
Kolibri
Release 0.4

Aug 26, 2020

Contents

1 User Guide 1

2 Developer Guide 63

3 Release Notes 107

4 Contributing 113

5 Credits 117

6 Kolibri 119

7 What is Kolibri? 121

8 How can I use it? 123

9 How can I contribute? 125

i

ii

CHAPTER 1

User Guide

1.1 Access Kolibri

1.1.1 Starting Kolibri on Windows

Kolibri has three parts: Kolibri launcher, Kolibri server, and Kolibri web app.

Kolibri launcher is located in the Windows taskbar (usually at bottom right, near the clock), and allows you to start
and stop the Kolibri server, and configure other settings.

Kolibri server runs as a background process and sends (serves) content to the browser.

Kolibri web app displays learning content in the browser.

• Double-click Kolibri desktop shortcut to start Kolibri launcher.

• Right click the taskbar icon to open the Kolibri launcher menu.

1

Kolibri, Release 0.4

Warning: Starting Kolibri launcher will not start Kolibri server by default, but you can configure that setting
in the launcher options if it suits your needs better.

Kolibri Launcher Menu Options

• Select Start Server to start the Kolibri server.

1. You will see the notification message Kolibri server is starting, please wait. . . . While server is starting,
the options Start/Stop/Load in browser will be disabled.

2. Once Kolibri server has started you will see the notification message Kolibri server is running. . . . The
options Stop Server and Load in browser will now be available.

• Select Load in browser to open the default browser at http://127.0.0.1:8080 displaying the Kolibri web app.

• Select Stop Server when you want to stop the Kolibri server.

• Select Options sub-menu for further configuration.

1. Activate Run Kolibri when user logs in option if you want Kolibri launcher to start automatically when
you log into the system.

2. Activate Auto-start server when Kolibri is run option if you want the Kolibri server to start at the same
time as the Kolibri launcher.

Note: If you want Kolibri server to auto-start as soon as you log into the system, activate both of the above
options.

1.1.2 Starting Kolibri on Linux

Warning: Final Kolibri installer for Linux is not released yet, so these steps are Work in Progress!

2 Chapter 1. User Guide

http://127.0.0.1:8080

Kolibri, Release 0.4

Open the default browser at http://127.0.0.1:8080 displaying the Kolibri start page.

1.1.3 Accessing Kolibri from Other Devices in the Network

While Kolibri server is up and running, other devices (computers, tablets, even mobile phones) in the same Local
Area Network (LAN) can access its learning contents.

• To access the content on the same device/computer where Kolibri server is running, open the browser at the
address http://127.0.0.1:8080/.

• To access the content from other devices in the same network, you need to know the IP address of one where
where Kolibri server is running. For example, if Kolibri server is on a device/computer with IP address
192.168.0.104, you can access it from others in the same network at the address http://192.168.0.104:8080.

Note: Use the ipconfig command on Windows or ipconfig command on Linux to find out the IP address of
the device running the Kolibri server.

1.2 Device Owner

1.2.1 Create Device Owner Account

A Device Owner is a “super-user” for your Kolibri installation, and a Facility is a group of users and their associated
data.

In order to manage Kolibri content channels, data and users, you must first create a Device Owner account and the
Facility. The Device Owner account registration page appears when you start the server for the first time after the
installation of Kolibri and open the browser at http://127.0.0.1:8080/ (the default URL).

1.2. Device Owner 3

http://127.0.0.1:8080
http://127.0.0.1:8080/
http://192.168.0.104:8080
http://127.0.0.1:8080/

Kolibri, Release 0.4

1. Enter the required information for the Device Owner account (username, password, name of the facility). Fields
marked with an asterisk (*) are required.

2. Select Create and get started.

Adding a New Device Owner

In case you need to create another super-user (e.g. you lost the password for the old one), run the following command
(open the cmd.exe command prompt in Windows or terminal in linux):

4 Chapter 1. User Guide

Kolibri, Release 0.4

kolibri manage createsuperuser

You will be prompted to input the Username and Password and the new Device Owner user account will be created.

1.2.2 Manage Facility

You can edit facility configuration settings in Kolibri from the Facility tab in your Manage dashboard.

1. Activate the options you want to make available for the users of your facility.

2. Click Save changes to apply and finish.

Note: To manage facility configuration settings you must be logged-in as Device Owner or Admin.

1.2.3 Manage Users

You can search for, filter, add, and edit user accounts in Kolibri from the Users tab in your Manage dashboard.

1.2. Device Owner 5

Kolibri, Release 0.4

Note: To manage Kolibri users you must be logged-in as Device Owner or Admin.

Kolibri User Roles

Kolibri users can have different roles with respective access to features:

• Learners can:

– View content and have their progress tracked

• Coaches can:

– View content and have their progress tracked

– View Coach Reports to track progress of other users and usage stats for individual exercises

– Create/Edit/Delete Groups in Classes and add users to them

– Create/Edit/Delete Exams and assign them to users

• Admins can:

– View content and have their progress tracked

– View Coach Reports to track progress of other users and usage stats for individual exercises

6 Chapter 1. User Guide

Kolibri, Release 0.4

– Create/Edit/Delete other Admins, Coaches, and Learners

– Create/Edit/Delete Groups in Classes and add users to them

– Create/Edit/Delete Classes and enroll users in them

– View/Edit Facility configuration settings

– Export Detail and Summary logs usage data

• Device Owners can:

– View content

– Create/Edit/Delete Admins, Coaches, and Learners

– View/Edit Facility configuration settings

– Export Detail and Summary logs usage data

– Import/Export content

Create a New User Account

To create a new user account, follow these steps.

1. Click Add New button.

2. Fill in the required information (name, username, password).

3. Select user profile (Admin, Coach or Learner).

4. Click Create Account to add the new user.

1.2. Device Owner 7

Kolibri, Release 0.4

Select Users by Type

1. Click All Users selector to display user types.

2. Toggle between options to filter the user roster according to type, or leave it as All Users to display all.

8 Chapter 1. User Guide

Kolibri, Release 0.4

Edit User’s Account

To edit username or the full name account, follow these steps.

1. Click on the Edit button (pencil icon) next to the user’s name.

2. Edit Full name or Username in the Edit account info window.

3. Click Confirm to update the edited information, or Cancel to exit without saving.

1.2. Device Owner 9

Kolibri, Release 0.4

Reset User’s Password

1. Click Reset password in the Edit account info window.

2. Enter the new password in both fields.

3. Click Save to confirm, or Back to exit without changing the password.

10 Chapter 1. User Guide

Kolibri, Release 0.4

Delete User’s Account

1. Click Delete user in the Edit account info window.

2. Click Yes to confirm, or No to exit without deleting the account.

1.2. Device Owner 11

Kolibri, Release 0.4

1.2.4 Manage Classes

You can view, create and delete classes, as well as search, filter and enroll Kolibri users in them, using the Classes tab
in your Manage dashboard. Default view displays the list of all classes in your facility, with the number of enrolled
users for each class.

Note: To manage Kolibri classes and groups you must be logged-in as Device Owner or Admin.

Add New Class

To add a new class, follow these steps.

1. Click Add new class button.

2. Fill in the class name.

3. Click Create to add the new class, or Cancel to exit.

12 Chapter 1. User Guide

Kolibri, Release 0.4

Delete Class

To delete class, follow these steps.

1. Click Delete class button for the chosen class from the list.

2. Click Delete class in the confirmation window to proceed, or Cancel to exit without deleting the class.

Note: Users enrolled in the class you are deleting will not be removed from the database.

Edit Class and Enroll Users

To edit a class select it from the default view in the Classes tab. In the following Class view you can change class
name, remove currently enrolled users from the class and enroll new ones.

Change Class Name

To edit class name, follow these steps.

1. Click on the Edit button (pencil icon) next to the class’ name.

2. Write the new name in the Class name field.

3. Click Update to confirm the edited information, or Cancel to exit without saving.

1.2. Device Owner 13

Kolibri, Release 0.4

Enroll users to class

1. Click Enroll users button.

• List in this view contains all the users currently NOT enrolled for the selected class.

• You can search for a specific user by name.

2. Use checkboxes to select all the user in the list, or specific users you want to enroll to class. You can also use
the New user account button to create a new user AND enroll them at the same time.

3. Click Review & save button.

4. Click Yes, enroll users to confirm, or No, go back to exit without enrolling the selected users.

14 Chapter 1. User Guide

Kolibri, Release 0.4

Remove users from class

1. Click Remove button for the chosen user.

2. Click Remove from class to confirm, or Cancel to exit without removing the user.

1.2. Device Owner 15

Kolibri, Release 0.4

Note: Users removed from the class will not be deleted from the database, and you can still access their account from
the Users tab in the Manage dashboard.

1.2.5 Manage Data

Note: To manage Kolibri usage data you must be logged-in as Device Owner or Admin.

You can download Kolibri Detail and Summary logs usage data and export in the CSV format from the Data tab in
your Manage dashboard.

1.2.6 Manage Content

Note: To manage Kolibri content you must be logged-in as Device Owner.

Kolibri Content Channel is a collection of educational resources (video, audio or document files) prepared and orga-
nized by the content curator for their use in Kolibri. Each Kolibri Content Channel has its own Content Channel ID
on Kolibri content curation server database that you will receive from the content curator who assembled the channel.

16 Chapter 1. User Guide

https://contentworkshop.learningequality.org/accounts/login/

Kolibri, Release 0.4

You can import and export Content Channels for Kolibri in the Content tab.

Import Content Channel to Kolibri

To import Content Channel to Kolibri, follow these steps.

1. Click + Import button in My Channels pane.

2. Choose the source option (Internet or Local Drives).

1.2. Device Owner 17

Kolibri, Release 0.4

Import Content Channel from the Internet

1. Choose option for Internet.

2. Enter Content Database ID for the desired channel from the content curation server.

3. Click Import button.

4. Wait for the content to be downloaded and appear under the My Channels heading.

Import Content Channel from a Local Drive

1. Choose option for Local Drives.

2. Kolibri will automatically detect the drive(s) with available content files.

18 Chapter 1. User Guide

Kolibri, Release 0.4

3. Select the drive where the channel content is stored.

4. Click Import button.

5. Wait for the content to be imported and appear under the My Channels heading.

Note: If the local drive is not detected, try re-inserting the storage device (USB key or external hard disk) and pressing
the button Refresh.

Export from Kolibri to Local Drive

1. Click Export button in My Channels pane.

2. Select the local drive where you wish to export Kolibri content.

3. Click Export button.

1.2. Device Owner 19

Kolibri, Release 0.4

1.2.7 Get support

If you want to contact Learning Equality Support team to report an issue, or share your experience about using
Kolibri, please register at our Community Forums.

Once you register on our forums, please read the the first two pinned topics (Welcome to LE’s Support Community and
How do I post to this forum?)

You can add the new topic with the + New Topic button on the right. Make sure to select the Kolibri category in the
Create a New Topic window so it’s easier to classify and respond to.

20 Chapter 1. User Guide

https://community.learningequality.org/

Kolibri, Release 0.4

1.3 Admin

1.3.1 Manage Facility

You can edit facility configuration settings in Kolibri from the Facility tab in your Manage dashboard.

1. Activate the options you want to make available for the users of your facility.

2. Click Save changes to apply and finish.

1.3. Admin 21

Kolibri, Release 0.4

Note: To manage facility configuration settings you must be logged-in as Device Owner or Admin.

1.3.2 Manage Users

You can search for, filter, add, and edit user accounts in Kolibri from the Users tab in your Manage dashboard.

22 Chapter 1. User Guide

Kolibri, Release 0.4

Note: To manage Kolibri users you must be logged-in as Device Owner or Admin.

Kolibri User Roles

Kolibri users can have different roles with respective access to features:

• Learners can:

– View content and have their progress tracked

• Coaches can:

– View content and have their progress tracked

– View Coach Reports to track progress of other users and usage stats for individual exercises

– Create/Edit/Delete Groups in Classes and add users to them

– Create/Edit/Delete Exams and assign them to users

• Admins can:

– View content and have their progress tracked

– View Coach Reports to track progress of other users and usage stats for individual exercises

1.3. Admin 23

Kolibri, Release 0.4

– Create/Edit/Delete other Admins, Coaches, and Learners

– Create/Edit/Delete Groups in Classes and add users to them

– Create/Edit/Delete Classes and enroll users in them

– View/Edit Facility configuration settings

– Export Detail and Summary logs usage data

• Device Owners can:

– View content

– Create/Edit/Delete Admins, Coaches, and Learners

– View/Edit Facility configuration settings

– Export Detail and Summary logs usage data

– Import/Export content

Create a New User Account

To create a new user account, follow these steps.

1. Click Add New button.

2. Fill in the required information (name, username, password).

3. Select user profile (Admin, Coach or Learner).

4. Click Create Account to add the new user.

24 Chapter 1. User Guide

Kolibri, Release 0.4

Select Users by Type

1. Click All Users selector to display user types.

2. Toggle between options to filter the user roster according to type, or leave it as All Users to display all.

1.3. Admin 25

Kolibri, Release 0.4

Edit User’s Account

To edit username or the full name account, follow these steps.

1. Click on the Edit button (pencil icon) next to the user’s name.

2. Edit Full name or Username in the Edit account info window.

3. Click Confirm to update the edited information, or Cancel to exit without saving.

26 Chapter 1. User Guide

Kolibri, Release 0.4

Reset User’s Password

1. Click Reset password in the Edit account info window.

2. Enter the new password in both fields.

3. Click Save to confirm, or Back to exit without changing the password.

1.3. Admin 27

Kolibri, Release 0.4

Delete User’s Account

1. Click Delete user in the Edit account info window.

2. Click Yes to confirm, or No to exit without deleting the account.

28 Chapter 1. User Guide

Kolibri, Release 0.4

1.3.3 Manage Classes

You can view, create and delete classes, as well as search, filter and enroll Kolibri users in them, using the Classes tab
in your Manage dashboard. Default view displays the list of all classes in your facility, with the number of enrolled
users for each class.

Note: To manage Kolibri classes and groups you must be logged-in as Device Owner or Admin.

Add New Class

To add a new class, follow these steps.

1. Click Add new class button.

2. Fill in the class name.

3. Click Create to add the new class, or Cancel to exit.

1.3. Admin 29

Kolibri, Release 0.4

Delete Class

To delete class, follow these steps.

1. Click Delete class button for the chosen class from the list.

2. Click Delete class in the confirmation window to proceed, or Cancel to exit without deleting the class.

Note: Users enrolled in the class you are deleting will not be removed from the database.

Edit Class and Enroll Users

To edit a class select it from the default view in the Classes tab. In the following Class view you can change class
name, remove currently enrolled users from the class and enroll new ones.

Change Class Name

To edit class name, follow these steps.

1. Click on the Edit button (pencil icon) next to the class’ name.

2. Write the new name in the Class name field.

3. Click Update to confirm the edited information, or Cancel to exit without saving.

30 Chapter 1. User Guide

Kolibri, Release 0.4

Enroll users to class

1. Click Enroll users button.

• List in this view contains all the users currently NOT enrolled for the selected class.

• You can search for a specific user by name.

2. Use checkboxes to select all the user in the list, or specific users you want to enroll to class. You can also use
the New user account button to create a new user AND enroll them at the same time.

