURCE
 will be removed if all content has been moved into the
 TARGET location. Splunk will re-create any necessary
 local files on the fly.

ksconf merge

usage: ksconf merge [-h] [--target FILE] [--dry-run] [--banner BANNER]
 FILE [FILE ...]

positional arguments:
 FILE The source configuration file to pull changes from.

optional arguments:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 Save the merged configuration files to this target
 file. If not given, the default is to write the merged
 conf to standard output.
 --dry-run, -D Enable dry-run mode. Instead of writing to TARGET,
 show what changes would be made to it in the form of a
 'diff'. If TARGET doesn't exist, then show the merged
 file.
 --banner BANNER, -b BANNER
 A banner or warning comment to add to the TARGET file.
 Often used to warn Splunk admins from editing a auto-
 generated file.

ksconf minimize

usage: ksconf minimize [-h] [--target FILE] [--dry-run | --output OUTPUT]
 [--explode-default] [-k PRESERVE_KEY]
 FILE [FILE ...]

Minimize a conf file by removing the default settings

Reduce local conf file to only your indented changes without manually tracking
which entires you've edited. Minimizing local conf files makes your local
customizations easier to read and often results in cleaner add-on upgrades.

A typical scenario & why does this matter:
To customizing a Splunk app or add-on, start by copying the conf file from
default to local and then applying your changes to the local file. That's
good. But stopping here may complicated future upgrades, because the local
file doesn't contain *just* your settings, it contains all the default
settings too. Fixes published by the app creator may be masked by your local
settings. A better approach is to reduce the local conf file leaving only the
stanzas and settings that you indented to change. This make your conf files
easier to read and makes upgrades easier, but it's tedious to do by hand.

For special cases, the '--explode-default' mode reduces duplication between
entries normal stanzas and global/default entries. If 'disabled = 0' is a
global default, it's technically safe to remove that setting from individual
stanzas. But sometimes it's preferable to be explicit, and this behavior may
be too heavy-handed for general use so it's off by default. Use this mode if
your conf file that's been fully-expanded. (i.e., conf entries downloaded via
REST, or the output of "btool list"). This isn't perfect, since many apps
push their settings into the global namespace, but it can help.

Example usage:

 cd Splunk_TA_nix
 cp default/inputs.conf local/inputs.conf

 # Edit 'disabled' and 'interval' settings in-place
 vi local/inputs.conf

 # Remove all the extra (unmodified) bits
 ksconf minimize --target=local/inputs.conf default/inputs.conf

positional arguments:
 FILE The default configuration file(s) used to determine
 what base settings are unnecessary to keep in the
 target file.

optional arguments:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 This is the local file that you with to remove the
 duplicate settings from. By default, this file will be
 read and the updated with a minimized version.
 --dry-run, -D Enable dry-run mode. Instead of writing the minimized
 value to TARGET, show a 'diff' of what would be
 removed.
 --output OUTPUT When this option is used, the new minimized file will
 be saved to this file instead of updating TARGET. This
 can be use to preview changes or helpful in other
 workflows.
 --explode-default, -E
 Along with minimizing the same stanza across multiple
 config files, also take into consideration the
 [default] or global stanza values. This can often be
 used to trim out cruft in savedsearches.conf by
 pointing to etc/system/default/savedsearches.conf, for
 example.
 -k PRESERVE_KEY, --preserve-key PRESERVE_KEY
 Specify a key that should be allowed to be a
 duplication but should be preserved within the
 minimized output. For example the it'soften desirable
 keep the 'disabled' settings in the local file, even
 if it's enabled by default.

ksconf sort

usage: ksconf sort [-h] [--target FILE | --inplace] [-F] [-q] [-n LINES]
 FILE [FILE ...]

Sort a Splunk .conf file. Sort has two modes: (1) by default, the sorted
config file will be echoed to the screen. (2) the config files are updated
inplace when the '-i' option is used.

