@

Klara User Guide
Release 0.5.3

JuliaStats Team

Oct 07, 2017

Contents

9

10

11

12

13

Introduction

1.1 Main principles of development e
L2 Features. e
1.3 Preliminary exposition of graphmodels Lo oo

Variable States
2.1 Rationale behind states e e e
2.2 Built-inStates e e e e e e e e

Variable NStates (Chains)
Variable IOStreams
Variables

Models

Samplers

Tuners

Ranges

Jobs

MCMC Stats

Automatic Differentiation

Examples

Bibliography

DN = =

W W

15

17

19

21

23

25

27

29

31

33

35

37

CHAPTER 1

Introduction

Main principles of development

The Julia Klara package provides an interoperable generic engine for a breadth of Markov Chain Monte Carlo
(MCMC) methods.

The idea that there exists no unique optimal MCMC methodology for all purposes has been a development cornerstone.
Along these lines, interest is in providing a wealth of Monte Carlo strategies and options, letting the user decide which
algorithm suits their use case. Such “agnostic” approach to coding permeates Klara from top to bottom, offering
a variety of methods and detailed configuration, ultimately leading to rich functionality. Klara’s wide range of
functionality makes itself useful in applications and as a test bed for comparative methodological research. It also gives
the flexibility to connect K1ara with various other packages, exploiting different levels of ongoing developments in
them.

In fact, interoperability has been another central principle of development. A high-level API enables the user to
implement their application effectively, while it facilitates connectivity to Julia packages. Whenever deemed nec-
essary, minor wrappers are provided to integrate K1ara with other packages such as ReverseDiffSource and
ForwardDiff.

The high-level API sits atop of a low-level one. The latter aims at providing an extensible codebase for developers
interested in adding new functionality and offers an alternative interface for users who prefer more hands-on access to
the underlying routines.

Speed of execution has been another motivation behind the low-level API. Passing from the higher to the lower level
interface allows to exploit Julia’s meta-programming capabilities by generating code dynamically and by substituting
dictionaries by vectors internally. Memory footprint and garbage collection have been kept to a minimum without
compromising ease of use thanks to the duality of higher and lower level APIs.

Features

A summary of Klara’s main features follows:

Klara User Guide, Release 0.5.3

* Graph-based model specification. Representing the model as a graph widens the scope of accommodated models
and enables exploiting graph algorithms from the Graphs package.

* Diverse options for defining model parameters. Parameters can be defined on the basis of a log-target or they
can be introduced in a Bayesian fashion via their log-likelihood and log-prior. Parameter targets, likelihoods and
priors can be specified via functions or distributions. K1ara’s integration with the Distributions package
facilitates parameter definition via distributions.

 Job-centric simulations. The concept of MCMC simulation has been separated from that of model specification.
Job types indicate the context in which a model is simulated. For example, a BasicMCJob instance determines
how to sample an MCMC chain for a model with a single parameter, whereas a GibbsJob provide Gibbs
sampling for more complex models involving several parameters.

* Customized job flow. Job control flow comes in two flavors, as it can be set to ordinary loop-based flow or
it can be managed by Julia’s tasks (coroutines). Job management with tasks allows MCMC simulations to be
suspended and resumed in a flexible manner.

* Wide range of Monte Carlo samplers. A range of MCMC samplers is available, including accept-reject and
slice sampling, Metropolis-Hastings algorithm, No-U-Turn (NUTS) sampling, and geometric MCMC schemes,
such as Riemann manifold Langevin and Hamiltonian Monte Carlo. Adaptive samplers and empirical tuning are
included in Klara as a means to faster convergence. It is noted that most of these samplers need to be ported
from the older version of Klara, which is work in progress.

* MCMC summary statistics and convergence diagnostics. Main routines for computing the effective sampling
size and integrated autocorrelation time have been coded, while there is a roadmap to provide more convergence
diagnostics tools (note to user; this functionality will also be ported soon from the older version of Klara).