3. Click Review & save button.

4. Click Yes, enroll users to confirm, or No, go back to exit without enrolling the selected users.

1.3. Admin 31

Kolibri, Release 0.4

Remove users from class

1. Click Remove button for the chosen user.

2. Click Remove from class to confirm, or Cancel to exit without removing the user.

32 Chapter 1. User Guide

Kolibri, Release 0.4

Note: Users removed from the class will not be deleted from the database, and you can still access their account from
the Users tab in the Manage dashboard.

1.3.4 Manage Data

Note: To manage Kolibri usage data you must be logged-in as Device Owner or Admin.

You can download Kolibri Detail and Summary logs usage data and export in the CSV format from the Data tab in
your Manage dashboard.

1.3.5 Get support

If you want to contact Learning Equality Support team to report an issue, or share your experience about using
Kolibri, please register at our Community Forums.

Once you register on our forums, please read the the first two pinned topics (Welcome to LE’s Support Community and
How do I post to this forum?)

You can add the new topic with the + New Topic button on the right. Make sure to select the Kolibri category in the
Create a New Topic window so it’s easier to classify and respond to.

1.3. Admin 33

https://community.learningequality.org/

Kolibri, Release 0.4

1.3.6 Coach View

As an Admin you have access to the same Kolibri Coach view as the Coach in your facility.

34 Chapter 1. User Guide

Kolibri, Release 0.4

1.3.7 Learn View

As an Admin you have access to the same Kolibri Learn view as the Learner in your facility.

1.3. Admin 35

Kolibri, Release 0.4

1.4 Coach

Warning: Coach dashboard is still under development. We strive to keep the documentation updated, but depend-
ing on the release version you have installed, screenshots of certain features may not correspond exactly.

You can track progress of the Learner users, create and assign Exams to classes or learner groups from the Coach
dashboard. The default view of the Coach dashboard presents the list of Classes with number of learners enrolled to
each class.

Select a class from the list to access the progress-tracking features and create exams.

36 Chapter 1. User Guide

Kolibri, Release 0.4

1.4.1 Recent Activity View

This is the default view when you select a class from the Coach dashboard. It displays the list of channels and items
(exercises and resources - videos, reading material, etc.) accessed during the last 7 days by learners of the selected
class.

1.4. Coach 37

Kolibri, Release 0.4

If the class learners have access to more then one channel, you will first see the list of channels which you can navigate
by topics and subtopics until you arrive to a specific item. In this view you can see the progress of each class learner
for that specific item.

38 Chapter 1. User Guide

Kolibri, Release 0.4

1.4.2 Topic Activity View

Use this view to access the full report of activity progress for the selected class. You can navigate channels by topics
and subtopics until you see the progress of each class learner for one specific item.

1.4. Coach 39

Kolibri, Release 0.4

1.4.3 Manage Exams

You can view, create and delete exams, as well as assign them to learners, using the Exams tab in your Coach
dashboard. Default view displays the list of all exams in a selected class, with a series of options to set the visibility,
(de)activate when required, and view report of students who took them.

40 Chapter 1. User Guide

Kolibri, Release 0.4

Note: To manage Exams in Kolibri classes and groups you must be logged-in as Coach or Admin.

Create New Exam

To create a new exam, follow these steps.

1. Click + New exam button.

1.4. Coach 41

Kolibri, Release 0.4

2. Select the content channel from which you wish to select questions for the exam.

3. Click Create exam to confirm, or Cancel to exit the confirmation window.

4. Fill in the field for exam title.

5. Fill in the field for number of questions you want exam to contain.

6. Navigate through the topic tree and select checkboxes of those exercises you want to include in the exam.

As you keep adding the exercises you will see confirmation messages at the bottom.

7. Click Preview button to view the result in overlay window.

42 Chapter 1. User Guide

Kolibri, Release 0.4

• Click Randomize questions button to present them in the different order from those in the topic
origin.

• Click the Close (X) button in the upper right corner to return to the exam home page.

8. Click Finish button to save the result.

Change Exam Visibility

Newly created exam will be visible to entire class. To change exam visibility, meaning to assign it only to one group
of learners instead of the whole class, follow these steps.

1. Click Change button under the Visible to column in the list of exams.

2. Select the group(s) of learners to whom you wish to assign the exam.

3. Click Update to confirm, or Cancel to exit the confirmation window.

1.4. Coach 43

Kolibri, Release 0.4

Activate/Deactivate Exam

Once you set the visibility of exam to the chosen group(s) of learners, you need to Activate it in order for it to appear
in the Learn view of the learners to whom you assigned it.

• Click Activate button under the Action column in the list of exams.

• When the exam period concludes, click the Deactivate button.

View Exam Report

To view the report on learners who have taken the exam, follow these steps.

1. Click down arrow near the Activate button for the desired exam from the list.

2. Select View report in the drop-down menu.

44 Chapter 1. User Guide

Kolibri, Release 0.4

3. Click the name of the learner to view the detailed report with preview of results for each question.

4. Click each of the questions to preview it and understand better which question learners answered correctly in
the exam and those they struggled with.

1.4. Coach 45

Kolibri, Release 0.4

Delete Exam

To delete exam, follow these steps.

1. Click down arrow near the Activate button for the desired exam from the list.

2. Select Delete in the drop-down menu.

3. Click Delete button in the confirmation window to proceed, or Cancel to exit without deleting the exam.

46 Chapter 1. User Guide

Kolibri, Release 0.4

Warning: All data from the exam you are deleting will be lost.

Rename Exam

To rename exam, follow these steps.

1. Click down arrow near the Activate button for the desired exam from the list.

2. Select Rename in the drop-down menu.

3. Change the exam title in the confirmation window.

4. Click Rename button to proceed, or Cancel to exit without renaming the exam.

1.4.4 Manage Groups

You can create and delete groups, as well as assign learners to them from the Groups tab in your Coach dashboard.
Default view displays the list of all groups for the selected class, with the list of assigned learners for each group.

1.4. Coach 47

Kolibri, Release 0.4

48 Chapter 1. User Guide

Kolibri, Release 0.4

Note: To manage groups of learners in Kolibri class you must be logged-in as Coach or Admin.

Create a New Group

To create a new learner group, follow these steps.

1. Click + New group button.

2. Give group a desired name.

3. Click Save to confirm, or Cancel to exit without creating a group.

Assign Learners to Group

Below existing groups there is a list with all learners currently NOT assigned to any groups.

1. Use checkboxes to select all the learners in the list, or specific ones you want to assign to the group.

2. Click Move learners button on the right side of the list.

3. Select the group to which you want to assign the selected learners in the confirmation window.

4. Click Move to proceed, or Cancel to exit without assigning.

Move learners between groups

1. Use checkboxes to select all the user in one group, or specific users you want to assign to another group.

2. Click Move learners button on the right side of the origin group.

1.4. Coach 49

Kolibri, Release 0.4

3. Select the group to which you want to move the selected learners, or the Ungrouped option if you want to
remove them from the origin group without assigning to a new one.

4. Click Move to proceed, or Cancel to exit without moving.

Rename Group

To rename group, follow these steps.

1. Click the down arrow icon on the right edge of the desired group from the list.

2. Select the Rename group from the drop-down menu.

3. Input the new name for the group in the confirmation window.

4. Click Save changes button to proceed, or Cancel to exit without renaming the group.

Delete Group

To delete a group, follow these steps.

1. Click the down arrow icon on the right edge of the desired group from the list.

2. Select the Delete group from the drop-down menu.

3. Click Delete group button in the confirmation window to proceed, or Cancel to exit without deleting the group.

50 Chapter 1. User Guide

Kolibri, Release 0.4

Note: Learners currently assigned to group will become ungrouped.

1.5 Learner

1.5.1 Accessing Kolibri

Note: If you use Kolibri in your school, education center or facility, your coach or administrator will provide the
instructions how to open the sign-in page, and username and password if necessary.

To sign in to Kolibri and start learning follow these steps:

1. Type your username and password.

2. Click the LOG IN button.

Warning: If you start browsing Kolibri as a guest, you need to click the Sign in icon either in the upper right
corner, or in the main menu (left or bottom) to open the sign-in page.

1.5. Learner 51

Kolibri, Release 0.4

Once you have logged in into Kolibri, you can see and edit your user data from the Profile option in the main menu
(below Learn).

52 Chapter 1. User Guide

Kolibri, Release 0.4

To logout from Kolibri you can either:

• Click the user icon in the upper right corner and select Sign out option.

OR

• Select Sign out option in the main menu.

1.5. Learner 53

Kolibri, Release 0.4

1.5.2 Using Kolibri

Channels

In Kolibri you can find content from different sources grouped in Channels. Depending on how your school and
teachers or coaches decided to organize the content, you may have one or more Channels available. Follow the
indications by your teachers or coaches on how to use the content from each available Channel.

To switch between channels available to you, use the Channel selector.

Learn

Each time you login into Kolibri, the first thing you will see is the Learn page. Here you will find learning topics and
materials related to what you were doing the last time you used Kolibri, or those recommended by your teachers and
coaches (not visible if you are browsing as a guest).

The content you see in the Learn page will be different for each channel. Change the channel to explore the rest of
content you can use in Kolibri.

54 Chapter 1. User Guide

Kolibri, Release 0.4

Recommended

In the Recommended tab you can see two sections:

• All content section where you can browse through all learning materials in the currently selected channel by
using the Previous and Next links.

• Most popular section which displays the most frequently used materials in your school or facility.

Topics

Topics tab offers you the option to navigate through the complete set of learning topics and materials available in
Kolibri, for the currently selected channel. Use it as you wish, or according to indications from your teachers and
coaches.

1.5. Learner 55

Kolibri, Release 0.4

Navigate Kolibri topics with breadcrumb links

When you are browsing a topic in Kolibri, the Breadcrumb links indicate previously visited, more general topics.
Current topic is at the last position, and you can click any of the previous links in the breadcrumb to go back to a
specific broader topic.

56 Chapter 1. User Guide

Kolibri, Release 0.4

When you are viewing a video or doing an exercise, the Breadcrumb links are not visible anymore. To go back to the
previous topic you visited, click the left arrow button above the video or exercise title.

Exams

If your teacher/coach scheduled an exam for you or your class, it will be available through the Exams tab.

Search

If you are looking for a specific subject, topic, or term, use the Search feature:

1. Click the magnifying glass icon in the upper right corner.

2. Type the word or combination of words you are looking for in the search field.

3. Press Enter to display search results below the field.

1.5. Learner 57

Kolibri, Release 0.4

Exercises

Kolibri Exercises can require you to do different things: fill in a missing number, write a formula, choose one of the
available options, etc. Each correct answer gets you a checkmark, and majority of exercises require 5 correct answers
in a row to be completed. Some exercises can offer one or more hints, to help you solve the problem.

Independent of the required action (writing an answer yourself or choosing one of the options), these are the steps to
follow.

1. Read the question carefully.

2. Write the answer or choose one of the provided options.

3. When you are ready to submit, click the Check answer button.

• If the answer is correct and a checkmark appears, click the Next question button to proceed.

• If the answer is incorrect, click the Get a hint button, read the suggestions, and try to answer again.

4. Once you have achieved the required number of correct answers in a row, click the Next item button, to continue
learning with the rest of the material in that topic.

58 Chapter 1. User Guide

Kolibri, Release 0.4

5. If you are unable to solve some questions, try reviewing the videos in the Recommended section below the
exercise, or seek help from your peers or teacher/coach.

1.5. Learner 59

Kolibri, Release 0.4

Video Player options

To play videos in Kolibri you have several available control buttons at the bottom of the video player screen. Move
the cursor or tap on the video player screen to make appear the control buttons while playing the video.

(controls at the bottom of video player)

• Play/Pause buttons

• Rewind/Fast forward buttons by +/- 10 seconds

• Time tracker indicator with progress bar

• Video duration indicator

• Volume scrollbar

• Playback speed selector

• Fullscreen button

60 Chapter 1. User Guide

Kolibri, Release 0.4

Use the Download content button below the video player to download the video and thumbnail files to your computer.
Some videos will provide multiple resolution options.

Audio Player options

To play audio files in Kolibri you have available several control buttons:

• Play/Pause

• Time tracker indicator with progress bar

• Audio duration indicator

• Replay button

• Rewind/Fast forward buttons by +/- 20 seconds

Use the Download content button below the audio player to download the audio and thumbnail files to your computer.

PDF Viewer options

Note: Options for viewing PDF files will depend on the browser and operating system you are using to view Kolibri.

• Use the Toggle Fullscreen button to open the PDF file in fullscreen view.

• Use the Esc button to close the fullscreen view and return.

1.5. Learner 61

Kolibri, Release 0.4

Use the Download content button below the PDF viewer to download the PDF file to your computer.

62 Chapter 1. User Guide

CHAPTER 2

Developer Guide

2.1 Getting started

First of all, thank you for your interest in contributing to Kolibri! The project was founded by volunteers dedicated to
helping make educational materials more accessible to those in need, and every contribution makes a difference. The
instructions below should get you up and running the code in no time!

2.1.1 Setting up Kolibri for development

Most of the steps below require entering commands into your Terminal (Linux, Mac) or command prompt (cmd.exe
on Windows) that you will learn how to use and become more comfortable with.

Tip: In case you run into any problems during these steps, searching online is usually the fastest way out: whatever
error you are seeing, chances are good that somebody already had it in the past and posted a solution somewhere. . . ;)

Git & GitHub

1. Install and set-up Git on your computer. Try this tutorial if you need more practice with Git!

2. Sign up and configure your GitHub account if you don’t have one already.

3. Fork the main Kolibri repository. This will make it easier to submit pull requests. Read more details about
forking from GitHub.

Install Environment Dependencies

1. Install Python if you are on Windows, on Linux and OSX Python is preinstalled (recommended versions 2.7+
or 3.4+).

2. Install pip package installer.

63

https://help.github.com/articles/set-up-git/
http://learngitbranching.js.org/
https://github.com/join
https://github.com/learningequality/kolibri
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/fork-a-repo/
https://www.python.org/downloads/windows/
https://pypi.python.org/pypi/pip

Kolibri, Release 0.4

3. Install Node (recommended version 4+).

4. Install Yarn according the instructions specific for your OS.

Note:

• On Ubuntu install Node.js via nvm to avoid build issues.

• On a Mac, you may want to consider using the Homebrew package manager.

Ready for the fun part in the Terminal? Here we go!

Checking out the code

1. Make sure you registered your SSH keys on GitHub.

2. Clone your Kolibri fork to your local computer. In the following commands replace $USERNAME with your
own GitHub username:

using SSH
git clone git@github.com:$USERNAME/kolibri.git
using HTTPS
git clone https://github.com/$USERNAME/kolibri.git

3. Enable syncing your local repository with upstream, which refers to the Kolibri source from where you cloned
your fork. That way you can keep it updated with the changes from the rest of Kolibri team contributors:

cd kolibri # Change into the newly cloned directory
git remote add upstream git@github.com:learningequality/kolibri.git # Add
→˓the upstream
git fetch upstream # Check if there are changes upstream
git checkout develop

Warning: develop is the active development branch - do not target the master branch.

