

 Navigation

 	
 index

 	
 next |

 	Knot DNS Resolver 1.1.0 documentation

Knot DNS Resolver

The Knot DNS Resolver is a minimalistic caching resolver implementation.
The project provides both a resolver library and a small daemon.
Modular architecture of the library keeps the core tiny and efficient, and provides a state-machine like API for extensions.

	Building project
	Installing from packages

	Platform considerations

	Requirements

	Building from sources

	Getting Docker image

	Knot DNS Resolver library
	Requirements

	For users

	For developers

	Writing layers

	APIs in Lua

	API reference

	Knot DNS Resolver daemon
	Enabling DNSSEC

	CLI interface

	Scaling out

	Running supervised

	Configuration

	Using CLI tools

	Knot DNS Resolver modules
	Static hints

	Statistics collector

	Query policies

	Views and ACLs

	Prefetching records

	HTTP/2 services

	DNS Application Firewall

	Graphite module

	Memcached cache storage

	Redis cache storage

	Etcd module

	DNS64

	Renumber

	DNS Cookies

	Modules API reference
	Supported languages

	The anatomy of an extension

	Writing a module in Lua

	Writing a module in C

	Writing a module in Go

	Configuring modules

	Exposing C/Go module properties

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knot DNS Resolver 1.1.0 documentation

Building project

Installing from packages

The resolver is packaged for Debian, Fedora, Ubuntu and openSUSE Linux distributions.
Refer to project page [https://www.knot-resolver.cz/pages/try.html] for information about
installing from packages. If packages are not available for your OS, see following sections
to see how you can build it from sources (or package it), or use official Docker images [https://hub.docker.com/r/cznic/knot-resolver].

Platform considerations

	Project
	Platforms
	Compatibility notes

	daemon
	UNIX-like [1], Microsoft Windows
	C99, libuv [https://github.com/libuv/libuv] provides portable I/O

	library
	UNIX-like, Microsoft Windows [2]
	MSVC [https://msdn.microsoft.com/en-us/vstudio/hh386302.aspx] not supported, needs MinGW [http://www.mingw.org/]

	modules
	varies
	

	tests/unit
	equivalent to library
	

	tests/integration
	UNIX-like
	Depends on library injection (see [2])

	[1]	Known to be running (not exclusively) on FreeBSD, Linux and OS X.

	[2]	Modules are not supported yet, as the PE/DLL loading is different. Library injection is working with ELF (or Mach-O flat namespace) only.

Requirements

The following is a list of software required to build Knot DNS Resolver from sources.

	Requirement
	Required by
	Notes

	GNU Make [https://www.gnu.org/software/make/] 3.80+
	all
	(build only)

	pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/]
	all
	(build only) [3]

	C compiler
	all
	(build only) [4]

	libknot [https://gitlab.labs.nic.cz/labs/knot] 2.1+
	all
	Knot DNS library (requires autotools, GnuTLS and Jansson).

	LuaJIT [http://luajit.org/luajit.html] 2.0+
	daemon
	Embedded scripting language.

	libuv [https://github.com/libuv/libuv] 1.7+
	daemon
	Multiplatform I/O and services (libuv [https://github.com/libuv/libuv] 1.0 with limitations [5]).

There are also optional packages that enable specific functionality in Knot DNS Resolver, they are useful mainly for developers to build documentation and tests.

	Optional
	Needed for
	Notes

	lua-http [https://luarocks.org/modules/daurnimator/http]
	modules/http
	HTTP/2 client/server for Lua.

	luasocket [https://luarocks.org/modules/luarocks/luasocket]
	trust anchors, modules/stats
	Sockets for Lua.

	luasec [https://luarocks.org/modules/luarocks/luasec]
	trust anchors
	TLS for Lua.

	libmemcached [http://libmemcached.org/libMemcached.html]
	modules/memcached
	To build memcached backend module.

	hiredis [https://github.com/redis/hiredis]
	modules/redis
	To build redis backend module.

	Go [https://golang.org] 1.5+
	modules
	Build modules written in Go.

	cmocka [https://cmocka.org/]
	unit tests
	Unit testing framework.

	Doxygen [https://www.stack.nl/~dimitri/doxygen/manual/index.html]
	documentation
	Generating API documentation.

	Sphinx [http://sphinx-doc.org/]
	documentation
	Building this HTML/PDF documentation.

	breathe [https://github.com/michaeljones/breathe]
	documentation
	Exposing Doxygen API doc to Sphinx.

	libsystemd [https://www.freedesktop.org/wiki/Software/systemd/]
	daemon
	Systemd socket activation support.

	[3]	Requires C99, __attribute__((cleanup)) and -MMD -MP for dependency file generation. GCC, Clang and ICC are supported.

	[4]	You can use variables <dependency>_CFLAGS and <dependency>_LIBS to configure dependencies manually (i.e. libknot_CFLAGS and libknot_LIBS).

	[5]	libuv 1.7 brings SO_REUSEPORT support that is needed for multiple forks. libuv < 1.7 can be still used, but only in single-process mode. Use different method for load balancing.

Packaged dependencies

Most of the dependencies can be resolved from packages, here’s an overview for several platforms.

	Debian (since sid) - current stable doesn’t have libknot and libuv, which must be installed from sources.

sudo apt-get install pkg-config libknot-dev libuv1-dev libcmocka-dev libluajit-5.1-dev

	Ubuntu - unknown.

	RHEL/CentOS - unknown.

	openSUSE - there is an experimental package [https://build.opensuse.org/package/show/server:dns/knot-resolver].

	RHEL - unknown.

	FreeBSD - unknown.

	NetBSD - unknown.

	OpenBSD - unknown.

	Mac OS X - most of the dependencies can be found through Homebrew [http://brew.sh/], with the exception of libknot.

brew install pkg-config libuv luajit cmocka

Building from sources

The Knot DNS Resolver depends on the the Knot DNS library, recent version of libuv [https://github.com/libuv/libuv], and LuaJIT [http://luajit.org/luajit.html].

$ make info # See what's missing

When you have all the dependencies ready, you can build and install.

$ make PREFIX="/usr/local"
$ make install PREFIX="/usr/local"

Note

Always build with PREFIX if you want to install, as it is hardcoded in the executable for module search path. If you build the binary with -DNDEBUG, verbose logging will be disabled as well.

Alternatively you can build only specific parts of the project, i.e. library.

$ make lib
$ make lib-install

Note

Documentation is not built by default, run make doc to build it.

Building with security compiler flags

Knot DNS Resolver enables certain security compile-time flags [https://wiki.debian.org/Hardening#Notes_on_Memory_Corruption_Mitigation_Methods] that do not affect performance.
You can add more flags to the build by appending them to CFLAGS variable, e.g. make CFLAGS="-fstack-protector".

	Method
	Status
	Notes

	-fstack-protector
	disabled
	(must be specifically enabled in CFLAGS)

	-D_FORTIFY_SOURCE=2
	enabled
	

	-pie
	enabled
	enables ASLR for kresd (disable with make HARDENING=no)

	RELRO
	enabled
	full [6]

You can also disable linker hardening when it’s unsupported with make HARDENING=no.

	[6]	See checksec.sh [http://www.trapkit.de/tools/checksec.html]

Building for packages

The build system supports both DESTDIR [https://www.gnu.org/prep/standards/html_node/DESTDIR.html] and amalgamated builds [https://www.sqlite.org/amalgamation.html].

$ make install DESTDIR=/tmp/stage # Staged install
$ make all install AMALG=yes # Amalgamated build

Amalgamated build assembles everything in one source file and compiles it. It is useful for packages, as the compiler sees the whole program and is able to produce a smaller and faster binary. On the other hand, it complicates debugging.

Tip

There is a template for service file and AppArmor profile to help you kickstart the package.

Default paths

The default installation follows FHS with several custom paths for configuration and modules.
All paths are prefixed with PREFIX variable by default if not specified otherwise.

	Component
	Variable
	Default
	Notes

	library
	LIBDIR
	$(PREFIX)/lib
	pkg-config is auto-generated [7]

	daemon
	SBINDIR
	$(PREFIX)/sbin
	

	configuration
	ETCDIR
	$(PREFIX)/etc/kresd
	Configuration file, templates.

	modules
	MODULEDIR
	$(LIBDIR)/kdns_modules
	[8]

	work directory
	
	$(PREFIX)/var/run/kresd
	Run directory for daemon.

	[7]	The libkres.pc is installed in $(LIBDIR)/pkgconfig.

	[8]	Users may install additional modules in ~/.local/lib/kdns_modules or in the rundir of a specific instance.

Note

Each module is self-contained and may install additional bundled files within $(MODULEDIR)/$(modulename). These files should be read-only, non-executable.

Static or dynamic?

By default the resolver library is built as a dynamic library with versioned ABI. You can revert to static build with BUILDMODE variable.

$ make BUILDMODE=dynamic # Default, create dynamic library
$ make BUILDMODE=static # Create static library

When the library is linked statically, it usually produces a smaller binary. However linking it to various C modules might violate ODR and increase the size.

Resolving dependencies

The build system relies on pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/] to find dependencies.
You can override it to force custom versions of the software by environment variables.

$ make libknot_CFLAGS="-I/opt/include" libknot_LIBS="-L/opt/lib -lknot -ldnssec"

Optional dependencies may be disabled as well using HAS_x=yes|no variable.

$ make HAS_go=no HAS_cmocka=no

Warning

If the dependencies lie outside of library search path, you need to add them somehow.
Try LD_LIBRARY_PATH on Linux/BSD, and DYLD_FALLBACK_LIBRARY_PATH on OS X.
Otherwise you need to add the locations to linker search path.

Several dependencies may not be in the packages yet, the script pulls and installs all dependencies in a chroot.
You can avoid rebuilding dependencies by specifying BUILD_IGNORE variable, see the Dockerfile [https://registry.hub.docker.com/u/cznic/knot-resolver/dockerfile/] for example.
Usually you only really need to rebuild libknot [https://gitlab.labs.nic.cz/labs/knot].

$ export FAKEROOT="${HOME}/.local"
$ export PKG_CONFIG_PATH="${FAKEROOT}/lib/pkgconfig"
$ export BUILD_IGNORE="..." # Ignore installed dependencies
$./scripts/bootstrap-depends.sh ${FAKEROOT}

Building extras

The project can be built with code coverage tracking using the COVERAGE=1 variable.

Running unit and integration tests

The unit tests require cmocka [https://cmocka.org/] and are executed with make check.

The integration tests use Deckard, the DNS test harness.

$ make check-integration

Note that the daemon and modules must be installed first before running integration tests, the reason is that the daemon
is otherwise unable to find and load modules.

Read the documentation for more information about requirements, how to run it and extend it.

Getting Docker image

Docker images require only either Linux or a Linux VM (see boot2docker [http://boot2docker.io/] on OS X).

$ docker run cznic/knot-resolver

See the Docker images [https://hub.docker.com/r/cznic/knot-resolver] page for more information and options.
You can hack on the container by changing the container entrypoint to shell like:

$ docker run -it --entrypoint=/bin/bash cznic/knot-resolver

Tip

You can build the Docker image yourself with docker build -t knot-resolver scripts.

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knot DNS Resolver 1.1.0 documentation

Knot DNS Resolver library

Requirements

	libknot [https://gitlab.labs.nic.cz/labs/knot/tree/master/src/libknot] 2.0 (Knot DNS high-performance DNS library.)

For users

The library as described provides basic services for name resolution, which should cover the usage,
examples are in the resolve API documentation.

Tip

If you’re migrating from getaddrinfo(), see “synchronous” API, but the library offers iterative API as well to plug it into your event loop for example.

For developers

The resolution process starts with the functions in resolve.c, they are responsible for:

	reacting to state machine state (i.e. calling consume layers if we have an answer ready)

	interacting with the library user (i.e. asking caller for I/O, accepting queries)

	fetching assets needed by layers (i.e. zone cut)

This is the driver. The driver is not meant to know “how” the query resolves, but rather “when” to execute “what”.

[image: _images/resolution.png]
On the other side are layers. They are responsible for dissecting the packets and informing the driver about the results. For example, a produce layer generates query, a consume layer validates answer.

Tip

Layers are executed asynchronously by the driver. If you need some asset beforehand, you can signalize the driver using returning state or current query flags. For example, setting a flag QUERY_AWAIT_CUT forces driver to fetch zone cut information before the packet is consumed; setting a QUERY_RESOLVED flag makes it pop a query after the current set of layers is finished; returning FAIL state makes it fail current query.

Layers can also change course of resolution, for example by appending additional queries.

consume = function (state, req, answer)
 answer = kres.pkt_t(answer)
 if answer:qtype() == kres.type.NS then
 req = kres.request_t(req)
 local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
 qry.flags = kres.query.AWAIT_CUT
 end
 return state
end

This doesn’t block currently processed query, and the newly created sub-request will start as soon as driver finishes processing current. In some cases you might need to issue sub-request and process it before continuing with the current, i.e. validator may need a DNSKEY before it can validate signatures. In this case, layers can yield and resume afterwards.

consume = function (state, req, answer)
 answer = kres.pkt_t(answer)
 if state == kres.YIELD then
 print('continuing yielded layer')
 return kres.DONE
 else
 if answer:qtype() == kres.type.NS then
 req = kres.request_t(req)
 local qry = req:push(answer:qname(), kres.type.SOA, kres.class.IN)
 qry.flags = kres.query.AWAIT_CUT
 print('planned SOA query, yielding')
 return kres.YIELD
 end
 return state
 end
end

The YIELD state is a bit special. When a layer returns it, it interrupts current walk through the layers. When the layer receives it,
it means that it yielded before and now it is resumed. This is useful in a situation where you need a sub-request to determine whether current answer is valid or not.

Writing layers

The resolver library leverages the processing API [https://gitlab.labs.nic.cz/labs/knot/tree/master/src/libknot/processing] from the libknot to separate packet processing code into layers.

Note

This is only crash-course in the library internals, see the resolver library documentation for the complete overview of the services.

The library offers following services:

	Cache - MVCC cache interface for retrieving/storing resource records.

	Resolution plan - Query resolution plan, a list of partial queries (with hierarchy) sent in order to satisfy original query. This contains information about the queries, nameserver choice, timing information, answer and its class.

	Nameservers - Reputation database of nameservers, this serves as an aid for nameserver choice.

A processing layer is going to be called by the query resolution driver for each query,
so you’re going to work with struct kr_request as your per-query context.
This structure contains pointers to resolution context, resolution plan and also the final answer.

int consume(knot_layer_t *ctx, knot_pkt_t *pkt)
{
 struct kr_request *request = ctx->data;
 struct kr_query *query = request->current_query;
}

This is only passive processing of the incoming answer. If you want to change the course of resolution, say satisfy a query from a local cache before the library issues a query to the nameserver, you can use states (see the Static hints for example).

int produce(knot_layer_t *ctx, knot_pkt_t *pkt)
{
 struct kr_request *request = ctx->data;
 struct kr_query *cur = request->current_query;

 /* Query can be satisfied locally. */
 if (can_satisfy(cur)) {
 /* This flag makes the resolver move the query
 * to the "resolved" list. */
 query->flags |= QUERY_RESOLVED;
 return KNOT_STATE_DONE;
 }

 /* Pass-through. */
 return ctx->state;
}

It is possible to not only act during the query resolution, but also to view the complete resolution plan afterwards. This is useful for analysis-type tasks, or “per answer” hooks.

int finish(knot_layer_t *ctx)
{
 struct kr_request *request = ctx->data;
 struct kr_rplan *rplan = request->rplan;

 /* Print the query sequence with start time. */
 char qname_str[KNOT_DNAME_MAXLEN];
 struct kr_query *qry = NULL
 WALK_LIST(qry, rplan->resolved) {
 knot_dname_to_str(qname_str, qry->sname, sizeof(qname_str));
 printf("%s at %u\n", qname_str, qry->timestamp);
 }

 return ctx->state;
}

APIs in Lua

The APIs in Lua world try to mirror the C APIs using LuaJIT FFI, with several differences and enhancements.
There is not comprehensive guide on the API yet, but you can have a look at the bindings [https://gitlab.labs.nic.cz/knot/resolver/blob/master/daemon/lua/kres.lua#L361] file.

Elementary types and constants

	States are directly in kres table, e.g. kres.YIELD, kres.CONSUME, kres.PRODUCE, kres.DONE, kres.FAIL.

	DNS classes are in kres.class table, e.g. kres.class.IN for Internet class.

	DNS types are in kres.type table, e.g. kres.type.AAAA for AAAA type.

	DNS rcodes types are in kres.rcode table, e.g. kres.rcode.NOERROR.

	Packet sections (QUESTION, ANSWER, AUTHORITY, ADDITIONAL) are in the kres.section table.