Conf files that are manually managed that you don't ever want sorted can be
'blacklisted' by placing the string 'KSCONF-NO-SORT' in a comment at the top
of the .conf file.

To recursively sort all files:

 find . -name '*.conf' | xargs ksconf sort -i

positional arguments:
 FILE Input file to sort, or standard input.

optional arguments:
 -h, --help show this help message and exit
 --target FILE, -t FILE
 File to write results to. Defaults to standard output.
 --inplace, -i Replace the input file with a sorted version. Warning
 this a potentially destructive operation that may
 move/remove comments.
 -n LINES, --newlines LINES
 Lines between stanzas.

In-place update arguments:
 -F, --force Force file sorting for all files, even for files
 containing the special 'KSCONF-NO-SORT' marker.
 -q, --quiet Reduce the output. Reports only updated or invalid
 files. This is useful for pre-commit hooks, for
 example.

ksconf unarchive

usage: ksconf unarchive [-h] [--dest DIR] [--app-name NAME]
 [--default-dir DIR] [--exclude EXCLUDE] [--keep KEEP]
 [--allow-local]
 [--git-sanity-check {off,changed,untracked,ignored}]
 [--git-mode {nochange,stage,commit}] [--no-edit]
 [--git-commit-args GIT_COMMIT_ARGS]
 SPL

positional arguments:
 SPL The path to the archive to install.

optional arguments:
 -h, --help show this help message and exit
 --dest DIR Set the destination path where the archive will be
 extracted. By default the current directory is used,
 but sane values include etc/apps, etc/deployment-apps,
 and so on. This could also be a git repository working
 tree where splunk apps are stored.
 --app-name NAME The app name to use when expanding the archive. By
 default, the app name is taken from the archive as the
 top-level path included in the archive (by convention)
 Expanding archives that contain multiple (ITSI) or
 nested apps (NIX, ES) is not supported.
 --default-dir DIR Name of the directory where the default contents will
 be stored. This is a useful feature for apps that use
 a dynamic default directory that's created by the
 'combine' mode.
 --exclude EXCLUDE, -e EXCLUDE
 Add a file pattern to exclude. Splunk's psudo-glob
 patterns are supported here. '*' for any non-directory
 match, '...' for ANY (including directories), and '?'
 for a single character.
 --keep KEEP, -k KEEP Add a pattern of file to preserve during an upgrade.
 --allow-local Allow local/ and local.meta files to be extracted from
 the archive. This is a Splunk packaging violation and
 therefore by default these files are excluded.
 --git-sanity-check {off,changed,untracked,ignored}
 By default a 'git status' is run on the destination
 folder to see if the working tree or index has
 modifications before the unarchive process starts. The
 choices go from least restrictive to most thorough:
 Use 'off' to prevent any 'git status' safely checks.
 Use 'changed' to abort only upon local modifications
 to files tracked by git. Use 'untracked' (by default)
 to look for changed and untracked files before
 considering the tree clean. Use 'ignored' to enable
 the most intense safety check which will abort if
 local changes, untracked, or ignored files are found.
 (These checks are automatically disabled if the app is
 not in a git working tree, or git is not present.)
 --git-mode {nochange,stage,commit}
 Set the desired level of git integration. The default
 mode is 'stage', where new, updated, or removed files
 are automatically handled for you. If 'commit' mode is
 selected, then files are committed with an auto-
 generated commit message. To prevent any 'git add' or
 'git rm' commands from being run, pick the 'nochange'
 mode. Notes: (1) The git mode is irrelevant if the app
 is not in a git working tree. (2) If a git commit is
 incorrect, simply roll it back with 'git reset' or fix
 it with a 'git commit --amend' before the changes are
 pushed anywhere else. (That's why you're using git in
 the first place, right?)
 --no-edit Tell git to skip opening your editor. By default you
 will be prompted to review/edit the commit message.
 (Git Tip: Delete the content of the message to abort
 the commit.)
 --git-commit-args GIT_COMMIT_ARGS, -G GIT_COMMIT_ARGS

 Developer setup

Developer setup

The following steps highlight the developer install process.