Virtual environment

It is best practice to use Python virtual environment to isolate the dependencies of your Python projects from each
other. This also allows you to avoid using sudo with pip, which is not recommended.

You can learn more about using virtualenv, or follow these basic instructions:

Initial setup, performed once:

$ sudo pip install virtualenv # install virtualenv globally
$ mkdir ~/.venvs # create a common directory for multiple virtual
→˓environments
$ virtualenv ~/.venvs/kolibri # create a new virtualenv for Kolibri dependencies

Note: We create the virtualenv outside of the Kolibri project folder. You can choose another location than ~/.
venvs/kolibri if desired.

To activate the virtualenv in a standard Bash shell:

64 Chapter 2. Developer Guide

https://nodejs.org/en/
https://yarnpkg.com/en/docs/install/
https://github.com/creationix/nvm
http://brew.sh/
https://help.github.com/articles/generating-ssh-keys
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/stable/userguide/

Kolibri, Release 0.4

$ source ~/.venvs/kolibri/bin/activate # activate the venv

Now, any commands run with pip will target your virtualenv rather than the global Python installation.

To deactivate the virtualenv, run the command below. Note, you’ll want to leave it activated for the remainder of
project setup!

$ deactivate

Tip:

• Users of Windows and other shells such as Fish should read the guide for instructions on activating.

• If you set the PIP_REQUIRE_VIRTUALENV environment variable to true, pip will only install packages
when a virtualenv is active. This can help prevent mistakes.

• Bash users might also consider using virtualenvwrapper, which simplifies the process somewhat.

Install Project Dependencies

Note: Make sure your virtualenv is active!

To install Kolibri project-specific dependencies make sure you’re in the kolibri directory and run:

Python requirements
(kolibri)$ pip install -r requirements.txt
(kolibri)$ pip install -r requirements/dev.txt

Kolibri Python package in 'editable' mode, so your installation points to
→˓your git checkout:
(kolibri)$ pip install -e .

Javascript dependencies
(kolibri)$ yarn install

Tip:

• We’ve adopted this concatenated version with added cleanup: make clean && pip install -r
requirements.txt --upgrade && pip install -e . && yarn install.

• In case you get webpack compilation error with Node modules build failures, add the flag --force at the end,
to ensure binaries get installed.

2.1.2 Running Kolibri server

Development server

To start up the development server and build the client-side dependencies, use the following commands:

Linux and Mac:

2.1. Getting started 65

https://virtualenv.pypa.io/en/stable/userguide/
http://virtualenvwrapper.readthedocs.io/en/latest/index.html

Kolibri, Release 0.4

(kolibri)$ kolibri manage devserver --debug -- --webpack --qcluster

Windows:

(kolibri)$ kolibri manage devserver --debug -- --webpack

Wait for the build process to complete. This takes a while the first time, will complete faster as you make edits and the
assets are automatically re-built.

Now you should be able to access the server at http://127.0.0.1:8000/.

Tip: If you need to make the development server available through the LAN, you must leave out the --webpack
flag, and use the following command:

(kolibri)$ yarn run build
(kolibri)$ kolibri manage devserver --debug -- 0.0.0.0:8000 --qcluster

Now you can simply use your server’s IP from another device in the local network through the port 8000, for example
http://192.168.1.38:8000/.

Running the Production Server

In production, content is served through CherryPy. Static assets must be pre-built:

yarn run build
kolibri start

Now you should be able to access the server at http://127.0.0.1:8080/.

2.1.3 Contributing code to Kolibri

• Once you’ve toyed around with things, read through the rest of the Developer Guide, especially topics in Archi-
tecture and Themes to understand more about the Kolibri structure.

• When you’re up to speed with that, you’re probably itching to make some contributions! Head over to the issues
page on GitHub and take a look at the current project priorities. Try filtering by milestone. If you find a bug in
your testing, please submit your own issue

• Once you’ve identified an issue and you’re ready to start hacking on a solution, get ready to Submit Pull Re-
quests!

Branching and Release Process

The develop branch is reserved for active development. When we get close to releasing a new stable version/release
of Kolibri, we generally fork the develop branch into a new branch (like release-0.1.x). If you’re working on
an issue tagged for example with the release-0.1.x milestone, then you should target changes to that branch.
Changes to those branches will later be pulled into develop again. If you’re not sure which branch to target, ask the
dev team!

Note: At a high level, we follow the ‘Gitflow’ model. Some helpful references: * http://nvie.com/posts/
a-successful-git-branching-model/ * https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/

66 Chapter 2. Developer Guide

https://github.com/learningequality/kolibri/issues
https://github.com/learningequality/kolibri/issues
https://github.com/learningequality/kolibri/issues/new
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/

Kolibri, Release 0.4

Submit Pull Requests

The most common situation is working off of develop branch so we’ll take it as an example:

$ git checkout upstream/develop
$ git checkout -b name-of-your-bugfix-or-feature

After making changes to the code, commit and push them to a branch on your fork:

$ git add -A # Add all changed and new files to the commit
$ git commit -m "Write here the commit message"
$ git push origin name-of-your-bugfix-or-feature

Go to Kolibri GitHub page, and if you are logged-in you will see the link to compare your branch and and create the
new pull request. Please fill in all the aplicable sections in the PR template and DELETE unecessary headings.
Another member of the team will review your code, and either ask for updates on your part or merge your PR to
Kolibri codebase. Until the PR is merged you can push new commits to your branch and add updates to it.

2.1.4 Additional Recommended Setup

If you’re planning on contributing code to the project, there are a few additional steps you should consider taking.

Editor Config

We have a project-level .editorconfig file to help you configure your text editor or IDE to use our internal conventions.

Check your editor to see if it supports EditorConfig out-of-the-box, or if a plugin is available.

Front-end Dev Tools

If you’re working with front-end Vue.js and use Google Chrome Dev Tools, you may find the Vue.js devtools helpful

DB Setup

You can initialize the server using:

kolibri manage migrate

Pre-Commit Install

We use pre-commit to help ensure consistent, clean code. The pip package should already be installed from a prior
setup step, but you need to install the git hooks using this command.

pre-commit install

2.1.5 Development

2.1. Getting started 67

https://github.com/learningequality/kolibri
http://editorconfig.org/#download
https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en
http://pre-commit.com/

Kolibri, Release 0.4

Linting

To improve build times, and facilitate rapid development, Javascript linting is turned off by default when you run
the dev server. However, all frontend assets that are bundled will be linted by our Travis CI builds. It is a good
idea, therefore, to test your linting before submitting code for PR. To run the devserver in this mode you can run the
following command.

kolibri manage devserver --debug -- --webpack --qcluster --lint

Code Testing

Kolibri comes with a Python test suite based on py.test. To run tests in your current environment:

python setup.py test # alternatively, "make test" does the same

You can also use tox to setup a clean and disposable environment:

tox -e py3.4 # Runs tests with Python 3.4

To run Python tests for all environments, lint and documentation tests, use simply tox. This simulates what our CI
also does.

To run Python linting tests (pep8 and static code analysis), use tox -e lint or make lint.

Note that tox, by default, reuses its environment when it is run again. If you add anything to the requirements, you
will want to either delete the .tox directory, or run tox with the -r argument to recreate the environment.

We strive for 100% code coverage in Kolibri. When you open a Pull Request, code coverage (and your impact
on coverage) will be reported. To test code coverage locally, so that you can work to improve it, you can run the
following:

tox -e py3.4
coverage html

Then, open the generated ./htmlcov/index.html file in your browser.

Kolibri comes with a Javascript test suite based on mocha. To run all tests:

yarn test

This includes tests of the bundling functions that are used in creating front end assets. To do continuous unit testing
for code, and jshint running:

yarn run test-karma:watch

Alternatively, this can be run as a subprocess in the development server with the following flag:

kolibri manage devserver --debug -- --karma

You can also run tests through Django’s test management command, accessed through the kolibri command:

kolibri manage test

To run specific tests only, you can add --, followed by a label (consisting of the import path to the
test(s) you want to run, possibly ending in some subset of a filename, classname, and method name). For
example, the following will run only one test, named test_admin_can_delete_membership in the
MembershipPermissionsTestCase class in kolibri/auth/test/test_permissions.py:

68 Chapter 2. Developer Guide

Kolibri, Release 0.4

kolibri manage test -- kolibri.auth.test.test_permissions.
→˓MembershipPermissionsTestCase.test_admin_can_delete_membership

Updating Documentation

First, install some additional dependencies related to building documentation output:

pip install -r requirements/docs.txt
pip install -r requirements/build.txt

To make changes to documentation, edit the rst files in the kolibri/docs directory and then run:

make docs

You can also run the auto-build for faster editing from the docs directory:

cd docs
sphinx-autobuild --port 8888 . _build

Manual Testing

All changes should be thoroughly tested and vetted before being merged in. Our primary considerations are:

• Performance

• Accessibility

• Compatibility

• Localization

• Consistency

For more information, see the next section on Manual Testing & QA.

2.2 Manual Testing & QA

2.2.1 Accessibility (A11Y) Testing

Inclusive design benefits all users, and we strive to make Kolibri accessible for all. Testing for accessibility can be
challenging, but there are a few features you should check for before submitting your PR:

• Working keyboard navigation - everything that user can do with mouse or by touch must also work with the
keyboard alone.

• Sufficient color contrast between foreground text/elements and the background.

• Meaningful text alternative for all non-decorative images, or an empty ALT attribute in case of decorative ones.

• Meaningful labels on ALL form or button elements.

• Page has one main heading (H1) and consecutive lower heading levels.

Here are a few tools that we use in testing for accessibility:

• WAVE Evaluation Tool - Chrome extension.

2.2. Manual Testing & QA 69

http://webaim.org/techniques/keyboard/
http://a11yproject.com/posts/what-is-color-contrast/
http://accessibility.psu.edu/forms/
http://accessiblehtmlheadings.com/
http://wave.webaim.org/extension/

Kolibri, Release 0.4

• tota11y accessibility visualization toolkit - bookmarklet for Firefox and Chrome.

• Accessibility Developer Tools - Chrome extension.

• aXe Accessibility Engine - Firefox Addon and Chrome extension.

There is a much longer list of tools (specially for color contrast checking) on our KA Lite Wiki page if you want to go
deeper, but these four should be enough to help you avoid the most important accessibility pitfalls.

2.2.2 Cross-browser and OS Testing

It’s vital to ensure that our app works across a wide range of browsers and operating systems, particularly older
versions of Windows and Android that are common on older and cheaper devices.

In particular, we want to ensure that Kolibri runs on major browsers that match any of the following criteria:

• within the last two versions

• IE 9+ on Windows XP and up

• has at least 1% of global usage stats

Here are some useful options, in order of simplicity:

BrowserStack

BrowserStack is an incredibly useful tool for cross-browser and OS testing. In particular, it’s easy to install plugin
which forwards localhost to a VM running on their servers, which in turn is displayed in your browser.

Amazon Workspaces

In some situations, simply having a browser is not enough. For example, a developer may need to test Windows-
specific backend or installer code from another OS. In many situations, a virtual machine is appropriate - however
these can be slow to download and run.

Amazon’s AWS Workspaces provides a faster alternative. They run Windows VMs in their cloud, and developers can
RDP in.

Local Virtual Machines

Workspaces is very useful, but it has limitations: only a small range of OSes are available, and connectivity and
provisioning are required.

An alternative is to run the guest operating system inside a virtual machine using e.g. VirtualBox. This also gives more
developer flexibility, including e.g. shared directories between the guest and host systems. This tutorial was written
for KA Lite, but much of it still applies to Kolibri.

Hardware

There are some situations where actual hardware is necessary to test the application. This is particularly true when
virtualization might prohibit or impede testing features, such as lower-level driver interactions.

2.2.3 Responsiveness to Varying Screen Sizes

We want to ensure that the app looks and behaves reasonably across a wide range of typical screen sizes, from small
tablets to large, HD monitors. It is highly recommended to constantly be testing functionality at a range of sizes.

Chrome and Firefox’s Developer Tools both have some excellent functionality to simulate arbitrary screen resolutions.

70 Chapter 2. Developer Guide

http://khan.github.io/tota11y/
https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb
https://addons.mozilla.org/en-us/firefox/addon/axe-devtools/
https://chrome.google.com/webstore/detail/axe/lhdoppojpmngadmnindnejefpokejbdd
https://github.com/learningequality/ka-lite/wiki/Accessibility-Resources-(Tools)
http://browserl.ist/?q=%3E+1%25%2C+last+2+versions%2C+ie+%3E%3D+9%2C+Firefox+ESR
https://www.browserstack.com/
https://aws.amazon.com/workspaces/
https://www.virtualbox.org/wiki/Downloads
https://docs.google.com/document/d/10LgeCJmqsweui0yTTCDf4DjY5aoNNpXG8hF_DGKUHAI/edit

Kolibri, Release 0.4

2.2.4 Slow Network Connection Speeds

It’s important to simulate end-users network conditions. This will help identify real-world performance issues that
may not be apparent on local development machines.

Chrome’s Developer Tools have functionality to simulate a variety of network connections, including Edge, 3G, and
even offline. An app can be loaded into multiple tabs, each with its own custom network connectivity profile. This
will not affect traffic to other tabs.

Within the Chrome Dev Tools, navigate to the Network panel. Select a connection from the drop-down to apply
network throttling and latency manipulation. When a Throttle is enabled the panel indicator will show a warning icon.
This is to remind you that throttling is enabled when you are in other panels.

For Kolibri, our target audience’s network condition can be mimicked by setting connectivity to Regular 3G (100ms,
750kb/s, 250 kb/s).

2.2.5 Performance Testing with Django Debug Panel

We have built in support for Django Debug Panel (a Chrome extension that allows tracking of AJAX requests to
Django).

To use this, ensure that you have development dependencies installed, and install the Django Debug Panel Chrome
Extension. You can then run the development or production servers with the following environment variable set:

DJANGO_SETTINGS_MODULE=kolibri.deployment.default.settings.debug_panel

This will activate the debug panel, and will display in the Dev tools panel of Chrome. This panel will track all page
loads and API requests. However, all data bootstrapping into the template will be disabled, as our data bootstrapping
prevents the page load request from being profiled, and also does not profile the bootstrapped API requests.

2.3 Architecture

2.3.1 Tests

Running the test suite

A prerequisite for testing is to have the test environment installed. As a developer, simply fetch the “dev” requirements:

$ pip install -r requirements/dev.txt

Running all the tests in your local environment:

$ py.test

Running tests with a specific Python version:

$ tox -e py2.7 # or. . . $ tox -e py3.4 # or. . . $ tox -e py3.5 # or. . .

To run a subset of tests:

$ py.test test/test_kolibri.py

2.3. Architecture 71

https://chrome.google.com/webstore/detail/django-debug-panel/nbiajhhibgfgkjegbnflpdccejocmbbn
https://chrome.google.com/webstore/detail/django-debug-panel/nbiajhhibgfgkjegbnflpdccejocmbbn

Kolibri, Release 0.4

JS unit tests

Note: TODO! This will be written by one of the JS devs :)

Testing philosophy

Warning: This section an unfinished draft. We should carefully import stuff from our Dev Bible.

We want to achieve a >90% test coverage! To do that, it’s best to do TDD, meaning to write tests that express what
you want to achieve or fix and then implement that feature or fix the bug.

