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This repository contains:

• A reproduction of (Swier & Stevenson, 2005) results for recent versions of resources and NLP tools (MST
Parser, latest VerbNet, FrameNet and VN-FN mappings).

• Some improvements of our own

• Experiments on domain-specific knowledge-based semantic role labeling

Documentation:

Contents 1
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CHAPTER 1

Resources parsing

1.1 VerbNet parsing

The parsing of VerbNet is done by the verbnetreader module. It reads every XML file in data/verbnet3-2, each
of which represents a VerbNet root class and all its subclasses.

For each frame found in every class and subclasses of a file, a VerbnetOfficialFrame object is instanciated and
associated with every member verb of the class and its subclasses.

The difficult part is to build the structure and the role list of the VerbnetOfficialFrame, that is, to convert the
primary attribute of the DESCRIPTION element to an acceptable list of syntactic elements (that is, compatible with
FrameNet annotations), and to retrieve the roles of the elements that have one.

The following operations are applied to the elements of the primary attribute:

• everything that is after a ”.” or a “-” is removed (for instance, NP.theme becomes NP, S-Quote becomes S)

• adverbs are removed from the structure (not handled yet)

• “v” is replaced by “V” (no distinction between transitive and non-transitive verbs needed)

• “a/b” is interpreted as [a or b].

• every preposition is made explicit. That means that “S_INF” is replaced with “to S” and more importantly, “PP”
is replaced by “prep NP”.

• every “PP S_ING” is converted to “prep S_ING” (and not “prep NP S_ING”)

In order to know which preposition can be used in a PP, which is not always explicit in the primary structure, we look
into the SYNTAX element of the frame. The information can take three different forms :

• a LEX element, which value attribute is the only acceptable preposition

• a PREP element with a value attribute, which is the only acceptable preposition

• a PREP element whitout value attribute, but which contains selective restrictions data. In this case, the type
attribute of the SELRESTRS/SELREST element is the class of acceptable prepositions

Sometimes, keywords (prepositions or what/who/it/...) whom presence cannot be deduced from the primary structure
appear in the SYNTAX element. That is why for every element of the primary structure, we have to find the position of
the matching element of the SYNTAX and add any keywords that occured between this position and the previous one
to our final structure if it was not present in the primary structure. Note that case it is also possible to find keywords in
the primary structure and not in the SYNTAX, so a parsing based on the SYNTAX is not necessarily a better idea.

The resulting structure is the list of everything that will have an importance in the frame matching, that is NP, V, S and
also every required preposition (which, as, ...). Those emplacements are represented by strings unless there are several
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possibilities (for instance, when a class of preposition can introduced a NP). In that case, the element is represented
by the set of every acceptable string.

We use two sources of informations to build the role list:

• the value attributes of the elements of SYNTAX where it is present

• everything that is after a ”.” in the primary structure. For instance, we extract “theme” in “NP.theme”. We
make sure that the extracted role is one of the possible role listed in the THEMROLES element (after some case
modifications), to avoid extracting every “attribute” of “PP.attribute”.

Conflicts can occur between the sources of information. For instance, in calibrate_cos-45.6, reading the
structure of the frame NP.attribute V NP.extent leads to the conclusion that there are two slots with the role
Attribute and Extent. In the SYNTAX element, another NP with a Patient role is present between the first
NP and the verb. For those cases, as the final structure comes mainly from the primary structure, we trust the roles
found in the primary element, and the second element keeps an Extent role.

1.2 FrameNet parsing

1.2.1 Fulltext corpus data

The parsing of FrameNet mainly consists in instanciating FrameInstance objects from FrameNet’s XML cor-
pus. After all steps described below, the frame occurrence is translated into a VerbnetFrameOccurrence, an
object close enough to VerbnetOfficialFrame to allow for frame matching. using the content of the XML in
data/fndata-1.5/fulltext/.

The FrameNet fulltext corpus in stored in XML files which contain many sentence elements, each of which contains
one or more frames. The text of the sentence can be found in the text attribute, and each frame-specific data is embed
in an annotationSet element.