Working with domain names

The internal API usually works with domain names in label format, you can convert between text and wire freely.

local dname = kres.str2dname('business.se')
local strname = kres.dname2str(dname)

Working with resource records

Resource records are stored as tables.

local rr = { owner = kres.str2dname('owner'),
 ttl = 0,
 class = kres.class.IN,
 type = kres.type.CNAME,
 rdata = kres.str2dname('someplace') }
print(kres.rr2str(rr))

RRSets in packet can be accessed using FFI, you can easily fetch single records.

local rrset = { ... }
local rr = rrset:get(0) -- Return first RR
print(kres.dname2str(rr:owner()))
print(rr:ttl())
print(kres.rr2str(rr))

Working with packets

Packet is the data structure that you’re going to see in layers very often. They consists of a header, and four sections: QUESTION, ANSWER, AUTHORITY, ADDITIONAL. The first section is special, as it contains the query name, type, and class; the rest of the sections contain RRSets.

First you need to convert it to a type known to FFI and check basic properties. Let’s start with a snippet of a consume layer.

consume = function (state, req, pkt)
 pkt = kres.pkt_t(answer)
 print('rcode:', pkt:rcode())
 print('query:', kres.dname2str(pkt:qname()), pkt:qclass(), pkt:qtype())
 if pkt:rcode() ~= kres.rcode.NOERROR then
 print('error response')
 end
end

You can enumerate records in the sections.

local records = pkt:section(kres.section.ANSWER)
for i = 1, #records do
 local rr = records[i]
 if rr.type == kres.type.AAAA then
 print(kres.rr2str(rr))
 end
end

During produce or begin, you might want to want to write to packet. Keep in mind that you have to write packet sections in sequence,
e.g. you can’t write to ANSWER after writing AUTHORITY, it’s like stages where you can’t go back.

pkt:rcode(kres.rcode.NXDOMAIN)
-- Clear answer and write QUESTION
pkt:clear()
pkt:question('\7blocked', kres.class.IN, kres.type.SOA)
-- Start writing data
pkt:begin(kres.section.ANSWER)
-- Nothing in answer
pkt:begin(kres.section.AUTHORITY)
local soa = { owner = '\7blocked', ttl = 900, class = kres.class.IN, type = kres.type.SOA, rdata = '...' }
pkt:put(soa.owner, soa.ttl, soa.class, soa.type, soa.rdata)

Working with requests

The request holds information about currently processed query, enabled options, cache, and other extra data.
You primarily need to retrieve currently processed query.

consume = function (state, req, pkt)
 req = kres.request_t(req)
 print(req.options)
 print(req.state)

 -- Print information about current query
 local current = req:current()
 print(kres.dname2str(current.owner))
 print(current.type, current.class, current.id, current.flags)
end

In layers that either begin or finalize, you can walk the list of resolved queries.

local last = req:resolved()
print(last.type)

As described in the layers, you can not only retrieve information about current query, but also push new ones or pop old ones.

-- Push new query
local qry = req:push(pkt:qname(), kres.type.SOA, kres.class.IN)
qry.flags = kres.query.AWAIT_CUT

-- Pop the query, this will erase it from resolution plan
req:pop(qry)

API reference

	Name resolution

	Cache

	Nameservers

	Modules

	Utilities

	Generics library

Name resolution

The API provides an API providing a “consumer-producer”-like interface to enable user to plug it into existing event loop or I/O code.

Example usage of the iterative API:

 // Create request and its memory pool
struct kr_request req = {
 .pool = {
 .ctx = mp_new (4096),
 .alloc = (mm_alloc_t) mp_alloc
 }
};

// Setup and provide input query
int state = kr_resolve_begin(&req, ctx, final_answer);
state = kr_resolve_consume(&req, query);

// Generate answer
while (state == KNOT_STATE_PRODUCE) {

 // Additional query generate, do the I/O and pass back answer
 state = kr_resolve_produce(&req, &addr, &type, query);
 while (state == KNOT_STATE_CONSUME) {
 int ret = sendrecv(addr, proto, query, resp);

 // If I/O fails, make "resp" empty
 state = kr_resolve_consume(&request, addr, resp);
 knot_pkt_clear(resp);
 }
 knot_pkt_clear(query);
}

// "state" is either DONE or FAIL
kr_resolve_finish(&request, state);

Functions

	
KR_EXPORT int kr_resolve_begin(struct kr_request * request, struct kr_context * ctx, knot_pkt_t * answer)

	Begin name resolution.

	Note

	Expects a request to have an initialized mempool, the “answer” packet will be kept during the resolution and will contain the final answer at the end.

	Return

	CONSUME (expecting query)

	Parameters

	
	request - request state with initialized mempool

	ctx - resolution context

	answer - allocated packet for final answer

	
KR_EXPORT int kr_resolve_consume(struct kr_request * request, const struct sockaddr * src, knot_pkt_t * packet)

	Consume input packet (may be either first query or answer to query originated from kr_resolve_produce())

	Note

	If the I/O fails, provide an empty or NULL packet, this will make iterator recognize nameserver failure.

	Return

	any state

	Parameters

	
	request - request state (awaiting input)

	src - [in] packet source address

	packet - [in] input packet

	
KR_EXPORT int kr_resolve_produce(struct kr_request * request, struct sockaddr ** dst, int * type, knot_pkt_t * packet)

	Produce either next additional query or finish.

If the CONSUME is returned then dst, type and packet will be filled with appropriate values and caller is responsible to send them and receive answer. If it returns any other state, then content of the variables is undefined.

	Return

	any state

	Parameters

	
	request - request state (in PRODUCE state)

	dst - [out] possible address of the next nameserver

	type - [out] possible used socket type (SOCK_STREAM, SOCK_DGRAM)

	packet - [out] packet to be filled with additional query

	
KR_EXPORT int kr_resolve_checkout(struct kr_request * request, struct sockaddr * src, struct sockaddr * dst, int type, knot_pkt_t * packet)

	Finalises the outbound query packet with the knowledge of the IP addresses.

	Note

	The function must be called before actual sending of the request packet.

	Return

	kr_ok() or error code

	Parameters

	
	request - request state (in PRODUCE state)

	src - address from which the query is going to be sent

	dst - address of the name server

	type - used socket type (SOCK_STREAM, SOCK_DGRAM)

	packet - [in,out] query packet to be finalised

	
KR_EXPORT int kr_resolve_finish(struct kr_request * request, int state)

	Finish resolution and commit results if the state is DONE.

	Note

	The structures will be deinitialized, but the assigned memory pool is not going to be destroyed, as it’s owned by caller.

	Return

	DONE

	Parameters

	
	request - request state

	state - either DONE or FAIL state

	
KR_EXPORT KR_PURE struct kr_rplan * kr_resolve_plan(struct kr_request * request)

	Return resolution plan.

	Return

	pointer to rplan

	Parameters

	
	request - request state

	
KR_EXPORT KR_PURE knot_mm_t * kr_resolve_pool(struct kr_request * request)

	Return memory pool associated with request.

	Return

	mempool

	Parameters

	
	request - request state

	
struct kr_context

	#include <resolve.h>Name resolution context.

Resolution context provides basic services like cache, configuration and options.

	Note

	This structure is persistent between name resolutions and may be shared between threads.

Public Members

	
uint32_t options

	

	
knot_rrset_t * opt_rr

	

	
map_t trust_anchors

	

	
map_t negative_anchors

	

	
struct kr_zonecut root_hints

	

	
struct kr_cache cache

	

	
kr_nsrep_lru_t * cache_rtt

	

	
kr_nsrep_lru_t * cache_rep

	

	
module_array_t * modules

	

	
struct kr_cookie_ctx cookie_ctx

	

	
kr_cookie_lru_t * cache_cookie

	

	
knot_mm_t * pool

	

	
struct kr_request

	#include <resolve.h>Name resolution request.

Keeps information about current query processing between calls to processing APIs, i.e. current resolved query, resolution plan, ... Use this instead of the simple interface if you want to implement multiplexing or custom I/O.

	Note

	All data for this request must be allocated from the given pool.

Public Members

	
struct kr_context * ctx

	

	
knot_pkt_t * answer

	

	
struct kr_query * current_query

	Current evaluated query.

	
const knot_rrset_t * key

	

	
const struct sockaddr * addr

	Current upstream address.

	
const struct sockaddr * dst_addr

	

	
const knot_pkt_t * packet

	

	
const knot_rrset_t * opt

	

	
struct kr_request::@3 qsource

	

	
unsigned rtt

	Current upstream RTT.

	
struct kr_request::@4 upstream

	Upstream information, valid only in consume() phase.

	
uint32_t options

	

	
int state

	

	
rr_array_t authority

	

	
rr_array_t additional

	

	
struct kr_rplan rplan

	

	
knot_mm_t pool

	

Defines

	
QUERY_FLAGS(X)

	Query again because bad cookie returned.

	
X(flag, val)

	

Enums

	
kr_query_flag enum

	Query flags.

Values:

Functions

	
KR_EXPORT KR_CONST const knot_lookup_t * kr_query_flag_names(void)

	Query flag names table.

	
KR_EXPORT int kr_rplan_init(struct kr_rplan * rplan, struct kr_request * request, knot_mm_t * pool)

	Initialize resolution plan (empty).

	Parameters

	
	rplan - plan instance

	request - resolution request

	pool - ephemeral memory pool for whole resolution

	
KR_EXPORT void kr_rplan_deinit(struct kr_rplan * rplan)

	Deinitialize resolution plan, aborting any uncommited transactions.

	Parameters

	
	rplan - plan instance

	
KR_EXPORT KR_PURE bool kr_rplan_empty(struct kr_rplan * rplan)

	Return true if the resolution plan is empty (i.e.

finished or initialized)
	Return

	true or false

	Parameters

	
	rplan - plan instance

	
KR_EXPORT struct kr_query * kr_rplan_push_empty(struct kr_rplan * rplan, struct kr_query * parent)

	Push empty query to the top of the resolution plan.

	Note

	This query serves as a cookie query only.

	Return

	query instance or NULL

	Parameters

	
	rplan - plan instance

	parent - query parent (or NULL)

	
KR_EXPORT struct kr_query * kr_rplan_push(struct kr_rplan * rplan, struct kr_query * parent, const knot_dname_t * name, uint16_t cls, uint16_t type)

	Push a query to the top of the resolution plan.

	Note

	This means that this query takes precedence before all pending queries.

	Return

	query instance or NULL

	Parameters

	
	rplan - plan instance

	parent - query parent (or NULL)

	name - resolved name

	cls - resolved class

	type - resolved type

	
KR_EXPORT int kr_rplan_pop(struct kr_rplan * rplan, struct kr_query * qry)

	Pop existing query from the resolution plan.

	Note

	Popped queries are not discarded, but moved to the resolved list.

	Return

	0 or an error

	Parameters

	
	rplan - plan instance

	qry - resolved query

	
KR_EXPORT KR_PURE bool kr_rplan_satisfies(struct kr_query * closure, const knot_dname_t * name, uint16_t cls, uint16_t type)

	Return true if resolution chain satisfies given query.

	
KR_EXPORT KR_PURE struct kr_query * kr_rplan_resolved(struct kr_rplan * rplan)

	Return last resolved query.

	
KR_EXPORT KR_PURE struct kr_query * kr_rplan_next(struct kr_query * qry)

	Return query predecessor.

	
struct kr_query

	#include <rplan.h>Single query representation.

Public Members

	
struct kr_query * parent

	

	
knot_dname_t * sname

	

	
uint16_t stype

	

	
uint16_t sclass

	

	
uint16_t id

	

	
uint32_t flags

	

	
uint32_t secret

	

	
uint16_t fails

	

	
struct timeval timestamp

	

	
struct kr_zonecut zone_cut

	

	
struct kr_nsrep ns

	

	
struct kr_layer_pickle * deferred

	

	
struct kr_rplan

	#include <rplan.h>Query resolution plan structure.

The structure most importantly holds the original query, answer and the list of pending queries required to resolve the original query. It also keeps a notion of current zone cut.

Public Members

	
kr_qarray_t pending

	List of pending queries.

	
kr_qarray_t resolved

	List of resolved queries.

	
struct kr_request * request

	Parent resolution request.

	
knot_mm_t * pool

	Temporary memory pool.

Cache

Enums

	
kr_cache_tag enum

	Cache entry tag.

Values:

	KR_CACHE_RR = = 'R' -

	KR_CACHE_PKT = = 'P' -

	KR_CACHE_SIG = = 'G' -

	KR_CACHE_USER = = 0x80 -

	
kr_cache_rank enum

	Cache entry rank.

	Note

	Be careful about chosen cache rank nominal values.
	AUTH must be > than NONAUTH

	AUTH INSECURE must be > than AUTH (because it attempted validation)

	NONAUTH SECURE must be > than AUTH (because it’s valid)

Values:

	KR_RANK_BAD = = 0 -

	KR_RANK_INSECURE = = 1 -

	KR_RANK_NONAUTH = = 8 -

	KR_RANK_AUTH = = 16 -

	KR_RANK_SECURE = = 32 -

	
kr_cache_flag enum

	Cache entry flags.

Values:

	KR_CACHE_FLAG_NONE = = 0 -

	KR_CACHE_FLAG_WCARD_PROOF = = 1 -

Functions

	
KR_EXPORT int kr_cache_open(struct kr_cache * cache, const struct kr_cdb_api * api, struct kr_cdb_opts * opts, knot_mm_t * mm)

	Open/create cache with provided storage options.

	Return

	0 or an error code

	Parameters

	
	cache - cache structure to be initialized

	api - storage engine API

	opts - storage-specific options (may be NULL for default)

	mm - memory context.

	
KR_EXPORT void kr_cache_close(struct kr_cache * cache)

	Close persistent cache.

	Note

	This doesn’t clear the data, just closes the connection to the database.

	Parameters

	
	cache - structure

	
KR_EXPORT void kr_cache_sync(struct kr_cache * cache)

	Synchronise cache with the backing store.

	Parameters

	
	cache - structure

	
bool kr_cache_is_open(struct kr_cache * cache)

	Return true if cache is open and enabled.

	
KR_EXPORT int kr_cache_peek(struct kr_cache * cache, uint8_t tag, const knot_dname_t * name, uint16_t type, struct kr_cache_entry ** entry, uint32_t * timestamp)

	Peek the cache for asset (name, type, tag)

	Note

	The ‘drift’ is the time passed between the inception time and now (in seconds).

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	tag - asset tag

	name - asset name

	type - asset type

	entry - cache entry, will be set to valid pointer or NULL

	timestamp - current time (will be replaced with drift if successful)

	
KR_EXPORT int kr_cache_insert(struct kr_cache * cache, uint8_t tag, const knot_dname_t * name, uint16_t type, struct kr_cache_entry * header, knot_db_val_t data)

	Insert asset into cache, replacing any existing data.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	tag - asset tag

	name - asset name

	type - asset type

	header - filled entry header (count, ttl and timestamp)

	data - inserted data

	
KR_EXPORT int kr_cache_remove(struct kr_cache * cache, uint8_t tag, const knot_dname_t * name, uint16_t type)

	Remove asset from cache.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	tag - asset tag

	name - asset name

	type - record type

	
KR_EXPORT int kr_cache_clear(struct kr_cache * cache)

	Clear all items from the cache.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	
KR_EXPORT int kr_cache_match(struct kr_cache * cache, uint8_t tag, const knot_dname_t * name, knot_db_val_t * vals, int valcnt)

	Prefix scan on cached items.

	Return

	number of retrieved keys or an error

	Parameters

	
	cache - cache structure

	tag - asset tag

	name - asset prefix key

	vals - array of values to store the result

	valcnt - maximum number of retrieved keys

	
KR_EXPORT int kr_cache_peek_rank(struct kr_cache * cache, uint8_t tag, const knot_dname_t * name, uint16_t type, uint32_t timestamp)

	Peek the cache for given key and retrieve it’s rank.

	Return

	rank (0 or positive), or an error (negative number)

	Parameters

	
	cache - cache structure

	tag - asset tag

	name - asset name

	type - record type

	timestamp - current time

	
KR_EXPORT int kr_cache_peek_rr(struct kr_cache * cache, knot_rrset_t * rr, uint8_t * rank, uint8_t * flags, uint32_t * timestamp)

	Peek the cache for given RRSet (name, type)

	Note

	The ‘drift’ is the time passed between the cache time of the RRSet and now (in seconds).

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	rr - query RRSet (its rdataset may be changed depending on the result)

	rank - entry rank will be stored in this variable

	flags - entry flags

	timestamp - current time (will be replaced with drift if successful)

	
KR_EXPORT int kr_cache_materialize(knot_rrset_t * dst, const knot_rrset_t * src, uint32_t drift, knot_mm_t * mm)

	Clone read-only RRSet and adjust TTLs.