At all costs? No, definitely not. We don’t want too many slow integration tests that depend on virtual browsers
(Selenium) and the like.

Unreliable tests? Are not welcome at all.

Writing tests

Kolibri has a test discoverer (py.test) which automatically detects Python modules with test cases.

Inside the module that your tests target, place a package test and files called test_my_module.py:

mymodule/
__init__.py
test/

__init__.py
test_feature.py

2.3.2 Tech Stack

Kolibri is a web application built primarily using Python on the server-side and JavaScript on the client-side.

We use many run-time, development, and build-related technologies and tools, as outlined below.

Server

The server is a Django 1.9 application, and contains only pure-Python (2.7+) libraries dependencies at run-time.

The server is responsible for:

• Interfacing with the database (PostgreSQL) containing user, content, and language pack data

• Authentication and permission middleware

• Routing and handling of API calls, using the Django REST Framework

• Basic top-level URL routing between high-level sections of the application

• Serving basic HTML wrappers for the UI with data bootstrapped into the page

• Serving additional client assets such as fonts and images

TODO - how does Morango fit into this picture? Logging?

72 Chapter 2. Developer Guide

https://www.python.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://docs.djangoproject.com/en/1.9/
https://www.postgresql.org/
http://www.django-rest-framework.org/

Kolibri, Release 0.4

Client

The front-end user interface is built using HTML, the Stylus CSS-preprocessing language, and the ES2015 preset
features of ES6 JavaScript.

The frontend targets IE9 and up, with an emphasis on tablet-size screens. We strive to use accessible, semantic HTML
with support for screen readers, keyboard interaction, and right-to-left language support.

The client is responsible for:

• Compositing and rendering the UI using Vue.js components to build nested views

• Managing client-side state using Vuex

• Interacting with the server through HTTP requests

Additionally, loglevel is used for logging and normalize.css is included for browser style normalization.

Internationalization

We leverage the ICU Message syntax for formatting all user-facing text.

On the client-side, these strings are rendered using Format.js and integrated with Vue.js using vue-intl.

TODO: server-side, message extraction, translation

Developer Docs

Documentation for Kolibri developers are formatted using reStructuredText and the output is generated using Sphinx.
Most of the content is in the /docs directory, but some content is also extracted from Python source code and from
files in the root directory. We use Read the Docs to host a public version of our documentation.

Additionally, information about the design and implementation of Kolibri might be found on Google Drive, Trello,
Slack, InVision, mailing lists, office whiteboards, and lurking in the fragmented collective consciousness of our con-
tributors.

Build Infrastructure

Client-side Resources

We use a combination of both Node.js and Python scripts to transform our source code as-written to the code that is
run in a browser. This process involves webpack, plus a number of both custom and third-party extensions.

Preparation of client-side resources involves:

• ES6 to ES5

• Transforming Vue.js component files (*.vue) into JS and CSS

• Stylus to CSS

• Auto-prefixing CSS

• Bundling multiple JS dependencies into single files

• Minifying and compressing code

• Bundle resources such as fonts and images

• Generating source maps

2.3. Architecture 73

http://stylus-lang.com/
https://babeljs.io/docs/plugins/preset-es2015/
https://babeljs.io/docs/plugins/preset-es2015/
https://vuejs.org/
http://vuex.vuejs.org/en/index.html
http://pimterry.github.io/loglevel/
https://necolas.github.io/normalize.css/
http://userguide.icu-project.org/formatparse/messages
http://formatjs.io/
https://github.com/learningequality/vue-intl
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable/rest.html
http://kolibri.readthedocs.io/en/latest/
https://nodejs.org/en/
https://webpack.github.io/

Kolibri, Release 0.4

• Providing mechanisms for decoupled “Kolibri plugins” to interact with each other and asynchronously load
dependencies

• Linting to enforce code styles

Server Setup

The standard Django manage.py commands are used under-the-hood for database migration and user set-up.

TODO: is this accurate?

Installers and Packages

TODO: introduce stack (sdist, PyPi, Debian, Windows, etc)

Continuous Integration

TODO: introduce stack (GitHub, CodeCov, Travis, commit hooks)

Tests and Linting

We use a number of mechanisms to help encourage code quality and consistency. These checks enforce a subset of
our Project Conventions.

• pre-commit is run locally on git commit and enforces some Python conventions

• We use EditorConfig to help developers set their editor preferences

• flake8 is also used to enforce Python conventions

• tox is used to run our test suites under a range of Python and Node environment versions

• sphinx-build -b linkcheck checks the validity of documentation links

• pytest runs our Python unit tests. We also leverage the Django test framework.

• In addition to building client assets, webpack runs linters on client-side code: ESLint for ES6 JavaScript, Stylint
for Stylus, and HTMLHint for HTML and Vue.js components.

• Client-side code is tested using a stack of tools including Karma, Mocha, PhantomJS, Sinon, and rewire. TODO:
Explain what each of these do

• codecov reports on the test coverage for Python and Node.js code. TODO - also client-side?

Helper Scripts

TODO: introduce stack (kolibri command, setup.py, makefiles, yarn commands, sphinx auto-build, etc)

2.3.3 Plugins

The behavior of Kolibri can be extended using plugins. The following is a guide to developing plugins.

74 Chapter 2. Developer Guide

https://docs.djangoproject.com/en/1.9/ref/django-admin/
http://pre-commit.com/
http://editorconfig.org/
https://flake8.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
http://pytest.org/latest/
https://docs.djangoproject.com/en/1.9/topics/testing/
https://webpack.github.io/
http://eslint.org/
https://rosspatton.github.io/stylint/
http://htmlhint.com/
https://karma-runner.github.io/0.13/index.html
https://mochajs.org/
http://phantomjs.org/
http://sinonjs.org/
https://github.com/jhnns/rewire
https://codecov.io/

Kolibri, Release 0.4

Enabling and disabling plugins

Non-core plugins can be enabled or disabled using the kolibri plugin command. See ../user/cli.

Other stuff you can do with plugins

Plugins can implement Javascript code as a Kolibri module that can be used in the frontend as a plugin to the core
Kolibri Javascript code. Each of these Javascript plugins are defined in the kolibri_plugin.py file by subclassing the
KolibriFrontEndPluginBase class to define each frontend Kolibri module. This defines the base Javascript
file that defines the Kolibri module. In addition, this Plugin object within the app will automatically add these Kolibri
modules to an internal frontend asset registry for loading in the front end. For more information on developing frontend
code for Kolibri please see Front-end Architecture.

Plugins can be standalone Django apps in their own right, meaning they can define templates, models, new urls, and
views just like any other app. However the API for all of this hasn’t yet been determined. . . Coming soon!

Core plugin example

View the source to learn more!

2.3.4 Distribution and installers

The Kolibri Package build pipeline looks like this:

Git master branch
|
|
/ \

/ \
Python dist, online dependencies \

`python setup.py bdist_wheel` \
/ \

/ Python dist, bundled dependencies
Upload to PyPi `python setup.py bdist_wheel --static`

Installable with \
`pip install kolibri` \

Upload to PyPi
Installable with

`pip install kolibri-static`
/ | \
/ | \

Windows OSX Debian
installer installer installer

Make targets

To build both the slim Kolibri and the one with bundled dependencies, simply run make dist. The .whl files will now
be available in dist/*whl and you can install them with pip install dist/filename.whl.

2.3. Architecture 75

Kolibri, Release 0.4

Automated CI tests

If you add [setup] to your commit message, our CI will automatically test that builds work.

Otherwise, changes to certain files like requirements/* and setup.py will automatically prompt test builds to fire.

2.3.5 Project Conventions

TODO

Documentation

reStructuredText, docstrings, requirements for PRs to master. . .

Git Workflow

stable master, develop, feature branches, tags, releases, hot fixes, internal vs external repos. . .

Python Code

PEP8, additional conventions and best practices. . .

Vue.js Components

Note that the top-level tags of Vue.js components are <template>, <script>, and <style>.

• Whitespace

– an indent is 2 spaces

– two blank lines between top-level tags

– one blank line of padding within a top-level tag

– one level of indent for the contents of all top-level tags

• Keep most child-components stateless. In practice, this means using props but not data.

• Avoid using Vue.js’ camelCase-to-kebab-case mapping. Instead, use square brackets and strings to reference
names.

• Use scoped styles where ever possible

• Name custom tags using kebab-case

• Components are placed in the vue directory. The root component file is called vue/index.vue, and is mounted on
a tag called <rootvue>.

• Components are defined either as a file with a .vue extension (my-component.vue) or as a directory with an
index.vue file (my-component/index.vue). Both forms can be used with require('my-component').

• Put child components inside the directory of a parent component if they are only used by the parent. Otherwise,
put shared child components in the vue director.

• Any user visisble interface text should be rendered translatable, see i18n for details.

76 Chapter 2. Developer Guide

https://vuejs.org/guide/components.html

Kolibri, Release 0.4

JavaScript Code

• We use the AirBnB Javascript Style guide for client-side ES6 code in Vue components.

• use strict is automatically inserted.

• Use CommonJS-style require and module.exports statements, not ES6 import/export statements.

• For logging statements we use a thin wrapper around the log-level JS library, that prefixes the log statements
with information about the logging level and current file. To access the logger, simply include the following code
snippet:

const logging = require('kolibri.lib.logging').getLogger(__filename);

Stylus and CSS

• clear out unused styles

• avoid using classes as JS identifiers, and prefix with js- if necessary

HTML

attribute lists, semantic structure, accessibility. . .

2.3.6 Front-end Architecture

Components

We leverage Vue.js components as the primary building blocks for our UI. For general UI development work, this is
the most common tool a developer will use. It would be prudent to read through the Vue.js guide thoroughly.

Each component contains HTML with dynamic Vue.js directives, styling which is scoped to that component (written
using Stylus), and logic which is also scoped to that component (all code, including that in Vue components should
be written using Bublé compatible ES2015 JavaScript). Non-scoped styles can also be added, but these should be
carefully namespaced.

Components allow us to define new custom tags that encapsulate a piece of self-contained, re-usable UI functionality.
When composed together, they form a tree structure of parents and children. Each component has a well-defined
interface used by its parent component, made up of input properties, events and content slots. Components should
never reference their parent.

Read through Project Conventions for some important consistency tips on writing new components.

Layout of Frontend Code

Front-end code and assets are generally contained in one of two places: either in one of the plugin subdirectories
(under kolibri/plugins) or in kolibri/core, which contains code shared across all plugins as described below.

Within these directories, there should be an assets directory with src and test under it. Most assets will go in src, and
tests for the components will go in test.

For example:

2.3. Architecture 77

https://github.com/airbnb/javascript
https://vuejs.org/guide/components.html
https://vuejs.org/guide/
http://stylus-lang.com/
https://buble.surge.sh/guide/#supported-features
https://vuejs.org/guide/components.html#Props
https://vuejs.org/guide/components.html#Custom-Events
https://vuejs.org/guide/components.html#Content-Distribution-with-Slots

Kolibri, Release 0.4

kolibri/
core/ # core (shared) items
assets/

src/
core-base.vue # global base template, used by apps
core-modal.vue # example of another shared component
core-global.styl # globally defined styles, indluded in head
core-theme.styl # style variable values
font-NotoSans.css # embedded font

test/
... # tests for core assets

plugins/
learn # learn plugin

assets/
src/
vue/
index.vue # root view
some-page.vue # top-level client-side page
another-page/ # top-level client-side page
index.vue
child.vue # child component used only by parent

shared.vue # shared across this plugin
app.js # instantiate learn app on client-side
router.js
store.js

test/
app.js

management/
assets/

src/
vue/user-page.vue # nested-view
vue/index.vue # root view
app.js # instantiate mgmt app on client-side

test/
app.js

In the example above, the vue/another-page/index.vue file in learn can use other assets in the same directory (such as
child.vue), components in vue (such as shared.vue), and assets in core (such as variables in core-theme.styl). However
it cannot use files in other plugin directories (such as management).

Note: For many development scenarios, only files in these directories need to be touched.

There is also a lot of logic and configuration relevant to front-end code loading, parsing, testing, and linting. This
includes webpack, NPM, and integration with the plugin system. This is somewhat scattered, and includes logic
in frontend_build/. . . , package.json, kolibri/core/webpack/. . . , and other locations. Much of this functionality is de-
scribed in other sections of the docs (such as Front-end Asset Loading), but it can take some time to understand how it
all hangs together.

SVG Icons

SVGs can be inlined into Vue components using a special syntax:

<svg src="icon.svg"></svg>

78 Chapter 2. Developer Guide

Kolibri, Release 0.4

Then, if there is a file called icon.svg in the same directory, that file will be inserted directly into the outputted
HTML. This allows aspects of the icon (e.g. fill) to be styled using CSS.

Attributes (such as vue directives like v-if and SVG attributes like viewbox) can also be added to the svg tag.

Single-page Apps

The Kolibri front-end is made of a few high-level “app” plugins, which are single-page JS applications (conventionally
app.js) with their own base URL and a single root Vue.js component. Examples of apps are ‘Learn’ and ‘User
Management’, as shown in the example above. Apps are independent of each other, and can only reference components
and styles from within themselves and from core.

Each app is implemented as a Kolibri plugin and is defined in a subdirectory of kolibri/plugins.

On the Server-side, the kolibri_plugin.py file describes most of the configuration for the single-page app. In
particular, this includes the base Django HTML template to return (with an empty <body>), the URL at which the
app is exposed, and the javascript entry file which is run on load.

On the client-side, the app creates a single KolibriModule object in the entry file (conventionally app.js) and
registers this with the core app, a global variable called kolibriGlobal. The Kolibri Module then mounts single
root component to the HTML returned by the server, which recursively contains all additional components, html and
logic.

Defining a New Kolibri Module

Note: This section is mostly relevant if you are creating a new app or plugin. If you are just creating new components,
you don’t need to do this.

A Kolibri Module is initially defined in Python by sub-classing the WebpackBundleHook class (in kolibri.
core.webpack.hooks). The hook defines the JS entry point (conventionally called app.js) where the
KolibriModule subclass is instantiated, and where events and callbacks on the module are registered. These
are defined in the events and once properties. Each defines key-value pairs of the name of an event, and the name
of the method on the KolibriModule object. When these events are triggered on the Kolibri core JavaScript app,
these callbacks will be called. (If the KolibriModule is registered for asynchronous loading, the Kolibri Module
will first be loaded, and then the callbacks called when it is ready. See Front-end Asset Loading for more information.)

All apps should extend the KolibriModule class found in kolibri/core/assets/src/kolibri_module.js.

The ready method will be automatically executed once the Module is loaded and registered with the Kolibri Core
App. By convention, JavaScript is injected into the served HTML after the <rootvue> tag, meaning that this tag
should be available when the ready method is called, and the root component (conventionally in vue/index.vue) can
be mounted here.