* States and chains. Proposed Monte Carlo samples are organized systematically with the help of a state and chain
type system. This way, values can be passed around and stored without re-allocating memory. At the same time,
the state/chain type system offers scope for extending the current functionality if it is required to store less usual
components.

* Detailed configuration of output storage in memory or in file. The chain resulting from a Monte Carlo simulation
can be saved in memory or can be written directly to a file stream. Detailed output configuration is possible,
allowing to select which elements to save and which to omit from the final output.

* Automatic differentiation for MCMC sampling. Some Monte Carlo methods require the gradient or higher
order derivatives of the log-target. If these derivatives are not user-inputted explicitly, Klara can option-
ally compute them using reverse or forward mode automatic differentiation. For this purpose, Klara uses
ReverseDiffSource and ForwardDiff under the hood.

Preliminary exposition of graph models

Klara’s graph model is presented concisely in the current section as a smooth introduction to subsequent elaborate
chapters. A single model type, named GenericModel, serves as the sole entry point for defining any graph model
in Klara. GenericModel has been inspired by and operates on par with GenericGraph, a versatile graph type
of the Graphs package.

GenericModel can be conceptualized as a graph whose nodes represent the underlying model’s variables and its edges
specify the dependencies between these variables. As it becomes obvious, the main front end of GenericModel con-
sists of its vertices and edges fields, which are of type Vector{Variable} and Vector{Dependence}
respectively. Without going into details, each vertex is defined as constant, data, transformation or parameter, all being
Variable subtypes. A single non-abstract Dependence type suffices to describe variable dependencies.

Typical probabilistic graphical models, such as directed acyclic graphs (DAGs) and factor graphs, are permitted in
GenericModel. Similarly to GenericGraph, the is_directed field of GenericModel dictates whether

2 Chapter 1. Introduction

Klara User Guide, Release 0.5.3

the model is directed or not. Practically, Gibbs sampling is not affected by the distinction between directed and non-
directed graphs. However, effort has been made to define GenericModel generically in order to provide scope for
future developments if the need arises to distinguish between DAGs and factor graphs in programming practice.

The graph-oriented definition of GenericModel finds its main utility in K1ara‘s optional declarative model specifi-
cation. In other words, it is possible to delegate responsibility of variable ordering to GenericModel via topological
sorting of the graph. Furthermore, the statistical model is easier to disseminate by visualizing GenericModel as a
graph.

Topological sorting and graph visualization are achieved via “outsourcing”. In particular, converting GenericModel
to its corresponding GenericGraph allows to harness sorting routines in the Graphs package. Moreover,
GenericModel is convertible to DOT format, thus making it possible to use the DOT graph description language
for model visualization.

1.3. Preliminary exposition of graph models 3

Klara User Guide, Release 0.5.3

4 Chapter 1. Introduction

CHAPTER 2

Variable States

Rationale behind states

Being geared towards statistics, K1lara variables include parameters, data, transformations and constants, the specifics
of which will be delineated in Variables. A variable, be it stochastic or deterministic, can take a value, that is it can
have a state. Variables and their states are maintained in two distinct type systems in Klara.

The functionality of a variable is enclosed by its type instance. For a example, a typical parameter consists of its
probability distribution, log-likelihood or log-prior fields.

It is possible to store the value of a multivariate variable in a vector. However, it might be required to save additional
information. For example, the value of a parameter’s log-likelihood and associated gradient might be of interest.
Variable state types exist to accommodate such states that comprise two or more entities.

From an object-oriented programming (OOP) standpoint, variable types correspond to methods while variable state
types constitute data members. Klara does not merge the functional and data components into a single type, which
would had been the analogous of a class in OOP terms. The main reasoning behind Klara’s compartmentalization of
variables and their states is code reusability. For instance, it becomes possible for different variables to share the same
state type; more generally, adhering to Julia’s multiple dispatch is facilitated.