	Return

	0 or an errcode

	Parameters

	
	dst - destination for materialized RRSet

	src - read-only RRSet (its rdataset may be changed depending on the result)

	drift - time passed between cache time and now

	mm - memory context

	
KR_EXPORT int kr_cache_insert_rr(struct kr_cache * cache, const knot_rrset_t * rr, uint8_t rank, uint8_t flags, uint32_t timestamp)

	Insert RRSet into cache, replacing any existing data.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	rr - inserted RRSet

	rank - rank of the data

	flags - additional flags for the data

	timestamp - current time

	
KR_EXPORT int kr_cache_peek_rrsig(struct kr_cache * cache, knot_rrset_t * rr, uint8_t * rank, uint8_t * flags, uint32_t * timestamp)

	Peek the cache for the given RRset signature (name, type)

	Note

	The RRset type must not be RRSIG but instead it must equal the type covered field of the sought RRSIG.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	rr - query RRSET (its rdataset and type may be changed depending on the result)

	rank - entry rank will be stored in this variable

	flags - entry additional flags

	timestamp - current time (will be replaced with drift if successful)

	
KR_EXPORT int kr_cache_insert_rrsig(struct kr_cache * cache, const knot_rrset_t * rr, uint8_t rank, uint8_t flags, uint32_t timestamp)

	Insert the selected RRSIG RRSet of the selected type covered into cache, replacing any existing data.

	Note

	The RRSet must contain RRSIGS with only the specified type covered.

	Return

	0 or an errcode

	Parameters

	
	cache - cache structure

	rr - inserted RRSIG RRSet

	rank - rank of the data

	flags - additional flags for the data

	timestamp - current time

	
struct kr_cache_entry

	#include <cache.h>Serialized form of the RRSet with inception timestamp and maximum TTL.

Public Members

	
uint32_t timestamp

	

	
uint32_t ttl

	

	
uint16_t count

	

	
uint8_t rank

	

	
uint8_t flags

	

	
uint8_t data[]

	

	
struct kr_cache

	#include <cache.h>Cache structure, keeps API, instance and metadata.

Public Members

	
knot_db_t * db

	Storage instance.

	
const struct kr_cdb_api * api

	Storage engine.

	
uint32_t hit

	Number of cache hits.

	
uint32_t miss

	Number of cache misses.

	
uint32_t insert

	Number of insertions.

	
uint32_t delete

	Number of deletions.

	
struct kr_cache::@0 stats

	

Nameservers

Defines

	
KR_NSREP_MAXADDR

	

	
kr_nsrep_inaddr(addr)

	

	
kr_nsrep_inaddr_len(addr)

	

Enums

	
kr_ns_score enum

	NS RTT score (special values).

	Note

	RTT is measured in milliseconds.

Values:

	KR_NS_MAX_SCORE = = KR_CONN_RTT_MAX -

	KR_NS_TIMEOUT = = (95 * KR_NS_MAX_SCORE) / 100 -

	KR_NS_LONG = = (3 * KR_NS_TIMEOUT) / 4 -

	KR_NS_UNKNOWN = = KR_NS_TIMEOUT / 2 -

	KR_NS_PENALTY = = 100 -

	KR_NS_GLUED = = 10 -

	
kr_ns_rep enum

	NS QoS flags.

Values:

	KR_NS_NOIP4 = = 1 << 0 - NS has no IPv4.

	KR_NS_NOIP6 = = 1 << 1 - NS has no IPv6.

	KR_NS_NOEDNS = = 1 << 2 - NS has no EDNS support.

	
kr_ns_update_mode enum

	NS RTT update modes.

Values:

	KR_NS_UPDATE = = 0 - Update as smooth over last two measurements.

	KR_NS_RESET - Set to given value.

	KR_NS_ADD - Increment current value.

	KR_NS_MAX - Set to maximum of current/proposed value.

Functions

	
typedef lru_hash(unsigned)

	NS reputation/QoS tracking.

	
KR_EXPORT int kr_nsrep_set(struct kr_query * qry, uint8_t * addr, size_t addr_len, int port)

	Set given NS address.

	Return

	0 or an error code

	Parameters

	
	qry - updated query

	addr - address bytes (struct in_addr or struct in6_addr)

	addr_len - address bytes length (type will be derived from this)

	port - address port (if <= 0, 53 will be used)

	
KR_EXPORT int kr_nsrep_elect(struct kr_query * qry, struct kr_context * ctx)

	Elect best nameserver/address pair from the nsset.

	Return

	0 or an error code

	Parameters

	
	qry - updated query

	ctx - resolution context

	
KR_EXPORT int kr_nsrep_elect_addr(struct kr_query * qry, struct kr_context * ctx)

	Elect best nameserver/address pair from the nsset.

	Return

	0 or an error code

	Parameters

	
	qry - updated query

	ctx - resolution context

	
KR_EXPORT int kr_nsrep_update_rtt(struct kr_nsrep * ns, const struct sockaddr * addr, unsigned score, kr_nsrep_lru_t * cache, int umode)

	Update NS address RTT information.

In KR_NS_UPDATE mode reputation is smoothed over last N measurements.

	Return

	0 on success, error code on failure

	Parameters

	
	ns - updated NS representation

	addr - chosen address (NULL for first)

	score - new score (i.e. RTT), see enum kr_ns_score

	cache - LRU cache

	umode - update mode (KR_NS_UPDATE or KR_NS_RESET or KR_NS_ADD)

	
KR_EXPORT int kr_nsrep_update_rep(struct kr_nsrep * ns, unsigned reputation, kr_nsrep_lru_t * cache)

	Update NSSET reputation information.

	Return

	0 on success, error code on failure

	Parameters

	
	ns - updated NS representation

	reputation - combined reputation flags, see enum kr_ns_rep

	cache - LRU cache

	
struct kr_nsrep

	#include <nsrep.h>Name server representation.

Contains extra information about the name server, e.g. score or other metadata.

Public Members

	
unsigned score

	NS score.

	
unsigned reputation

	NS reputation.

	
const knot_dname_t * name

	NS name.

	
struct kr_context * ctx

	Resolution context.

	
struct sockaddr ip

	

	
struct sockaddr_in ip4

	

	
struct sockaddr_in6 ip6

	

	
union kr_nsrep::@2 addr[KR_NSREP_MAXADDR]

	NS address(es)

Functions

	
KR_EXPORT int kr_zonecut_init(struct kr_zonecut * cut, const knot_dname_t * name, knot_mm_t * pool)

	Populate root zone cut with SBELT.

	Return

	0 or error code

	Parameters

	
	cut - zone cut

	name -

	pool -

	
KR_EXPORT void kr_zonecut_deinit(struct kr_zonecut * cut)

	Clear the structure and free the address set.

	Parameters

	
	cut - zone cut

	
KR_EXPORT void kr_zonecut_set(struct kr_zonecut * cut, const knot_dname_t * name)

	Reset zone cut to given name and clear address list.

	Note

	This clears the address list even if the name doesn’t change. TA and DNSKEY don’t change.

	Parameters

	
	cut - zone cut to be set

	name - new zone cut name

	
KR_EXPORT int kr_zonecut_copy(struct kr_zonecut * dst, const struct kr_zonecut * src)

	Copy zone cut, including all data.

Does not copy keys and trust anchor.
	Return

	0 or an error code

	Parameters

	
	dst - destination zone cut

	src - source zone cut

	
KR_EXPORT int kr_zonecut_copy_trust(struct kr_zonecut * dst, const struct kr_zonecut * src)

	Copy zone trust anchor and keys.

	Return

	0 or an error code

	Parameters

	
	dst - destination zone cut

	src - source zone cut

	
KR_EXPORT int kr_zonecut_add(struct kr_zonecut * cut, const knot_dname_t * ns, const knot_rdata_t * rdata)

	Add address record to the zone cut.

The record will be merged with existing data, it may be either A/AAAA type.

	Return

	0 or error code

	Parameters

	
	cut - zone cut to be populated

	ns - nameserver name

	rdata - nameserver address (as rdata)

	
KR_EXPORT int kr_zonecut_del(struct kr_zonecut * cut, const knot_dname_t * ns, const knot_rdata_t * rdata)

	Delete nameserver/address pair from the zone cut.

	Return

	0 or error code

	Parameters

	
	cut -

	ns - name server name

	rdata - name server address

	
KR_EXPORT KR_PURE pack_t * kr_zonecut_find(struct kr_zonecut * cut, const knot_dname_t * ns)

	Find nameserver address list in the zone cut.

	Note

	This can be used for membership test, a non-null pack is returned if the nameserver name exists.

	Return

	pack of addresses or NULL

	Parameters

	
	cut -

	ns - name server name

	
KR_EXPORT int kr_zonecut_set_sbelt(struct kr_context * ctx, struct kr_zonecut * cut)

	Populate zone cut with a root zone using SBELT :rfc:1034

	Return

	0 or error code

	Parameters

	
	ctx - resolution context (to fetch root hints)

	cut - zone cut to be populated

	
KR_EXPORT int kr_zonecut_find_cached(struct kr_context * ctx, struct kr_zonecut * cut, const knot_dname_t * name, uint32_t timestamp, bool *restrict secured)

	Populate zone cut address set from cache.

	Return

	0 or error code (ENOENT if it doesn’t find anything)

	Parameters

	
	ctx - resolution context (to fetch data from LRU caches)

	cut - zone cut to be populated

	name - QNAME to start finding zone cut for

	timestamp - transaction timestamp

	secured - set to true if want secured zone cut, will return false if it is provably insecure

	
struct kr_zonecut

	#include <zonecut.h>Current zone cut representation.

Public Members

	
knot_dname_t * name

	Zone cut name.

	
knot_rrset_t * key

	Zone cut DNSKEY.

	
knot_rrset_t * trust_anchor

	Current trust anchor.

	
struct kr_zonecut * parent

	Parent zone cut.

	
map_t nsset

	Map of nameserver => address_set.

	
knot_mm_t * pool

	Memory pool.

Modules

Defines

	
KR_MODULE_EXPORT(module)

	Export module API version (place this at the end of your module).

	Parameters

	
	module - module name (f.e. hints)

Functions

	
KR_EXPORT int kr_module_load(struct kr_module * module, const char * name, const char * path)

	Load module instance into memory.

	Return

	0 or an error

	Parameters

	
	module - module structure

	name - module name

	path - module search path

	
KR_EXPORT void kr_module_unload(struct kr_module * module)

	Unload module instance.

	Parameters

	
	module - module structure

	
struct kr_prop

	#include <module.h>Module property (named callable).

A module property has a free-form JSON output (and optional input).

Public Members

	
kr_prop_cb * cb

	

	
const char * name

	

	
const char * info

	

	
struct kr_module

	#include <module.h>Module representation.

Public Members

	
char * name

	Name.

	
module_init_cb * init

	Constructor.

	
module_deinit_cb * deinit

	Destructor.

	
module_config_cb * config

	Configuration.

	
module_layer_cb * layer

	Layer getter.

	
struct kr_prop * props

	Properties.

	
void * lib

	Shared library handle or RTLD_DEFAULT.

	
void * data

	Custom data context.

Utilities

Defines

	
kr_log_info(fmt, ...)

	

	
kr_log_error(fmt, ...)

	

	
kr_debug_status()

	

	
kr_debug_set(x)

	

	
kr_log_debug(fmt, ...)

	

	
WITH_DEBUG

	

	
RDATA_ARR_MAX

	

	
kr_rdataset_next(rd)

	

	
KEY_FLAG_RRSIG

	

	
KEY_FLAG_RANK(key)

	

	
KEY_COVERING_RRSIG(key)

	

	
KR_RRKEY_LEN

	

Functions

	
long time_diff(struct timeval * begin, struct timeval * end)

	Return time difference in miliseconds.

	Note

	based on the _BSD_SOURCE timersub() macro

	
KR_EXPORT char * kr_strcatdup(unsigned n, ...)

	Concatenate N strings.

	
int kr_rand_reseed(void)

	Reseed CSPRNG context.

	
KR_EXPORT unsigned kr_rand_uint(unsigned max)

	Get pseudo-random value.

	
KR_EXPORT int kr_memreserve(void * baton, char ** mem, size_t elm_size, size_t want, size_t * have)

	Memory reservation routine for knot_mm_t.

	
KR_EXPORT int kr_pkt_recycle(knot_pkt_t * pkt)

	

	
KR_EXPORT int kr_pkt_clear_payload(knot_pkt_t * pkt)

	

	
KR_EXPORT int kr_pkt_put(knot_pkt_t * pkt, const knot_dname_t * name, uint32_t ttl, uint16_t rclass, uint16_t rtype, const uint8_t * rdata, uint16_t rdlen)

	Construct and put record to packet.

	
KR_EXPORT KR_PURE const char * kr_inaddr(const struct sockaddr * addr)

	Address bytes for given family.

	
KR_EXPORT KR_PURE int kr_inaddr_family(const struct sockaddr * addr)

	Address family.

	
KR_EXPORT KR_PURE int kr_inaddr_len(const struct sockaddr * addr)

	Address length for given family.

	
KR_EXPORT KR_PURE int kr_straddr_family(const char * addr)

	Return address type for string.

	
KR_EXPORT KR_CONST int kr_family_len(int family)

	Return address length in given family.

	
KR_EXPORT int kr_straddr_subnet(void * dst, const char * addr)

	Parse address and return subnet length (bits).

	Warning

	‘dst’ must be at least sizeof(struct in6_addr) long.

	
KR_EXPORT KR_PURE int kr_bitcmp(const char * a, const char * b, int bits)

	Compare memory bitwise.

	
KR_EXPORT int kr_rrkey(char * key, const knot_dname_t * owner, uint16_t type, uint8_t rank)

	Create unique null-terminated string key for RR.

	Return

	key length if successful or an error

	Parameters

	
	key - Destination buffer for key size, MUST be KR_RRKEY_LEN or larger.

	owner - RR owner domain name.

	type - RR type.

	rank - RR rank (8 bit tag usable for anything).

	
int kr_rrmap_add(map_t * stash, const knot_rrset_t * rr, uint8_t rank, knot_mm_t * pool)

	

	
int kr_rrarray_add(rr_array_t * array, const knot_rrset_t * rr, knot_mm_t * pool)

	

	
KR_EXPORT char * kr_module_call(struct kr_context * ctx, const char * module, const char * prop, const char * input)

	Call module property.

Defines

	
KR_EXPORT

	

	
KR_CONST

	

	
KR_PURE

	

	
KR_NORETURN

	

	
KR_COLD

	

	
kr_ok()

	

	
kr_strerror(x)

	

Functions

	
int __attribute__((__cold__))

	

Generics library

This small collection of “generics” was born out of frustration that I couldn’t find no
such thing for C. It’s either bloated, has poor interface, null-checking is absent or
doesn’t allow custom allocation scheme. BSD-licensed (or compatible) code is allowed here,
as long as it comes with a test case in tests/test_generics.c.

	array - a set of simple macros to make working with dynamic arrays easier.

	map - a Crit-bit tree [https://cr.yp.to/critbit.html] key-value map implementation (public domain) that comes with tests.

	set - set abstraction implemented on top of map.

	pack - length-prefixed list of objects (i.e. array-list).

	lru - LRU-like hash table

array

A set of simple macros to make working with dynamic arrays easier.

MIN(array_push(arr, val), other)

	Note

	The C has no generics, so it is implemented mostly using macros. Be aware of that, as direct usage of the macros in the evaluating macros may lead to different expectations:

May evaluate the code twice, leading to unexpected behaviour. This is a price to pay for the absence of proper generics.

Example usage:

 array_t(const char*) arr;
array_init(arr);

// Reserve memory in advance
if (array_reserve(arr, 2) < 0) {
 return ENOMEM;
}

// Already reserved, cannot fail
array_push(arr, "princess");
array_push(arr, "leia");

// Not reserved, may fail
if (array_push(arr, "han") < 0) {
 return ENOMEM;
}

// It does not hide what it really is
for (size_t i = 0; i < arr.len; ++i) {
 printf("%s\n", arr.at[i]);
}

// Random delete
array_del(arr, 0);

Defines

	
array_t(type)

	Declare an array structure.

	
array_init(array)

	Zero-initialize the array.

	
array_clear(array)

	Free and zero-initialize the array.

	
array_clear_mm(array, free, baton)

	

	
array_reserve(array, n)

	Reserve capacity up to ‘n’ bytes.

	Return

	0 if success, <0 on failure

	
array_reserve_mm(array, n, reserve, baton)

	

	
array_push(array, val)

	Push value at the end of the array, resize it if necessary.

	Note

	May fail if the capacity is not reserved.

	Return

	element index on success, <0 on failure

	
array_pop(array)

	Pop value from the end of the array.

	
array_del(array, i)

	Remove value at given index.

	Return

	0 on success, <0 on failure

	
array_tail(array)

	Return last element of the array.

	Warning

	Undefined if the array is empty.

Functions

	
size_t array_next_count(size_t want)

	Simplified Qt containers growth strategy.

	
int array_std_reserve(void * baton, char ** mem, size_t elm_size, size_t want, size_t * have)

	

	
void array_std_free(void * baton, void * p)

	

map

A Crit-bit tree key-value map implementation.