Setup tools

If you are a developer then we strongly suggest installing into a virtual environment to prevent
overwriting the production version of ksconf and for the installation of the developer tools. (The
virtualenv name ksconfdev-pyve is used below, but this can be whatever suites, just make sure not
to commit it.
.)

Setup and activate virtual environment
virtualenv ksconfdev-pyve
. ksconfdev-pyve/bin/activate

Install developer packages
pip install -r requirements-dev.txt

Install ksconf

git clone https://github.com/Kintyre/ksconf.git
cd ksconf
pip install .

Building the docs

cd ksconf
. ksconfdev-pyve/bin/activate

cd docs
make html
open build/html/index.html

If you’d like to build PDF, then you’ll need some extra tools. On Mac, you may also want to install
the following (for building docs, and the like):

brew install homebrew/cask/mactex-no-gui

(Doh! Still doesn’t work, instructions are incomplete for mac latex, ….)

Contributing back

Pull requests are greatly welcome! If you plan on contributing code back to the main ksconf repo,
please follow the standard GitHub fork and pull-request work-flow. We also ask that you enable a
set of git hooks to help safeguard against avoidable issues.

Pre-commit hook

The ksconf project uses the pre-commit [https://pre-commit.com/] hook to enable the following checks:

	Fixes trailing whitespace, EOF, and EOLs

	Confirms python code compiles (AST)

	Blocks the committing of large files and keys

	Rebuilds the CLI docs. (Eventually to be replaced with an argparse Sphinx extension)

	Confirms that all Unit test pass. (Currently this is the same tests also run by Travis CI, but
since test complete in under 5 seconds, the run-everywhere approach seems appropriate for now.
Eventually, the local testing will likely become a subset of the full test suite.)

Note that this repo both uses pre-commit for it’s own validation (as discussed here) and provides a
pre-commit hook service to other repos. This way repositories housing Splunk apps can, for example,
use ‘ksconf –check’ or ksconf --sort against their own .conf files for validation purposes.

Installing the pre-commit hook

To run ensure you changes comply with the ksconf coding standards, please install and activate
pre-commit [https://pre-commit.com/].

Install:

sudo pip install pre-commit

Register the pre-commit hooks (one time setup)
cd ksconf
pre-commit install --install-hooks

Install gitlint

Gitlint will check to ensure that commit messages are in compliance with the standard subject,
empty-line, body format. You can enable it with:

gitlint install-hook

 License

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2018 Kintyre

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Python Module Index

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 ksconf	

 	
 	
 ksconf.archive	

 	
 	
 ksconf.cli	

 	
 	
 ksconf.commands	

 	
 	
 ksconf.commands.check	

 	
 	
 ksconf.commands.combine	

 	
 	
 ksconf.commands.diff	

 	
 	
 ksconf.commands.merge	

 	
 	
 ksconf.commands.minimize	

 	
 	
 ksconf.commands.promote	

 	
 	
 ksconf.commands.sort	

 	
 	
 ksconf.commands.unarchive	

 	
 	
 ksconf.conf	

 	
 	
 ksconf.conf.delta	

 	
 	
 ksconf.conf.merge	

 	
 	
 ksconf.conf.parser	

 	
 	
 ksconf.consts	

 	
 	
 ksconf.util	

 	
 	
 ksconf.util.compare	

 	
 	
 ksconf.util.file	

 	
 	
 ksconf.util.terminal	

 	
 	
 ksconf.vc	

 	
 	
 ksconf.vc.git	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	a (ksconf.conf.delta.DiffOp attribute)

 	
 	autocomplete() (in module ksconf.cli)

B

 	
 	b (ksconf.conf.delta.DiffOp attribute)

 	
 	backup() (ksconf.commands.ConfFileProxy method)

 	bom_handler() (in module ksconf.conf.parser)