Neither the predicate nor any argument is expressed as text: what we recover are the offset of the first and last characters
of them (with the convention that the first character’s offset is 0).

• the frame’s name can be recovered in the frameName attribute of the annotationSet element

• the predicate’s lemma can be recovered in the luName attribute of the annotationSet element

• the predicate’s start and end can be recovered in the layer element which name is Target

• the arguments’ starts, ends and correct roles can be recovered in the layer element which name is FE (Frame
Elements)

• the arguments’ phrase types can be recovered in the layer element which name is PT. The only reliable sign
that a label element in the PT layer refers to a given argument is that it has the same start and end
attribute (ie, the order can differ).

Some arguments are marked as non-instanciated. In this case, the label element has an itype attribute, which value
indicates the type of null instanciation (this type is currently not taken into account). These arguments are loaded into
the frame structure but never used at any further point in the program.

There are many other things that we have to be careful about:

• not every annotated frame is a verbal frame. All non-verbal frames are discarded. We used to identify verbal
frames by checking that the luName attribute of the annotationSet element ends with ”.v”, but we realize
that their are many cases were this yields strange results. We now use the part of speech annotations available in
the PENN layer, which can be equal to “MD”, “VV”, “VVD”, “VVG”, “VVN”, “VVP” or “VVZ” for verbs.

4 Chapter 1. Resources parsing
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• we need to attribute a sentence ID to every extracted frame, so that we can later recover syntactic data about it
in the parsed corpus. Some sentences appears twice in the fulltext corpus, and there will be only one matching
sentence in the parsed corpus. So the two identical sentence have to be given the same ID.

• some annotation sets are empty or incomplete. For these, the status attribute of the annotationSet is set
to UNANN.

• 14 argument lack a matching phrase type label. In this case, we are forced to discard the frame.

• there are sometimes multiple layers of annotations with overlapping arguments. This is not a problem as long
are every layer is fully annotated, which is not always the case. In 120 cases, a secondary layer lacks phrase
type data.

• 35 frames do not contain any instanciated arguments. They are discarded during the frame-matching process.

• In 4 frames, the predicate itself is an argument. In this case, it is marked as non-instanciated by the FrameNet
reader module.

• there is one frame whose name is “Test35” that needs to be discarded

• there is one frame for which the predicate data are missing

Also, the 705 frames which predicate cannot be found in any VerbNet class are discarded.

1.2.2 LU corpus

The framenetreader module is also able to parse the Lexical Units corpus. The task is nearly the same, except
that the sentences are embed into subCorpus elements, and that the predicate’s lemma and the frame’s name depend
on the file and are therefore not specified in the frame data. They can be retrieved as the name and frame attribute
of the file’s root element.

1.2.3 Core arguments

The fulltext corpus lacks a way to distinguish core from non-core arguments. Fortunately, the frame name is given for
every frame, so what we have to do is looking for this frame in the FrameNet frame index.

The list of core arguments for a frame is the set of every name attribute of FE elements which coreType attribute is
“Core” or “Core-Unexpressed” in the frame XML file.

For efficiency reasons, the list of every frames’ core arguments is computed at the beginning of the script by the
framenetcoreargs module.

There are no cases of mismatch of frame names or role names between the fulltext corpus and the FrameNet frame
index, except the discarded “Test35” frame.

1.2. FrameNet parsing 5
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CHAPTER 2

Frames and arguments extractions

Our aim is to be able to create a SRL program that takes raw text as input. This means that we need to find a way
to extract the verbal frames and arguments from a text for which we only have the syntactic annotations of the MST
parser.

2.1 Frame extraction

2.1.1 Verb extraction

As always, we are only interested in verbal frames which predicate is in VerbNet. Finding verbs is not very complex,
since they are the words to which our parser attribute one of the following part-of-speech:

• VB: base form (as ‘eat’ in ‘He should eat’)

• VBD: past tense

• VBG: gerund

• VBN: past participle

• VBP: present tense

• VBZ: third personn of present

• MD: modal verb

Note : these tags are different from those of the fulltext annotations. The reason for this is unclear, and this only
concerns verbs part-of-speech. As we are not currently using a part-of-speech tagger, our parser takes those POS
annotation as input, after conversion of verbal POS into the more standard tags listed above, which are those which
were used in the parser training data.