Example usage:
	Warning

	If the user provides a custom allocator, it must return addresses aligned to 2B boundary.

 map_t map = map_make();

// Custom allocator (optional)
map.malloc = &mymalloc;
map.baton = &mymalloc_context;

// Insert k-v pairs
int values = { 42, 53, 64 };
if (map_set(&map, "princess", &values[0]) != 0 ||
 map_set(&map, "prince", &values[1]) != 0 ||
 map_set(&map, "leia", &values[2]) != 0) {
 fail();
}

// Test membership
if (map_contains(&map, "leia")) {
 success();
}

// Prefix search
int i = 0;
int count(const char *k, void *v, void *ext) { (*(int *)ext)++; return 0; }
if (map_walk_prefixed(map, "princ", count, &i) == 0) {
 printf("%d matches\n", i);
}

// Delete
if (map_del(&map, "badkey") != 0) {
 fail(); // No such key
}

// Clear the map
map_clear(&map);

Defines

	
map_walk(map, callback, baton)

	

Typedefs

	
typedef void *(* map_alloc_f)(void *, size_t)

	

	
typedef void(* map_free_f)(void *baton, void *ptr)

	

Functions

	
map_t map_make(void)

	Creates an new, empty critbit map.

	
int map_contains(map_t * map, const char * str)

	Returns non-zero if map contains str.

	
void * map_get(map_t * map, const char * str)

	Returns value if map contains str.

	
int map_set(map_t * map, const char * str, void * val)

	Inserts str into map, returns 0 on suceess.

	
int map_del(map_t * map, const char * str)

	Deletes str from the map, returns 0 on suceess.

	
void map_clear(map_t * map)

	Clears the given map.

	
int map_walk_prefixed(map_t * map, const char * prefix, int(*)(const char *, void *, void *) callback, void * baton)

	Calls callback for all strings in map with the given prefix.

	Parameters

	
	map -

	prefix - required string prefix (empty => all strings)

	callback - callback parameters are (key, value, baton)

	baton - passed uservalue

	
struct map_t

	#include <map.h>Main data structure.

Public Members

	
void * root

	

	
map_alloc_f malloc

	

	
map_free_f free

	

	
void * baton

	

set

A set abstraction implemented on top of map.

Example usage:
	Note

	The API is based on map.h, see it for more examples.

 set_t set = set_make();

// Insert keys
if (set_add(&set, "princess") != 0 ||
 set_add(&set, "prince") != 0 ||
 set_add(&set, "leia") != 0) {
 fail();
}

// Test membership
if (set_contains(&set, "leia")) {
 success();
}

// Prefix search
int i = 0;
int count(const char *s, void *n) { (*(int *)n)++; return 0; }
if (set_walk_prefixed(set, "princ", count, &i) == 0) {
 printf("%d matches\n", i);
}

// Delete
if (set_del(&set, "badkey") != 0) {
 fail(); // No such key
}

// Clear the set
set_clear(&set);

Defines

	
set_make()

	Creates an new, empty critbit set

	
set_contains(set, str)

	Returns non-zero if set contains str

	
set_add(set, str)

	Inserts str into set, returns 0 on suceess

	
set_del(set, str)

	Deletes str from the set, returns 0 on suceess

	
set_clear(set)

	Clears the given set

	
set_walk(set, callback, baton)

	Calls callback for all strings in map

	
set_walk_prefixed(set, prefix, callback, baton)

	Calls callback for all strings in set with the given prefix

Typedefs

	
typedef map_t set_t

	

	
typedef int(set_walk_cb)(const char *, void *)

	

pack

A length-prefixed list of objects, also an array list.

Each object is prefixed by item length, unlike array this structure permits variable-length data. It is also equivallent to forward-only list backed by an array.

Example usage:
	Note

	Maximum object size is 2^16 bytes, see pack_objlen_t

 pack_t pack;
pack_init(pack);

// Reserve 2 objects, 6 bytes total
pack_reserve(pack, 2, 4 + 2);

// Push 2 objects
pack_obj_push(pack, U8("jedi"), 4)
pack_obj_push(pack, U8("\xbe\xef"), 2);

// Iterate length-value pairs
uint8_t *it = pack_head(pack);
while (it != pack_tail(pack)) {
 uint8_t *val = pack_obj_val(it);
 it = pack_obj_next(it);
}

// Remove object
pack_obj_del(pack, U8("jedi"), 4);

pack_clear(pack);

Defines

	
pack_init(pack)

	Zero-initialize the pack.

	
pack_clear(pack)

	Free and the pack.

	
pack_clear_mm(pack, free, baton)

	

	
pack_reserve(pack, objs_count, objs_len)

	Incrementally reserve objects in the pack.

	
pack_reserve_mm(pack, objs_count, objs_len, reserve, baton)

	

	
pack_head(pack)

	Return pointer to first packed object.

	
pack_tail(pack)

	Return pack end pointer.

Typedefs

	
typedef uint16_t pack_objlen_t

	Packed object length type.

Functions

	
typedef array_t(uint8_t)

	Pack is defined as an array of bytes.

	
pack_objlen_t pack_obj_len(uint8_t * it)

	Return packed object length.

	
uint8_t * pack_obj_val(uint8_t * it)

	Return packed object value.

	
uint8_t * pack_obj_next(uint8_t * it)

	Return pointer to next packed object.

	
int pack_obj_push(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Push object to the end of the pack.

	Return

	0 on success, negative number on failure

	
uint8_t * pack_obj_find(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Returns a pointer to packed object.

	Return

	pointer to packed object or NULL

	
int pack_obj_del(pack_t * pack, const uint8_t * obj, pack_objlen_t len)

	Delete object from the pack.

	Return

	0 on success, negative number on failure

lru

LRU-like cache.

Example usage:
	Note

	This is a naive LRU implementation with a simple slot stickiness counting. Each write access increases stickiness on success, and decreases on collision. A slot is freed if the stickiness decreases to zero. This makes it less likely, that often-updated entries are jousted out of cache.

 // Define new LRU type
typedef lru_hash(int) lru_int_t;

// Create LRU on stack
size_t lru_size = lru_size(lru_int_t, 10);
lru_int_t lru[lru_size];
lru_init(&lru, 5);

// Insert some values
*lru_set(&lru, "luke", strlen("luke")) = 42;
*lru_set(&lru, "leia", strlen("leia")) = 24;

// Retrieve values
int *ret = lru_get(&lru, "luke", strlen("luke");
if (ret) printf("luke dropped out!\n");
else printf("luke's number is %d\n", *ret);

// Set up eviction function, this is going to get called
// on entry eviction (baton refers to baton in 'lru' structure)
void on_evict(void *baton, void *data_) {
 int *data = (int *) data;
 printf("number %d dropped out!\n", *data);
}
char *enemies[] = {"goro", "raiden", "subzero", "scorpion"};
for (int i = 0; i < 4; ++i) {
 int *val = lru_set(&lru, enemies[i], strlen(enemies[i]));
 if (val)
 *val = i;
}

// We're done
lru_deinit(&lru);

Defines

	
lru_slot_struct

	

	
lru_slot_offset(table)

	

	
lru_hash_struct

	LRU structure base.

Passed to eviction function

	
lru_hash(type)

	User-defined hashtable.

	
lru_size(type, max_slots)

	Return size of the LRU structure with given number of slots.

	Parameters

	
	type - type of LRU structure

	max_slots - number of slots

	
lru_init(table, max_slots)

	Initialize hash table.

	Parameters

	
	table - hash table

	max_slots - number of slots

	
lru_deinit(table)

	Free all keys and evict all values.

	Parameters

	
	table - hash table

	
lru_get(table, key_, len_)

	Find key in the hash table and return pointer to it’s value.

	Return

	pointer to data or NULL

	Parameters

	
	table - hash table

	key_ - lookup key

	len_ - key length

	
lru_set(table, key_, len_)

	Return pointer to value (create/replace if needed)

	Return

	pointer to data or NULL

	Parameters

	
	table - hash table

	key_ - lookup key

	len_ - key length

	
lru_evict(table, pos_)

	Evict element at index.

	Return

	0 if successful, negative integer if failed

	Parameters

	
	table - hash table

	pos_ - element position

Typedefs

	
typedef void(* lru_free_f)(void *baton, void *ptr)

	Callback definitions.

Functions

	
int lru_slot_match(struct lru_slot * slot, const char * key, uint32_t len)

	Return boolean true if slot matches key/len pair.

	
void * lru_slot_at(struct lru_hash_base * lru, uint32_t id)

	Get slot at given index.

	
void * lru_slot_val(struct lru_slot * slot, size_t offset)

	Get pointer to slot value.

	
void * lru_slot_get(struct lru_hash_base * lru, const char * key, uint16_t len, size_t offset)

	

	
int lru_slot_evict(struct lru_hash_base * lru, uint32_t id, size_t offset)

	

	
void * lru_slot_set(struct lru_hash_base * lru, const char * key, uint16_t len, size_t offset)

	

	
struct lru_hash_base

	
Public Members

	
lru_hash_struct char slots[]

	

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knot DNS Resolver 1.1.0 documentation

Knot DNS Resolver daemon

The server is in the daemon directory, it works out of the box without any configuration.

$ kresd -h # Get help
$ kresd -a ::1

Enabling DNSSEC

The resolver supports DNSSEC including RFC 5011 [https://tools.ietf.org/html/rfc5011.html] automated DNSSEC TA updates and RFC 7646 [https://tools.ietf.org/html/rfc7646.html] negative trust anchors.
To enable it, you need to provide trusted root keys. Bootstrapping of the keys is automated, and kresd fetches root trust anchors set over a secure channel [http://jpmens.net/2015/01/21/opendnssec-rfc-5011-bind-and-unbound/] from IANA. From there, it can perform RFC 5011 [https://tools.ietf.org/html/rfc5011.html] automatic updates for you.

Note

Automatic bootstrap requires luasocket [https://luarocks.org/modules/luarocks/luasocket] and luasec [https://luarocks.org/modules/luarocks/luasec] installed.

$ kresd -k root.keys # File for root keys
[ta] bootstrapped root anchor "19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5"
[ta] warning: you SHOULD check the key manually, see: https://data.iana.org/root-anchors/draft-icann-dnssec-trust-anchor.html#sigs
[ta] key: 19036 state: Valid
[ta] next refresh: 86400000

Alternatively, you can set it in configuration file with trust_anchors.file = 'root.keys'. If the file doesn’t exist, it will be automatically populated with root keys validated using root anchors retrieved over HTTPS.

This is equivalent to using unbound-anchor [https://www.unbound.net/documentation/howto_anchor.html]:

$ unbound-anchor -a "root.keys" || echo "warning: check the key at this point"
$ echo "auto-trust-anchor-file: \"root.keys\"" >> unbound.conf
$ unbound -c unbound.conf

Warning

Bootstrapping of the root trust anchors is automatic, you are however encouraged to check the key over secure channel, as specified in DNSSEC Trust Anchor Publication for the Root Zone [https://data.iana.org/root-anchors/draft-icann-dnssec-trust-anchor.html#sigs]. This is a critical step where the whole infrastructure may be compromised, you will be warned in the server log.

Manually providing root anchors

The root anchors bootstrap may fail for various reasons, in this case you need to provide IANA or alternative root anchors. The format of the keyfile is the same as for Unbound or BIND and contains DS/DNSKEY records.

	Check the current TA published on IANA website [https://data.iana.org/root-anchors/root-anchors.xml]

	Fetch current keys (DNSKEY), verify digests

	Deploy them

$ kdig DNSKEY . @k.root-servers.net +noall +answer | grep "DNSKEY[[:space:]]257" > root.keys
$ ldns-key2ds -n root.keys # Only print to stdout
... verify that digest matches TA published by IANA ...
$ kresd -k root.keys

You’ve just enabled DNSSEC!

CLI interface

The daemon features a CLI interface, type help() to see the list of available commands.

$ kresd /var/run/knot-resolver
[system] started in interactive mode, type 'help()'
> cache.count()
53

Verbose output

If the debug logging is compiled in, you can turn on verbose tracing of server operation with the -v option.
You can also toggle it on runtime with verbose(true|false) command.

$ kresd -v

Scaling out

The server can clone itself into multiple processes upon startup, this enables you to scale it on multiple cores.
Multiple processes can serve different addresses, but still share the same working directory and cache.
You can add start and stop processes on runtime based on the load.

$ kresd -f 4 rundir > kresd.log &
$ kresd -f 2 rundir > kresd_2.log & # Extra instances
$ pstree $$ -g
bash(3533)─┬─kresd(19212)─┬─kresd(19212)
 │ ├─kresd(19212)
 │ └─kresd(19212)
 ├─kresd(19399)───kresd(19399)
 └─pstree(19411)
$ kill 19399 # Kill group 2, former will continue to run
bash(3533)─┬─kresd(19212)─┬─kresd(19212)
 │ ├─kresd(19212)
 │ └─kresd(19212)
 └─pstree(19460)

Note

On recent Linux supporting SO_REUSEPORT (since 3.9, backported to RHEL 2.6.32) it is also able to bind to the same endpoint and distribute the load between the forked processes. If your OS doesn’t support it, you can use supervisor that is going to bind to sockets before starting multiple processes.

Notice the absence of an interactive CLI. You can attach to the the consoles for each process, they are in rundir/tty/PID.

$ nc -U rundir/tty/3008 # or socat - UNIX-CONNECT:rundir/tty/3008
> cache.count()
53

The direct output of the CLI command is captured and sent over the socket, while also printed to the daemon standard outputs (for accountability). This gives you an immediate response on the outcome of your command.
Error or debug logs aren’t captured, but you can find them in the daemon standard outputs.

This is also a way to enumerate and test running instances, the list of files in tty corresponds to the list
of running processes, and you can test the process for liveliness by connecting to the UNIX socket.

Running supervised

Knot Resolver can run under a supervisor to allow for graceful restarts, watchdog process and socket activation. This way the supervisor binds to sockets and lends them to the resolver daemon. If the resolver terminates or is killed, the sockets remain open and no queries are dropped.

The watchdog process must notify kresd about active file descriptors, and kresd will automatically determine the socket type and bound address, thus it will appear as any other address. There’s a tiny supervisor script for convenience, but you should have a look at real process managers [http://blog.crocodoc.com/post/48703468992/process-managers-the-good-the-bad-and-the-ugly].

$ python scripts/supervisor.py ./daemon/kresd -a 127.0.0.1
$ [system] interactive mode
> quit()
> [2016-03-28 16:06:36.795879] process finished, pid = 99342, status = 0, uptime = 0:00:01.720612
[system] interactive mode
>

The daemon also supports systemd socket activation [http://0pointer.de/blog/projects/socket-activation.html], it is automatically detected and requires no configuration on users’s side.

Configuration

	Configuration example

	Configuration syntax
	Dynamic configuration

	Events and services

	Configuration reference
	Environment

	Network configuration

	Trust anchors and DNSSEC

	Modules configuration

	Cache configuration

	Timers and events

	Map over multiple forks

	Scripting worker

In it’s simplest form it requires just a working directory in which it can set up persistent files like
cache and the process state. If you don’t provide the working directory by parameter, it is going to make itself
comfortable in the current working directory.

$ kresd /var/run/kresd

And you’re good to go for most use cases! If you want to use modules or configure daemon behavior, read on.

There are several choices on how you can configure the daemon, a RPC interface, a CLI, and a configuration file.
Fortunately all share common syntax and are transparent to each other.

Configuration example

-- interfaces
net = { '127.0.0.1', '::1' }
-- load some modules
modules = { 'policy' }
-- 10MB cache
cache.size = 10*MB

Tip

There are more configuration examples in etc/ directory for personal, ISP, company internal and resolver cluster use cases.

Configuration syntax

The configuration is kept in the config file in the daemon working directory, and it’s going to get loaded automatically.
If there isn’t one, the daemon is going to start with sane defaults, listening on localhost.
The syntax for options is like follows: group.option = value or group.action(parameters).
You can also comment using a -- prefix.

A simple example would be to load static hints.

modules = {
 'hints' -- no configuration
}

If the module accepts configuration, you can call the module.config({...}) or provide options table.
The syntax for table is { key1 = value, key2 = value }, and it represents the unpacked JSON-encoded [http://json.org/example] string, that
the modules use as the input configuration.

modules = {
 hints = '/etc/hosts'
}

Warning

Modules specified including their configuration may not load exactly in the same order as specified.

Modules are inherently ordered by their declaration. Some modules are built-in, so it would be normally impossible to place for example hints before rrcache. You can enforce specific order by precedence operators > and <.

modules = {
 'hints > iterate', -- Hints AFTER iterate
 'policy > hints', -- Policy AFTER hints
 'view < rrcache' -- View BEFORE rrcache
}
modules.list() -- Check module call order

This is useful if you’re writing a module with a layer, that evaluates an answer before writing it into cache for example.