Moreover, keeping states separate from variables helps cater to user-specific problems. Existing functionality can be
deployed on user-defined states tailored to the problem at hand.

Built-in states

The state type system comprises two abstract and other non-abstract types. Listing 2.1 displays the hierarchy of built-
in state types. The two abstract types are VariableState and its sub-type ParameterState. The non-abstract
states put forward sensible defaults aimed at covering conventional use-cases. Klara’s existing functionality relies
on these defaults, yet it is possible to extend the package by defining custom state types.

Variable states are categorized as univariate or multivariate. Parameter states are further classified as discrete or
continuous. To make these distinctions, parametric abstract state types are employed by importing the VariateForm
and ValueSupport classification scheme from Distributions. Every possible category is designated a unique

Klara User Guide, Release 0.5.3

non-abstract state type; for instance, BasicContMuvParameterState hosts a continuous multivariate parameter
state.

The most common field, appearing in all built-in non-abstract state types, is called value. For example, in the context
of MCMC, value would hold the current or proposed state at each iteration of the sampler. Each state type and its
associated methods will be elaborated in the following sections.

Listing 2.1: State type hierarchy in Klara

VariableState
|

+-—- BasicUnvVariableState

+-— BasicMuvVariableState

+-— BasicMavVariableState

+—-— ParameterState

+-— BasicDiscUnvParameterState

+-— BasicDiscMuvParameterState

+-— BasicContUnvParameterState

+-— BasicContMuvParameterState

Abstract states

The type system of VariateForm and ValueSupport from Distributions (see Listing 2.2 and associated
documentation in Distributions) is used for parameterizing abstract states in Klara.

Listing 2.2: VariateFormand ValueSupport type system from Distributions package

abstract VariateForm

type Univariate <: VariateForm end
type Multivariate <: VariateForm end
type Matrixvariate <: VariateForm end

abstract ValueSupport
type Discrete <: ValueSupport end
type Continuous <: ValueSupport end

VariableState is the root of Klara’s variable state type hierarchy. It is defined as

abstract VariableState{F<:VariateForm}

Being parameterized by VariateForm, the abstract type VariableState enables distinguishing between uni-
variate, multivariate and matrix-variate variable states.

ParameterState is the root of Klara’s parameter state types and an abstract sub-type of VariableState. It
is defined as

abstract ParameterState{S<:ValueSupport, F<:VariateForm} <: VariableState{F}

As seen from its parameterization, ParameterState makes it possible to organize parameter states by both the
support of state space and the variate form.

6 Chapter 2. Variable States

http://distributionsjl.readthedocs.io/en/latest/types.html

Klara User Guide, Release 0.5.3

Basic variable states

Klara ships with three so-called basic variable state types, namely BasicUnvVariableState,
BasicMuvVariableState and BasicMavVariableState. These three types are used for encapsulat-
ing minimal information, that is the value of a variable state and possibly the associated size of value.

Each of these three basic state types corresponds to a specific variate form, whereas none of them is parameterized by
the support of state space. Instead, each of them is parameterized by the type of Number of their value field, see
Table 2.1.

Table 2.1: Basic variable states in Klara.

Variable state type value type | size type
BasicUnvVariableState{ N<:Number} | N X

BasicMuv VariableState{ N<:Number} | Vector{N} Int

BasicMav VariableState{N<:Number} | Matrix{N} Tuple{Int, Int}

In what follows, constructors are provided for the three basic variable types.

BasicUnvVariableState

BasicUnvVariableState{N<:Number} (value::N)
Construct a basic univariate variable state with some value.

Examples:

state = BasicUnvVariableState (1.)
Klara.BasicUnvVariableState{Floaté64} (1.0)

state.value
1.0

BasicMuvVariableState

BasicMuvVariableState {N<:Number} (value::Vector{N})
Construct a basic multivariate variable state with some value.