C

 	
 	checksum() (ksconf.commands.ConfFileProxy method)

 	cli() (in module ksconf.cli)

 	close() (ksconf.commands.ConfFileProxy method)

 	cmd (ksconf.vc.git.GitCmdOutput attribute)

 	compare_cfgs() (in module ksconf.conf.delta)

 	
 	ConfDirProxy (class in ksconf.commands)

 	ConfFileProxy (class in ksconf.commands)

 	ConfFileType (class in ksconf.commands)

 	ConfParserException

 	cont_handler() (in module ksconf.conf.parser)

D

 	
 	data (ksconf.commands.ConfFileProxy attribute)

 	DiffGlobal (class in ksconf.conf.delta)

 	DiffOp (class in ksconf.conf.delta)

 	DiffStanza (class in ksconf.conf.delta)

 	DiffStzKey (class in ksconf.conf.delta)

 	dir_exists() (in module ksconf.util.file)

 	DirectoriesCompleter() (in module ksconf.cli)

 	do_check() (in module ksconf.commands.check)

 	do_combine() (in module ksconf.commands.combine)

 	
 	do_diff() (in module ksconf.commands.diff)

 	do_merge() (in module ksconf.commands.merge)

 	do_minimize() (in module ksconf.commands.minimize)

 	do_promote() (in module ksconf.commands.promote)

 	do_sort() (in module ksconf.commands.sort)

 	do_unarchive() (in module ksconf.commands.unarchive)

 	dump() (ksconf.commands.ConfFileProxy method)

 	DuplicateKeyException

 	DuplicateStanzaException

E

 	
 	explode_default_stanza() (in module ksconf.commands.minimize)

 	
 	extract_archive() (in module ksconf.archive)

F

 	
 	file_compare() (in module ksconf.util.compare)

 	file_fingerprint() (in module ksconf.util.file)

 	
 	file_hash() (in module ksconf.util.file)

 	fileobj_compare() (in module ksconf.util.compare)

 	FilesCompleter() (in module ksconf.cli)

G

 	
 	gaf_filter_name_like() (in module ksconf.archive)

 	gen_arch_file_remapper() (in module ksconf.archive)

 	GenArchFile (in module ksconf.archive)

 	get_file() (ksconf.commands.ConfDirProxy method)

 	git_cmd() (in module ksconf.vc.git)

 	git_cmd_iterable() (in module ksconf.vc.git)

 	
 	git_is_clean() (in module ksconf.vc.git)

 	git_is_working_tree() (in module ksconf.vc.git)

 	git_ls_files() (in module ksconf.vc.git)

 	git_status_summary() (in module ksconf.vc.git)

 	git_status_ui() (in module ksconf.vc.git)

 	GitCmdOutput (class in ksconf.vc.git)

I

 	
 	inject_section_comments() (in module ksconf.conf.parser)

 	
 	is_file() (ksconf.commands.ConfFileProxy method)

K

 	
 	key (ksconf.conf.delta.DiffStzKey attribute)

 	ksconf (module)

 	ksconf.archive (module)

 	ksconf.cli (module)

 	ksconf.commands (module)

 	ksconf.commands.check (module)

 	ksconf.commands.combine (module)

 	ksconf.commands.diff (module)

 	ksconf.commands.merge (module)

 	ksconf.commands.minimize (module)

 	ksconf.commands.promote (module)

 	ksconf.commands.sort (module)

 	
 	ksconf.commands.unarchive (module)

 	ksconf.conf (module)

 	ksconf.conf.delta (module)

 	ksconf.conf.merge (module)

 	ksconf.conf.parser (module)

 	ksconf.consts (module)

 	ksconf.util (module)

 	ksconf.util.compare (module)

 	ksconf.util.file (module)

 	ksconf.util.terminal (module)

 	ksconf.vc (module)

 	ksconf.vc.git (module)