Content Renderers

A special kind of Kolibri Module is dedicated to rendering particular content types. All content renderers should
extend the ContentRendererModule class found in kolibri/core/assets/src/content_renderer_module.js. In ad-
dition, rather than subclassing the WebpackBundleHook class, content renderers should be defined in the Python
code using the ContentRendererHook class defined in kolibri.content.hooks. In addition to the stan-
dard options for the WebpackBundleHook, the ContentRendererHook also accepts a json file defining the
content types that it renders:

2.3. Architecture 79

Kolibri, Release 0.4

The ContentRendererModule class has one required property getRendererComponent which should re-
turn a Vue component that wraps the content rendering code. This component will be passed defaultFile, files,
supplementaryFiles, and thumbnailFiles props, defining the files associated with the piece of content.

{
props: [
'defaultFile',
'files',

]
};

In order to log data about users viewing content, the component should emit startTracking, updateProgress,
and stopTracking events, using the Vue $emit method. startTracking and stopTracking are emitted
without any arguments, whereas updateProgress should be emitted with a single value between 0 and 1 repre-
senting the current proportion of progress on the content.

this.$emit('startTracking');
this.$emit('stopTracking');
this.$emit('updateProgress', 0.25);

For content that has assessment functionality two additional props will be passed: itemId and answerState.
itemId is a unique identifier for that content for a particular question in the assessment, answerState is passed
to prefill an answer (one that has been previously given on an exam, or for a coach to preview a learner’s given
answers). The answer renderer should also define a checkAnswer method in its component methods, this method
should return an object with the following keys: correct, answerState, and simpleAnswer - describing the
correctness, an object describing the answer that can be used to reconstruct it within the renderer, and a simple, human
readable answer. If no valid answer is given, null should be returned. In addition to the base content renderer events,
assessment items can also emit a hintTaken event to indicate that the user has taken a hint in the assessment, an
itemError event to indicate that there has been an error in rendering the requested question corresponding to the
itemId, and an interaction event that indicates a user has interacted with the assessment.

{
props: [
'defaultFile',
'files',
'itemId',
'answerState',

],
methods: {
checkAnswer() {

return {
correct: true,
answerState: {
answer: 81,
working: '3^2 = 3 * 3',

},
simpleAnswer: '81',

};
},

},
};

Shared Core Functionality

Kolibri provides a set of shared “core” functionality – including components, styles, and helper logic, and libraries –
which can be re-used across apps and plugins.

80 Chapter 2. Developer Guide

Kolibri, Release 0.4

JS Libraries

The following libraries are available globally, in all module code:

• vue - the Vue.js object

• vuex - the Vuex object

• logging - our wrapper around the loglevel logging module

• core-base - a shared base Vue.js component (core-base.vue)

And many others. The complete specification for commonly shared modules can be found in
kolibri/core/assets/src/core-app/apiSpec.js - this object defines which modules are imported into the core ob-
ject. If the module in question has the ‘requireName’ attribute set on the core specification, then it can be used in code
with a standard CommonJS-style require statement - e.g.:

const vue = require('kolibri.lib.vue');
const coreBase = require('kolibri.coreVue.components.coreBase');

Adding additional globally-available objects is relatively straightforward due to the plugin and webpack build system.

To expose something on the core app, add a key to the object in apiSpec.js which maps to an object with the following
keys:

modulePath: {
module: require('module-name'),

}

This module would now be available for import anywhere with the following statement:

const MODULE = require('kolibri.modulePath');

For better organisation of the Core API specification, modules can also be attached at arbitrarily nested paths:

modulePath: {
nestedPath: {

module: require('module-name'),
}

}

This module would now be available for import anywhere with the following statement:

const MODULE = require('kolibri.modulePath.nestedPath');

For convenience (and to prevent accidental imports), 3rd party (NPM) modules installed in node_modules can be
required by their usual name also:

const vue = require('vue');

Bootstrapped Data

The kolibriGlobal object is also used to bootstrap data into the JS app, rather than making unnecessary API
requests.

For example, we currently embellish the kolibriGlobal object with a urls object. This is defined by Django
JS Reverse and exposes Django URLs on the client side. This will primarily be used for accessing API Urls for
synchronizing with the REST API. See the Django JS Reverse documentation for details on invoking the Url.

2.3. Architecture 81

https://github.com/pimterry/loglevel
https://github.com/ierror/django-js-reverse
https://github.com/ierror/django-js-reverse

Kolibri, Release 0.4

Styling

For shared styles, two mechanisms are provided:

• The core-theme.styl file provides values for some globally-relevant Stylus variables. These variables can be used
in any component’s <style> block by adding the line @require '~core-theme.styl'.

• The core-global.styl file is always inserted into the <head> after normalize.css and provides some basic styling
to global elements

Additional Functionality

These methods are also publicly exposed methods of the core app:

kolibriGlobal.register_kolibri_module_async // Register a Kolibri module for
→˓asynchronous loading.
kolibriGlobal.register_kolibri_module_sync // Register a Kolibri module once it
→˓has loaded.
kolibriGlobal.stopListening // Unbind an event/callback pair from
→˓triggering.
kolibriGlobal.emit // Emit an event, with optional args.

Unit Testing

Unit testing is carried out using Mocha. All JavaScript code should have unit tests for all object methods and functions.

Tests are written in JavaScript, and placed in the ‘assets/test’ folder. An example test is shown below:

var assert = require('assert');

var SearchModel = require('../src/search/search_model.js');

describe('SearchModel', function() {
describe('default result', function() {
it('should be empty an empty array', function () {
var test_model = new SearchModel();
assert.deepEqual(test_model.get("result"), []);

});
});

});

Vue.js components can also be tested. The management plugin contains an example
(kolibri/plugins/management/assets/test/management.js) where the component is bound to a temporary DOM
node, changes are made to the state, and assertions are made about the new component structure.

Adding Dependencies

Dependencies are tracked using yarn - see the docs here.

We distinguish development dependencies from runtime dependencies, and these should be installed as such using
yarn add --dev [dep] or yarn add [dep], respectively. Your new dependency should now be recorded in
package.json, and all of its dependencies should be recorded in yarn.lock.

Individual plugins can also have their own package.json and yarn.lock for their own dependencies. Running yarn
install will also install all the dependencies for each activated plugin (inside a node_modules folder inside the

82 Chapter 2. Developer Guide

https://mochajs.org/
https://yarnpkg.com/en/docs/

Kolibri, Release 0.4

plugin itself). These dependencies will only be available to that plugin at build time. Dependencies for individual
plugins should be added from within the root directory of that particular plugin.

To assist in tracking the source of bloat in our codebase, the command yarn run bundle-stats is available to
give a full readout of the size that uglified packages take up in the final Javascript code.

In addition, a plugin can have its own webpack.config.js for plugin specific webpack configuration (loaders, plugins,
etc.). These options will be merged with the base options using webpack-merge.

2.3.7 i18n

As a platform intended for use around the world, Kolibri has a strong mandate for translation and internationalization.
As such, it has been designed with technologies to enable this built in.

Backend Translation

For any strings in Django, we are using the standard Django i18n machinery (gettext and associated functions) to
provide translations. See the Django i18n documentation for more information.

Frontend Translation

For any strings in the frontend, we are using Vue-Intl an in house port of React-intl.

Within Kolibri, messages are defined on the body of the Vue component:

- ``$trs``, an object of the form::

{
msgId: 'Message text',

}

- ``$trNameSpace``, a string that namespaces the messages.

User visible strings should be rendered directly in the template with {{ $tr('msgId') }}. These strings are
collected during the build process, and bundled into exported JSON files. These files are then uploaded to Crowdin
for translation.

An example Vue component would then look like this:

<template>

<div>
<p>{{ $tr('exampleMessage') }}</p>

</div>

</template>

<script>

module.exports = {

$trNameSpace: 'example',
$trs: {

exampleMessage: 'This message is just an example',

(continues on next page)

2.3. Architecture 83

https://docs.djangoproject.com/en/1.10/topics/i18n/
https://www.npmjs.com/package/vue-intl
https://www.npmjs.com/package/react-intl

Kolibri, Release 0.4

(continued from previous page)

},
};

</script>

<style lang="stylus" scoped></style>

Downloaded files from crowdin need to be copied into the relevant plugins from which they have come using the
distributefrontendmessages make command.

These messages will then be discovered for any registered plugins and loaded into the page if that language is set as
the Django language. All language setting for the Frontend is based off the current Django language for the request.

2.4 Themes

2.4.1 Content

This is a core module found in kolibri/Content.

Concepts and Definitions

ContentNode

High level abstraction for prepresenting different content kinds, such as Topic, Video, Audio, Exercise, Document,
and can be easily extended to support new content kinds. With multiple ContentNode objects, it supports grouping,
arranging them in tree structure, and symmetric and asymmetric relationship between two ContentNode objects.

File

A Django model that is used to store details about the source file, such as what language it supports, how big is the
size, which format the file is and where to find the source file.

84 Chapter 2. Developer Guide

Kolibri, Release 0.4

ContentDB Diagram

• PK = Primary Key

• FK = Foreign Key

• M2M = ManyToManyField

ContentTag

This model is used to establish a filtering system for all ContentNode objects.

2.4. Themes 85

Kolibri, Release 0.4

ChannelMetadata

A Django model in each content database that stores the database readable names, description and author for each
channel.

ChannelMetadataCache

This class stores the channel metadata cached/denormed into the default database.

Implementation Details and Workflows

To achieve using separate databases for each channel and being able to switch channels dynamically, the following
data structure and utility functions have been implemented.

ContentDBRoutingMiddleware

This middleware will be applied to every request, and will dynamically select a database based on the channel_id. If a
channel ID was included in the URL, it will ensure the appropriate content DB is used for the duration of the request.
(Note: set_active_content_database is thread-local, so this shouldn’t interfere with other parallel requests.)

For example, this is how the client side dynamically requests data from a specific channel:

>>> localhost:8000/api/content/<channel_1_id>/contentnode

this will respond with all the contentnode data stored in database <channel_1_id>.sqlite3

>>> localhost:8000/api/content/<channel_2_id>/contentnode

this will respond with all the contentnode data stored in database <channel_2_id>.sqlite3

get_active_content_database

A utility function to retrieve the temporary thread-local variable that using_content_database sets

set_active_content_database

A utility function to set the temporary thread-local variable

using_content_database

A decorator and context manager to do queries on a specific content DB.

Usage as a context manager:

from models import ContentNode

with using_content_database("nalanda"):
objects = ContentNode.objects.all()
return objects.count()

86 Chapter 2. Developer Guide

Kolibri, Release 0.4

Usage as a decorator:

from models import ContentNode

@using_content_database('nalanda')
def delete_all_the_nalanda_content():

ContentNode.objects.all().delete()

ContentDBRouter

A router that decides what content database to read from based on a thread-local variable.

ContentNode

ContentNode is implemented as a Django model that inherits from two abstract classes, MPTTModel and Content-
DatabaseModel. django-mptt’s MPTTModel, which allows for efficient traversal and querying of the ContentNode
tree. ContentDatabaseModel is used as a marker so that the content_db_router knows to query against the
content database only if the model inherits from ContentDatabaseModel.

The tree structure is established by the parent field that is a foreign key pointing to another ContentNode ob-
ject. You can also create a symmetric relationship using the related field, or an asymmetric field using the
is_prerequisite field.

File

The File model also inherits from ContentDatabaseModel.

To find where the source file is located, the class method get_url uses the checksum field and settings.
CONTENT_STORAGE_DIR to calculate the file path. Every source file is named based on its MD5 hash value
(this value is also stored in the checksum field) and stored in a namespaced folder under the directory specified
in settings.CONTENT_STORAGE_DIR. Because it’s likely to have thousands of content files, and some filesys-
tems cannot handle a flat folder with a large number of files very well, we create namespaced subfolders to improve
the performance. So the eventual file path would look something like:

/home/user/.kolibri/content/storage/9/8/9808fa7c560b9801acccf0f6cf74c3ea.
mp4

As you can see, it is fine to store your content files outside of the kolibri project folder as long as you set the
settings.CONTENT_STORAGE_DIR accordingly.

The front-end will then use the extension field to decide which content player should be used. When the
supplementary field’s value is True, that means this File object isn’t necessary and can display the content
without it. For example, we will mark caption (subtitle) file as supplementary.

Content Constants

A Python module that stores constants for the kind field in ContentNode model and the preset field and
extension field in File model.

2.4. Themes 87

http://django-mptt.github.io/django-mptt/

Kolibri, Release 0.4

Workflows

There are two workflows we currently designed to handle content UI rendering and content playback rendering

• Content UI Rendering

1. Start with a ContentNode object.

2. Get the associated File object that has the thumbnail field being True.

3. Get the thumbnail image by calling this File’s get_url method.

4. Determine the template using the kind field of this ContentNode object.

5. Renders the template with the thumbnail image.

• Content Playback Rendering

1. Start with a ContentNode object.

2. Retrieve a queryset of associated File objects that are filtered by the preset.

3. Use the thumbnail field as a filter on this queryset to get the File object and call this File object’s get_url
method to get the source file (the thumbnail image)

4. Use the supplementary field as a filter on this queryset to get the “supplementary” File objects, such as
caption (subtitle), and call these File objects’ get_url method to get the source files.

5. Use the supplementary field as a filter on this queryset to get the essential File object. Call its get_url
method to get the source file and use its extension field to choose the content player.

6. Play the content.

API Methods

API endpoints

request specific content:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>

search content:

>>> localhost:8000/api/content/<channel_id>/contentnode/?search=<search words>

request specific content with specified fields:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>/?fields=pk,title,
→˓kind

request paginated contents

>>> localhost:8000/api/content/<channel_id>/contentnode/?page=6&page_size=10

request combines different usages

>>> localhost:8000/api/content/<channel_id>/contentnode/?fields=pk,title,kind,
→˓instance_id,description,files&page=6&page_size=10&search=wh

88 Chapter 2. Developer Guide

Kolibri, Release 0.4

Models

2.4.2 Server-Client Communication

Server API

The Kolibri server represents data as Django Models. These models are defined in models.py files, which can be
found in the folders of the different Django apps/plugins.

In Django, Model data are usually exposed to users through webpages that are generated by the Django server. To
make the data available to the Kolibri client, which is a single-page app, the Models are exposed as JSON data through
a REST API provided by the Django REST Framework (DRF).

In the api.py files, Django REST framework ViewSets are defined which describe how the data is made available
through the REST API. Each ViewSet also requires a defined Serializer, which describes the way in which the data
from the Django model is serialized into JSON and returned through the REST API. Additionally, optional filters can
be applied to the ViewSet which will allow queries to filter by particular features of the data (for example by a field)
or by more complex constraints, such as which group the user associated with the data belongs to. Permissions can be
applied to a ViewSet, allowing the API to implicitly restrict the data that is returned, based on the currently logged in
user.

Finally, in the api_urls.py file, the ViewSets are given a name (through the base_name keyword argument),
which sets a particular URL namespace, which is then registered and exposed when the Django server runs. Some-
times, a more complex URL scheme is used, as in the content core app, where every query is required to be prefixed
by a channel id (hence the <channel_id> placeholder in that route’s regex pattern)

Listing 1: api_urls.py

router = routers.SimpleRouter()
router.register('content', ChannelMetadataCacheViewSet, base_name="channel")

content_router = routers.SimpleRouter()
content_router.register(r'contentnode', ContentNodeViewset, base_name='contentnode')
content_router.register(r'file', FileViewset, base_name='file')

urlpatterns = [
url(r'^', include(router.urls)),
url(r'^content/(?P<channel_id>[^/.]+)/', include(content_router.urls)),

]

Client Resource Layer

To access this REST API in the frontend Javascript code, an abstraction layer has been written to reduce the complexity
of inferring URLs, caching resources, and saving data back to the server.

