

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/komlogd-es/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/komlogd-es/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Índice

Creating packages

komlogd packages are developed in Python [https://www.python.org] and are installed with
pip [https://pypi.python.org/pypi/pip], so they are like any python package with some peculiarities
that make them pluggable into komlogd.

Package structure

To illustrate the process of creating a komlogd package, we are going to study an already existing one,
the official package for monitoring Linux servers [https://github.com/komlog-io/kpack_linux] we have already
used in previous examples.

This package has the same structure as a typical python package. Ignoring the documentation related files, the
package structure is as follows:

├── kpack_linux
│ ├── __init__.py
│ ├── load.py
│ └── settings.py
└── setup.py

As with every python package, we can differentiate two parts in the previous structure:

	File setup.py, corresponding to the package definition.

	Directory kpack_linux, corresponding to the package code.

Directory kpack_linux

The package code has three files:

	init.py: This file contains all the relevant code regarding package functionality, ie the code
for extracting information from the linux server and sending it to Komlog.
In section design principles we explain komlogd SDK in detail.

	load.py: This file is the entry point when the package loads. It is executed by komlogd when it loads
the package. The file name (load.py) is not mandatory, but it makes easier to analyze the code by third parties.

	settings.py: This file stores some package settings. We separate settings from code so you can fork the
project and adapt it to your needs.

File setup.py

The contents of setup.py (as of v0.1 of the package) are:

from setuptools import setup

setup(
 name = 'kpack_linux',
 license = 'Apache Software License',
 packages = ['kpack_linux'],
 version = '0.1',
 entry_points = {
 'komlogd.package': 'load = kpack_linux.load'
 }
)

The reason this package is a komlogd package is the entry_points keyword. In this keyword we specify
the key komlogd.package and the value load = kpack_linux.load.

	Key komlogd.package tells komlogd that kpack_linux is a komlogd package.

	Value ‘load = kpack_linux.load’ tells komlogd what to import to load it.

Your komlogd package must implement the previous machinery to be a valid one.

You can learn more about the entry_points keyword in the
setuptools documentation [http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins]

Prerequisites

To install and configure komlogd you will need:

	A Komlog account. You can create one here [https://www.komlog.io/signup]

	A host with python 3.5 [https://www.python.org] or greater and pip package [https://pypi.python.org/pypi/pip] installed.

Installation

komlogd can be easily installed with pip typing:

> pip install komlogd

Configuration

After installing komlogd, run it for the first time, so it can create the configuration
file template and the agent public and private keys.

> komlogd

The agent will exit with an exit message like this:

Error initializing komlogd.
Set username in configuration file.
Log info: ~/.komlogd/log/komlogd.log

During the first execution, komlogd will create a new directory inside user’s $HOME directory called .komlogd with this structure:

 .komlogd
 ├── key.priv
 ├── key.pub
 ├── komlogd.yaml
 └── log
 └── komlogd.log

Files created are:

	key.priv: private RSA key file.

	key.pub: public RSA key file.

	komlogd.yaml: main configuration file.

	log/komlogd.log: log file.

Add your username to komlogd configuration file

Edit komlogd configuration file (komlogd.yaml) and set your username in username key:

 - username: <username>

Authorize komlogd

We must authorize the agent in our Komlog account. To do it, access your Komlog configuration page [https://www.komlog.io/config]
and in the Agents section create a new agent and paste the contents of your key.pub file.

[image: New key]

komlogd private key will never be sent to Komlog. Keep it safe.

Adding third party packages

komlogd users can add extra functionality to the agent by creating their own packages or using the ones
distributed by other users. If you want to learn how to create a komlogd package, go to the section Creating packages.

In this section we will explain how we can add packages to our agents configuration.

To illustrate this example, we will configure the Komlog official package for monitoring Linux servers: kpack_linux [https://github.com/komlog-io/kpack_linux].

To add it to komlogd, just edit your komlogd configuration file (komlogd.yaml) and add a package block like this one:

- package:
 install: https://github.com/komlog-io/kpack_linux/archive/master.zip
 enabled: yes
 venv: default

Then, reboot your agent for changes to take effect.

That’s all. At this point your agent should be sending data to Komlog regarding your linux server. Check out kpack_linux page [https://github.com/komlog-io/kpack_linux] if you want to know the data it will send.

Package block explained

The parameters used to define a package are:

	install. This parameter tells komlogd how to install a package. komlogd packages are python packages and,
internally, komlogd uses pip to install them. With this parameter, we set the arguments that komlogd will pass
to the command pip install, so we can install packages from PyPI, a version control system or anything accepted
by pip. It also accepts any parameter pip install does.
Check pip install documentation [https://pip.pypa.io/en/stable/reference/pip_install/] for additional information.

	enabled. This parameter is used to disable the package without removing the entire block.
Set it to no to disable it.

	venv. komlogd will create a python virtualenv for each package.
This option allows you to isolate your packages one from another, so nothing will interfere between them.
It is usefull if you want to test different versions of the same package too, or create multiple instances
of the same package. This parameter has some “reserved” values:
	default. This is the default value too. If default is specified, all packages will be installed in a
virtualenv with name default.

	unique. Set venv to unique if you want your package to be in an isolated virtualenv, ensuring no other
package will share virtualenv with it.

 [image: Join the chat at https://gitter.im/komlog_/komlog]
 [https://gitter.im/komlog_/komlog?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge][image: IRC channel #komlog at Freenode]Welcome to komlogd (The Komlog agent) PyPI page.