L

 	
 	lines (ksconf.vc.git.GitCmdOutput attribute)

 	
 	load() (ksconf.commands.ConfFileProxy method)

 	location (ksconf.conf.delta.DiffOp attribute)

M

 	
 	match_bwlist() (in module ksconf.util.file)

 	merge_conf_dicts() (in module ksconf.conf.merge)

 	
 	merge_conf_files() (in module ksconf.conf.merge)

 	MyDescriptionHelpFormatter (class in ksconf.cli)

P

 	
 	parse_conf() (in module ksconf.conf.parser)

 	
 	parse_conf_stream() (in module ksconf.conf.parser)

R

 	
 	relwalk() (in module ksconf.util.file)

 	
 	reset() (ksconf.commands.ConfFileProxy method)

 	returncode (ksconf.vc.git.GitCmdOutput attribute)

S

 	
 	sanity_checker() (in module ksconf.archive)

 	section_reader() (in module ksconf.conf.parser)

 	set_parser_option() (ksconf.commands.ConfFileProxy method)

 	show_diff() (in module ksconf.conf.delta)

 	show_text_diff() (in module ksconf.conf.delta)

 	smart_copy() (in module ksconf.util.file)

 	smart_write_conf() (in module ksconf.conf.parser)

 	
 	splitup_kvpairs() (in module ksconf.conf.parser)

 	stanza (ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

 	stderr (ksconf.vc.git.GitCmdOutput attribute)

 	stdout (ksconf.vc.git.GitCmdOutput attribute)

 	stream (ksconf.commands.ConfFileProxy attribute)

 	summarize_cfg_diffs() (in module ksconf.conf.delta)

T

 	
 	tag (ksconf.conf.delta.DiffOp attribute)

 	Token (class in ksconf.conf.parser)

 	tty_color() (in module ksconf.util.terminal)

 	
 	type (ksconf.conf.delta.DiffGlobal attribute)

 	(ksconf.conf.delta.DiffStanza attribute)

 	(ksconf.conf.delta.DiffStzKey attribute)

U

 	
 	unlink() (ksconf.commands.ConfFileProxy method)

W

 	
 	write_conf() (in module ksconf.conf.parser)

 	
 	write_conf_stream() (in module ksconf.conf.parser)

 Some other help topic

Some other help topic

Put more content here.

 ksconf.commands package

ksconf.commands package

Submodules

ksconf.commands.check module

	
ksconf.commands.check.do_check(args)

	

ksconf.commands.combine module

	
ksconf.commands.combine.do_combine(args)

	

ksconf.commands.diff module

	
ksconf.commands.diff.do_diff(args)

	Compare two configuration files.

ksconf.commands.merge module

	
ksconf.commands.merge.do_merge(args)

	Merge multiple configuration files into one

ksconf.commands.minimize module

	
ksconf.commands.minimize.do_minimize(args)

	

	
ksconf.commands.minimize.explode_default_stanza(conf, default_stanza=None)

	Take the GLOBAL stanza, (aka [default]) and apply it’s settings underneath ALL other
stanzas. This is mostly only useful in minimizing and other comparison operations.

ksconf.commands.promote module

	
ksconf.commands.promote.do_promote(args)

	

ksconf.commands.sort module

	
ksconf.commands.sort.do_sort(args)

	Sort a single configuration file.

ksconf.commands.unarchive module

	
ksconf.commands.unarchive.do_unarchive(args)

	Install / upgrade a Splunk app from an archive file

Module contents

	
class ksconf.commands.ConfDirProxy(name, mode, parse_profile=None)

	Bases: object

	
get_file(relpath)

	

	
class ksconf.commands.ConfFileProxy(name, mode, stream=None, parse_profile=None, is_file=None)

	Bases: object

	
backup(bkname=None)

	

	
checksum(hash='sha256')

	

	
close()

	

	
data

	

	
dump(data)