Resources

In order to access a particular REST API endpoint, a Javascript Resource has to be defined, an example is shown here

Listing 2: channel.js

const Resource = require('kolibri.lib.apiResource').Resource;

class ChannelResource extends Resource {

(continues on next page)

2.4. Themes 89

Kolibri, Release 0.4

(continued from previous page)

static resourceName() {
return 'channel';

}
}

module.exports = ChannelResource;

Here, the resourceName static method must return 'channel' in order to match the base_name assigned to
the /content endpoint in api_urls.py.

However, in the case of a more complex endpoint, where arguments are required to form the URL itself (such as in the
contentnode endpoints above) - we can add additional required arguments with the resourceIdentifiers
static method return value

Listing 3: contentNode.js

const Resource = require('kolibri.lib.apiResource').Resource;

class ContentNodeResource extends Resource {
static resourceName() {
return 'contentnode';

}
static idKey() {
return 'pk';

}
static resourceIdentifiers() {
// because ContentNode resources are accessed via
// /api/content/<channel_id>/contentnode/<pk>
return [
'channel_id',

];
}

}

module.exports = ContentNodeResource;

If this resource is part of the core app, it can be added to a global registry of resources inside kolibri/core/
assets/src/api-resources/index.js. Otherwise, it can be instantiated as needed, such as in the coach
reports module

const ContentSummaryResourceConstructor = require('./apiResources/contentSummary');
const ContentSummaryResource = new ContentSummaryResourceConstructor(coreApp);

First the constructor is imported from the require file, and then an instance is created - with a reference to the Kolibri
core app module passed as the only argument.

Models

The instantiated Resource can then be queried for client side representations of particular information. For a represen-
tation of a single server side Django model, we can request a Model from the Resource, using getModel

// corresponds to resource address /api/content/<channelId>/contentnode/<id>
const contentModel = ContentNodeResource.getModel(id, { channel_id: channelId });

The first argument is the database id (primary key) for the model, while the second argument defines any additional
required resourceIdentifiers that we need to build up the URL.

90 Chapter 2. Developer Guide

Kolibri, Release 0.4

We now have a reference for a representation of the data on the server. To ensure that it has data from the server, we
can call .fetch on it which will resolve to an object representing the data

contentModel.fetch().then((data) => {
logging.info('This is the model data: ', data);

});

The fetch method returns a Promise which resolves when the data has been successfully retrieved. This may have
been due to a round trip call to the REST API, or, if the data has already been previously returned, then it will skip the
call to the REST API and return a cached copy of the data.

If you want to pass additional GET parameters to the REST API (to only return a limited set of fields, for example),
then you can pass GET parameters in the first argument

contentModel.fetch({ title: true }).then((data) => {
logging.info('This is the model data: ', data);

});

If it is important to get data that has not been cached, you can call the fetch method with a force parameter

Collections

For particular views on a data table (which could range from ‘show me everything’ to ‘show me all content nodes
with titles starting with “p”’) - Collections are used. Collections are a cached view onto the data table, which are
populated by Models - so if a Model that has previously been fetched from the server by a Collection is requested from
getModel, it is already cachced.

The first argument defines any additional required resourceIdentifiers that we need to build up the URL,
while the second argument defines the GET parameters that are used to define the filters to be applied to the data and
hence the subset of the data that the Collection represents.

We now have a reference for a representation of this data on the server. To ensure that it has data from the server, we
can call fetch on it, this will resolve to an array of the returned data objects

contentCollection.fetch().then((dataArray) => {
logging.info('This is the model data: ', dataArray);

});

The fetch method returns a Promise which resolves when the data has been successfully retrieved. This may have
been due to a round trip call to the REST API, or, if the data has already been previously returned, then it will skip the
call to the REST API and return a cached copy of the data.

If you want to pass additional GET parameters to the REST API (to only return a limited set of fields, for example),
then you can pass GET parameters in the first argument

// GET /api/content/<channelId>/contentnode/?popular=1&title=true
contentCollection.fetch({ title: true }).then((dataArray) => {
logging.info('This is the model data: ', dataArray);

});

If it is important to get data that has not been cached, you can call the fetch method with a force parameter

contentCollection.fetch({}, true).then((dataArray) => {
logging.info('This is the model data: ', dataArray);

});

2.4. Themes 91

Kolibri, Release 0.4

Data Flow Diagram

2.4.3 Users, Authentication, and Permissions

This is a core module found in kolibri/auth.

Concepts and Definitions

Facility

All user data (accounts, logs, ratings, etc) in Kolibri are associated with a particular “Facility”. A Facility is a grouping
of users who are physically co-located, and who generally access Kolibri from the same server on a local network, for
example in a school, library, or community center. Collectively, all the data associated with a particular Facility are
referred to as a “Facility Dataset”.

Users

There are two kinds of users: FacilityUser and DeviceOwner. A FacilityUser is associated with a par-
ticular Facility, and the user’s account and data may be synchronized across multiple devices. A DeviceOwner
account is not associated with a particular Facility, but is specific to one device, and is never synchronized across
multiple devices. A DeviceOwner is like a superuser, and has permissions to modify any data on her own de-
vice, whereas a FacilityUser only has permissions for some subset of data from their own Facility Dataset (as
determined in part by the roles they possess; see below).

Collections

Collections are hierarchical groups of users, used for grouping users and making decisions about permissions. Users
can have roles for one or more Collections, by way of obtaining Roles associated with those Collections. Collections
can belong to other Collections, and user membership in a collection is conferred through Membership. Collections
are subdivided into several pre-defined levels: Facility, Classroom, and LearnerGroup, as illustrated here:

In this illustration, Facility X contains two Classrooms, Class A and Class B. Class A contains two LearnerGroups,
Group Q and Group R.

Membership

A FacilityUser (but not a DeviceOwner) can be marked as a member of a Collection through a
Membership object. Being a member of a Collection also means being a member of all the Collections above
that Collection in the hierarchy. Thus, in the illustration below, Alice is directly associated with Group Q through a
Membership object, which makes her a member of Group Q. As Group Q is contained within Class A, which is
contained within Facility X, she is also implicitly a member of both those collections.

Note also that a FacilityUser is always implicitly a member of the Facility with which it is associated, even
if it does not have any Membership objects.

92 Chapter 2. Developer Guide

Kolibri, Release 0.4

Roles

Another way in which a FacilityUser can be associated with a particular Collection is through a Role
object, which grants the user a role with respect to the Collection and all the collections below it. A Role object
also stores the “kind” of the role (currently, one of “admin” or “coach”), which affects what permissions the user gains
through the Role.

To illustrate, consider the example in the following figure:

The figure shows a Role object linking Bob with Class A, and the Role is marked with kind “coach”, which we can
informally read as “Bob is a coach for Class A”. We consider user roles to be “downward-transitive” (meaning if you
have a role for a collection, you also have that role for descendents of that collection). Thus, in our example, we can
say that “Bob is also a coach for Group Q”. Furthermore, as Alice is a member of Group Q, we can say that “Bob is a
coach for Alice”.

Role-Based Permissions

As a lot of Facility Data in Kolibri is associated with a particular FacilityUser, for many objects we can concisely
define a requesting user’s permissions in terms of his or her roles for the object’s associated User. For example, if a
ContentLog represents a particular FacilityUser’s interaction with a piece of content, we might decide that
another FacilityUser can view the ContentLog if she is a coach (has the coach role) for the user. In our
scenario above, this would mean that Bob would have read permissions for a ContentLog for which “user=Alice”,
by virtue of having the coach role for Alice.

Some data may not be related to a particular user, but rather with a Collection (e.g. the Collection object
itself, settings for a Collection, or content assignments for a Collection). Permissions for these objects can be
defined in terms of the role the requesting User has with respect to the object’s associated Collection. So, for example,
we might allow Bob to assign content to Class A on the basis of him having the “coach” role for Class A.

Permission Levels

As we are constructing a RESTful API for accessing data within Kolibri, the core actions for which we need to define
permissions are the CRUD operations (Create, Read, Update, Delete). As Create, Update, and Delete permissions
often go hand in hand, we can collectively refer to them as “Write Permissions”.

Implementation Details

Collections

A Collection is implemented as a Django model that inherits from django-mptt’s MPTTModel, which al-
lows for efficient traversal and querying of the collection hierarchy. For convenience, the specific types of col-
lections – Facility, Classroom, and LearnerGroup – are implemented as _proxy models of the main
Collection model. There is a kind field on Collection that allows us to distinguish between these types,
and the ModelManager for the proxy models returns only instances of the matching kind.

From a Collection instance, you can traverse upwards in the tree with the parent field, and downwards via the
children field (which is a reverse RelatedManager for the parent field):

2.4. Themes 93

http://django-mptt.github.io/django-mptt/

Kolibri, Release 0.4

>>> my_classroom.parent
<Collection: "Facility X" (facility)>

>>> my_facility.children.all()
[<Collection: "Class A" (classroom)>, <Collection: "Class B" (classroom)>]

Note that the above methods (which are provided by MPTTModel) return generic Collection instances, rather
than specific proxy model instances. To retrieve parents and children as appropriate proxy models, use the helper
methods provided on the proxy models, e.g.:

>>> my_classroom.get_facility()
<Facility: Facility X>

>>> my_facility.get_classrooms()
[<Classroom: Class A>, <Classroom: Class B>]

Facility and FacilityDataset

The Facility model (a proxy model for Collection, as described above) is special in that it has no parent; it
is the root of a tree. A Facility model instance, and all other Facility Data associated with the Facility and its
FacilityUsers, inherits from AbstractFacilityDataModel, which has a dataset field that foreign keys
onto a common FacilityDataset instance. This makes it easy to check, for purposes of permissions or filtering
data for synchronization, which instances are part of a particular Facility Dataset. The dataset field is automatically
set during the save method, by calling the infer_dataset method, which must be overridden in every subclass
of AbstractFacilityDataModel to return the dataset to associate with that instance.

Efficient Hierarchy Calculations

In order to make decisions about whether a user has a certain permission for an object, we need an efficient way
to retrieve the set of roles the user has in relation to that object. This involves traversing the Role table, Collection
hierarchy, and possibly the Membership table, but we can delegate most of the work to the database engine (and
leverage efficient hierarchy lookups afforded by MPTT). The following algorithms and explanations will refer to the
naming in the following diagram:

In pseudocode, the query for “What Roles does Source User have in relation to Target User?” would be implemented
in the following way:

Fetch all Roles with:
User: Source User
Collection: Ancestor Collection

For which there is a Membership with:
User: Target User
Collection: Descendant Collection

And where:
Ancestor Collection is an ancestor of (or equal to) Descendant Collection

At the database level, this can be written in the following way, as a single multi-table SQL query:

SELECT DISTINCT
source_role.kind

FROM

(continues on next page)

94 Chapter 2. Developer Guide

Kolibri, Release 0.4

(continued from previous page)

collection_table AS ancestor_coll,
collection_table AS descendant_coll,
role_table,
membership_table

WHERE
role_table.user_id = {source_user_id} AND
role_table.collection_id = ancestor_coll.id AND
membership_table.user_id = {target_user_id}
membership_table.collection_id = descendant_coll.id AND
descendant_coll.lft BETWEEN ancestor_coll.lft AND ancestor_coll.rght AND
descendant_coll.tree_id = ancestor_coll.tree_id;

Similarly, performing a queryset filter like “give me all ContentLogs associated with FacilityUsers for which
Source User has an admin role” can be written as:

SELECT
contentlog_table.*

FROM
contentlog_table

WHERE EXISTS
(SELECT

*
FROM

collection_table AS ancestor_coll,
collection_table AS descendant_coll,
role_table,
membership_table

WHERE
role_table.user_id = {source_user_id} AND
role_table.collection_id = ancestor_coll.id AND
membership_table.user_id = contentlog_table.user_id
membership_table.collection_id = descendant_coll.id AND
descendant_coll.lft BETWEEN ancestor_coll.lft AND ancestor_coll.rght AND
descendant_coll.tree_id = ancestor_coll.tree_id

)

Note the membership_table.user_id = contentlog_table.user_id condition, which links the role-
membership-collection hierarchy subquery into the main query. We refer to this condition as the “anchor”.

To facilitate making queries that leverage the role-membership-collection hierarchy, without needing to write custom
SQL each time, we have implemented a HierarchyRelationsFilter helper class. The class is instantiated by
passing in a queryset, and then exposes a filter_by_hierarchy method that allows various parts of the role-
membership-collection hierarchy to be constrained, and anchored back into the queryset’s main table. It then returns
a filtered queryset (with appropriate conditions applied) upon which further filters or other queryset operations can be
applied.

The signature for filter_by_hierarchy is:

def filter_by_hierarchy(self,
source_user=None,
role_kind=None,
ancestor_collection=None,
descendant_collection=None,
target_user=None):

With the exception of role_kind (which is either a string or list of strings, of role kinds), these parameters accept
either:

2.4. Themes 95

Kolibri, Release 0.4

• A model instance (either a FacilityUser or a Collection subclass, as appropriate) or its ID

• An F expression that anchors some part of the hierarchy back into the base queryset model (the simplest usage
is just to put the name of a field from the base model in the F function, but you can also indirectly reference
fields of related models, e.g. F("collection__parent"))

For example, the ContentLog query described above (“give me all ContentLogs associated with
FacilityUsers for which Source User has an admin role”) can be implemented as:

contentlogs = HierarchyRelationsFilter(ContentLog.objects.all()).filter_by_hierarchy(
source_user=my_source_user, # specify the specific user to be the source user
role_kind=role_kinds.ADMIN, # make sure the Role is an admin role
target_user=F("user"), # anchor the target user to the "user" field of the

→˓ContentLog model
)

Managing Roles and Memberships

User and Collection models have various helper methods for retrieving and modifying roles and memberships:

• To get all the members of a collection (including those of its descendant collections), use Collection.
get_members().

• To add or remove roles/memberships, use the add_role, remove_role, add_member, and
remove_member methods of Collection (or the additional convenience methods, such as add_admin,
that exist on the proxy models).

• To check whether a user is a member of a Collection, use KolibriAbstractBaseUser.
is_member_of (for DeviceOwner, this always returns False)

• To check whether a user has a particular kind of role for a collection or another
user, use the has_role_for_collection and has_role_for_user methods of
KolibriAbstractBaseUser.

• To list all role kinds a user has for a collection or another user, use the get_roles_for_collection and
get_roles_for_user methods of KolibriAbstractBaseUser.

Encoding Permission Rules

We need to associate a particular set of rules with each model, to specify the permissions that users should have
in relation to instances of that model. While not all models have the same rules, there are some broad categories
of models that do share the same rules (e.g. ContentInteractionLog, ContentSummaryLog, and UserSessionLog –
collectively, “User Log Data”). Hence, it is useful to encapsulate a permissions “class” that can be reused across
models, and extended (through inheritance) if slightly different behavior is needed. These classes of permissions are
defined as Python classes that inherit from kolibri.auth.permissions.base.BasePermissions, which defines the following
overridable methods:

• The following four Boolean (True/False) permission checks, corresponding to the “CRUD” opera-
tions: - user_can_create_object - user_can_read_object - user_can_update_object -
user_can_delete_object

• The queryset-filtering readable_by_user_filter method, which takes in a queryset and returns a query-
set filtered down to just objects that should be readable by the user.