[image: https://raw.githubusercontent.com/komlog-io/komlogd/master/docs/img/home_mini.png]
 [https://github.com/komlog-io/komlogd]Komlog [https://www.komlog.io] is a PaaS for helping observability teams to better understand their systems.
It is a flexible and powerful platform that adapts to users needs, not vice versa, for visualizing
and processing data. It helps users in repetitive and tedious tasks, such as data cleanup,
processing and exploration. It is designed with a key goal in mind:
machines should be able to understand and process texts in the same way people do.
Particularly, it is focused on identifying metrics on any text,
either generated with an operating system command, script or any command line interface application.

Komlog Primer

Suppose we type this command to see CPU utilization:

top -b -n 2 | awk 'BEGIN {RS=""} FNR == 3 {print}'

The output should be something similar to this:

top - 20:05:01 up 1 day, 23:52, 0 users, load average: 0.02, 0.05, 0.07
Tasks: 174 total, 1 running, 173 sleeping, 0 stopped, 0 zombie
%Cpu0 : 0.7/0.7 1[]
%Cpu1 : 0.7/0.0 1[]
%Cpu2 : 0.7/0.0 1[]
%Cpu3 : 1.3/0.7 2[|]
%Cpu4 : 1.3/0.0 1[|]
%Cpu5 : 3.3/0.7 4[||]
%Cpu6 : 2.0/0.7 3[|]
%Cpu7 : 2.6/0.7 3[|]
GiB Mem : 13.1/15.328 []
GiB Swap: 0.0/0.998 []

This information should be enough for a machine to identify CPU load,
users logged in or current tasks the same way is enough for an experienced system analyst.
Our goal is to solve this problem and offer a useful platform for a field as wide
and heterogeneous as system analysis.

Let’s send the previous data to Komlog, redirecting it to its agent, komlogd, this way:

top -b -n 2 | awk 'BEGIN {RS=""} FNR == 3 {print}' | komlogd -u tmp.cpu

Komlog will show us the information this way:

[image: Komlog showing top]
As you can see, some values are in bold, meaning that Komlog has identified the value
and has associated it to the corresponding metric. Every time we send samples to Komlog,
new values will be appended to metrics already detected.

Internally, Komlog is an event based execution platform. This means you can subscribe
your agents to the uris you want, and execute functions every time they are updated.
With this functionality, you can create real-time applications for data analysis, anomaly detection,
forecasting or anything related with time series analysis.

Komlog also offers a plugins subsystem which you can use to create your own plugins
(we call it packages), or use the ones shared by others. Create a package for monitoring
your favourite database, your business processes or anything in between.

Check out komlogd repository [https://www.github.com/komlog-io/komlogd] for documentation and more information
about komlogd and the Komlog platform.

Sending data from the command line

komlogd can send plain texts to Komlog, freeing the user of tedious tasks such as data clean up or
data parsing, allowing them visualize any metric showed in a command line interface.

You can visualize metrics in commands or scripts outputs, file contents, or anything we can show with a CLI tool.

You can send numeric values too, not only texts, if you need it.
Check out design principles for more information and advanced uses.

In this example, we are going to send the df -k command’s output to Komlog, so we can monitor
disk occupation. In Komlog, users organize their data in a tree like structure called
the data model. Every element in the user’s data model is identified by its uri.
In this example, we are going to identify our occupation data with the uri host.occupation.

To upload the data, we execute the following command:

df -k | komlogd -u host.occupation

If everything went right, we should see the data in our Komlog home page [https://www.komlog.io/home],
associated to the uri ĥost.occupation in our data model.

First time Komlog receives data associated with a uri, it tries to identify metrics automatically.
If the content is familiar to him, it will show in bold the metrics identified.

Sometimes, Komlog cannot identify the metrics we need. In this situations, we can identify them manually,
just clicking on the value and naming it. This feedback helps Komlog learn new ways to identify metrics, so
the more we feed Komlog, the better and more metrics will identify automatically in the future.

[image: identify dp]

We can nest our metrics in different levels using the dot character (.) For example, if we have uris host.occupation, host.occupation.md1 and host.occupation.md2, Komlog will nest them this way:

 host
 └─ occupation
 ├─ md1
 └─ md2

Important:

Uris can be formed only with this characters:

	Capital or lowercase letters [A-Za-z]: ASCII characters from A to z.

	Numbers [0-9].

	Special characters:
	Hyphen (-), underscore (_)

	Dot (.)

An uri cannot start with dot (.)

Architecture

Design Principles

 _static/comment-close.png

_static/up.png

_images/new_key.png
I<omlog userl ~

Account
A Authorized keys New key
Agents
Shared
Title
Key

Add key

No Authorized keys found

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_images/identify_dp.png
Filesystem
dev

run
/dev/nd2
tmpfs
tmpfs
tmpfs
/dev/nd3
tmpfs

1K-blocks
8030488
8036468
296657688
8036468
8036468
8036468
3548270080
1607292

Used

0

1068
2313812
0

0

0
1257688
0

Available Use% Mounted on

8030488
8035400
279251452
8036468
8036468
8036468
3366747592
1607292

Identify Datapoint

md2.available|

% 7tmp
1% /home
©% /run/user/1000

Ok

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment.png

_static/down.png

_static/up-pressed.png