Tip

The configuration and CLI syntax is Lua language, with which you may already be familiar with.
If not, you can read the Learn Lua in 15 minutes [http://tylerneylon.com/a/learn-lua/] for a syntax overview. Spending just a few minutes
will allow you to break from static configuration, write more efficient configuration with iteration, and
leverage events and hooks. Lua is heavily used for scripting in applications ranging from embedded to game engines,
but in DNS world notably in PowerDNS Recursor [https://doc.powerdns.com/md/recursor/scripting/]. Knot DNS Resolver does not simply use Lua modules, but it is
the heart of the daemon for everything from configuration, internal events and user interaction.

Dynamic configuration

Knowing that the the configuration is a Lua in disguise enables you to write dynamic rules. It also helps you to avoid repetitive templating that is unavoidable with static configuration.

if hostname() == 'hidden' then
 net.listen(net.eth0, 5353)
else
 net = { '127.0.0.1', net.eth1.addr[1] }
end

Another example would show how it is possible to bind to all interfaces, using iteration.

for name, addr_list in pairs(net.interfaces()) do
 net.listen(addr_list)
end

You can also use third-party packages (available for example through LuaRocks [https://rocks.moonscript.org/]) as on this example
to download cache from parent, to avoid cold-cache start.

local http = require('socket.http')
local ltn12 = require('ltn12')

if cache.count() == 0 then
 -- download cache from parent
 http.request {
 url = 'http://parent/cache.mdb',
 sink = ltn12.sink.file(io.open('cache.mdb', 'w'))
 }
 -- reopen cache with 100M limit
 cache.size = 100*MB
end

Events and services

The Lua supports a concept called closures [https://www.lua.org/pil/6.1.html], this is extremely useful for scripting actions upon various events,
say for example - prune the cache within minute after loading, publish statistics each 5 minutes and so on.
Here’s an example of an anonymous function with event.recurrent():

-- every 5 minutes
event.recurrent(5 * minute, function()
 cache.prune()
end)

Note that each scheduled event is identified by a number valid for the duration of the event,
you may cancel it at any time. You can do this with anonymous functions, if you accept the event
as a parameter, but it’s not very useful as you don’t have any non-global way to keep persistent variables.

-- make a closure, encapsulating counter
function pruner()
 local i = 0
 -- pruning function
 return function(e)
 cache.prune()
 -- cancel event on 5th attempt
 i = i + 1
 if i == 5 then
 event.cancel(e)
 fi
 end
end

-- make recurrent event that will cancel after 5 times
event.recurrent(5 * minute, pruner())

Another type of actionable event is activity on a file descriptor. This allows you to embed other
event loops or monitor open files and then fire a callback when an activity is detected.
This allows you to build persistent services like HTTP servers or monitoring probes that cooperate
well with the daemon internal operations.

For example a simple web server that doesn’t block:

local server, headers = require 'http.server', require 'http.headers'
local cqueues = require 'cqueues'
-- Start socket server
local s = server.listen { host = 'localhost', port = 8080 }
assert(s:listen())
-- Compose per-request coroutine
local cq = cqueues.new()
cq:wrap(function()
 s:run(function(stream)
 -- Create response headers
 local headers = headers.new()
 headers:append(':status', '200')
 headers:append('connection', 'close')
 -- Send response and close connection
 assert(stream:write_headers(headers, false))
 assert(stream:write_chunk('OK', true))
 stream:shutdown()
 stream.connection:shutdown()
 end)
 s:close()
end)
-- Hook to socket watcher
event.socket(cq:pollfd(), function (ev, status, events)
 cq:step(0)
end)

	File watchers

Note

Work in progress, come back later!

Configuration reference

This is a reference for variables and functions available to both configuration file and CLI.

	Environment

	Network configuration

	Trust anchors and DNSSEC

	Modules configuration

	Cache configuration

	Timers and events

	Map over multiple forks

	Scripting worker

Environment

	
env (table)

	Return environment variable.

env.USER -- equivalent to $USER in shell

	
hostname()

	

	Returns:	Machine hostname.

	
verbose(true |false)

	

	Returns:	Toggle verbose logging.

	
mode('strict' | 'normal' |'permissive')

	

	Returns:	Change resolver strictness checking level.

By default, resolver runs in normal mode. There are possibly many small adjustments
hidden behind the mode settings, but the main idea is that in permissive mode, the resolver
tries to resolve a name with as few lookups as possible, while in strict mode it spends much
more effort resolving and checking referral path. However, if majority of the traffic is covered
by DNSSEC, some of the strict checking actions are counter-productive.

	Action
	Modes

	Use mandatory glue
	strict, normal, permissive

	Use in-bailiwick glue
	normal, permissive

	Use any glue records
	permissive

	
user(name, [group])

	

	Parameters:	
	name (string) – user name

	group (string) – group name (optional)

	Returns:	boolean

Drop privileges and run as given user (and group, if provided).

Tip

Note that you should bind to required network addresses before changing user. At the same time, you should open the cache AFTER you change the user (so it remains accessible). A good practice is to divide configuration in two parts:

-- privileged
net = { '127.0.0.1', '::1' }
-- unprivileged
cache.size = 100*MB
trust_anchors.file = 'root.key'

Example output:

> user('baduser')
invalid user name
> user('kresd', 'netgrp')
true
> user('root')
Operation not permitted

	
resolve(qname, qtype[, qclass =kres.class.IN, options =0, callback =nil])

	

	Parameters:	
	qname (string) – Query name (e.g. ‘com.’)

	qtype (number) – Query type (e.g. kres.type.NS)

	qclass (number) – Query class (optional) (e.g. kres.class.IN)

	options (number) – Resolution options (see query flags)

	callback (function) – Callback to be executed when resolution completes (e.g. function cb (pkt, req) end). The callback gets a packet containing the final answer and doesn’t have to return anything.

	Returns:	boolean

Example:

-- Send query for root DNSKEY, ignore cache
resolve('.', kres.type.DNSKEY, kres.class.IN, kres.query.NO_CACHE)

-- Query for AAAA record
resolve('example.com', kres.type.AAAA, kres.class.IN, 0,
function (answer, req)
 -- Check answer RCODE
 local pkt = kres.pkt_t(answer)
 if pkt:rcode() == kres.rcode.NOERROR then
 -- Print matching records
 local records = pkt:section(kres.section.ANSWER)
 for i = 1, #records do
 if rr.type == kres.type.AAAA then
 print ('record:', kres.rr2str(rr))
 end
 end
 else
 print ('rcode: ', pkt:rcode())
 end
end)

Network configuration

For when listening on localhost just doesn’t cut it.

Tip

Use declarative interface for network.

net = { '127.0.0.1', net.eth0, net.eth1.addr[1] }
net.ipv4 = false

	
net.ipv6 = true|false

	

	Return:	boolean (default: true)

Enable/disable using IPv6 for recursion.

	
net.ipv4 = true|false

	

	Return:	boolean (default: true)

Enable/disable using IPv4 for recursion.

	
net.listen(address, [port =53, flags = {tls =false}])

	

	Returns:	boolean

Listen on address, port and flags are optional.

	
net.listen({address1, ...}, [port =53, flags = {tls =false}])

	

	Returns:	boolean

Listen on list of addresses.

	
net.listen(interface, [port =53, flags = {tls =false}])

	

	Returns:	boolean

Listen on all addresses belonging to an interface.

Example:

net.listen(net.eth0) -- listen on eth0

	
net.close(address, [port =53])

	

	Returns:	boolean

Close opened address/port pair, noop if not listening.

	
net.list()

	

	Returns:	Table of bound interfaces.

Example output:

[127.0.0.1] => {
 [port] => 53
 [tcp] => true
 [udp] => true
}

	
net.interfaces()

	

	Returns:	Table of available interfaces and their addresses.

Example output:

[lo0] => {
 [addr] => {
 [1] => ::1
 [2] => 127.0.0.1
 }
 [mac] => 00:00:00:00:00:00
}
[eth0] => {
 [addr] => {
 [1] => 192.168.0.1
 }
 [mac] => de:ad:be:ef:aa:bb
}

Tip

You can use net.<iface> as a shortcut for specific interface, e.g. net.eth0

	
net.bufsize([udp_bufsize])

	Get/set maximum EDNS payload available. Default is 4096.
You cannot set less than 512 (512 is DNS packet size without EDNS, 1220 is minimum size for DNSSEC) or more than 65535 octets.

Example output:

> net.bufsize 4096
> net.bufsize()
4096

	
net.tcp_pipeline([len])

	Get/set per-client TCP pipeline limit (number of outstanding queries that a single client connection can make in parallel). Default is 50.

> net.tcp_pipeline()
50
> net.tcp_pipeline(100)

	
net.tls([cert_path], [key_path])

	Get/set path to a server TLS certificate and private key for DNS/TLS.

Example output:

> net.tls_cert("/etc/kresd/server-cert.pem", "/etc/kresd/server-key.pem")
> net.tls_cert()
("/etc/kresd/server-cert.pem", "/etc/kresd/server-key.pem")
> net.listen("::", 853)
> net.listen("::", 443, {tls = true})

Trust anchors and DNSSEC

	
trust_anchors.hold_down_time = 30 * day

	

	Return:	int (default: 30 * day)

Modify RFC5011 hold-down timer to given value. Example: 30 * sec

	
trust_anchors.refresh_time = nil

	

	Return:	int (default: nil)

Modify RFC5011 refresh timer to given value (not set by default), this will force trust anchors
to be updated every N seconds periodically instead of relying on RFC5011 logic and TTLs.
Example: 10 * sec

	
trust_anchors.keep_removed = 0

	

	Return:	int (default: 0)

How many Removed keys should be held in history (and key file) before being purged.
Note: all Removed keys will be purged from key file after restarting the process.

	
trust_anchors.config(keyfile)

	

	Parameters:	
	keyfile (string) – File containing DNSKEY records, should be writeable.

You can use only DNSKEY records in managed mode. It is equivalent to CLI parameter -k <keyfile> or trust_anchors.file = keyfile.

Example output:

> trust_anchors.config('root.keys')
[trust_anchors] key: 19036 state: Valid

	
trust_anchors.set_insecure(nta_set)

	

	Parameters:	
	nta_list (table) – List of domain names (text format) representing NTAs.

When you use a domain name as an NTA, DNSSEC validation will be turned off at/below these names.
Each function call replaces the previous NTA set. You can find the current active set in trust_anchors.insecure variable.

Tip

Use the trust_anchors.negative = {} alias for easier configuration.

Example output:

> trust_anchors.negative = { 'bad.boy', 'example.com' }
> trust_anchors.insecure
[1] => bad.boy
[2] => example.com

	
trust_anchors.add(rr_string)

	

	Parameters:	
	rr_string (string) – DS/DNSKEY records in presentation format (e.g. . 3600 IN DS 19036 8 2 49AAC11...)

Inserts DS/DNSKEY record(s) into current keyset. These will not be managed or updated, use it only for testing
or if you have a specific use case for not using a keyfile.

Example output:

> trust_anchors.add('. 3600 IN DS 19036 8 2 49AAC11...')

Modules configuration

The daemon provides an interface for dynamic loading of daemon modules.

Tip

Use declarative interface for module loading.

modules = {
 hints = {file = '/etc/hosts'}
}

Equals to:

modules.load('hints')
hints.config({file = '/etc/hosts'})

	
modules.list()

	

	Returns:	List of loaded modules.

	
modules.load(name)

	

	Parameters:	
	name (string) – Module name, e.g. “hints”

	Returns:	boolean

Load a module by name.

	
modules.unload(name)

	

	Parameters:	
	name (string) – Module name

	Returns:	boolean

Unload a module by name.

Cache configuration

The cache in Knot DNS Resolver is persistent with LMDB backend, this means that the daemon doesn’t lose
the cached data on restart or crash to avoid cold-starts. The cache may be reused between cache
daemons or manipulated from other processes, making for example synchronised load-balanced recursors possible.

	
cache.size (number)

	Get/set the cache maximum size in bytes. Note that this is only a hint to the backend,
which may or may not respect it. See cache.open().

print(cache.size)
cache.size = 100 * MB -- equivalent to `cache.open(100 * MB)`

	
cache.storage (string)

	Get or change the cache storage backend configuration, see cache.backends() for
more information. If the new storage configuration is invalid, it is not set.

print(cache.storage)
cache.storage = 'lmdb://.'

	
cache.backends()

	

	Returns:	map of backends

The cache supports runtime-changeable backends, using the optional RFC 3986 [https://tools.ietf.org/html/rfc3986.html] URI, where the scheme
represents backend protocol and the rest of the URI backend-specific configuration. By default, it
is a lmdb backend in working directory, i.e. lmdb://.

Example output:

[lmdb://] => true

	
cache.stats()

	

	return:	table of cache counters

The cache collects counters on various operations (hits, misses, transactions, ...). This function call returns a table of
cache counters that can be used for calculating statistics.

	
cache.open(max_size[, config_uri])

	

	Parameters:	
	max_size (number) – Maximum cache size in bytes.

	Returns:	boolean

Open cache with size limit. The cache will be reopened if already open.
Note that the max_size cannot be lowered, only increased due to how cache is implemented.

Tip

Use kB, MB, GB constants as a multiplier, e.g. 100*MB.

The cache supports runtime-changeable backends, see cache.backends() for mor information and
default. Refer to specific documentation of specific backends for configuration string syntax.

	lmdb://

As of now it only allows you to change the cache directory, e.g. lmdb:///tmp/cachedir.

	
cache.count()

	

	Returns:	Number of entries in the cache.

	
cache.close()

	

	Returns:	boolean

Close the cache.

Note

This may or may not clear the cache, depending on the used backend. See cache.clear().

	
cache.stats()

	Return table of statistics, note that this tracks all operations over cache, not just which
queries were answered from cache or not.

Example:

print('Insertions:', cache.stats().insert)

	
cache.prune([max_count])

	

	Parameters:	
	max_count (number) – maximum number of items to be pruned at once (default: 65536)

	Returns:	{ pruned: int }

Prune expired/invalid records.

	
cache.get([domain])

	

	Returns:	list of matching records in cache

Fetches matching records from cache. The domain can either be:

	a domain name (e.g. "domain.cz")

	a wildcard (e.g. "*.domain.cz")

The domain name fetches all records matching this name, while the wildcard matches all records at or below that name.

You can also use a special namespace "P" to purge NODATA/NXDOMAIN matching this name (e.g. "domain.cz P").

Note

This is equivalent to cache['domain'] getter.

Examples:

-- Query cache for 'domain.cz'
cache['domain.cz']
-- Query cache for all records at/below 'insecure.net'
cache['*.insecure.net']

	
cache.clear([domain])

	

	Returns:	bool

Purge cache records. If the domain isn’t provided, whole cache is purged. See cache.get() documentation for subtree matching policy.

Examples:

-- Clear records at/below 'bad.cz'
cache.clear('*.bad.cz')
-- Clear packet cache
cache.clear('*. P')
-- Clear whole cache
cache.clear()

Timers and events

The timer represents exactly the thing described in the examples - it allows you to execute closures
after specified time, or event recurrent events. Time is always described in milliseconds,
but there are convenient variables that you can use - sec, minute, hour.
For example, 5 * hour represents five hours, or 5*60*60*100 milliseconds.

	
event.after(time, function)

	

	Returns:	event id

Execute function after the specified time has passed.
The first parameter of the callback is the event itself.

Example:

event.after(1 * minute, function() print('Hi!') end)

	
event.recurrent(interval, function)

	

	Returns:	event id

Similar to event.after(), periodically execute function after interval passes.

Example:

msg_count = 0
event.recurrent(5 * sec, function(e)
 msg_count = msg_count + 1
 print('Hi #'..msg_count)
end)

	
event.reschedule(event_id, timeout)

	Reschedule a running event, it has no effect on canceled events.
New events may reuse the event_id, so the behaviour is undefined if the function
is called after another event is started.

Example:

local interval = 1 * minute
event.after(1 * minute, function (ev)
 print('Good morning!')
 -- Halven the interval for each iteration
 interval = interval / 2
 event.reschedule(ev, interval)
end)

	
event.cancel(event_id)

	Cancel running event, it has no effect on already canceled events.
New events may reuse the event_id, so the behaviour is undefined if the function
is called after another event is started.

Example:

e = event.after(1 * minute, function() print('Hi!') end)
event.cancel(e)

Watch for file descriptor activity. This allows embedding other event loops or simply
firing events when a pipe endpoint becomes active. In another words, asynchronous
notifications for daemon.

	
event.socket(fd, cb)

	

	Parameters:	
	fd (number) – file descriptor to watch

	cb – closure or callback to execute when fd becomes active

	Returns:	event id

Execute function when there is activity on the file descriptor and calls a closure
with event id as the first parameter, status as second and number of events as third.

