

Welcome to Kpop’s documentation!

Warning

Beta software

You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of Kpop!

Kpop is a Python package concerned with population genetics analysis. It features:

	Interacts with common population genetic packages (e.g., Structure, ADMIXTURE).

	Clusterization and computation of admixture coefficients.

	Integrates machine learning methods from Sklearn and Tensorflow.

	Easy graphics.

Table of contents

	Overview
	Command line interface

	Kpop data formats

	Kpop python interface

	Installation instructions
	Troubleshoot

	Tutorial
	Getting started

	Basic Kpop concepts

	Visualization

	Statistics

	Admixture

	Projections

	Clusterization

	Classification

	Classification
	Easy labels

	Probabilistic classifiers

	API docs

	Examples
	Simulating synthetic populations

	API Reference
	Individual

	Population objects

	Other utility types

	Utility modules

	Frequently asked questions
	Usage

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

[image: Read The Docs]
 [https://kpop.readthedocs.io/en/latest/][image: Codecov]
 [https://codecov.io/gh/fabiommendes/kpop][image: Travis-CI]
 [https://travis-ci.org/fabiommendes/kpop][image: Code Climate]
 [https://codeclimate.com/github/fabiommendes/kpop][image: Documentation Status]
 [http://kpop.readthedocs.io/en/latest/?badge=latest]Kpop is a Python package to perform population genetics analysis that
integrates traditional methods such as PCA and LDA (Latent Dirichilet Analysis,
a.k.a the algorithm introduced by Pritchard in the Structure program) with
machine learning.

Command line interface

Kpop can be used either as a library or as a command line interface application.
Although the former is more flexible and powerful, some simple transformations
and analysis can be done directly on the command line without touching any Python
code.

Conversion from kpop to other common formats. Export to Structure database and
param files:

$ kpop export pop.csv -f structure

Simple graphics. Show the result of a PCA analysis:

$ kpop show pop.csv -m pca

Clusterization/sharp estimate of parental affliations:

$ kpop cluster pop.csv -m kmeans -k 2

Soft cluster/computation of admixture coefficients:

$ kpop admix pop.csv -m kmeans -k 2

Basic statistics:

$ kpop stats pop.csv

Creation of random synthetic populations:

$ kpop create pop.csv --size 100 --num-loci 200

Start shell loading all of kpop symbols and all population files and in the
current directory:

$ kpop shell

We encourage you to explore more options by using the builtin help utility:

$ kpop --help # global help
$ kpop show --help # help for a specific command

Kpop data formats

Kpop defines two file formats that represents populations. Pickle is a binary
format that can be used to store the full state of a population, including any
additional fields and meta data you may have created. Pickle is used internally
by Python to serialize objects and is the fastest and most flexible format.

A major drawback of using Pickle is that other programs will not understand it.
It can also change across Python versions, so if you create a database with a
later Python version, it might not work when loaded from older Python
interpreters. Pickle may also break after a major version upgrade of Kpop
itself.

Pickle is fast and convenient, but it is not an archival and data exchange
format. For that, Kpop uses simple CSV files. CSV is limited and is not the
most efficient format both in terms of loading speed and disk usage. It is
however easy to produce and you can even use your favorite spreadsheet
program to create/edit an CSV file.

Kpop expects that CSV files should have a certain structure. The kpop.load_csv()
function can adapt to different formats, but the command line interface expects
a more or less rigid configuration. Your CSV file must have a single header line
for which Kpop understands a few column names:

	id:

	id for a single individual.

	index:

	a numeric index. Kpop will ignore this column if id is given or otherwise
use it as a id.

	population:

	a id or index for the population that each individual belongs to.

	gender:

	arbitrary gender id string. Not restricted to male/female.

	age:

	a numeric (float) value representing age. You decide if this number means
years, days, minutes, simulation ticks, etc.

	phenotype:

	arbitrary string describing phenotype.

	meta information:

	any column named as “#some-name” will be treated as arbitrary meta
information attached to each individual. This data is stored, but does not
influence any analysis performed by Kpop.

All other columns are treated as genetic marker names. The content of each marker
is a string of N characters in which each character represents an specific
allele. Kpop prefers numeric identifiers (e.g.: 12, 11, 22) vs letters (eg.: aA,
AB, aa, etc), but it also accepts the later. By default, it treats 0, the
dash character (-) and empty cells as missing data.