Parsing errors can already introduce some mistakes at this point, since our parser can fail at distinguishing some verbs
from nouns.

We do not want to keep every of those extracted verbs. Auxiliary verbs (as “has” and “been”’ in “He has been
working”) must be discarded. We can do this by discarding every occurence that belongs to a small list of verbs (like
“have”, “be” or “do”), but we might lose some intersting occurence of “have”. Another solution to identify auxiliary
verbs is to look for verbs which have at least one child bound to them by a VC (Verb Chain) relation and which are
not modal verbs (because construction as “I can eat an apple” seem to result in two frames in the FrameNet fulltext
annotations, so we should not discard “can” in this sentence).

We also need to determine what to do with isolated gerunds and past participles. They tend to be annotated in
FrameNet, but we are not sure that they are compatible with the frame structures that exist in VerbNet.
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2.1.2 Infinitive form

In order to find the VerbNet entries associated with a verb, we need to find its infinitive form. Our solution for that is
to use WordNet, and more specifically the morphy method of nltk.corpus.wordnet. This is done in a separate
python2 script, since nltk is not compatible with python3 yet.

Note: the relation between could and can is added manually since Morphy doesn’t detect it. We would like to remove
“can” since it’s a modal not covered by VerbNet, but it also means to fire (“She canned her secretary”) and to pocket,
which are in VerbNet.

2.1.3 Error analysis

Some of the extracted frames are not annotated in the fulltext corpus. In most cases, this is because the annotations
are not comprehensive. We analysed 50 of those frame after commit 18615 and found the following other reasons for
the lack of annotation in the corpus:

Gérondif ou participe passé adjectival : 11
Non verbe auquel le corpus fulltext donne une POS de verbe : 8
Mauvais arbre syntaxique (=> auxiliaire non détecté comme tel) : 2

Because there is no simple way to know which of the extracted frames that do not appear in the corpus should be
considered as errors, we chose not to penalize arguments extracted from those frames in the performances evaluation.

2.2 Arguments extraction

2.2.1 Standard method

Once we found a predicate, we can look for candidate argument nodes. This is done by exploring the subtree of the
syntactic tree that starts at the predicate nodes. Our parser output is not well-fitted for applying the extraction method
of Swier and Stevenson 2005 since it is dependency based and not constituency based. Our current method is to look
for node in the subtree with a deprel that is either:

• SBJ or LGS for subject

• OBJ or OPRD for objects

• BNF, DTV or PRD

We also stop exploring the subtree at each node which contains a verb, because arguments that we might find under
this node are much more likely to relate to this verb rather than the verb at the top node of the subtree.

This results in the extraction of very few PP: there are probably other dependency relations that should be extracted.

2.2.2 Heuristic method

Another method based on (Lang & Lapata, 2011) has been implemented. It results in the extraction of a greater
proportion of the annotated arguments, but also extracts much more junk arguments.

An analysis of incorrect extracted arguments and non-extracted correct arguments has been done on 50 frames and the
reason for each mistakes was noted. This was done after commit 18615

Extraits incorrects :

- argument non core : 10 (8 frames)
- argument non core perturbant le frame matching : 3 (2 frames)

8 Chapter 2. Frames and arguments extractions
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- le prédicat n’est pas un verbe : 3 (2 frame)

A cause des règles heuristiques (total : 12 arguments)
- la règle 3 n’extrait pas un argument (souvent avec des gérondifs): 6 (6 frames)
- le sujet est objet d’un autre verbe et donc pas extrait : 4 (4 frames)
- erreur d’implémentation de la règle 6 (corrigée) : 2 (2 frames)