Examples:

state = BasicMuvVariableState ([1, 21])
Klara.BasicMuvVariableState{Inté64} ([1, 2], 2)

state.value

2-element Array{Inté64, 1}:
1

2

state.size
2

BasicMuvVariableState{N<:Number} (size.::Int, ::Type{N}=Float64)
Construct a basic multivariate variable state with a value of specified size and element type.

Examples:

2.2. Built-in states 7

Klara User Guide, Release 0.5.3

BasicMuvVariableState (3, Float32)
Klara.BasicMuvVariableState{Float32} (3-element Array{Float32, 1}, 2)

BasicMavVariableState

BasicMavVariableState {N<:Number} (value::Matrix{N})
Construct a basic matrix-variate variable state with some value.

Examples:

state = BasicMavVariableState (eye (2))
Klara.BasicMavVariableState{Floaté64} (2x2 Array{Floaté64, 2}, (2, 2))

state.value

2x2 Array{Floaté4, 2}:
1.0 0.0

0.0 1.0

state.size
(2, 2)

BasicMavVariableState{N<:Number} (size::Tuple, ::Type{N}=Float64)
Construct a basic matrix-variate variable state with a value of specified size and element type.

Examples:

BasicMavVariableState ((3, 2), Float32)
Klara.BasicMavVariableState{Intl6} (3x2 Array{Float32, 2}, (3, 2))

Basic parameter states

Four basic parameter state types are made available by Klara, namely the discrete univariate
BasicDiscUnvParameterState, discrete multivariate BasicDiscMuvParameterState, continuous uni-
variate BasicContUnvParameterState and continuous multivariate BasicContMuvParameterState,
see Table 2.2.

Table 2.2: Basic parameter states in Klara.

Parameter state type ValueSupport | VariateForm
BasicDiscUnvParameterState { NI<:Integer, NR<:Real} | Discrete Univariate
BasicDiscMuvParameterState{ NI<:Integer, NR<:Real} | Discrete Multivariate
BasicContUnvParameterState{ NR<:Real } Continuous Univariate
BasicContMuvParameterState { NR<:Real } Continuous Multivariate

Both basic parameter states and basic variable states contain the state’s value and value’s size. Additionally, basic
parameter states contain fields that hold information about the target distribution of the associated parameter and about
sampling diagnostics, see Table 2.3.

The discrete states BasicDiscUnvParameterState and BasicDiscMuvParameterState are param-
eterized by the element type NI<:Integer of state value and by the element type NR<:Real of
target-related fields. On the other hand, the continuous states BasicContUnvParameterState and
BasicContMuvParameterState are parameterized by the common element type NR<:Real of state value
and of target-related fields.

8 Chapter 2. Variable States

Klara User Guide, Release 0.5.3

A parameter is characterized by its target, that is by its possibly unnormalized distribution. A target is specified via a
Distribution or viaa possibly unnormalized probability distribution function (PDF). Either way, the state.
logtarget field of a parameter state stores the logarithm of the associated PDF evaluated at state.value.

A posterior target is proportional to a likelihood times a prior. Thus, if a parameter is specified via its posterior target,
the state.loglikelihoodand state.logprior fields of the associated parameter st ate enable storing the
logarithm of the likelihood function and prior PDF evaluated at state.value. Apparently, state.logtarget
is equal to the sum of state.loglikelihood and state.logprior.

Table 2.3: Fields of basic parameter state types in Klara.
NI<:Integer or NR<:Real.