A typical Kpop CSV file will be like the following:

id,population,rs123,rs1234,rs42
john,uk,12,02,11
paul,uk,22,22,
psy,korea,--,21,22

In example above, “john” has a missing allele in the second locus and “paul” and
“psy” have no data for an entire locus (the third and the first, respectively).

Kpop python interface

In order to enjoy the full power of Kpop, it is necessary to use it from Python.
Kpop can be used as a library by importing it in python code:

import kpop

pop = kpop.Population.random(10, 100)
...

If you are just exploring, it might be more useful to just open the Python shell
or a Jupyter notebook using one of the commands:

$ kpop shell
$ kpop shell --notebook

It will start a Jupyter shell (or notebook) that already loads all symbols in
the Kpop namespace and

Users are refered to the API Reference

Installation instructions

kpop can be installed using pip:

$ python3 -m pip install kpop

This command will fetch the archive and its dependencies from the internet and
install them.

If you’ve downloaded the tarball, unpack it, and execute:

$ python3 setup.py install --user

You might prefer to install it system-wide. In this case, skip the --user
option and execute as superuser by prepending the command with sudo.

Troubleshoot

Windows users may find that these command will only works if typed from Python’s
installation directory.

Some Linux distributions (e.g. Ubuntu) install Python without installing pip.
Please install it before. If you don’t have root privileges, download the
get-pip.py script at https://bootstrap.pypa.io/get-pip.py and execute it as
python3 get-pip.py --user.

Tutorial

Getting started

We are assuming you already installed Kpop. The easiest way to start is to
simply type the following command on the terminal:

$ kpop shell

This will start a Python session with all basic Kpop functionality available.
It also also tries to load all population files in the current directory, so
they become easily available.

The kpop shell is just a convenience method of starting a IPython shell with a
few useful imports:

This is useful for interactive and exploratory work. However, for more serious
jobs you probably should make those imports manually and avoid the start import
in the first line.

Basic Kpop concepts

You notice that most of Kpop interactions go through two main object types:
kpop.Individual and kpop.Population. Let us start with the first
of these two, kpop.Individual, which represent single individuals by
their corresponding genotypes.

Individual

An kpop.Individual instance behaves basically as a list of genotype
values. Kpop represents genotypes by numbers, where zero is used to encode missing
data and numbers above one represent each allele. We can start a new
individual by constructing it from a list of pairs of numbers:

>>> ind = Individual([[1, 1], [1, 2], [2, 2], [1, 2]])

This is a genotype with 4 loci of biallelic data. You might expect it behave
just as a list of genotypes for each locus. It accepts Python indexing, slicing
and iteration:

>>> ind[0]
array([1, 1], dtype=uint8)

>>> [(1 in locus) for locus in ind]
[True, True, False, True]

kpop.Individual objects can also be inspected in several ways.

>>> ind.num_loci, ind.ploidy, ind.is_biallelic
(4, 2, True)

You should use the autocomplete feature of Kpop’s shell to discover more
attributes. Just type ind. and hit the <tab> key to see a list of
completions. Some of those options are methods (you will notice it by the
open-close parens at the end of their names). In order to get help on the
methods behavior and signature, just use the ? helper as bellow

>>> ind.breed?
Signature: ind.breed(other, id=None, **kwargs)
 doctest:
Breeds with other individual.
<NEWLINE>
Creates a new genotype in which features are selected from both
parents.
File: ~/git/bio/kpop/src/kpop/individual.py
Type: method

You will notice that if you print an Individual in the terminal it will shown
with the following notation

>>> ind
Individual('ind: 11 12 22 12')

This is actually a different way to construct kpop.Individual instances.
The first part in the string before the column is a label used to identify the
given individual and everything on the right hand side is its genotype.

Let us create a second individual to interact with the first.