A cause de l’arbre syntaxique (total : 8 arguments)
- verbe rattaché au mauvais auxiliaire : 2 (2 frames)
- subordonnée mal rattachée : 2 (2 frames)
- construction "help (service somebody)" -> "help (service) (somebody)" : 1 (1 frame)
- sujet pas marqué comme SBJ : 1 (1 frame)
- argument adjoint rattaché à un autre verbe : 1 (1 frame)
- structure trop complexe : 1 (1 frame)

Non extraits annotés :

- le prédicat n’est pas un verbe : 2 (2 frame)
- prédicat isolé de ses arguments par des virgules : 2 (1 frame)

A cause des règles heuristiques (total : 10 arguments)
- le sujet est objet d’un autre verbe et donc pas extrait : 4 (4 frames)
- plusieurs verbes pour un seul objet : 3 (2 frames)
- un auxiliaire (jeté par la règle 4) se trouvait être un argument : 2 (2 frames)
- non extraction du sujet d’un gérondif qualifiant un nom : 1 (1 frame)

A cause de l’arbre syntaxique (total : 12 arguments)
- objet pas rattaché au verbe : 7 (6 frames)
- verbe rattaché au mauvais auxiliaire : 2 (2 frames)
- sujet rattaché à un autre verbe : 1 (1 frame)
- subordonnée rattachée à un mauvais verbe : 1 (1 frame)
- adjoint rattaché à un autre verbe : 1 (1 frame)

2.2.3 POS conversions

We want to use the part-of-speeches of our arguments for the building of the frame’s VerbNet structure (like “NP V
that S”). The conversion from the MST output part-of-speech tags to the more limited VerbNet tags (NP, S, ADV and
keywords) is based on http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html. The exhaustive list of conversions is
part of the code of argguesser. Some of them, like the conversion of the IN tag which can be either attributed to a
preposition or a subordinating conjunction require complex operations which are hard-coded in the _get_phrase_type
method of this module.

2.3 Evaluation

The frames and arguments extractions should be evaluated conjointly if we do not want to have to answer questions
like “Do we penalize the extraction of a frame that is not in the annotated corpus but for which we did not find any
argument?”

Another question is whether we should evaluate the argument extraction process before or after the frame-matching,
if we consider that arguments for which the frame-matching finds no possible roles are discarded.

Currently, we only retrieve 1142 of the 10347 arguments of the fulltext corpus. One factor for this is that there are two
missing file in framenet_parsed:

• ANC__110CYL070.xml

2.3. Evaluation 9
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• NTI__BWTutorial_chapter1.xml

Moreover, we retrieve 1912 arguments that do not match any argument of the fulltext corpus. According partial credit
for some arguments would probably be a good idea. We need to choose how: do we trust our headword extraction
system enough to say that a partial match is an extracted argument that has the same headword as an annotated argu-
ment, or do we use a longuest-common-substring approach? The first approach carries a risk of artificially boosting
the results, since the headword extraction is itself based on the MST output.

10 Chapter 2. Frames and arguments extractions



CHAPTER 3

Debug ressources

3.1 Sample of headwords extractions

To get a sample of 100 headword extractions into a pickle file, use:

./headwordextractor.py -s 100 sample_file

Each sample contains three lines which are:

• the real argument

• the closest matching node of the syntactic tree of this sentence

• the headword

3.2 Dump module

The dump module is a script which facilitate the visualisation of the impact of a code modification or of an option on
the results.

The –dump option allows the user to dump the state of the algorithm after the frame-matching and after the probability
model instead of displaying statistics, and the dumper module can display the differences between two dump files
when called directly.

By default, only the differences that have an impact on the performance statistics are displayed (ie, slots that have a
good state like one_role_good in one dump and a bad state like no_role in another). To display every difference, use
the --all option of dumper.py.