	

	
is_file()

	

	
load(profile=None)

	

	
reset()

	

	
set_parser_option(**kwargs)

	Setting a key to None will remove that setting.

	
stream

	

	
unlink()

	

	
class ksconf.commands.ConfFileType(mode='r', action='open', parse_profile=None, accept_dir=False)

	Bases: object

Factory for creating conf file object types; returns a lazy-loader ConfFile proxy class

Started from argparse.FileType() and then changed everything. With our use case, it’s often
necessary to delay writing, or read before writing to a conf file (depending on weather or not
–dry-run mode is enabled, for example.)

Instances of FileType are typically passed as type= arguments to the
ArgumentParser add_argument() method.

	Keyword Arguments:

	
	mode A string indicating how the file is to be opened. Accepts “r”, “w”, and “r+”.

	
	action ‘none’, ‘open’, ‘load’. ‘none’ means no preparation or tests; ‘open’ means

	make sure the file exists/openable; ‘load’ means make sure the file can be
opened and parsed successfully.

 ksconf.conf package

ksconf.conf package

Submodules

ksconf.conf.delta module

	
class ksconf.conf.delta.DiffGlobal(type)

	Bases: tuple

	
type

	Alias for field number 0

	
class ksconf.conf.delta.DiffOp(tag, location, a, b)

	Bases: tuple

	
a

	Alias for field number 2

	
b

	Alias for field number 3

	
location

	Alias for field number 1

	
tag

	Alias for field number 0

	
class ksconf.conf.delta.DiffStanza(type, stanza)

	Bases: tuple

	
stanza

	Alias for field number 1

	
type

	Alias for field number 0

	
class ksconf.conf.delta.DiffStzKey(type, stanza, key)

	Bases: tuple

	
key

	Alias for field number 2

	
stanza

	Alias for field number 1

	
type

	Alias for field number 0

	
ksconf.conf.delta.compare_cfgs(a, b, allow_level0=True)

	Opcode tags borrowed from difflib.SequenceMatcher

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form

(tag, location, a, b)

tag:

Value Meaning
‘replace’ same element in both, but different values.
‘delete’ remove value b
‘insert’ insert value a
‘equal’ same values in both

location is a tuple that can take the following forms:

(level, pos0, … posN)
(0) Global file level context (e.g., both files are the same)
(1, stanza) Stanzas are the same, or completely different (no shared keys)
(2, stanza, key) Key level, indicating

Possible alternatives:

https://dictdiffer.readthedocs.io/en/latest/#dictdiffer.patch

	
ksconf.conf.delta.show_diff(stream, diffs, headers=None)

	

	
ksconf.conf.delta.show_text_diff(stream, a, b)

	

	
ksconf.conf.delta.summarize_cfg_diffs(delta, stream)

	Summarize a delta into a human readable format. The input delta is in the format
produced by the compare_cfgs() function.

ksconf.conf.merge module

	
ksconf.conf.merge.merge_conf_dicts(*dicts)

	

	
ksconf.conf.merge.merge_conf_files(dest, configs, dry_run=False, banner_comment=None)

	

ksconf.conf.parser module

	
exception ksconf.conf.parser.ConfParserException

	Bases: exceptions.Exception

	
exception ksconf.conf.parser.DuplicateKeyException

	Bases: ksconf.conf.parser.ConfParserException

	
exception ksconf.conf.parser.DuplicateStanzaException

	Bases: ksconf.conf.parser.ConfParserException

	
class ksconf.conf.parser.Token

	Bases: object

Immutable token object. deepcopy returns the same object

	
ksconf.conf.parser.bom_handler(iterable)

	

	
ksconf.conf.parser.cont_handler(iterable, continue_re=<_sre.SRE_Pattern object>, breaker='\n')

	

	
ksconf.conf.parser.inject_section_comments(section, prepend=None, append=None)