>>> ind2 = Individual('ind2: 22 11 12 12')
>>> ind2.breed(ind)
Individual('ind2_: 21 12 12 12')

Of course, handling a handful of individuals is not very useful. Let us create a
list of individuals by drawing samples from an specific probability. First,
define a list of probabilities for each allele in each loci

>>> freqs = [[0.1, 0.9], [0.5, 0.5], [0.9, 0.1], [0.5, 0.5]]

Now we can create a random individual using the from_freqs method of the
Individual class

>>> random_ind = Individual.from_freqs(freqs)

... and now we create a bunch:

>>> list_of_individuals = []
>>> for _ in range(10):
... new_ind = Individual.from_freqs(freqs)
... list_of_individuals.append(new_ind)

Population

Now that we have a bunch of individuals, we can make a population. Of course
we could use the list of individuals directly, but Kpop provides the much more
convenient kpop.Population type to represent a group of individuals.

>>> popA = Population(list_of_individuals, id='A')
>>> popA
 ind1: 22 21 12 22
 ind2: 22 11 11 21
 ind3: 22 11 11 21
 ind4: 22 11 11 21
 ind5: 22 11 11 12
 ind6: 22 22 11 21
 ind7: 22 11 11 21
 ind8: 22 21 11 22
 ind9: 22 12 11 12
 ind10: 22 22 11 21

We created the Population object from a list of individuals and gave it an
optional label. The label is used to identify the population in several different
contexts such as clustering, plotting, etc.

Just like kpop.Individual instances, kpop.Population objects
have many associated methods and attributes. You can explore it by typing
popA. and hitting the <tab> key (you will notice it is way more complex than
Individual instances).

In population genetics we are usually interested in comparing different
populations rather than different individuals in the same population. We can
easily create a new random population using the Population.make_random
function:

>>> popB = Population.random(10, num_loci=4, id='B')

This will create a new population with 10 individuals and 4 loci. Now, let us
compose this population with the previous one by creating a new generation that
breeds individuals from the first population with the second

>>> popC = popA.simulation.breed(popB, size=15, id='C')

We can combine all sub-populations into a single population containing all
individuals by simply adding the population objects together

>>> pop_all = popA + popB + popC

This creates a kpop.MultiPopulation object which behaves essentially as
a Population, but keeps track of sub-structuring.

Visualization

Kpop implements a few visualization methods through the Population.plot
attribute. The population.plot.? namespace has methods for dimensionality
reduction (such as PCA),

Statistics

Admixture

Admixture analysis is the task of estimating the admixture coefficients of each
individual in a population. This is the main concern of programs such as
Structure and ADMIXTURE.

Projections

All dimensionality reduction methods from the above section are implemented in
the population.projection namespace. Those methods provide the raw data for
dimensionality reduction and may be useful in contexts other than data
visualization.

TODO.

Clusterization

Clusterization is the task of spliting data into separate groups without providing
a training set on correct classifications. This is often refered as “unsupervised
learning”. Notice here that “unsupervised” does not mean “completely independent
of human intervention” since almost all clustering algorithms requires some
sort of tuning.

Kpop provides a few methods for performing clustering of individuals. They are
all implemented under the population.cluster namespace.

TODO.

Classification

Differently from clustering, a supervised classification task learns from a
dataset in which all items are classified with a corresponding label. A
classification task is useful when it can generalize this mapping to data points
outside of the training set.

In Population genetics this often maps to the sittuation in which we have a
group of individuals with known parental populations and we want to classify
additional specimens into one of those populations. Notice it is different from
admixture analysis that tries to infer the fractions of DNA belonging to each
parental population. Here the classification is sharp: the individual is said
to belong to a single parental population.

All classification methods live under the population.classification
namespace.

TODO

Classification

Kpop population objects have builtin tools for building classifiers from
population objects. As with any classification task, you must provide a labeled
training data set and the classifier algorithm will be trained to replicate
those labels and generalize to new sample points. A very basic classification
task can start with a population object and a list of labels:

>>> from kpop import Population
>>> pop = Population.random(5, 10)
>>> classifier = pop.classification(['A', 'A', 'B', 'B', 'A'])

The method returns a trained classifier object that associates each individual
in the population with the given labels. Notice that we created a random
population with 5 individuals and we had to provide the same number of labels.