Example:

e = event.socket(0, function(e, status, nevents)
 print('activity detected')
end)
e.cancel(e)

Map over multiple forks

When daemon is running in forked mode, each process acts independently. This is good because it reduces software complexity and allows for runtime scaling, but not ideal because of additional operational burden.
For example, when you want to add a new policy, you’d need to add it to either put it in the configuration, or execute command on each process independently. The daemon simplifies this by promoting process group leader which is able to execute commands synchronously over forks.

	
map(expr)

	Run expression synchronously over all forks, results are returned as a table ordered as forks. Expression can be any valid expression in Lua.

Example:

-- Current instance only
hostname()
localhost
-- Mapped to forks
map 'hostname()'
[1] => localhost
[2] => localhost
-- Get worker ID from each fork
map 'worker.id'
[1] => 0
[2] => 1
-- Get cache stats from each fork
map 'cache.stats()'
[1] => {
 [hit] => 0
 [delete] => 0
 [miss] => 0
 [insert] => 0
}
[2] => {
 [hit] => 0
 [delete] => 0
 [miss] => 0
 [insert] => 0
}

Scripting worker

Worker is a service over event loop that tracks and schedules outstanding queries,
you can see the statistics or schedule new queries. It also contains information about
specified worker count and process rank.

	
worker.count

	Return current total worker count (e.g. 1 for single-process)

	
worker.id

	Return current worker ID (starting from 0 up to worker.count - 1)

	
pid (number)

	Current worker process PID.

	
worker.stats()

	Return table of statistics.

	udp - number of outbound queries over UDP

	tcp - number of outbound queries over TCP

	ipv6 - number of outbound queries over IPv6

	ipv4 - number of outbound queries over IPv4

	timeout - number of timeouted outbound queries

	concurrent - number of concurrent queries at the moment

	queries - number of inbound queries

	dropped - number of dropped inbound queries

Example:

print(worker.stats().concurrent)

Using CLI tools

	kresd-host.lua - a drop-in replacement for host(1) utility

Queries the DNS for information.
The hostname is looked up for IP4, IP6 and mail.

Example:

$ kresd-host.lua -f root.key -v nic.cz
nic.cz. has address 217.31.205.50 (secure)
nic.cz. has IPv6 address 2001:1488:0:3::2 (secure)
nic.cz. mail is handled by 10 mail.nic.cz. (secure)
nic.cz. mail is handled by 20 mx.nic.cz. (secure)
nic.cz. mail is handled by 30 bh.nic.cz. (secure)

	kresd-query.lua - run the daemon in zero-configuration mode, perform a query and execute given callback.

This is useful for executing one-shot queries and hooking into the processing of the result,
for example to check if a domain is managed by a certain registrar or if it’s signed.

Example:

$ kresd-query.lua www.sub.nic.cz 'assert(kres.dname2str(req:resolved().zone_cut.name) == "nic.cz.")' && echo "yes"
yes
$ kresd-query.lua -C 'trust_anchors.config("root.keys")' nic.cz 'assert(req:resolved():hasflag(kres.query.DNSSEC_WANT))'
$ echo $?
0

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Knot DNS Resolver 1.1.0 documentation

Knot DNS Resolver modules

	Static hints

	Statistics collector

	Query policies

	Views and ACLs

	Prefetching records

	HTTP/2 services

	DNS Application Firewall

	Graphite module

	Memcached cache storage

	Redis cache storage

	Etcd module

	DNS64

	Renumber

	DNS Cookies

Static hints

This is a module providing static hints from /etc/hosts like file for forward records (A/AAAA) and reverse records (PTR).
You can also use it to change root hints that are used as a safety belt, or if the root NS
drops out of cache.

Examples

-- Load hints after iterator
modules = { 'hints > iterate' }
-- Load hints before rrcache, custom hosts file
modules = { ['hints < rrcache'] = 'hosts.custom' }
-- Add root hints
hints.root({
 ['j.root-servers.net.'] = { '2001:503:c27::2:30', '192.58.128.30' }
})
-- Set custom hint
hints['localhost'] = '127.0.0.1'

Properties

	
hints.config([path])

	

	Parameters:	
	path (string) – path to hosts file, default: "/etc/hosts"

	Returns:	{ result: bool }

Load specified hosts file.

	
hints.get(hostname)

	

	Parameters:	
	hostname (string) – i.e. "localhost"

	Returns:	{ result: [address1, address2, ...] }

Return list of address record matching given name.

	
hints.set(pair)

	

	Parameters:	
	pair (string) – hostname address i.e. "localhost 127.0.0.1"

	Returns:	{ result: bool }

Set hostname - address pair hint.

	
hints.root()

	

	Returns:	{ ['a.root-servers.net'] = { '1.2.3.4', '5.6.7.8', ...}, ... }

Tip

If no parameters are passed, returns current root hints set.

	
hints.root(root_hints)

	

	Parameters:	
	root_hints (table) – new set of root hints i.e. {['name'] = 'addr', ...}

	Returns:	{ ['a.root-servers.net'] = { '1.2.3.4', '5.6.7.8', ...}, ... }

Replace current root hints and return the current table of root hints.

Example:

> hints.root({
 ['l.root-servers.net.'] = '199.7.83.42',
 ['m.root-servers.net.'] = '202.12.27.33'
})
[l.root-servers.net.] => {
 [1] => 199.7.83.42
}
[m.root-servers.net.] => {
 [1] => 202.12.27.33
}

Tip

A good rule of thumb is to select only a few fastest root hints. The server learns RTT and NS quality over time, and thus tries all servers available. You can help it by preselecting the candidates.

Statistics collector

This modules gathers various counters from the query resolution and server internals,
and offers them as a key-value storage. Any module may update the metrics or simply hook
in new ones.

-- Enumerate metrics
> stats.list()
[answer.cached] => 486178
[iterator.tcp] => 490
[answer.noerror] => 507367
[answer.total] => 618631
[iterator.udp] => 102408
[query.concurrent] => 149

-- Query metrics by prefix
> stats.list('iter')
[iterator.udp] => 105104
[iterator.tcp] => 490

-- Set custom metrics from modules
> stats['filter.match'] = 5
> stats['filter.match']
5

-- Fetch most common queries
> stats.frequent()
[1] => {
 [type] => 2
 [count] => 4
 [name] => cz.
}

-- Fetch most common queries (sorted by frequency)
> table.sort(stats.frequent(), function (a, b) return a.count > b.count end)

-- Show recently contacted authoritative servers
> stats.upstreams()
[2a01:618:404::1] => {
 [1] => 26 -- RTT
}
[128.241.220.33] => {
 [1] => 31 - RTT
}

Properties

	
stats.get(key)

	

	Parameters:	
	key (string) – i.e. "answer.total"

	Returns:	number

Return nominal value of given metric.

	
stats.set(key, val)

	

	Parameters:	
	key (string) – i.e. "answer.total"

	val (number) – i.e. 5

Set nominal value of given metric.

	
stats.list([prefix])

	

	Parameters:	
	prefix (string) – optional metric prefix, i.e. "answer" shows only metrics beginning with “answer”

Outputs collected metrics as a JSON dictionary.

	
stats.upstreams()

	

Outputs a list of recent upstreams and their RTT. It is sorted by time and stored in a ring buffer of
a fixed size. This means it’s not aggregated and readable by multiple consumers, but also that
you may lose entries if you don’t read quickly enough. The default ring size is 512 entries, and may be overriden on compile time by -DUPSTREAMS_COUNT=X.

	
stats.frequent()

	

Outputs list of most frequent iterative queries as a JSON array. The queries are sampled probabilistically,
and include subrequests. The list maximum size is 5000 entries, make diffs if you want to track it over time.

	
stats.clear_frequent()

	

Clear the list of most frequent iterative queries.

	
stats.expiring()

	

Outputs list of soon-to-expire records as a JSON array.
The list maximum size is 5000 entries, make diffs if you want to track it over time.

	
stats.clear_expiring()

	

Clear the list of soon expiring records.

Built-in statistics

	answer.total - total number of answered queries

	answer.cached - number of queries answered from cache

	answer.noerror - number of NOERROR answers

	answer.nodata - number of NOERROR, but empty answers

	answer.nxdomain - number of NXDOMAIN answers

	answer.servfail - number of SERVFAIL answers

	answer.1ms - number of answers completed in 1ms

	answer.10ms - number of answers completed in 10ms

	answer.50ms - number of answers completed in 50ms

	answer.100ms - number of answers completed in 100ms

	answer.250ms - number of answers completed in 250ms

	answer.500ms - number of answers completed in 500ms

	answer.1000ms - number of answers completed in 1000ms

	answer.1500ms - number of answers completed in 1500ms

	answer.slow - number of answers that took more than 1500ms

	query.edns - number of queries with EDNS

	query.dnssec - number of queries with DNSSEC DO=1

Query policies

This module can block, rewrite, or alter queries based on user-defined policies.
By default, it blocks queries to reverse lookups in private subnets as per RFC 1918 [https://tools.ietf.org/html/rfc1918.html], RFC 5735 [https://tools.ietf.org/html/rfc5735.html] and RFC 5737 [https://tools.ietf.org/html/rfc5737.html].
You can however extend it to deflect Slow drip DNS attacks [https://blog.secure64.com/?p=377] for example, or gray-list resolution of misbehaving zones.

There are several policies implemented:

	pattern
- applies action if QNAME matches regular expression [http://lua-users.org/wiki/PatternsTutorial]

	suffix
- applies action if QNAME suffix matches given list of suffixes (useful for “is domain in zone” rules),
uses Aho-Corasick [https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_string_matching_algorithm] string matching algorithm implemented by @jgrahamc [https://github.com/jgrahamc/aho-corasick-lua] (CloudFlare, Inc.) (BSD 3-clause)

	rpz
- implementes a subset of the RPZ [https://dnsrpz.info/] format. Currently it can be used with a zonefile, a binary database support is on the way. Binary database can be updated by an external process on the fly.

	custom filter function

There are several defined actions:

	PASS - let the query pass through

	DENY - return NXDOMAIN answer

	DROP - terminate query resolution, returns SERVFAIL to requestor

	TC - set TC=1 if the request came through UDP, forcing client to retry with TCP

	FORWARD(ip) - forward query to given IP and proxy back response (stub mode)

	MIRROR(ip) - mirror query to given IP and continue solving it (useful for partial snooping)

	REROUTE({{subnet,target}, ...}) - reroute addresses in response matching given subnet to given target, e.g. {'192.0.2.0/24', '127.0.0.0'} will rewrite ‘192.0.2.55’ to ‘127.0.0.55’, see renumber module for more information.

Note

The module (and kres) expects domain names in wire format, not textual representation. So each label in name is prefixed with its length, e.g. “example.com” equals to "\7example\3com". You can use convenience function todname('example.com') for automatic conversion.

Example configuration

 -- Load default policies
 modules = { 'policy' }
 -- Whitelist 'www[0-9].badboy.cz'
 policy.add(policy.pattern(policy.PASS, '\4www[0-9]\6badboy\2cz'))
 -- Block all names below badboy.cz
 policy.add(policy.suffix(policy.DENY, {'\6badboy\2cz'}))
 -- Custom rule
 policy.add(function (req, query)
 if query:qname():find('%d.%d.%d.224\7in-addr\4arpa') then
 return policy.DENY
 end
 end)
 -- Disallow ANY queries
 policy.add(function (req, query)
 if query.type == kres.type.ANY then
 return policy.DROP
 end
 end)
 -- Enforce local RPZ
 policy.add(policy.rpz(policy.DENY, 'blacklist.rpz'))
 -- Forward all queries below 'company.se' to given resolver
 policy.add(policy.suffix(policy.FORWARD('192.168.1.1'), {'\7company\2se'}))
 -- Forward all queries matching pattern
 policy.add(policy.pattern(policy.FORWARD('2001:DB8::1'), '\4bad[0-9]\2cz'))
 -- Forward all queries (complete stub mode)
 policy.add(policy.all(policy.FORWARD('2001:DB8::1')))
-- Mirror all queries and retrieve information
local rule = policy.add(policy.all(policy.MIRROR('127.0.0.2')))
-- Print information about the rule
print(string.format('id: %d, matched queries: %d', rule.id, rule.count)
-- Reroute all addresses found in answer from 192.0.2.0/24 to 127.0.0.x
-- this policy is enforced on answers, therefore 'postrule'
local rule = policy.add(policy.REROUTE({'192.0.2.0/24', '127.0.0.0'}), true)
-- Delete rule that we just created
policy.del(rule.id)

Properties

	
policy.PASS

	Pass-through all queries matching the rule.

	
policy.DENY

	Respond with NXDOMAIN to all queries matching the rule.

	
policy.DROP

	Drop all queries matching the rule.

	
policy.TC

	Respond with empty answer with TC bit set (if the query came through UDP).

	
policy.FORWARD (address)

	Forward query to given IP address.

	
policy.MIRROR (address)

	Forward query to given IP address.

	
policy.REROUTE({{subnet,target}, ...})

	Reroute addresses in response matching given subnet to given target, e.g. {'192.0.2.0/24', '127.0.0.0'} will rewrite ‘192.0.2.55’ to ‘127.0.0.55’.

	
policy.add(rule, postrule)

	

	Parameters:	
	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

	postrule – boolean, if true the rule will be evaluated on answer instead of query

	Returns:	rule description

Add a new policy rule that is executed either or queries or answers, depending on the postrule parameter. You can then use the returned rule description to get information and unique identifier for the rule, as well as match count.

	
policy.del(id)

	

	Parameters:	
	id – identifier of a given rule

	Returns:	boolean

Remove a rule from policy list.

	
policy.all(action)

	

	Parameters:	
	action – executed action for all queries

Perform action for all queries (no filtering).

	
policy.pattern(action, pattern)

	

	Parameters:	
	action – action if the pattern matches QNAME

	pattern – regular expression

Policy to block queries based on the QNAME regex matching.

	
policy.suffix(action, suffix_table)

	

	Parameters:	
	action – action if the pattern matches QNAME

	suffix_table – table of valid suffixes

Policy to block queries based on the QNAME suffix match.

	
policy.suffix_common(action, suffix_table[, common_suffix])

	

	Parameters:	
	action – action if the pattern matches QNAME

	suffix_table – table of valid suffixes

	common_suffix – common suffix of entries in suffix_table

Like suffix match, but you can also provide a common suffix of all matches for faster processing (nil otherwise).
This function is faster for small suffix tables (in the order of “hundreds”).

	
policy.rpz(action, path[, format])

	

	Parameters:	
	action – the default action for match in the zone (e.g. RH-value .)

	path – path to zone file | database

Enforce RPZ [https://dnsrpz.info/] rules. This can be used in conjunction with published blocklist feeds.
The RPZ [https://dnsrpz.info/] operation is well described in this Jan-Piet Mens’s post [http://jpmens.net/2011/04/26/how-to-configure-your-bind-resolvers-to-lie-using-response-policy-zones-rpz/],
or the Pro DNS and BIND [http://www.zytrax.com/books/dns/ch7/rpz.html] book. Here’s compatibility table:

	Policy Action
	RH Value
	Support

	NXDOMAIN
	.
	yes

	NODATA
	*.
	partial, implemented as NXDOMAIN

	Unchanged
	rpz-passthru.
	yes

	Nothing
	rpz-drop.
	yes

	Truncated
	rpz-tcp-only.
	yes

	Modified
	anything
	no

	Policy Trigger
	Support

	QNAME
	yes

	CLIENT-IP
	partial, may be done with views

	IP
	no

	NSDNAME
	no

	NS-IP
	no

	
policy.todnames({name, ...})

	

	Param:	names table of domain names in textual format

Returns table of domain names in wire format converted from strings.

-- Convert single name
assert(todname('example.com') == '\7example\3com\0')
-- Convert table of names
policy.todnames({'example.com', 'me.cz'})
{ '\7example\3com\0', '\2me\2cz\0' }

Views and ACLs

The policy module implements policies for global query matching, e.g. solves “how to react to certain query”.
This module combines it with query source matching, e.g. “who asked the query”. This allows you to create personalized blacklists,
filters and ACLs, sort of like ISC BIND views.

There are two identification mechanisms:

	subnet
- identifies the client based on his subnet

	tsig
- identifies the client based on a TSIG key

You can combine this information with policy rules.

view:addr('10.0.0.1', policy.suffix(policy.TC, {'\7example\3com'}))

This fill force given client subnet to TCP for names in example.com.
You can combine view selectors with RPZ [https://dnsrpz.info/] to create personalized filters for example.