	

	
ksconf.conf.parser.parse_conf(stream, profile={'dup_key': 'overwrite', 'dup_stanza': 'exception', 'keep_comments': True, 'strict': True})

	

	
ksconf.conf.parser.parse_conf_stream(stream, keys_lower=False, handle_conts=True, keep_comments=False, dup_stanza='exception', dup_key='overwrite', strict=False)

	

	
ksconf.conf.parser.section_reader(stream, section_re=<_sre.SRE_Pattern object>)

	Break a configuration file stream into 2 components sections. Each section is yielded as
(section_name, lines_of_text)

Sections that have no entries may be dropped. Any lines before the first section are send back
with the section name of None.

	
ksconf.conf.parser.smart_write_conf(filename, conf, stanza_delim='\n', sort=True, temp_suffix='.tmp')

	

	
ksconf.conf.parser.splitup_kvpairs(lines, comments_re=<_sre.SRE_Pattern object>, keep_comments=False, strict=False)

	

	
ksconf.conf.parser.write_conf(stream, conf, stanza_delim='\n', sort=True)

	

	
ksconf.conf.parser.write_conf_stream(stream, conf, stanza_delim='\n', sort=True)

	

Module contents

 ksconf.util package

ksconf.util package

Submodules

ksconf.util.compare module

	
ksconf.util.compare.file_compare(fn1, fn2)

	

	
ksconf.util.compare.fileobj_compare(f1, f2)

	

ksconf.util.file module

	
ksconf.util.file.dir_exists(directory)

	Ensure that the directory exists

	
ksconf.util.file.file_fingerprint(path, compare_to=None)

	

	
ksconf.util.file.file_hash(path, algorithm='sha256')

	

	
ksconf.util.file.match_bwlist(value, bwlist, escape=True)

	

	
ksconf.util.file.relwalk(top, topdown=True, onerror=None, followlinks=False)

	Relative path walker
Like os.walk() except that it doesn’t include the “top” prefix in the resulting ‘dirpath’.

	
ksconf.util.file.smart_copy(src, dest)

	Copy (overwrite) file only if the contents have changed.

ksconf.util.terminal module

	
ksconf.util.terminal.tty_color(stream, *codes)

	

Module contents

 ksconf.vc package

ksconf.vc package

Submodules

ksconf.vc.git module

	
class ksconf.vc.git.GitCmdOutput(cmd, returncode, stdout, stderr, lines)

	Bases: tuple

	
cmd

	Alias for field number 0

	
lines

	Alias for field number 4

	
returncode

	Alias for field number 1

	
stderr

	Alias for field number 3

	
stdout

	Alias for field number 2

	
ksconf.vc.git.git_cmd(args, shell=False, cwd=None, capture_std=True)

	

	
ksconf.vc.git.git_cmd_iterable(args, iterable, cwd=None, cmd_len=1024)

	

	
ksconf.vc.git.git_is_clean(path=None, check_untracked=True, check_ignored=False)

	

	
ksconf.vc.git.git_is_working_tree(path=None)

	

	
ksconf.vc.git.git_ls_files(path, *modifiers)

	

	
ksconf.vc.git.git_status_summary(path)

	

	
ksconf.vc.git.git_status_ui(path, *args)

	

Module contents

 ksconf package

ksconf package

Subpackages

	ksconf.commands package
	Submodules

	ksconf.commands.check module

	ksconf.commands.combine module

	ksconf.commands.diff module

	ksconf.commands.merge module

	ksconf.commands.minimize module

	ksconf.commands.promote module

	ksconf.commands.sort module

	ksconf.commands.unarchive module

	Module contents

	ksconf.conf package
	Submodules

	ksconf.conf.delta module

	ksconf.conf.merge module

	ksconf.conf.parser module

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module

	ksconf.util.file module

	ksconf.util.terminal module

	Module contents

	ksconf.vc package
	Submodules

	ksconf.vc.git module

	Module contents

Submodules

ksconf.archive module

	
ksconf.archive.GenArchFile

	alias of ksconf.archive.GenericArchiveEntry

	
ksconf.archive.extract_archive(archive_name, extract_filter=None)

	

	
ksconf.archive.gaf_filter_name_like(pattern)

	

	
ksconf.archive.gen_arch_file_remapper(iterable, mapping)

	

	
ksconf.archive.sanity_checker(interable)

	

ksconf.cli module

ksconf - Kintyre Splunk CONFig tool

Optionally supports argcomplete for commandline argument (tab) completion.