Classifier objects are used a callable that receive a single population argument.
It then returns a list of labels corresponding to the assigned classification
of each individual. When we classify the training set, there is a fair chance
of obtaining the original labels:

>>> classifier(pop)
['A', 'A', 'B', 'B', 'A']

The classifier exposes different classification algorithms that can be accessed
either using the pop.classification(labels, <method>) method or using the
corresponding attribute pop.classification.<method>(labels). For instance,
we could try different classifiers

>>> labels = ['A', 'A', 'B', 'B', 'A']
>>> nb = pop.classification.naive_bayes(labels)
>>> svm = pop.classification.svm(labels)

You can check the :cls:`kpop.population.classification.Classification` to see
all available classifiers.

Easy labels

The default procedure for training a classifier involves passing a list of
labels for the training algorithms. Sometimes those labels can be stored as
meta data in the population object or can be derived from the population
somehow. If the labels argument is a string, kpop will try to obtain the
label list by using the first option valid option:

	Use population.meta[<label>], if it exists.

	If label equals ‘ancestry’, it creates a list of labels assigning the

id of each sub-population to all its individuals.
* If label is the empty string or None, it looks for a ‘labels’ column in the
meta information and then returns it.

This interface makes it very convenient to train classifiers to infer population
ancestry. Remember that this is not an admixture analysis since we are assuming
that all individuals belong to a single population.

>>> popA = Population.random(5, 20, id='A')
>>> popB = Population.random(5, 20, id='B')
>>> pop = popA + popB
>>> classifier = pop.classification(labels='ancestry')
>>> classifier(popA)
['A', 'A', 'A', 'A', 'A']
>>> classifier(popB)
['B', 'B', 'B', 'B', 'B']

Probabilistic classifiers

Some classifiers allow for probabilistic classification. That is, instead of
assigning a single label per individual, it assigns a probability distribution
with the probability that each individual belongs to each label. This is
accomplished by the .prob_* methods of the classifier. Each method
represents the probability distribution in a different way.

>>> probs = classifier.prob_list(popA)
>>> probs[0]
Prob({'A': 0.951, 'B': 0.049})

API docs

	
class kpop.population.classification.Classification

	Implements the population.classification attribute.

	
naive_bayes(labels=None, data='count', prior='uniform', alpha=0.5)

	Classify objects using the naive_bayes classifier.

	Parameters:	
	labels – List of labels or a string with the metadata column used as
label. Optionally, the ‘ancestry’ string classify using the
sub-populations as labels.

	alpha – Additive (Laplace/Lidstone) smoothing parameter (0 for no
smoothing).

	prior – The prior probability for each label. Must be either a Prob()
object, the string ‘uniform’ or None. The default value is
‘uniform’ that assigns a fixed uniform prior. If prior is None,
it learns priors from data. Finally, it can also be specified
as a Prob() object or a mapping from labels to probabilities.

	
sklearn(classifier, labels=None, data='count', **kwargs)

	Uses a scikit learn classifier to classify population.

	Parameters:	
	classifier – A scikit learn classifier class (e.g.,
sklearn.naive_bayes.BernoulliNB)

	labels – A sequence of labels used to train the classifier.

	data (str) – The method used to convert the population to a usable data set.
It uses the same options as in the Population.as_array()
method.

	
svm(labels=None, data='count', **kwargs)

	Classify objects using the Support Vector Machine (SVM) classifier.

Examples

Simulating synthetic populations

API Reference

API documentation for the kpop module.

Individual

Each element of a population is an instance of kpop.Individual. An
kpop.Individual behave similarly as a list of genetypes or as an
2D array of genotypes.

	
class kpop.Individual(data, id=None, population=None, allele_names=None, dtype=None, meta=None, admixture_q=None, num_alleles=None)

	Represents a single individual genotype.

A genotype data must be an integer array of shape (num_loci, ploidy).

	Parameters:	
	data – Can be either a string of values or a list of raw genotype values
represented as integers.

	population – Population to which individual belongs to.

	
num_loci

	Number of loci in the raw genotype data

	
ploidy

	Genotype’s ploidy

	
data

	A numpy array of integers with genotype data. Allele types are
represented sequentially by 1, 2, 3, etc. Missing data is
represented by zero. By default, data is stored in uint8 form. This
supports up to 255 different allele types plus zero.

	
allele_names

	A list of mappings between allele integer values to a character
representation. If not given, it inherits from parent population.

	
breed(other, id=None, **kwargs)

	Breeds with other individual.