For instance, to see the exact differences between the slot and the slot-class probability models:

./main.py --model=slot_class --dump test1

./main.py --model=slot --dump test2

./dumper.py test1 test2

Outputs:

Differences after frame matching:
Good -> bad:
Bad -> good:

Differences after probability model:
Good -> bad:

11
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Sentence: The stimulus package will jumpstart the economy and make sure it
does n’t slide into recession again .
Predicate: slide
Argument: into recession
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Motion
Role list: {’Location’}
Correct role: Goal (FrameNet) -> {’Location’} (VerbNet)
Status: one_role_good

Sentence: The stimulus package will jumpstart the economy and make sure it
does n’t slide into recession again .
Predicate: slide
Argument: into recession
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Motion
Role list: {’Result’}
Correct role: Goal (FrameNet) -> {’Location’} (VerbNet)
Status: one_role_bad

Sentence: The stimulus package will jumpstart the economy and make sure it
does n’t slide into recession again .
Predicate: slide
Argument: into recession
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Motion
Role list: {’Location’}
Correct role: Goal (FrameNet) -> {’Location’} (VerbNet)
Status: one_role_good

Sentence: The stimulus package will jumpstart the economy and make sure it
does n’t slide into recession again .
Predicate: slide
Argument: into recession
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Motion
Role list: {’Result’}
Correct role: Goal (FrameNet) -> {’Location’} (VerbNet)
Status: one_role_bad

(...)

Bad -> good:

Sentence: But Jamaica is not simply turning blindly into a small version of
its bigger brother .
Predicate: turn
Argument: into a small version of its bigger brother
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Undergo_change
Role list: {’Location’}
Correct role: Final_category (FrameNet) -> {’Result’} (VerbNet)
Status: one_role_bad
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Sentence: But Jamaica is not simply turning blindly into a small version of
its bigger brother .
Predicate: turn
Argument: into a small version of its bigger brother
Frame structure: [’NP’, ’V’, ’into’, ’NP’]
Frame name: Undergo_change
Role list: {’Result’}
Correct role: Final_category (FrameNet) -> {’Result’} (VerbNet)
Status: one_role_good

Sentence: Right , yeah , I heard about that on the news , yeah .
Predicate: hear
Argument: about that
Frame structure: [’NP’, ’V’, ’about’, ’NP’]
Frame name: Perception_experience
Role list: {’Theme’}
Correct role: Phenomenon (FrameNet) -> {’Stimulus’} (VerbNet)
Status: one_role_bad

Sentence: Right , yeah , I heard about that on the news , yeah .
Predicate: hear
Argument: about that
Frame structure: [’NP’, ’V’, ’about’, ’NP’]
Frame name: Perception_experience
Role list: {’Stimulus’}
Correct role: Phenomenon (FrameNet) -> {’Stimulus’} (VerbNet)
Status: one_role_good

3.2. Dump module 13
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CHAPTER 4

Evaluation

Evaluation is done on FrameNet and is the main reason as to why we’re using FrameNet annotated text. Basically,
once the algorithm has assigned VerbNet roles to syntactic chunks, we check that they are correct by mapping the
manual FrameNet annotation to VerbNet annotations.

4.1 Initial mappings

4.1.1 FrameNet verbs to possible Verbnet classes

A number of FrameNet lexical units verbs don’t appear in VerbNet, here is the full list:

{‘there be’: 111, ‘should’: 66, ‘do’: 60, ‘become’: 58, ‘may’: 36, ‘carry out’: 21, ‘ratify’: 19, ‘might’: 19, ‘lead_(to)’:
19, ‘deploy’: 18, ‘have to’: 18, ‘discuss’: 15, ‘arrest’: 14, ‘must’: 14, ‘cite’: 13, ‘set up’: 8, ‘belong’: 8, ‘have got’:
8, ‘reprocess’: 7, ‘decide’: 7, ‘born’: 7, ‘violate’: 7, ‘research’: 7, ‘utilise’: 7, ‘let’: 6, ‘refuse’: 6, ‘weaponize’: 5,
‘go on’: 5, ‘undergo’: 5, ‘lack’: 4, ‘make sure’: 4, ‘sentence’: 4, ‘end up’: 4, ‘forecast’: 4, ‘result_(in)’: 4, ‘invade’:
4, ‘process’: 4, ‘bring about’: 4, ‘vow’: 4, ‘renew’: 4, ‘defeat’: 4, ‘overthrow’: 3, ‘knock down’: 3, ‘talk_(to)’:
3, ‘drag on’: 3, ‘complement’: 3, ‘modify’: 3, ‘rape’: 3, ‘deserve’: 3, ‘come to a end’: 2, ‘comply’: 2, ‘tend’: 2,
‘thwart’: 2, ‘progress’: 2, ‘locate’: 2, ‘flight-test’: 2, ‘bring_together’: 2, ‘abide_((by))’: 2, ‘account’: 2, ‘defect’:
2, ‘restart’: 2, ‘contravene’: 2, ‘disable’: 2, ‘hold off’: 2, ‘resemble’: 2, ‘backstitch’: 2, ‘perpetrate’: 2, ‘bomb’: 1,
‘forget’: 1, ‘reinvigorate’: 1, ‘step up’: 1, ‘be_supposed_(to)’: 1, ‘cut short’: 1, ‘shield’: 1, ‘piece together’: 1, ‘get
up’: 1, ‘wreak’: 1, ‘rebuff’: 1, ‘inhabit’: 1, ‘opt’: 1, ‘advocate’: 1, ‘birth’: 1, ‘quiet_down’: 1, ‘embark’: 1, ‘govern’:
1, ‘point (to)’: 1, ‘spit up’: 1, ‘contradict’: 1, ‘give_out’: 1, ‘propel’: 1, ‘sit down’: 1, ‘reinforce’: 1, ‘screw up’: 1,
‘make up’: 1, ‘plead’: 1, ‘best’: 1, ‘educate’: 1, ‘emplace’: 1, ‘diddle’: 1, ‘besiege’: 1, ‘postpone’: 1, ‘dry up’: 1,
‘redirect’: 1, ‘fire off’: 1, ‘obey’: 1, ‘carry on’: 1, ‘distinguish’: 1, ‘substantiate’: 1, ‘set fire to’: 1, ‘equal’: 1, ‘ought
to’: 1, ‘evoke’: 1, ‘smoke’: 1, ‘go away’: 1, ‘break out’: 1, ‘put an end to’: 1, ‘mouth’: 1, ‘authorize’: 1, ‘set off’: 1,
‘give rise’: 1, ‘count (on)’: 1, ‘disobey’: 1, ‘memorise’: 1, ‘bolster’: 1, ‘put together’: 1, ‘come together’: 1, ‘subvert’:
1, ‘sit up’: 1, ‘master’: 1, ‘meet with’: 1, ‘set out’: 1, ‘flight test’: 1, ‘descend_(on)’: 1, ‘reign’: 1, ‘ford’: 1, ‘lunge’:
1, ‘go_((through))’: 1, ‘sum up’: 1, ‘overrun’: 1, ‘word’: 1, ‘look back’: 1, ‘back out’: 1, ‘turn out’: 1, ‘endanger’: 1,
‘take to the air’: 1, ‘jeopardise’: 1, ‘usher in’: 1, ‘come up’: 1, ‘attract’: 1, ‘proscribe’: 1, ‘jot down’: 1, ‘refute’: 1,
‘rout’: 1, ‘revisit’: 1, ‘ride_out’: 1, ‘answer’: 1, ‘lock up’: 1, ‘farm’: 1, ‘absorb’: 1, ‘await’: 1, ‘cater’: 1, ‘get ready’:
1, ‘come_(across)’: 1, ‘work together’: 1, ‘stymie’: 1, ‘remedy’: 1, ‘contact’: 1, ‘reshape’: 1}

Observations:

• We’re happy that auxiliaries such as may, do, and should are present, since we don’t want to deal with them.

• This stems from one of VerbNet’s most important design decision: only include frequent English verbs, which
leads to a very useful lexicon for NLP. This explain why’re we’re missing out on a few long-tail verbs.

• Indeed, 50% of occurrences come from 10% of verbs

15
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• 30% of verbs are particle verbs (that’s not too much).

• What’s the difference between point (to) and abide ((by))?

4.1.2 FrameNet-VerbNet mapping

This is done by using an existing VN-FN mapping provided by VerbNet. This mapping is a possible source of errors
but looks quite robust.