96 Chapter 2. Developer Guide

https://docs.djangoproject.com/en/1.9/ref/models/expressions/#f-expressions

Kolibri, Release 0.4

Associating Permissions with Models

A model is associated with a particular permissions class through a “permissions” attribute defined on the top level
of the model class, referencing an instance of a Permissions class (a class that subclasses BasePermissions).
For example, to specify that a model ContentSummaryLog should draw its permissions rules from the
UserLogPermissions class, modify the model definition as follows:

class ContentSummaryLog(models.Model):

permissions = UserLogPermissions()

<remainder of model definition>

Specifying Role-Based Permissions

Defining a custom Permissions class and overriding its methods allows for arbitrary logic to be used in defining the
rules governing the permissions, but many cases can be covered by more constrained rule specifications. In particular,
the rules for many models can be specified in terms of the role- based permissions system described above. A built-
in subclass of BasePermissions, called RoleBasedPermissions, makes this easy. Creating an instance of
RoleBasedPermissions involves passing in the following parameters:

• Tuples of role kinds that should be granted each of the CRUD permissions, encoded in the following parameters:
can_be_created_by, can_be_read_by, can_be_updated_by, can_be_deleted_by.

• The target_field parameter that determines the “target” object for the role-checking; this should be the
name of a field on the model that foreign keys either onto a FacilityUser or a Collection. If the model
we’re checking permissions for is itself the target, then target_field may be ".".

An example, showing that read permissions should be granted to a coach or admin for the user referred to by the
model’s “user” field. Similarly, write permissions should only be available to an admin for the user:

class UserLog(models.Model):

permissions = RoleBasedPermissions(
target_field="user",
can_be_created_by=(role_kinds.ADMIN,),
can_be_read_by=(role_kinds.COACH, role_kinds.ADMIN),
can_be_updated_by=(role_kinds.ADMIN,),
can_be_deleted_by=(role_kinds.ADMIN,),

)

<remainder of model definition>

Built-in Permissions Classes

Some common rules are encapsulated by the permissions classes in kolibri.auth.permissions.general.
These include:

• IsOwn: only allows access to the object if the object belongs to the requesting user (in other words, if the object
has a specific field, field_name, that foreign keys onto the user)

• IsFromSameFacility: only allows access to object if user is associated with the same facility as the object

• IsSelf: only allows access to the object if the object is the user

2.4. Themes 97

Kolibri, Release 0.4

A general pattern with these provided classes is to allow an argument called read_only, which means that rather
than allowing both write (create, update, delete) and read permissions, they will only grant read permission. So, for ex-
ample, IsFromSameFacility(read_only=True)will allow any user from the same facility to read the model,
but not to write to it, whereas IsFromSameFacility(read_only=False) or IsFromSameFacility()
would allow both.

Combining Permissions Classes

In many cases, it may be necessary to combine multiple permission classes together to define the ruleset
that you want. This can be done using the Boolean operators | (OR) and & (AND). So, for example,
IsOwn(field_name="user") | IsSelf() would allow access to the model if either the model has a for-
eign key named “user” that points to the user, or the model is itself the user model. Combining two permission classes
with &, on the other hand, means both classes must return True for a permission to be granted. Note that permissions
classes combined in this way still support the readable_by_user_filter method, returning a queryset that is
either the union (for |) or intersection (&) of the querysets that were returned by each of the permissions classes.

Checking Permissions

Checking whether a user has permission to perform a CRUD operation on an object involves calling the appropriate
methods on the KolibriAbstractBaseUser (FacilityUser or DeviceOwner) instance. For instance, to
check whether request.user has delete permission for ContentSummaryLog instance log_obj, you could do:

if request.user.can_delete(log_obj):
log_obj.delete()

Checking whether a user can create an object is slightly different, as you may not yet have an instance of the model.
Instead, pass in the model class and a dict of the data that you want to create it with:

data = {"user": request.user, "content_id": "qq123"}
if request.user.can_create(ContentSummaryLog, data):

ContentSummaryLog.objects.create(**data)

To efficiently filter a queryset so that it only includes records that the user should have permission to read (to make
sure you’re not sending them data they shouldn’t be able to access), use the filter_readable method:

all_results = ContentSummaryLog.objects.filter(content_id="qq123")
permitted_results = request.user.filter_readable(all_results)

Note that for the DeviceOwner model, these methods will simply return True (or unfiltered querysets), as device
owners are considered superusers. For the FacilityUser model, they defer to the permissions encoded in the
permission object on the model class.

Using Kolibri Permissions with Django REST Framework

There are two classes that make it simple to leverage the permissions system described above within a Django REST
Framework ViewSet, to restrict permissions appropriately on API endpoints, based on the currently logged-in user.

KolibriAuthPermissions is a subclass of rest_framework.permissions.BasePermission that
defers to our KolibriAbstractBaseUser permissions interface methods for determining which object-level
permissions to grant to the current user:

• Permissions for ‘POST’ are based on request.user.can_create

98 Chapter 2. Developer Guide

Kolibri, Release 0.4

• Permissions for ‘GET’, ‘OPTIONS’ and ‘HEAD’ are based on request.user.can_read (Note that
adding KolibriAuthPermissions only checks object-level permissions, and does not filter queries made
against a list view; see KolibriAuthPermissionsFilter below)

• Permissions for ‘PUT’ and ‘PATCH’ are based on request.user.can_update

• Permissions for ‘DELETE’ are based on request.user.can_delete

KolibriAuthPermissions is a subclass of rest_framework.filters.BaseFilterBackend that fil-
ters list views to include only records for which the current user has read permissions. This only applies to ‘GET’
requests.

For example, to use the Kolibri permissions system to restrict permissions for an API endpoint providing access to a
ContentLog model, you would do the following:

from kolibri.auth.api import KolibriAuthPermissions, KolibriAuthPermissionsFilter

class FacilityViewSet(viewsets.ModelViewSet):
permission_classes = (KolibriAuthPermissions,)
filter_backends = (KolibriAuthPermissionsFilter,)
queryset = ContentLog.objects.all()
serializer_class = ContentLogSerializer

Models

2.4.4 User Management

For now, this is a high-level spec that identifies the major components of a work-in-progress part of Kolibri. It is a
mixture of a descriptive specification for an app, as well as how it interacts with the kolibri.auth back-end layer below
it. Eventually, it could serve as a user manual.

The User Management allows a user with sufficient permissions to do a number of things related to managing accounts
and roles. It’s divided into two distinct sections

Learner Management

Learner Management provides an interface for:

1. Viewing Classrooms and Learner Groups and a list of the learners they contain.

2. Creating new Classrooms.

3. Creating new Learner Groups.

4. Creating new user accounts and assigning them to Classrooms and Learner Groups.

5. Assigning existing accounts individually or in batches to Classrooms and Learner Groups.

6. Editing a learner’s details, including resetting their password.

The main interface of the Learner Management app is currently described in the mailing list thread “Learner Manage-
ment app in Kolibri”. We assume the session user (the user who is visiting Learner Management) has write permissions
for any object represented in the Learner Management interface. For example, only classrooms and learner groups for
which the user has write permissions will be displayed in the Classroom and Group Selectors. In practice this could
mean that when the page loads a list of classrooms for which the session user is either a coach or admin will be fetched.
At the time of this writing, the only source to determine which users enjoy which permissions is the kolibri.auth
test suite.

2.4. Themes 99

Kolibri, Release 0.4

Note: Roadmap: Moving forward, we are making digital prototypes for Learner Management. The aim is to get
quality feedback from likely users to inform the design. IMO it is premature to consider a design as stable prior to such
feedback. Role Management should be given a similar treatment – quickly create digital prototypes and get quality
feedback.

Learner Management has several conceptual parts. These may not reflect how they’re divided as Vue components,
so I try to reference the current implementation below. The application corresponds to management/assets/
app-root.vue and has several subcomponents.

Learner Roster

Displays a list of learners determined by the current selectors and filters. Will update automatically based on user
interaction with the selectors and filters. Each item in this list corresponds to a learner and has:

• A checkbox for bulk-selecting learners. Selecting multiple learners enables some actions described below.

• A last name, first name clickable link. Doing so summons a detail view modal for the learner.

• A manage button which summons a class and group management modal for that student.

Note: The roster described here corresponds to user-page.vue.

The detail view modal displays learner account data and provides a mechanism to reset a learner’s password.

The class and group management modal displays a list classrooms to which the student belongs. Each classroom has
a dropdown menu for assinging that learner to a specific group within that classroom. Additionally each classroom
has a checkbox for bulk-selection. Bulk-selecting permits the session user to remove the learner from the selected
clasrooms. Clicking “add” reveals classrooms to which the user doesn’t already belong. The learner may be added
to those classrooms by selecting them with the corresponding checkboxes, and simultaneously select a group through
the associated group dropdown.

Note: UI simplification: There are a number of simplifying assumptions made here. For one, kolibri.auth permits
a learner to belong to multiple groups within a classroom. Here we only allow a learner to belong to one group per
classroom in order to simplify the UI.

Note: UI simplification: Secondly, kolibri.auth has no notion of being “ungrouped”. The kolibri.auth module
defines a Membership model that associates users to Learner Group and Classroom models. For the purposes of this
app, when a learner is assigned to a group, then a Membership object to the underlying Learner Group object is created.
Membership in a Learner Group implies the user is a member of the containing Classroom as well. When a learner is
assigned to the “Ungrouped” group of a Classroom, it correponds to creating a Membership object associated with the
Classroom. In all cases re-assigning a user to a different group should both destroy the existing Membership object
and create a new one.

Warning: Roadmap: I consider the detail view and class and group management modals to be somewhat
unsettled prior to getting quality user feedback.

100 Chapter 2. Developer Guide

Kolibri, Release 0.4

Selectors and filters

The UI allows the list of learner in the roster to be filtered. This includes:

• A classroom selector. This is populated by a list of classrooms for which the session user has write permissions,
and the special option “All classrooms”. The list of learners is filtered to only show learners who are members
of the selected classroom, or all learners if “All classrooms” is selected.

• A group selector. This is disabled if “All classrooms” is selected. Otherwise it is populated with the list of
Learner Groups in the classroom with the special option “All groups”. This filters the list of learner analogously
to the classroom selector.

• Potentially other filters, for example listing learners in alphabetical or reverse-alphabetical order.

Miscellaneous widgets

Next to the classroom and group selectors are “add” and “remove” buttons. Clicking “add” summons a modal form
for creating a new classroom and a new learner group within the currently selected classroom, respectively. The
“add” button for groups is disabled if “All classrooms” is selected. Clicking “remove” deletes the currently selected
classroom or learner group, respectively. The corresponding “delete” button is disabled if “All classrooms” or “All
groups” is selected.

Space is reserved next to the roster for an information panel to display elaborating information based on the current
selection. Right now it includes only the total # of students which match the criteria determined by the selectors and
filters.

Facility Management

Facility Management (previously referred to as Role Management) will provide an interface for managing user Roles
in a Facility. Users may multiply possess Coach and Admin roles for a Facility or Classrooms within a Facility.

Kolibri user data is fundamentally divided into Facilities – a user who belongs to one Facility can never see or interact
with user account data from another Facility. However Kolibri provides another user type, called a Device Owner.
Device Owners differ from Facility Users in the following ways:

• Device Owners are not syncable from device to device – this account type belongs to one physical machine only.
In contrast, Facility Users account and their associated data are syncable.

• Device Owners enjoy every permission. They can be considered Admins for every Facility on the device.

• Device Owners may see and edit all Facilities on their Device, including choosing which Facility data sets are
present on a physical device.

The purview of the Facility Management app is to allow users to give and revoke the Coach and Admin roles for the
Facility they belong to and the various Classrooms in that Facility. Moreover the functionality of the app is slightly
differnt if the session user is a device owner:

• If the session user is a Device Owner, the user may select which Facility to manage. Facility Users may only
manage their own Facility.

• A Device Owner may edit or delete a Facility. Editing a Facility can change it’s details like name, description,
etc. Deleting a Facility does not destroy it – it is just removed from that device, so that Facility Users tied to that
Facility may no longer log in.

Note: Roadmap: Jessica has begun designing this. See the invision prototype.

2.4. Themes 101

https://projects.invisionapp.com/share/YJ75P75QH

Kolibri, Release 0.4

2.4.5 Front-end Asset Loading

Asset pipelining is done using Webpack - this allows the use of require to import modules - as such all written code
should be highly modular, individual files should be responsible for exporting a single function or object.

There are two distinct entities that control this behaviour - a Kolibri Hook on the Python side, which manages the
registration of the frontend code within Django (and also facilitates building of that code into compiled assets with
Webpack) and a Kolibri Module (a subclass of KolibriModule) on the JavaScript side (see Front-end Architecture).

Kolibri has a system for synchronously and asynchronously loading these bundled JavaScript modules which is me-
diated by a small core JavaScript app, kolibriGlobal. Kolibri Modules define to which events they subscribe,
and asynchronously registered Kolibri Modules are loaded by kolibriGlobal only when those events are trig-
gered. For example if the Video Viewer’s Kolibri Module subscribes to the content_loaded:video event, then when
that event is triggered on kolibriGlobal it will asynchronously load the Video Viewer module and re-trigger the
content_loaded:video event on the object the module returns.

Synchronous and asynchronous loading is defined by the template tag used to import the JavaScript for the Kolibri
Module into the Django template. Synchronous loading merely inserts the JavaScript and CSS for the Kolibri Module
directly into the Django template, meaning it is executed at page load.

This can be achieved in two ways using tags defined in kolibri/core/webpack/templatetags/webpack_tags.py.

The first way is simply by using the webpack_asset template tag.

The second way is if a Kolibri Module needs to load in the template defined by another plugin or a core part of Kolibri,
a template tag and hook can be defined to register that Kolibri Module’s assets to be loaded on that page. An example
of this is found in the base.html template using the webpack_base_assets tag.

This relies on the following function to collect all registered Kolibri Modules and load them synchronously:
kolibri.core.webpack.utils.webpack_asset_render

Asynchronous loading can also, analogously, be done in two ways. Asynchronous loading registers a Kolibri Module
against kolibriGlobal on the frontend at page load, but does not load, or execute any of the code until the events
that the Kolibri Module specifies are triggered. When these are triggered, the kolibriGlobal will load the Kolibri
Module and pass on any callbacks once it has initialized. Asynchronous loading can be done either explicitly with a
template tag that directly imports a single Kolibri Module using webpack_base_async_assets.

2.4.6 User Logs

This is a core module found in kolibri/logger.

Concepts and Definitions

Content Interaction Log

This Model provides a record of an interaction with a content item. As such, it should encode the channel that the
content was in, and the id of the content. Further, it may be required to encode arbitrary data in a JSON blob that is
specific to the particular content type.