Install & register with:

pip install argcomplete
activate-global-python-argcomplete (in ~/.bashrc)

	
ksconf.cli.DirectoriesCompleter(*args, **kwargs)

	

	
ksconf.cli.FilesCompleter(*args, **kwargs)

	

	
class ksconf.cli.MyDescriptionHelpFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Bases: argparse.HelpFormatter

	
ksconf.cli.autocomplete(*args, **kwargs)

	

	
ksconf.cli.cli(argv=None, _unittest=False)

	

ksconf.consts module

Module contents

ksconf - Kintyre Splunk CONFig tool

Design goals:

	Multi-purpose go-to .conf tool.

	Dependability

	Simplicity

	No eternal dependencies (single source file, if possible; or packable as single file.)

	Stable CLI

	Good scripting interface for deployment scripts and/or git hooks

Git configuration tweaks

Setup ksconf as an external difftool provider:

~/.gitconfig:

	[difftool “ksconf”]

	cmd = “ksconf –force-color diff “$LOCAL” “$REMOTE” | less -R”

	[difftool]

	prompt = false

	[alias]

	ksdiff = “difftool –tool=ksconf”

Now can run: git ksdiff props.conf
Test command: git config diff.conf.xfuncname

Make normal diffs show the ‘stanza’ on the @@ output lines

~/.gitconfig

	[diff “conf”]

	xfuncname = “^([.*])$”

	attributes:

	*.conf diff=conf
*.meta diff=conf

Test command:

git check-attr -a – *.conf

 ksconf

ksconf

	ksconf package
	Subpackages
	ksconf.commands package
	Submodules

	ksconf.commands.check module

	ksconf.commands.combine module

	ksconf.commands.diff module

	ksconf.commands.merge module

	ksconf.commands.minimize module

	ksconf.commands.promote module

	ksconf.commands.sort module

	ksconf.commands.unarchive module

	Module contents

	ksconf.conf package
	Submodules

	ksconf.conf.delta module

	ksconf.conf.merge module

	ksconf.conf.parser module

	Module contents

	ksconf.util package
	Submodules

	ksconf.util.compare module

	ksconf.util.file module

	ksconf.util.terminal module

	Module contents

	ksconf.vc package
	Submodules

	ksconf.vc.git module

	Module contents

	Submodules

	ksconf.archive module

	ksconf.cli module

	ksconf.consts module

	Module contents

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Kintyre’s Splunk CONFiguration tool

 		
 Installation Guide

 		
 Quick install

 		
 Enable Bash completion

 		
 Requirements

 		
 Check Python version

 		
 Check PIP Version

 		
 Installation

 		
 Install from PyPI with PIP

 		
 Install from GIT

 		
 Use the standalone executable

 		
 Install the Wheel manually (offline mode)

 		
 Install with Splunk’s Python

 		
 Validate the install

 		
 Command line completion

 		
 Frequent gotchas

 		
 PIP Install TLS Error

 		
 Resources

 		
 Command line reference

 		
 ksconf

 		
 ksconf check

 		
 ksconf combine

 		
 ksconf diff

 		
 ksconf promote

 		
 ksconf merge

 		
 ksconf minimize

 		
 ksconf sort

 		
 ksconf unarchive

 		
 Developer setup

 		
 Setup tools

 		
 Install ksconf

 		
 Building the docs

 		
 Contributing back