Example configuration

-- Load modules
modules = { 'policy', 'view' }
-- Whitelist queries identified by TSIG key
view:tsig('\5mykey', function (req, qry) return policy.PASS end)
-- Block local clients (ACL like)
view:addr('127.0.0.1', function (req, qry) return policy.DENY end))
-- Drop queries with suffix match for remote client
view:addr('10.0.0.0/8', policy.suffix(policy.DROP, {'\3xxx'}))
-- RPZ for subset of clients
view:addr('192.168.1.0/24', policy.rpz(policy.PASS, 'whitelist.rpz'))
-- Forward all queries from given subnet to proxy
view:addr('10.0.0.0/8', policy.all(policy.FORWARD('2001:DB8::1')))

Properties

	
view:addr(subnet, rule)

	

	Parameters:	
	subnet – client subnet, i.e. 10.0.0.1

	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients in given subnet.

	
view:tsig(key, rule)

	

	Parameters:	
	key – client TSIG key domain name, i.e. \5mykey

	rule – added rule, i.e. policy.pattern(policy.DENY, '[0-9]+\2cz')

Apply rule to clients with given TSIG key.

Warning

This just selects rule based on the key name, it doesn’t verify the key or signature yet.

Prefetching records

The module tracks expiring records (having less than 5% of original TTL) and batches them for predict.
This improves latency for frequently used records, as they are fetched in advance.

It is also able to learn usage patterns and repetitive queries that the server makes. For example, if
it makes a query every day at 18:00, the resolver expects that it is needed by that time and prefetches it
ahead of time. This is helpful to minimize the perceived latency and keeps the cache hot.

Tip

The tracking window and period length determine memory requirements. If you have a server with relatively fast query turnover, keep the period low (hour for start) and shorter tracking window (5 minutes). For personal slower resolver, keep the tracking window longer (i.e. 30 minutes) and period longer (a day), as the habitual queries occur daily. Experiment to get the best results.

Example configuration

Warning

This module requires ‘stats’ module to be present and loaded.

modules = {
 predict = {
 window = 15, -- 15 minutes sampling window
 period = 6*(60/15) -- track last 6 hours
 }
}

Defaults are 15 minutes window, 6 hours period.

Tip

Use period 0 to turn off prediction and just do prefetching of expiring records.

Exported metrics

To visualize the efficiency of the predictions, the module exports following statistics.

	predict.epoch - current prediction epoch (based on time of day and sampling window)

	predict.queue - number of queued queries in current window

	predict.learned - number of learned queries in current window

Properties

	
predict.config({ window =15, period =24})

	Reconfigure the predictor to given tracking window and period length. Both parameters are optional.
Window length is in minutes, period is a number of windows that can be kept in memory.
e.g. if a window is 15 minutes, a period of “24” means 6 hours.

HTTP/2 services

This is a module that does the heavy lifting to provide an HTTP/2 enabled
server that supports TLS by default and provides endpoint for other modules
in order to enable them to export restful APIs and websocket streams.
One example is statistics module that can stream live metrics on the website,
or publish metrics on request for Prometheus scraper.

The server allows other modules to either use default endpoint that provides
built-in webpage, restful APIs and websocket streams, or create new endpoints.

Example configuration

By default, the web interface starts HTTPS/2 on port 8053 using an ephemeral
certificate that is valid for 90 days and is automatically renewed. It is of
course self-signed, so you should use your own judgement before exposing it
to the outside world. Why not use something like Let’s Encrypt [https://letsencrypt.org]
for starters?

-- Load HTTP module with defaults
modules = {
 http = {
 host = 'localhost',
 port = 8053,
 geoip = 'GeoLite2-City.mmdb' -- Optional
 }
}

Now you can reach the web services and APIs, done!

$ curl -k https://localhost:8053
$ curl -k https://localhost:8053/stats

It is possible to disable HTTPS altogether by passing cert = false option.
While it’s not recommended, it could be fine for localhost tests as, for example,
Safari doesn’t allow WebSockets over HTTPS with a self-signed certificate.
Major drawback is that current browsers won’t do HTTP/2 over insecure connection.

http = {
 host = 'localhost',
 port = 8053,
 cert = false,
}

If you want to provide your own certificate and key, you’re welcome to do so:

http = {
 host = 'localhost',
 port = 8053,
 cert = 'mycert.crt',
 key = 'mykey.key',
}

The format of both certificate and key is expected to be PEM, e.g. equivallent to
the outputs of following:

openssl ecparam -genkey -name prime256v1 -out mykey.key
openssl req -new -key mykey.key -out csr.pem
openssl req -x509 -days 90 -key mykey.key -in csr.pem -out mycert.crt

Built-in services

The HTTP module has several built-in services to use.

	Endpoint
	Service
	Description

	/stats
	Statistics/metrics
	Exported metrics in JSON.

	/metrics
	Prometheus metrics
	Exported metrics for Prometheus [https://prometheus.io]

	/feed
	Most frequent queries
	List of most frequent queries in JSON.

Enabling Prometheus metrics endpoint

The module exposes /metrics endpoint that serves internal metrics in Prometheus [https://prometheus.io] text format.
You can use it out of the box:

$ curl -k https://localhost:8053/metrics | tail
TYPE latency histogram
latency_bucket{le=10} 2.000000
latency_bucket{le=50} 2.000000
latency_bucket{le=100} 2.000000
latency_bucket{le=250} 2.000000
latency_bucket{le=500} 2.000000
latency_bucket{le=1000} 2.000000
latency_bucket{le=1500} 2.000000
latency_bucket{le=+Inf} 2.000000
latency_count 2.000000
latency_sum 11.000000

How to expose services over HTTP

The module provides a table endpoints of already existing endpoints, it is free for reading and
writing. It contains tables describing a triplet - {mime, on_serve, on_websocket}.
In order to register a new service, simply add it to the table:

http.endpoints['/health'] = {'application/json',
function (h, stream)
 -- API call, return a JSON table
 return {state = 'up', uptime = 0}
end,
function (h, ws)
 -- Stream current status every second
 local ok = true
 while ok do
 local push = tojson('up')
 ok = ws:send(tojson({'up'}))
 require('cqueues').sleep(1)
 end
 -- Finalize the WebSocket
 ws:close()
end}

Then you can query the API endpoint, or tail the WebSocket using curl.

$ curl -k http://localhost:8053/health
{"state":"up","uptime":0}
$ curl -k -i -N -H "Connection: Upgrade" -H "Upgrade: websocket" -H "Host: localhost:8053/health" -H "Sec-Websocket-Key: nope" -H "Sec-Websocket-Version: 13" https://localhost:8053/health
HTTP/1.1 101 Switching Protocols
upgrade: websocket
sec-websocket-accept: eg18mwU7CDRGUF1Q+EJwPM335eM=
connection: upgrade

?["up"]?["up"]?["up"]

Since the stream handlers are effectively coroutines, you are free to keep state and yield using cqueues.
This is especially useful for WebSockets, as you can stream content in a simple loop instead of
chains of callbacks.

Last thing you can publish from modules are “snippets”. Snippets are plain pieces of HTML code that are rendered at the end of the built-in webpage. The snippets can be extended with JS code to talk to already
exported restful APIs and subscribe to WebSockets.

http.snippets['/health'] = {'Health service', '<p>UP!</p>'}

How to expose RESTful services

A RESTful service is likely to respond differently to different type of methods and requests,
there are three things that you can do in a service handler to send back results.
First is to just send whatever you want to send back, it has to respect MIME type that the service
declared in the endpoint definition. The response code would then be 200 OK, any non-string
responses will be packed to JSON. Alternatively, you can respond with a number corresponding to
the HTTP response code or send headers and body yourself.

-- Our upvalue
local value = 42

-- Expose the service
http.endpoints['/service'] = {'application/json',
function (h, stream)
 -- Get request method and deal with it properly
 local m = h:get(':method')
 local path = h:get(':path')
 log('[service] method %s path %s', m, path)
 -- Return table, response code will be '200 OK'
 if m == 'GET' then
 return {key = path, value = value}
 -- Save body, perform check and either respond with 505 or 200 OK
 elseif m == 'POST' then
 local data = stream:get_body_as_string()
 if not tonumber(data) then
 return 500, 'Not a good request'
 end
 value = tonumber(data)
 -- Unsupported method, return 405 Method not allowed
 else
 return 405, 'Cannot do that'
 end
end}

In some cases you might need to send back your own headers instead of default provided by HTTP handler,
you can do this, but then you have to return false to notify handler that it shouldn’t try to generate
a response.

local headers = require('http.headers')
function (h, stream)
 -- Send back headers
 local hsend = headers.new()
 hsend:append(':status', '200')
 hsend:append('content-type', 'binary/octet-stream')
 assert(stream:write_headers(hsend, false))
 -- Send back data
 local data = 'binary-data'
 assert(stream:write_chunk(data, true))
 -- Disable default handler action
 return false
end

How to expose more interfaces

Services exposed in the previous part share the same external interface. This means that it’s either accessible to the outside world or internally, but not one or another. This is not always desired, i.e. you might want to offer DNS/HTTPS to everyone, but allow application firewall configuration only on localhost. http module allows you to create additional interfaces with custom endpoints for this purpose.

http.interface('127.0.0.1', 8080, {
 ['/conf'] = {'application/json', function (h, stream) print('configuration API') end},
 ['/private'] = {'text/html', static_page},
})

This way you can have different internal-facing and external-facing services at the same time.

Dependencies

	lua-http [https://github.com/daurnimator/lua-http] available in LuaRocks

If you’re installing via Homebrew on OS X, you need OpenSSL too.

$ brew update
$ brew install openssl
$ brew link openssl --force # Override system OpenSSL

Any other system can install from LuaRocks directly:

$ luarocks install --server=https://luarocks.org/dev http CC=cc

	mmdblua [https://github.com/daurnimator/mmdblua] available in LuaRocks

$ luarocks install --server=https://luarocks.org/dev mmdblua
$ curl -O https://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz
$ gzip -d GeoLite2-City.mmdb.gz

DNS Application Firewall

This module is a high-level interface for other powerful filtering modules and DNS views. It provides an easy interface to apply and monitor DNS filtering rules and a persistent memory for them. It also provides a restful service interface and an HTTP interface.

Example configuration

Firewall rules are declarative and consist of filters and actions. Filters have field operator operand notation (e.g. qname = example.com), and may be chained using AND/OR keywords. Actions may or may not have parameters after the action name.

-- Let's write some daft rules!
modules = { 'daf' }

-- Block all queries with QNAME = example.com
daf.add 'qname = example.com deny'

-- Filters can be combined using AND/OR...
-- Block all queries with QNAME match regex and coming from given subnet
daf.add 'qname ~ %w+.example.com AND src = 192.0.2.0/24 deny'

-- We also can reroute addresses in response to alternate target
-- This reroutes 1.2.3.4 to localhost
daf.add 'src = 127.0.0.0/8 reroute 192.0.2.1-127.0.0.1'

-- Subnets work too, this reroutes a whole subnet
-- e.g. 192.0.2.55 to 127.0.0.55
daf.add 'src = 127.0.0.0/8 reroute 192.0.2.0/24-127.0.0.0'

-- This rewrites all A answers for 'example.com' from
-- whatever the original address was to 127.0.0.2
daf.add 'src = 127.0.0.0/8 rewrite example.com A 127.0.0.2'

-- Mirror queries matching given name to DNS logger
daf.add 'qname ~ %w+.example.com MIRROR 127.0.0.2'
daf.add 'qname ~ example-%d.com MIRROR 127.0.0.3@5353'

-- Forward queries from subnet
daf.add 'src = 127.0.0.1/8 forward 127.0.0.1@5353'

-- Truncate queries based on destination IPs
daf.add 'dst = 192.0.2.51 truncate'

-- Disable a rule
daf.disable 2
-- Enable a rule
daf.enable 2
-- Delete a rule
daf.del 2

If you’re not sure what firewall rules are in effect, see daf.rules:

-- Show active rules
> daf.rules
[1] => {
 [rule] => {
 [count] => 42
 [id] => 1
 [cb] => function: 0x1a3eda38
 }
 [info] => qname = example.com AND src = 127.0.0.1/8 deny
 [policy] => function: 0x1a3eda38
}
[2] => {
 [rule] => {
 [suspended] => true
 [count] => 123522
 [id] => 2
 [cb] => function: 0x1a3ede88
 }
 [info] => qname ~ %w+.facebook.com AND src = 127.0.0.1/8 deny...
 [policy] => function: 0x1a3ede88
}

Web interface

If you have HTTP/2 loaded, the firewall automatically loads as a snippet.
You can create, track, suspend and remove firewall rules from the web interface.

RESTful interface

The module also exports a RESTful API for operations over rule chains.

	URL
	HTTP Verb
	Action

	/daf
	GET
	Return JSON list of active rules.

	/daf
	POST
	Insert new rule, rule string is expected in body. Returns rule information in JSON.

	/daf/<id>
	GET
	Retrieve a rule matching given ID.

	/daf/<id>
	DELETE
	Delete a rule matching given ID.

	/daf/<id>/<prop>/<val>
	PATCH
	Modify given rule, for example /daf/3/active/false suspends rule 3.

This interface is used by the web interface for all operations, but you can also use it directly
for testing.

Get current rule set
$ curl -s -X GET http://localhost:8053/daf | jq .
{}

Create new rule
$ curl -s -X POST -d "src = 127.0.0.1 pass" http://localhost:8053/daf | jq .
{
 "count": 0,
 "active": true,
 "info": "src = 127.0.0.1 pass",
 "id": 1
}

Disable rule
$ curl -s -X PATCH http://localhost:8053/daf/1/active/false | jq .
true

Retrieve a rule information
$ curl -s -X GET http://localhost:8053/daf/1 | jq .
{
 "count": 4,
 "active": true,
 "info": "src = 127.0.0.1 pass",
 "id": 1
}

Delete a rule
$ curl -s -X DELETE http://localhost:8053/daf/1 | jq .
true

Graphite module

The module sends statistics over the Graphite [https://graphite.readthedocs.io/en/latest/feeding-carbon.html] protocol to either Graphite [https://graphite.readthedocs.io/en/latest/feeding-carbon.html], Metronome [https://github.com/ahuPowerDNS/metronome], InfluxDB [https://influxdb.com/] or any compatible storage. This allows powerful visualization over metrics collected by Knot DNS Resolver.

Tip

The Graphite server is challenging to get up and running, InfluxDB [https://influxdb.com/] combined with Grafana [http://grafana.org/] are much easier, and provide richer set of options and available front-ends. Metronome [https://github.com/ahuPowerDNS/metronome] by PowerDNS alternatively provides a mini-graphite server for much simpler setups.

Example configuration

Only the host parameter is mandatory.

By default the module uses UDP so it doesn’t guarantee the delivery, set tcp = true to enable Graphite over TCP. If the TCP consumer goes down or the connection with Graphite is lost, resolver will periodically attempt to reconnect with it.

modules = {
 graphite = {
 prefix = hostname(), -- optional metric prefix
 host = '127.0.0.1', -- graphite server address
 port = 2003, -- graphite server port
 interval = 5 * sec, -- publish interval
 tcp = false -- set to true if want TCP mode
 }
}

The module supports sending data to multiple servers at once.

modules = {
 graphite = {
 host = { '127.0.0.1', '1.2.3.4', '::1' },
 }
}

Dependencies

	luasocket [http://w3.impa.br/~diego/software/luasocket/] available in LuaRocks

$ luarocks install luasocket

Memcached cache storage

Module providing a cache storage backend for memcached [https://memcached.org/], which makes a good fit for
making a shared cache between resolvers.

After loading you can see the storage backend registered and useable.

> modules.load 'kmemcached'
> cache.backends()
[memcached://] => true

And you can use it right away, see the libmemcached configuration [http://docs.libmemcached.org/libmemcached_configuration.html#description] reference for configuration string
options, the most essential ones are –SERVER or –SOCKET. Here’s an example for connecting to UNIX socket.

> cache.storage = 'memcached://--SOCKET="/var/sock/memcached"'

Note

The memcached [https://memcached.org/] instance MUST support binary protocol, in order to make it work with binary keys. You can pass other options to the configuration string for performance tuning.

Warning

The memcached [https://memcached.org/] server is responsible for evicting entries out of cache, the pruning function is not implemented, and neither is aborting write transactions.

Build resolver shared cache

The memcached [https://memcached.org/] takes care of the data replication and fail over, you can add multiple servers at once.

> cache.storage = 'memcached://--SOCKET="/var/sock/memcached" --SERVER=192.168.1.1 --SERVER=cache2.domain'

Dependencies

Depends on the libmemcached [http://libmemcached.org/libMemcached.html] library.

Redis cache storage

This modules provides Redis [http://redis.io/] backend for cache storage. Redis is a BSD-license key-value cache and storage server.
Like memcached [https://memcached.org/] backend, Redis provides master-server replication, but also weak-consistency clustering.

After loading you can see the storage backend registered and useable.

> modules.load 'redis'
> cache.backends()
[redis://] => true

Redis client support TCP or UNIX sockets.