As a typical use case, a ContentInteractionLog object might be used to record an interaction with one instance of an
exercise (i.e. one question, but possibly multiple attempts within the same session), or a single session of viewing a
video.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

102 Chapter 2. Developer Guide

Kolibri, Release 0.4

Content Summary Log

This Model provides a summary of all interactions of a user with a content item. As such, it should encode the channel
that the content was in, and the id of the content. Further, it may be required to encode arbitrary data in a JSON blob
that is specific to the particular content type.

As a typical use case, a ContentSummaryLog object might be used to provide summary data about the state of com-
pletion of a particular exercise, video, or other content.

When a new InteractionLog is saved, the associated SummaryLog is updated at the same time. This means that the
SummaryLog acts as an aggregation layer for the current state of progress for a particular piece of content.

To implement this, a content viewer app would define the aggregation function that summarizes interaction logs into
the summary log. While this could happen in the frontend, it would probably be more efficient for this to happen on
the server side.

Finally, these Logs will use MorangoDB to synchronize their data across devices - in the case where two summary
logs from different devices conflict, then the aggregation logic would be applied across all interaction logs to create a
consolidated summary log.

Content Rating Log

This Model provides a record of user feedback on content.

As a typical use case, a ContentRatingLog object might be used to record user feedback data about any content.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

User Session Log

This Model provides a record of an user session in Kolibri. As such, it should encode the channels interacted with, the
length of time engaged, and the pages visited.

As a typical use case, a UserSessionLog object might be used to record which pages a user visits, and how long the
user is logged on for.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

Implementation Details

Permissions

See Encoding Permission Rules.

Models

2.5 References

2.5.1 Files and Directories

.cache/. . . Testing-related, and ignored by git. TODO - what does it contain?

.eggs/. . . Packaging-related, and ignored by git. TODO - what does it contain?

2.5. References 103

Kolibri, Release 0.4

.github/. . . These are files used by GitHub to generate templates for things like new pull requests and issues.

.tox/. . . Tox is a tool for testing software in a range of environments - for example using different versions of Python
and Node.

This directory is ignored by git.

TODO - what does it contain?

dist-packages-cache Packaging-related, and ignored by git. TODO - what does it contain?

dist-packages-temp Packaging-related, and ignored by git. TODO - what does it contain?

docs/. . . reStructuredText-based documentation, along with Sphinx-based build code

frontend_build/. . . Code for integrating Kolibri’s plugin system with webpack instrumentation for bundling client-
side dependencies.

karma_config/. . . Configuration for Karma, our client-side unit test framework

kolibri/. . . main code-base, a Django application

requirements/. . . Python dependency files for PIP

test/. . . helper files for running tests in Travic CI TODO - is this correct?

.editorconfig general editor configuration file

.eslintrc.js configuration file for ESLint, our client-side javascript linter

.gitignore standard .gitignore file

.htmlhintrc configuration for our HTML linter, HTMLHint

.pre-commit-config.yaml configuration for our pre-commit hooks

.stylintrc configuration for our Stylus linter, Stylint

.travis.yml configuration for Travis

AUTHORS.rst, CHANGELOG.rst, CONTRIBUTING.rst reStructuredText-formatted files. Also imported by the
generated /docs

LICENSE plain-text license files

Makefile wrapper for some scripts, including building packages and docs

MANIFEST.in list of non-python files to include in the Python package

package.json javascript dependencies, helper scripts, and configuration

pytest.ini configuration files for pytest

pytest_runner-2.7.1-py2.7.egg ?

README.rst reStructuredText-formatted file readme

requirements.txt Python PIP dependency requirements, simply redirects to requirements/base.txt

setup.cfg ?

setup.py configuration for Python package related to setuptools

tox.ini configuration for our Tox test environments

104 Chapter 2. Developer Guide

https://help.github.com/articles/helping-people-contribute-to-your-project/
https://tox.readthedocs.io/en/latest/
http://www.sphinx-doc.org/en/stable/
https://webpack.github.io/
https://karma-runner.github.io/0.13/index.html
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://travis-ci.org/
http://editorconfig.org/
http://eslint.org/
https://git-scm.com/docs/gitignore
http://htmlhint.com/
http://pre-commit.com/
http://stylus-lang.com/
https://rosspatton.github.io/stylint/
https://docs.travis-ci.com/user/customizing-the-build/
http://pytest.org/latest/
https://pythonhosted.org/an_example_pypi_project/setuptools.html
https://tox.readthedocs.io/en/latest/

Kolibri, Release 0.4

2.5.2 Glossary

Words with special meanings in the Kolibri ecosystem.

App A Kolibri ‘app’ is a special sort of plugin which provides a top-level URL and a self-contained single-page
javascript application. Each app attaches a single root view component to the HTML returned by a skeleton
Django template.

Examples of apps are the Learn, Admin, and Coach Reports apps.

Bundle ‘Bundle’ is a webpack term, referring to a collection of client-side assets. See Front-end Asset Loading for
more info.

Component A ‘view component’ is a composable UI element on the client-side, defined using Vue.js components.

Components are defined using using HTML, other components, styling, internationalized text, internal logic,
and – if necessary – internal state. Every component has an interface defined by its input parameters, events,
and slots that can take arbitrary HTML to render in itself.

See Front-end Architecture for more info.

Hook A ‘hook’ is the server-side mechanism by which plugins interact with each other and with the core app. Hooks
allow behaviors and interactions to be defined abstractly by Kolibri core and then implemented concretely by
plugins.

See Plugins for more info.

Plugin Kolibri ‘plugins’ define both functionality client- and server-side functionality. They can be enabled and
disabled on a per-installation basis. Plugins are decoupled from each other, but are dependent on the core
Kolibri application.

In theory, any plugin can be disabled and the application should still function without error, albeit limited
functionality.

Examples of plugins include the Learn application, and a content renderer for vector video.

See Plugins for more info.

2.5. References 105

Kolibri, Release 0.4

106 Chapter 2. Developer Guide

CHAPTER 3

Release Notes

Changes are ordered reverse-chronologically.

3.1 0.4.9

• User experience improvements for session timeout

3.2 0.4.8

• Prevent session timeout if user is still active

• Fix exam completion timestamp bug

• Prevent exercise attempt logging crosstalk bug

• Update Hindi translations

3.3 0.4.7

• Fix bug that made updating existing Django models from the frontend impossible

3.4 0.4.6

• Fix various exam and progress tracking issues

• Add automatic sign-out when browser is closed

• Fix search issue

107

Kolibri, Release 0.4

• Learner UI updates

• Updated Hindi translations

3.5 0.4.5

• Frontend and backend changes to increase performance of the Kolibri application under heavy load

• Fix bug in frontend simplified login code

3.6 0.4.4

• Fix for Python 3 compatibility in Whl, Windows and Pex builds #1797

• Adds Mexican Spanish as an interface language

• Upgrades django-q for bug fixes

3.7 0.4.3

• Speed improvements for content recommendation #1798

3.8 0.4.2

• Fixes for morango database migrations

3.9 0.4.1

• Makes usernames for login case insensitive #1733

• Fixes various issues with exercise rendering #1757

• Removes wrong CLI usage instructions #1742

3.10 0.4.0

• Class and group management

• Learner reports #1464

• Performance optimizations #1499

• Anonymous exercises fixed #1466

• Integrated Morango, to prep for data syncing (will require fresh database)

• Adds Simplified Login support as a configurable facility flag

108 Chapter 3. Release Notes

Kolibri, Release 0.4

3.11 0.3.3

• Turns video captions on by default

3.12 0.3.2

• Updated translations for Portuguese and Kiswahili in exercises.

• Updated Spanish translations

3.13 0.3.2

• Portuguese and Kaswihili updates

• Windows fixes (mimetypes and modified time)

• VF sidebar translations

3.14 0.3.0

• Add support for nested URL structures in API Resource layer

• Add Spanish and Swahili translations

• Improve pipeline for translating plugins

• Add search back in

• Content Renderers use explicit new API rather than event-based loading

3.15 0.2.0

• Add authentication for tasks API

• Temporarily remove ‘search’ functionality

• Rename ‘Learn/Explore’ to ‘Recommended/Topics’

• Add JS-based ‘responsive mixin’ as alternative to media queries

• Replace jeet grids with pure.css grids

• Begin using some keen-ui components

• Update primary layout and navigation

• New log-in page

• User sign-up and profile-editing functionality

• Versioning based on git tags

• Client heartbeat for usage tracking

• Allow plugins to override core components

3.11. 0.3.3 109

Kolibri, Release 0.4

• Wrap all user-facing strings for I18N

• Log filtering based on users and collections

• Improved docs

• Pin dependencies with Yarn

• ES2015 transpilation now Bublé instead of Babel

• Webpack build process compatible with plugins outside the kolibri directory

• Vue2 refactor

• HTML5 app renderer

3.16 0.1.1

• SVG inlining

• Exercise completion visualization

• Perseus exercise renderer

• Coach reports

3.17 0.1.0 - MVP

• Improved documentation

• Conditional (cancelable) JS promises

• Asset bundling performance improvements

• Endpoint indexing into zip files

• Case-insensitive usernames

• Make plugins more self-contained

• Client-side router bug fixes

• Resource layer smart cache busting

• Loading ‘spinner’

• Make modals accessible

• Fuzzy searching

• Usage data export

• Drive enumeration

• Content interaction logging

• I18N string extraction

• Channel switching bug fixes

• Modal popups

• A11Y updates

• Tab focus highlights

110 Chapter 3. Release Notes

Kolibri, Release 0.4

• Learn app styling changes

• User management UI

• Task management

• Content import/export

• Session state and login widget

• Channel switching

• Setup wizard plugin

• Documentation updates

• Content downloading

3.18 0.0.1 - MMVP

• Page titles

• Javascript logging module

• Responsiveness updates

• A11Y updates

• Cherrypy server

• Vuex integration

• Stylus/Jeet-based grids

• Support for multiple content DBs

• API resource retrieval and caching

• Content recommendation endpoints

• Client-side routing

• Content search

• Video, Document, and MP3 content renderers

• Initial VueIntl integration

• User management API

• Vue.js integration

• Learn app and content browsing

• Content endpoints

• Automatic inclusion of requirements in a static build

• Django JS Reverse with urls representation in kolibriGlobal object

• Python plugin API with hooks

• Webpack build pipeline, including linting

• Authentication, authorization, permissions

• Users, Collections, and Roles

3.18. 0.0.1 - MMVP 111

Kolibri, Release 0.4

112 Chapter 3. Release Notes

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/learningequality/kolibri/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

113

https://github.com/learningequality/kolibri/issues

Kolibri, Release 0.4

4.1.4 Write Documentation

Kolibri could always use more documentation, whether as part of the official Kolibri docs, in docstrings, or even on
the web in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/learningequality/kolibri/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up kolibri for local development.

1. Fork the kolibri repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/kolibri.git

3. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, check that your changes pass style and unit tests, including testing other
Python versions with tox, and testing any Javascript changes with npm:

$ tox
$ npm test

To get tox, just pip install it. To get node (and hence npm) install it from https://nodejs.org.

5. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. For your pull request description on Github, consider using our template, see Pull Request Template.

2. Remember to add yourself to AUTHORS.rst and fill in CHANGELOG.rst with your feature or bug fix.

114 Chapter 4. Contributing

https://github.com/learningequality/kolibri/issues
https://github.com/learningequality/kolibri
https://nodejs.org

Kolibri, Release 0.4

3. The pull request should include tests.

4. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

5. The pull request should work for Python 2.7, 3.4, and 3.5, and for PyPy. PRs will be automatically tested, we
recommend running the tox command locally before submitting your PR for review.

4.3.1 Pull Request Template

Copy-paste the following to your Pull Request description on Github:

Summary

Short description

TODO

- [] Have tests been written for the new code?
- [] Has documentation been written/updated?
- [] New dependencies (if any) added to requirements file
- [] Add an entry to CHANGELOG.rst
- [] Add yourself it AUTHORS.rst if you don't appear there

Reviewer guidance

If you PR has a significant size, give the reviewer some helpful remarks

Issues addressed

List the issues solved or partly solved by the PR

Documentation

If the PR has documentation, link the file here (either .rst in your repo or if built
→˓on Read The Docs)

Screenshots (if appropriate)

They're nice. :)

4.4 Tips

To run a subset of tests:

$ py.test test/test_kolibri.py

4.4. Tips 115

Kolibri, Release 0.4

116 Chapter 4. Contributing

CHAPTER 5

Credits

5.1 Development Lead and Copyright Holder

• Learning Equality – info@learningequality.org

5.2 Community

Please feel free to add your name on this list if you do a PR!

• Benjamin Bach (benjaoming)

• Michael Gallaspy (MCGallaspy)

• Richard Tibbles (rtibbles)

• Jamie Alexandre (jamalex)

• David Cañas (dxcanas)

• Eli Dai (66eli77)

• Devon Rueckner (indirectlylit)

• Rafael Aguayo (ralphiee22)

• Christian Memije (christianmemije)

• Radina Matic (radinamatic)

117

mailto:info@learningequality.org

Kolibri, Release 0.4

118 Chapter 5. Credits

CHAPTER 6

Kolibri

119

https://pypi.python.org/pypi/kolibri/
https://travis-ci.org/learningequality/kolibri
http://codecov.io/github/learningequality/kolibri?branch=master
http://kolibri.readthedocs.org/en/latest/

Kolibri, Release 0.4

120 Chapter 6. Kolibri

CHAPTER 7

What is Kolibri?

Kolibri is a Learning Management System / Learning App designed to run on low-power devices, targeting the needs
of learners and teachers in contexts with limited infrastructure. A user can install Kolibri and serve the app on a
local network, without an internet connection. Kolibri installations can be linked to one another, so that user data and
content can be shared. Users can create content for Kolibri and share it when there is network access to another Kolibri
installation or the internet.

At its core, Kolibri is about serving educational content. A typical user (called a Learner) will log in to Kolibri to
consume educational content (videos, documents, other multimedia) and test their understanding of the content by
completing exercises and quizzes, with immediate feedback. A user’s activity will be tracked to offer individualized
insight (like “next lesson” recommendations), and to allow user data to be synced across different installations – thus
a Kolibri learner can use his or her credentials on any linked Kolibri installation, for instance on different devices at a
school.

See https://learningequality.org/kolibri/ for more info.

121

https://learningequality.org/kolibri/

Kolibri, Release 0.4

122 Chapter 7. What is Kolibri?

CHAPTER 8

How can I use it?

Kolibri is under active development and is not yet ready to be used. In the meantime, take a look at KA-Lite, Kolibri’s
predecessor which is already deployed around the world.

123

https://learningequality.org/ka-lite/

Kolibri, Release 0.4

124 Chapter 8. How can I use it?

CHAPTER 9

How can I contribute?

Warning: We welcome new contributors but since Kolibri is still in development, the API is not yet completely
ready to integrate external plugins. Please start by:

• Reading our Developer Documentation available online, and in the docs/ directory.

• Contacting us on the Mailing list: Google groups.

• or via IRC: #kolibri on Freenode.

125

http://kolibri.readthedocs.io/en/develop/dev/getting_started.html
https://groups.google.com/a/learningequality.org/forum/#!forum/dev

	User Guide
	Developer Guide
	Release Notes
	Contributing
	Credits
	Kolibri
	What is Kolibri?
	How can I use it?
	How can I contribute?