All four types are parameterized by

Basic[S/F]ParameterState{P}
S<:ValueSupport Discrete Discrete Continuous Continuous
F<:VariateForm Univariate Multivariate Univariate Multivariate
P (Parameters) NI, NR NI, NR NR NR
Field Field type
value NI Vector{NI} NR Vector{NR }
loglikelihood NR NR NR NR
logprior NR NR NR NR
logtarget NR NR NR NR
gradloglikelihood X X NR Vector{NR}
gradlogprior X X NR Vector{NR}
gradlogtarget X X NR Vector{NR}
tensorloglikelihood X X NR Matrix{NR}
tensorlogprior X X NR Matrix {NR }
tensorlogtarget X X NR Matrix{NR}
dtensorloglikelihood | X X NR Array{NR, 3}
dtensorlogprior X X NR Array{NR, 3}
dtensorlogtarget X X NR Array{NR, 3}
diagnosticvalues Vector Vector Vector Vector
size X Int X Int
diagnostickeys Vector{Symbol} | Vector{Symbol} | Vector{Symbol} | Vector{Symbol}

The rest of target-related fields, prefixed by grad, tensor and dtensor, appear only in continuous parameter states and
correspond to first, second and third degree derivatives of the target. Such target derivatives are utilized by various
MCMC algorithms.

Fields starting with grad store the gradient of the prefixed function. For example, state.gradlogtarget stores
the gradient of the log-target evaluated at state.value.

Fields starting with fensor refer to the metric tensor of the prefixed function. It is noted that the concept of metric tensor
is used in an information theoretic context referring to distance between distributions //]. For instance, state.
tensorloglikelihood can be used for saving the expected Fisher information matrix, which is equal to the
negative expected value of the second-order derivative of the log-likelihood evaluated at state.value. Moreover,
state.tensorlogprior can be utilized for storing the negative Hessian of the log-prior evaluated at state.
value. As for state.dtensorlogtarget, it is the metric tensor of the log-target, which equals the sum of
state.tensorloglikelihoodand state.tensorlogprior.

Fields prefixed by dtensor store all first-order derivatives of the metric tensor referred by the respective tensor-prefixed
field, thus yielding third-order derivatives of the target. For example, state.dtensorlogtarget saves all first-
order derivatives of state.tensorlogtarget evaluated at state.value.

state.diagnosticvalues is a Vector used for storing diagnostics pertaining to the sampling of a parameter
state. The state.diagnosticvalues are labeled by an accordingly ordered Vector {Symbol} of state.
diagnostickeys. Conceptually, state.diagnostickeys and state.diagnosticvalues can be seen

2.2. Built-in states 9

Klara User Guide, Release 0.5.3

as the keys and values of a dictionary of diagnostics but are maintained in two separate vectors to improve MCMC
performance. The two vectors are interfaced with a diagnostics () function, which zips them together and returns
the resulting dictionary.

diagnostics (state::ParameterState)

Return the dictionary of state diagnostics arising from state.diagnostickeys and state.
diagnosticvalues.

The constructors of K1ara’s basic parameter state types are elucidated in the remaining of this section.

BasicDiscUnvParameterState
BasicDiscUnvParameterState{NI, NR} (value::NI, <optional arguments>)
Construct a basic discrete univariate parameter state with some value.
The parameterization is set as NI<: Integer, NR<:Real.
Optional arguments:
ediagnostickeys::Vector{Symbol}=Symbol []: the diagnostic keys of the state.
*: :Type{NR}=Float64: the element type of target-related fields.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

state = BasicDiscUnvParameterState (2, [:accept], Float64, [true])
Klara.BasicDiscUnvParameterState{Int64, Floaté64} (

2, NaN, NaN, NaN, Bool|[true], [:accept]

)

state.value

2

diagnostics (state)
Dict{Symbol, Bool} with 1 entry:
raccept => true

BasicDiscMuvParameterState
BasicDiscMuvParameterState{NI, NR} (value::Vector{NI}, <optional arguments>)
Construct a basic discrete multivariate parameter state with some value.
The parameterization is set as NI<: Integer, NR<:Real.
Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.
*: :Type{NR}=Float64: the element type of target-related fields.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

10 Chapter 2. Variable States

Klara User Guide, Release 0.5.3

state = BasicDiscMuvParameterState (Int64([0, 1], [:accept], Float64, [false])
Klara.BasicDiscMuvParameterState{Inté64, Float64} (

[0, 1], NaN, NaN, NaN, Bool[false], 2, [:accept]

)

state.value

2-element Array{Inté64, 1}:
0

1

diagnostics (state)
Dict{Symbol, Bool} with 1 entry:
c:accept => false

BasicDiscMuvParameterState{NI, NR} (size::Int, <optional arguments>)
Construct a basic discrete multivariate parameter state with with a value of specified size.