Creates a new genotype in which features are selected from both
parents.

	
copy(data=None, *, meta=<object object>, **kwargs)

	Creates a copy of individual.

	
count(value) → integer -- return number of occurrences of value

	

	
classmethod from_freqs(freqs, ploidy=2, **kwargs)

	Returns a random individual from the given frequency distribution.

	Parameters:	
	freqs – A frequency distribution. Can be a sequence of Prob() elements
or an square array of frequencies.

	ploidy – Individuals ploidy.

	**kwargs – Additional keyword arguments passed to the constructor.

	Returns:	A new Individual instance.

	
haplotypes()

	Return a sequence of ploidy arrays with each haplotype.

This operation is a simple transpose of genotype data.

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

	
render(id_align=None, max_loci=None)

	Renders individual genotype.

	
render_csv(sep=', ')

	Render individual in CSV.

	
render_ped(family_id='FAM001', individual_id=0, paternal_id=0, maternal_id=0, sex=0, phenotype=0, memo=None)

	Render individual as a line in a plink’s .ped file.

	Parameters:	
	family_id – A string or number representing the individual’s family.

	individual_id – A number representing the individual’s id.

	maternal_id (paternal_id,) – A number representing the individuals father/mother’s id.

	sex – The sex (1=male, 2=female, other=unknown).

	phenotype – A number representing the optional phenotype.

Population objects

The main type in the kpop package is kpop.Population. A population is basically
a list of individuals. It has a similar interface as a Python’s list or a Numpy
array.

	
class kpop.Population(data=(), id=None, individual_ids=None, **kwargs)

	A Population is a collection of individuals.

	
as_array(which='raw')

	Convert to a numpy data array using the requested conversion method.
This is a basic pre-processing step in many dimensionality reduction
algorithms.

Genotypes are categorical data and usually it doesn’t make sense to
treat the integer encoding used in kpop as ordinal data (there is
no ordering implied when treating say, allele 1 vs allele 2 vs allele
3).

	Conversion methods:

	
	
	raw:

	An 3 dimensional array of (size, num_loci, ploidy) for raw
genotype data. Each component represents the value of a single
allele.

	
	flat:

	Like raw, but flatten the last dimension into a (size,
num_loci * ploidy) array. This creates a new feature per
loci for each degree of ploidy in the data.

	
	rflat:

	Flatten data, but first shuffle the positions of alleles at
each loci. This is recommended if data does not carry reliable
haplotype information.

	
	raw-norm, flat-norm, rflat-norm:

	Normalized versions of “raw”, “flat”, and “rflat” methods. All
components are rescaled with zero mean and unity variance.

	
	count:

	Force conversion to biallelic data and counts the number of
occurrences of the first allele. Most methdds will require
normalization, so you probably should consider an specific
method such as count-unity, count-snp, etc

	
	count-norm:

	Normalized version of count scaled to zero mean and unity
variance.

	
	count-snp:

	Normalizes each feature using the standard deviation expected
under the assumption of Hardy-Weinberg equilibrium. This
procedure is described at Patterson et. al., “Population
Structure and Eigenanalysis” and is recommended for SNPs
subject to genetic drift.

	
	count-center:

	Instead of normalizing, simply center data by subtracting half
the ploidy to place it into a symmetric range. This
normalization puts data into a cube with a predictable
origin and range. For diploid data, the components will be
either -1, 0, or 1.

	Returns:	An ndarray with transformed data.

	
count(value) → integer -- return number of occurrences of value

	

	
drop_individuals(indexes, **kwargs)

	Creates new population removing the individuals in the given indexes.

	
drop_loci(indexes, **kwargs)

	Create a new population with all loci in the given indexes removed.

	
drop_missing_data(axis=0, thresh=0.0, **kwargs)

	Drop all individuals or loci that have a proportion of missing data
higher than the given threshold.

	Parameters:	
	axis (0 or 1) – If axis=0 or ‘individuals’ (default), it will scan individuals
with a minimum amount of missing data values. If axis=1 or
‘loci’, it will drop all loci with the minimum ammount of
missing data.

	thresh (float, between 0 and 1) – The maximum proportion of missing data tolerated.