> cache.storage = 'redis://127.0.0.1'
> cache.storage = 'redis://127.0.0.1:6398'
> cache.storage = 'redis:///tmp/redis.sock'

It also supports indexed databases if you prefix the configuration string with DBID@.

> cache.storage = 'redis://9@127.0.0.1'

Warning

The Redis client doesn’t really support transactions nor pruning. Cache eviction policy shoud be left upon Redis server, see the Using Redis as an LRU cache.

Build distributed cache

See Redis Cluster tutorial.

Dependencies

Depends on the hiredis [https://github.com/redis/hiredis] library, which is usually in the packages / ports or you can install it from sources.

Etcd module

The module connects to Etcd peers and watches for configuration change.
By default, the module looks for the subtree under /kresd directory,
but you can change this in the configuration [https://github.com/mah0x211/lua-etcd#cli-err–etcdnew-optiontable-].

The subtree structure corresponds to the configuration variables in the declarative style.

$ etcdctl set /kresd/net/127.0.0.1 53
$ etcdctl set /kresd/cache/size 10000000

Configures all listening nodes to following configuration:

net = { '127.0.0.1' }
cache.size = 10000000

Example configuration

modules = {
 ketcd = {
 prefix = '/kresd',
 peer = 'http://127.0.0.1:7001'
 }
}

Warning

Work in progress!

Dependencies

	lua-etcd [https://github.com/mah0x211/lua-etcd] available in LuaRocks

$ luarocks install etcd --from=https://mah0x211.github.io/rocks/

DNS64

The module for RFC 6147 [https://tools.ietf.org/html/rfc6147.html] DNS64 AAAA-from-A record synthesis, it is used to enable client-server communication between an IPv6-only client and an IPv4-only server. See the well written introduction [https://doc.powerdns.com/md/recursor/dns64] in the PowerDNS documentation.

Tip

The A record sub-requests will be DNSSEC secured, but the synthetic AAAA records can’t be. Make sure the last mile between stub and resolver is secure to avoid spoofing.

Example configuration

-- Load the module with a NAT64 address
modules = { dns64 = 'fe80::21b:77ff:0:0' }
-- Reconfigure later
dns64.config('fe80::21b:aabb:0:0')

Renumber

The module renumbers addresses in answers to different address space.
e.g. you can redirect malicious addresses to a blackhole, or use private address ranges
in local zones, that will be remapped to real addresses by the resolver.

Warning

While requests are still validated using DNSSEC, the signatures are stripped from final answer. The reason is that the address synthesis breaks signatures. You can see whether an answer was valid or not based on the AD flag.

Example configuration

modules = {
 renumber = {
 -- Source subnet, destination subnet
 {'10.10.10.0/24', '192.168.1.0'},
 -- Remap /16 block to localhost address range
 {'166.66.0.0/16', '127.0.0.0'}
 }
}

DNS Cookies

The module performs most of the RFC 7873 [https://tools.ietf.org/html/rfc7873.html] DNS cookies functionality. Its main purpose is to check the cookies of inbound queries and responses. It is also used to alter the behaviour of the cookie functionality.

Example Configuration

-- Load the module before the 'iterate' layer.
modules = {
 'cookies < iterate'
}

-- Configure the client part of the resolver. Set 8 bytes of the client
-- secret and choose the hashing algorithm to be used.
-- Use a string composed of hexadecimal digits to set the secret.
cookies.config { client_secret = '0123456789ABCDEF',
 client_cookie_alg = 'FNV-64' }

-- Configure the server part of the resolver.
cookies.config { server_secret = 'FEDCBA9876543210',
 server_cookie_alg = 'FNV-64' }

-- Enable client cookie functionality. (Add cookies into outbound
-- queries.)
cookies.config { client_enabled = true }

-- Enable server cookie functionality. (Handle cookies in inbound
-- requests.)
cookies.config { server_enabled = true }

Tip

If you want to change several parameters regarding the client or server configuration then do it within a single cookies.config() invocation.

Warning

The module must be loaded before any other module that has direct influence on query processing and response generation. The module must be able to intercept an incoming query before the processing of the actual query starts. It must also be able to check the cookies of inbound responses and eventually discard them before they are handled by other functional units.

Properties

	
cookies.config(configuration)

	

	Parameters:	
	configuration (table) – part of cookie configuration to be changed, may be called without parameter

	Returns:	JSON dictionary containing current configuration

The function may be called without any parameter. In such case it only returns current configuration. The returned JSON also contains available algorithm choices.

Dependencies

	Nettle [https://www.lysator.liu.se/~nisse/nettle/] required for HMAC-SHA256

	development version of libknot (master branch) [https://gitlab.labs.nic.cz/labs/knot/tree/master] for DNS cookies handling

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Knot DNS Resolver 1.1.0 documentation

Modules API reference

	Supported languages

	The anatomy of an extension

	Writing a module in Lua

	Writing a module in C

	Writing a module in Go

	Configuring modules

	Exposing C/Go module properties

Supported languages

Currently modules written in C and LuaJIT are supported.
There is also a support for writing modules in Go 1.5+ — the library has no native Go bindings, library is accessible using CGO [http://golang.org/cmd/cgo/].

The anatomy of an extension

A module is a shared object or script defining specific functions, here’s an overview.

Note — the Modules header documents the module loading and API.

	C/Go
	Lua
	Params
	Comment

	X_api() [1]
	
	
	API version

	X_init()
	X.init()
	module
	Constructor

	X_deinit()
	X.deinit()
	module, key
	Destructor

	X_config()
	X.config()
	module
	Configuration

	X_layer()
	X.layer
	module
	Module layer

	X_props()
	
	
	List of properties

	[1]	Mandatory symbol.

The X corresponds to the module name, if the module name is hints, then the prefix for constructor would be hints_init().
This doesn’t apply for Go, as it for now always implements main and requires capitalized first letter in order to export its symbol.

Note

The resolution context struct kr_context holds loaded modules for current context. A module can be registered with kr_context_register(), which triggers module constructor immediately after the load. Module destructor is automatically called when the resolution context closes.

If the module exports a layer implementation, it is automatically discovered by kr_resolver() on resolution init and plugged in. The order in which the modules are registered corresponds to the call order of layers.

Writing a module in Lua

The probably most convenient way of writing modules is Lua since you can use already installed modules
from system and have first-class access to the scripting engine. You can also tap to all the events, that
the C API has access to, but keep in mind that transitioning from the C to Lua function is slower than
the other way round.

Note

The Lua functions retrieve an additional first parameter compared to the C counterparts - a “state”.
There is no Lua wrapper for C structures used in the resolution context, until they’re implemented
you can inspect the structures using the ffi [http://luajit.org/ext_ffi.html] library.

The modules follow the Lua way [http://lua-users.org/wiki/ModuleDefinition], where the module interface is returned in a named table.

--- @module Count incoming queries
local counter = {}

function counter.init(module)
 counter.total = 0
 counter.last = 0
 counter.failed = 0
end

function counter.deinit(module)
 print('counted', counter.total, 'queries')
end

-- @function Run the q/s counter with given interval.
function counter.config(conf)
 -- We can use the scripting facilities here
 if counter.ev then event.cancel(counter.ev)
 event.recurrent(conf.interval, function ()
 print(counter.total - counter.last, 'q/s')
 counter.last = counter.total
 end)
end

return counter

Tip

The API functions may return an integer value just like in other languages, but they may also return a coroutine that will be continued asynchronously. A good use case for this approach is is a deferred initialization, e.g. loading a chunks of data or waiting for I/O.

function counter.init(module)
 counter.total = 0
 counter.last = 0
 counter.failed = 0
 return coroutine.create(function ()
 for line in io.lines('/etc/hosts') do
 load(module, line)
 coroutine.yield()
 end
 end)
end

The created module can be then loaded just like any other module, except it isn’t very useful since it
doesn’t provide any layer to capture events. The Lua module can however provide a processing layer, just
like its C counterpart.

-- Notice it isn't a function, but a table of functions
counter.layer = {
 begin = function (state, data)
 counter.total = counter.total + 1
 return state
 end,
 finish = function (state, req, answer)
 if state == kres.FAIL then
 counter.failed = counter.failed + 1
 end
 return state
 end
}

Since the modules are like any other Lua modules, you can interact with them through the CLI and and any interface.

Tip

The module can be placed anywhere in the Lua search path, in the working directory or in the MODULESDIR.

Writing a module in C

As almost all the functions are optional, the minimal module looks like this:

#include "lib/module.h"
/* Convenience macro to declare module API. */
KR_MODULE_EXPORT(mymodule);

Let’s define an observer thread for the module as well. It’s going to be stub for the sake of brevity,
but you can for example create a condition, and notify the thread from query processing by declaring
module layer (see the Writing layers).

static void* observe(void *arg)
{
 /* ... do some observing ... */
}

int mymodule_init(struct kr_module *module)
{
 /* Create a thread and start it in the background. */
 pthread_t thr_id;
 int ret = pthread_create(&thr_id, NULL, &observe, NULL);
 if (ret != 0) {
 return kr_error(errno);
 }

 /* Keep it in the thread */
 module->data = thr_id;
 return kr_ok();
}

int mymodule_deinit(struct kr_module *module)
{
 /* ... signalize cancellation ... */
 void *res = NULL;
 pthread_t thr_id = (pthread_t) module->data;
 int ret = pthread_join(thr_id, res);
 if (ret != 0) {
 return kr_error(errno);
 }

 return kr_ok();
}

This example shows how a module can run in the background, this enables you to, for example, observe
and publish data about query resolution.

Writing a module in Go

The Go modules use CGO [http://golang.org/cmd/cgo/] to interface C resolver library, there are no native bindings yet. Second issue is that layers are declared as a structure of function pointers, which are not present in Go [http://blog.golang.org/gos-declaration-syntax], the workaround is to declare them in CGO [http://golang.org/cmd/cgo/] header. Each module must be the main package, here’s a minimal example:

package main

/*
#include "lib/module.h"
*/
import "C"
import "unsafe"

/* Mandatory functions */

//export mymodule_api
func mymodule_api() C.uint32_t {
 return C.KR_MODULE_API
}
func main() {}

Warning

Do not forget to prefix function declarations with //export symbol_name, as only these will be exported in module.

In order to integrate with query processing, you have to declare a helper function with function pointers to the
the layer implementation. Since the code prefacing import "C" is expanded in headers, you need the static inline trick
to avoid multiple declarations. Here’s how the preface looks like:

/*
#include "lib/layer.h"
#include "lib/module.h"
// Need a forward declaration of the function signature
int finish(knot_layer_t *);
// Workaround for layers composition
static inline const knot_layer_api_t *_layer(void)
{
 static const knot_layer_api_t api = {
 .finish = &finish
 };
 return &api;
}
*/
import "C"
import "unsafe"

Now we can add the implementations for the finish layer and finalize the module:

//export finish
func finish(ctx *C.knot_layer_t) C.int {
 // Since the context is unsafe.Pointer, we need to cast it
 var param *C.struct_kr_request = (*C.struct_kr_request)(ctx.data)
 // Now we can use the C API as well
 fmt.Printf("[go] resolved %d queries\n", C.list_size(¶m.rplan.resolved))
 return 0
}

//export mymodule_layer
func mymodule_layer(module *C.struct_kr_module) *C.knot_layer_api_t {
 // Wrapping the inline trampoline function
 return C._layer()
}

See the CGO [http://golang.org/cmd/cgo/] for more information about type conversions and interoperability between the C/Go.

Gotchas

	main() function is mandatory in each module, otherwise it won’t compile.

	Module layer function implementation must be done in C during import "C", as Go doesn’t support pointers to functions.

	The library doesn’t have a Go-ified bindings yet, so interacting with it requires CGO shims, namely structure traversal and type conversions (strings, numbers).

	Other modules can be called through C call C.kr_module_call(kr_context, module_name, module_propery, input)

Configuring modules

There is a callback X_config() that you can implement, see hints module.

Exposing C/Go module properties

A module can offer NULL-terminated list of properties, each property is essentially a callable with free-form JSON input/output.
JSON was chosen as an interchangeable format that doesn’t require any schema beforehand, so you can do two things - query the module properties
from external applications or between modules (i.e. statistics module can query cache module for memory usage).
JSON was chosen not because it’s the most efficient protocol, but because it’s easy to read and write and interface to outside world.

Note

The void *env is a generic module interface. Since we’re implementing daemon modules, the pointer can be cast to struct engine*.
This is guaranteed by the implemented API version (see Writing a module in C).

Here’s an example how a module can expose its property:

char* get_size(void *env, struct kr_module *m,
 const char *args)
{
 /* Get cache from engine. */
 struct engine *engine = env;
 namedb_t *cache = engine->resolver.cache;

 /* Open read transaction */
 struct kr_cache_txn txn;
 int ret = kr_cache_txn_begin(cache, &txn, NAMEDB_RDONLY);
 if (ret != 0) {
 return NULL;
 }

 /* Read item count */
 char *result = NULL;
 const namedb_api_t *api = kr_cache_storage();
 asprintf(&result, "{ \"result\": %d }", api->count(&txn));
 kr_cache_txn_abort(&txn);

 return result;
}

struct kr_prop *cache_props(void)
{
 static struct kr_prop prop_list[] = {
 /* Callback, Name, Description */
 {&get_size, "get_size", "Return number of records."},
 {NULL, NULL, NULL}
 };
 return prop_list;
}

KR_MODULE_EXPORT(cache)

Once you load the module, you can call the module property from the interactive console.
Note — the JSON output will be transparently converted to Lua tables.

$ kresd
...
[system] started in interactive mode, type 'help()'
> modules.load('cached')
> cached.get_size()
[size] => 53

Note — this relies on function pointers, so the same static inline trick as for the Layer() is required for C/Go.

Special properties

If the module declares properties get or set, they can be used in the Lua interpreter as
regular tables.

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Knot DNS Resolver 1.1.0 documentation

Index

 C
 | E
 | H
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

C

 	

 	cache.backends (C function)

 	cache.clear (C function)

 	cache.close (C function)

 	cache.count (C function)

 	cache.get (C function)

 	

 	cache.open (C function)

 	cache.prune (C function)

 	cache.stats (C function), [1]

 	cookies.config (C function)

E

 	

 	
 environment variable

 	

 	cache.size(number)

 	cache.storage(string)

 	env(table)

 	net.ipv4=true|false

 	net.ipv6=true|false

 	pid(number)

 	policy.DENY

 	policy.DROP

 	policy.FORWARD(address)

 	policy.MIRROR(address)

 	policy.PASS

 	policy.REROUTE({{subnet,target},...})

 	policy.TC

 	trust_anchors.hold_down_time=30*day

 	trust_anchors.keep_removed=0

 	trust_anchors.refresh_time=nil

 	worker.count

 	worker.id

 	event.after (C function)

 	event.cancel (C function)

 	

 	event.recurrent (C function)

 	event.reschedule (C function)

 	event.socket (C function)

H

 	

 	hints.config (C function)

 	hints.get (C function)

 	hints.root (C function), [1]

 	

 	hints.set (C function)

 	hostname (C function)

M

 	

 	map (C function)

 	mode (C function)

 	modules.list (C function)

 	

 	modules.load (C function)

 	modules.unload (C function)

N

 	

 	net.bufsize (C function)

 	net.close (C function)

 	net.interfaces (C function)

 	net.list (C function)

 	

 	net.listen (C function), [1], [2]

 	net.tcp_pipeline (C function)

 	net.tls (C function)

P

 	

 	policy.add (C function)

 	policy.all (C function)

 	policy.del (C function)

 	policy.pattern (C function)

 	policy.rpz (C function)

 	

 	policy.suffix (C function)

 	policy.suffix_common (C function)

 	policy.todnames (C function)

 	predict.config (C function)

R

 	

 	resolve (C function)

 	

 	
 RFC

 	

 	RFC 1918

 	RFC 3986

 	RFC 5011, [1]

 	RFC 5735

 	RFC 5737

 	RFC 6147

 	RFC 7646

 	RFC 7873

S

 	

 	stats.clear_expiring (C function)

 	stats.clear_frequent (C function)

 	stats.expiring (C function)

 	stats.frequent (C function)

 	

 	stats.get (C function)

 	stats.list (C function)

 	stats.set (C function)

 	stats.upstreams (C function)

T

 	

 	trust_anchors.add (C function)

 	trust_anchors.config (C function)

 	

 	trust_anchors.set_insecure (C function)

U

 	

 	user (C function)

V

 	

 	verbose (C function)

 	view:addr (C function)

 	

 	view:tsig (C function)

W

 	

 	worker.stats (C function)

 Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Knot DNS Resolver 1.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015 CZ.NIC labs.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_images/resolution.png
Driver [I_ayer;

input query call produce layers

| generated query
state => CONSUME

O ‘ Hogs => AWAT_CUT

Find zone cut J’ |
(cached)
caller |

satisfy query

does 1/0 O call consume layers
state => DONE

|
return answer: ‘ Plags => RESOLVED

—O

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