4.2 Frame-matching

Two metrics are of interest here: how precise our matchings are, and what matching we missed.

4.3 Probability model

TODO: Include the bias-variance analysis and link to it from “Ideas”.

4.4 Bootstrapping

We still need to know how concerned we are with this, since it doesn’t appear in 2005.
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CHAPTER 5

Ideas

Improvements can happen in three main directions:

• find an actual possible class when there is not possible match,

• be more selective when choosing potential VerbNet classes,

• or implement a more informative probability model.

The most important improvement is the first one - it also means we have to frame our problem in terms of coverage,
which the litterature didn’t do yet.

5.1 Finding new matches

An error analysis is needed to understand where the errors come from: is it because the phrase types from VerbNet
are too restrictive? Or is the reason clausal subjects? Clausal objects that are not handled correctly in VerbNet due to
Levin legacy (Levin classes didn’t handle clauses, VerbNet has put them at the end, but they’re not well integrated) ?

The first result is that only 43% of FrameNet frames are not in the mapping, which is a VerbNet -> FrameNet mapping,
not a FrameNet -> Verbnet one. We won’t be able to perform matching on any of these frames.

The second one is that in our fulltext test corpus, 11% of frame occurrences don’t have a predicate in VerbNet. Out
of those occurrences, 99.3% have at least one associated Verbnet class that is present in our VerbNet->FrameNet
mapping. We’re only interested in evaluating those 5454 frame occurrences.

Frame matching (revision 18420) fails for 4069 arguments, finds one match for 6180 arguments, and finds more than
one match for 2158 arguments. We’re interested in those 4069 failing matchs: what’s going on?

Concerning arguments that weren’t matched, the main reason is non-core FrameNet roles. For the sentence, “In march,
John bought a dress”, our algorithm will try to match “in NP NP V NP”, whereas we really want “NP V NP”. The
algorithm now ignores non-core FrameNet roles: only 2088 arguments are not matched. (It’s possible but less likely
that non-core arguments in FrameNet will be expressed in VerbNet, inducing an error.)

Other errors include:

• passive voice is never in VerbNet

• FrameNet annotates twice subjects introduced by “that”, “who”, and so on: one for the preposition, and
the other one for the higher subject (splitted args for other reasons can cause problems too).

• missing VerbNet constructions (to believe in something), or missing VerbNet phrase types (NP vs. S)

• control/raising verbs can cause problems too.

17
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Parsing VerbNet or FrameNet is sometimes an issue for complicated cases: we will be handling more and more of
them over the time. “He said that S” comes to mind: currently, it’s seen as “NP V S”, whereas it’s seen from Verbnet
as “NP V that S”.

5.2 Restricting potential VerbNet classes

5.2.1 Word Sense Disambiguation

As (Brown et al, 2011) have shown in their “VerbNet Class Assignment as a WSD task” paper, it’s possible to have
88.7% accuracy when disambiguating VerbNet classes for a specific verb (most frequent sense baseline of 73.8%).
Would this be a good way to prune out unwanted classes?

One issue is that existing approaches use supervised learning.

5.2.2 Selectional restriction detection

VerbNet places selectional restrictions on thematic roles, but there’s no direct way to know if our FrameNet arguments
respect those restrictions. Detecting it automatically would be a good way to prune out unwanted arguments.

5.3 Informative probability model

Three simple models are used in (Swier and Stevenson, 2005) - so simple that our analysis show that two of them suffer
from high bias. After 10% of the corpus is seen, they’re no longer informative. The third one is more informative but
doesn’t improve with more data (TODO include analysis from Guilhem).

One option is to continue in the direction of probability models: try to find more informative ones by including more
linguistically-motivated data.

Another option is to use a probabilistic model which would allow us to modelize correctly the back-off procedure from
(Swier and Stevenson, 2004).

The last option is to fully go the supervised route: use features and models from supervised litterature using our initial
frame-matching data.
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CHAPTER 6

Indices and tables

• genindex

• modindex

• search
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