	Returns:	A new population.

	
drop_non_biallelic(**kwargs)

	Creates a new population removing all non-biallelic loci.

	
find_missing_data(axis=0, thresh=0.0)

	Return the indexes for all all individuals or loci that have a
proportion of missing data higher than the given threshold.

	Parameters:	
	axis (0 or 1) – If axis=0 or ‘individuals’ (default), it will scan individuals
with a minimum amount of missing data values. If axis=1 or
‘loci’, it will drop all loci with the minimum ammount of
missing data.

	thresh (float, between 0 and 1) – The maximum proportion of missing data tolerated.

	Returns:	An array of indexes.

	
find_non_biallelic()

	Finds all non-biallelic loci in population.

	
force_biallelic(**kwargs)

	Return a new population with forced biallelic data.

If a locus has more than 2 alleles, the most common allele is picked
as allele 1 and the alternate allele 2 comprises all the other alleles.

	
freqs

	Return a list of Prob instances representing the frequencies in each locus.

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

	
random(size=0, num_loci=0, alleles=2, ploidy=2, id=None, seed=None)

	Creates a new random population.

	Parameters:	
	size – Number of individuals. If a list of numbers is given, creates
a Multipopulation object with sub-populations of the assigned
sizes.

	num_loci – Number of loci in the genotype.

	alleles – Number of alleles for all loci.

	ploidy – Ploidy of genotype.

	min_prob – Minimum value for a frequency probability.

	Returns:	A new population object.

	
shuffle_loci(**kwargs)

	Return a copy with shuffled contents of each locus.

	
size

	Return the number of items in a container.

	
sort_by_allele_freq(**kwargs)

	Return a new population in which the index attributed to each allele
in each locus is sorted by the frequency in the population. After that,
allele 1 will be the most common, allele 2 is the second most common
and so on.

Population vs Multipopulation

Kpop uses two classes to represent populations that have basically the same
interface. A MultiPopulation is basically a population structured with many
sub-populations.

	
class kpop.MultiPopulation(populations=(), freqs=None, **kwargs)

	A population formed by several sub-populations.

	
add_population(population)

	Adds a new sub-population.

	Parameters:	population – A Population instance.

	
as_array(which='raw')

	Convert to a numpy data array using the requested conversion method.
This is a basic pre-processing step in many dimensionality reduction
algorithms.

Genotypes are categorical data and usually it doesn’t make sense to
treat the integer encoding used in kpop as ordinal data (there is
no ordering implied when treating say, allele 1 vs allele 2 vs allele
3).

	Conversion methods:

	
	
	raw:

	An 3 dimensional array of (size, num_loci, ploidy) for raw
genotype data. Each component represents the value of a single
allele.

	
	flat:

	Like raw, but flatten the last dimension into a (size,
num_loci * ploidy) array. This creates a new feature per
loci for each degree of ploidy in the data.

	
	rflat:

	Flatten data, but first shuffle the positions of alleles at
each loci. This is recommended if data does not carry reliable
haplotype information.

	
	raw-norm, flat-norm, rflat-norm:

	Normalized versions of “raw”, “flat”, and “rflat” methods. All
components are rescaled with zero mean and unity variance.

	
	count:

	Force conversion to biallelic data and counts the number of
occurrences of the first allele. Most methdds will require
normalization, so you probably should consider an specific
method such as count-unity, count-snp, etc

	
	count-norm:

	Normalized version of count scaled to zero mean and unity
variance.

	
	count-snp:

	Normalizes each feature using the standard deviation expected
under the assumption of Hardy-Weinberg equilibrium. This
procedure is described at Patterson et. al., “Population
Structure and Eigenanalysis” and is recommended for SNPs
subject to genetic drift.

	
	count-center:

	Instead of normalizing, simply center data by subtracting half
the ploidy to place it into a symmetric range. This
normalization puts data into a cube with a predictable
origin and range. For diploid data, the components will be
either -1, 0, or 1.

	Returns:	An ndarray with transformed data.

	
count(value) → integer -- return number of occurrences of value

	

	
drop_individuals(indexes, **kwargs)

	Creates new population removing the individuals in the given indexes.

	
drop_loci(indexes, **kwargs)

	Create a new population with all loci in the given indexes removed.

	
drop_missing_data(axis=0, thresh=0.0, **kwargs)

	Drop all individuals or loci that have a proportion of missing data
higher than the given threshold.

	Parameters:	
	axis (0 or 1) – If axis=0 or ‘individuals’ (default), it will scan individuals
with a minimum amount of missing data values. If axis=1 or
‘loci’, it will drop all loci with the minimum ammount of
missing data.

	thresh (float, between 0 and 1) – The maximum proportion of missing data tolerated.

	Returns:	A new population.

	
drop_non_biallelic(**kwargs)

	Creates a new population removing all non-biallelic loci.

	
find_missing_data(axis=0, thresh=0.0)

	Return the indexes for all all individuals or loci that have a
proportion of missing data higher than the given threshold.

	Parameters:	
	axis (0 or 1) – If axis=0 or ‘individuals’ (default), it will scan individuals
with a minimum amount of missing data values. If axis=1 or
‘loci’, it will drop all loci with the minimum ammount of
missing data.

	thresh (float, between 0 and 1) – The maximum proportion of missing data tolerated.

	Returns:	An array of indexes.

	
find_non_biallelic()

	Finds all non-biallelic loci in population.

	
force_biallelic(**kwargs)

	Return a new population with forced biallelic data.

If a locus has more than 2 alleles, the most common allele is picked
as allele 1 and the alternate allele 2 comprises all the other alleles.

	
freqs

	Return a list of Prob instances representing the frequencies in each locus.

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

	
random(size=0, num_loci=0, alleles=2, ploidy=2, id=None, seed=None)

	Creates a new random population.

	Parameters:	
	size – Number of individuals. If a list of numbers is given, creates
a Multipopulation object with sub-populations of the assigned
sizes.

	num_loci – Number of loci in the genotype.

	alleles – Number of alleles for all loci.

	ploidy – Ploidy of genotype.

	min_prob – Minimum value for a frequency probability.

	Returns:	A new population object.

	
shuffle_loci(**kwargs)

	Return a copy with shuffled contents of each locus.

	
size

	Return the number of items in a container.

	
slice_indexes(indexes)

	Map indexes to a list of indexes for each sub-population.

	
sort_by_allele_freq(**kwargs)

	Return a new population in which the index attributed to each allele
in each locus is sorted by the frequency in the population. After that,
allele 1 will be the most common, allele 2 is the second most common
and so on.

The .plot attribute

Each kpop.Population or kpop.MultiPopulation instance have a
.plot attribute that defines a namespace with many different plotting
utilities.

Other utility types

Representing probabilities

	
class kpop.prob.Prob(data, normalize=True, support=None)

	A dictionary-like object that behaves as a mapping between categories to
their respective probabilities.

	
encode(coding=None)

	Encode probability distribution as a vector.

	Parameters:	coding – a sequence of ordered categories.

Example

>>> prob = Prob({'a': 0.75, 'b': 0.25})
>>> prob.encode(['b', 'a'])
[0.25, 0.75]

	
entropy()

	Return the Shannon entropy for the probability distribution.

	
kl_divergence(q: collections.abc.Mapping)

	
Return the Kullback-Leibler divergence with probability distribution.

This is given by the formula:

$KL = sum_i p_i ln

rac {p_i} {q_i},$

in which p_i comes from the probability object and q_i comes from the
argument.

	
max()

	Return the value of maximum probability.

	
classmethod mixture(coeffs, probs)

	Create a mixture probability from the given coeffs and list of Probs
objects.

	Parameters:	
	coeffs – Mixture coefficients. These coefficients do not have to be
normalized.

	probs – List of Prob objects.

	Returns:	A Prob object representing the mixture.

	
mode()

	Return the element with the maximum probability.

If more than one element shares the maximum probability, return an
arbitrary value within this set.

	
mode_set()

	Return a set of elements that share the maximum probability.

	
random()

	Returns a random element.

	
random_sequence(size)

	Returns a sequence of random elements.

	
set_support(support)

	Defines the support set of distribution.

If elements exist in support, they are forced to exist in distribution,
possibly with zero probability. If element exists in the distribution
but is not present in support, raises a ValueError.

	
sharp(mode_set=True)

	Return a sharp version of the probability distribution.

All elements receive probability zero, except the mode which receives
probability one.

	
update_support(support)

	Force all elements in support to be explicitly present in distribution
(possibly with null probability).

	Parameters:	support – a list of elements in the support set for probability
distribution.

Utility modules

Plotting

kpop.plots contains a few useful plotting functions based on
matplotlib.

Loading objects

Functions from the kpop.loaders module are responsible for loading
Population objects from files.

Frequently asked questions

Usage

Who is this for?

Kpop was created for people in the population genetics community.

License

Kpop. A Python package for population genetics.
Copyright (C) Fábio Macêdo Mendes

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | U

A

 	
 	add_population() (kpop.MultiPopulation method)

 	allele_names (Individual attribute)

 	
 	as_array() (kpop.MultiPopulation method)

 	(kpop.Population method)

B

 	
 	breed() (kpop.Individual method)

C

 	
 	Classification (class in kpop.population.classification)

 	copy() (kpop.Individual method)

 	
 	count() (kpop.Individual method)

 	(kpop.MultiPopulation method)

 	(kpop.Population method)

D

 	
 	data (Individual attribute)

 	drop_individuals() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	drop_loci() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	
 	drop_missing_data() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	drop_non_biallelic() (kpop.MultiPopulation method)

 	(kpop.Population method)

E

 	
 	encode() (kpop.prob.Prob method)

 	
 	entropy() (kpop.prob.Prob method)

F

 	
 	find_missing_data() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	find_non_biallelic() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	
 	force_biallelic() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	freqs (kpop.MultiPopulation attribute)

 	(kpop.Population attribute)

 	from_freqs() (kpop.Individual class method)

H

 	
 	haplotypes() (kpop.Individual method)

I

 	
 	index() (kpop.Individual method)

 	(kpop.MultiPopulation method)

 	(kpop.Population method)

 	
 	Individual (class in kpop)

K

 	
 	kl_divergence() (kpop.prob.Prob method)

M

 	
 	max() (kpop.prob.Prob method)

 	mixture() (kpop.prob.Prob class method)

 	
 	mode() (kpop.prob.Prob method)

 	mode_set() (kpop.prob.Prob method)

 	MultiPopulation (class in kpop)

N

 	
 	naive_bayes() (kpop.population.classification.Classification method)

 	
 	num_loci (Individual attribute)

P

 	
 	ploidy (Individual attribute)

 	
 	Population (class in kpop)

 	Prob (class in kpop.prob)

R

 	
 	random() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	(kpop.prob.Prob method)

 	
 	random_sequence() (kpop.prob.Prob method)

 	render() (kpop.Individual method)

 	render_csv() (kpop.Individual method)

 	render_ped() (kpop.Individual method)

S

 	
 	set_support() (kpop.prob.Prob method)

 	sharp() (kpop.prob.Prob method)

 	shuffle_loci() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	size (kpop.MultiPopulation attribute)

 	(kpop.Population attribute)

 	
 	sklearn() (kpop.population.classification.Classification method)

 	slice_indexes() (kpop.MultiPopulation method)

 	sort_by_allele_freq() (kpop.MultiPopulation method)

 	(kpop.Population method)

 	svm() (kpop.population.classification.Classification method)

U

 	
 	update_support() (kpop.prob.Prob method)

Warning

Beta software

You are using a software that has not reached a stable version yet. Please
beware that interfaces might change, APIs might disappear and general
breakage can occur before 1.0.

If you plan to use this software for something important, please read the
roadmap, and the issue tracker in Github. If you are unsure about the
future of this project, please talk to the developers, or (better yet) get
involved with the development of Kpop!

 _static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to Kpop's documentation!

 		Overview

 		Command line interface

 		Kpop data formats

 		Kpop python interface

 		Installation instructions

 		Troubleshoot

 		Tutorial

 		Getting started

 		Basic Kpop concepts

 		Individual

 		Population

 		Visualization

 		Statistics

 		Admixture

 		Projections

 		Clusterization

 		Classification

 		Classification

 		Easy labels

 		Probabilistic classifiers

 		API docs

 		Examples

 		Simulating synthetic populations

 		API Reference

 		Individual

 		Population objects

 		Population vs Multipopulation

 		The .plot attribute

 		Other utility types

 		Representing probabilities

 		Utility modules

 		Plotting

 		Loading objects

 		Frequently asked questions

 		Usage

 		Who is this for?

 		License

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