The parameterization is set as NI<: Integer, NR<:Real.

Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.
e::Type{NI}=Int: the element type of the state value.
*: :Type{NR}=Float64: the element type of target-related fields.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

BasicDiscMuvParameterState (3, [:accept], Int32, Float32, [true])

Klara.BasicDiscMuvParameterState{Int32, Float32} (

3-element Array{Int32, 1}, NaN32, NaN32, NaN32, Bool|[true], 3, [:accept]
)

BasicContUnvParameterState
BasicContUnvParameterState{N<:Real} (value::N, <optional arguments>)
Construct a basic continuous univariate parameter state with some value.
Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

state = BasicContUnvParameterState(-1.25, [:accept], [false])

Klara.BasicContUnvParameterState{Floaté64} (

-1.25,

NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN,
Bool[false], [:accept]

)

state.value

-1.25

2.2. Built-in states 11

Klara User Guide, Release 0.5.3

diagnostics (state)
Dict{Symbol, Bool} with 1 entry:
:accept => false

BasicContUnvParameterState{N<:Real} (<optional arguments>)
Construct a basic continuous univariate parameter state with an uninitialized value (NaN).

Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.
*::Type{N}=Float64:: the element type of the state value.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

BasicContUnvParameterState ()

Klara.BasicContUnvParameterState{Floaté64} (

NaNl,

NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaNl,
Any[], Symboll[]

W ¥ W

BasicContMuvParameterState
BasicContMuvParameterState{N<:Real} (value::Vector{N}, <optional arguments>)
Construct a basic continuous multivariate parameter state with some value.

Optional arguments:

'monitor: :Vector{Bool}=fill (false, 9): 9-element Boolean vector indicating which of the
target-related fields are stored by the state.

ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.

ediagnosticvalues::Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

state = BasicContMuvParameterState (ones (Float32, 2))

Klara.BasicContMuvParameterState{Float32} (

Float32[1.0f0, 1.0f0],

NaN32, NaN32, NaN32,

Float32[], Float32[], Float32]],

0x0 Array{Float32, 2}, 0x0 Array{Float32, 2}, 0x0 Array{Float32, 2},

0x0x0 Array{Float32, 3}, 0x0x0 Array{Float32, 3}, 0x0x0 Array{Float32, 3},
Any[], 2, Symbol[]

oW W W W W

state.value

2—-element Array{Float32,1}:
1.0

1.0

size (state.gradloglikelihood)
(0,)

12 Chapter 2. Variable States

Klara User Guide, Release 0.5.3

size (state.gradlogtarget)
(0,)

diagnostics (state)
Dict{Symbol,Any} with 0 entries

BasicContMuvParameterState{N<:Real} (value::Vector{N}, monitor::Vector{Symbol}, <optional

arguments>)
Construct a basic continuous multivariate parameter state with some value and tracked target-related fields

specified by monitor.
Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.

ediagnosticvalues: :Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

state = BasicContMuvParameterState (
zeros (Float64, 2), [:logtarget, :gradlogtarget]

Klara.BasicContMuvParameterState{Float64} (
[0.0, 0.0],
NaN, NaN, NaNl,
Floaté64[], Floaté64[], Z2-element Array{Floaté64, 1},
0x0 Array{Floaté4, 2}, 0x0 Array{Floaté64, 2}, 0x0 Array{Floaté64, 2},
0x0x0 Array{Float64, 3}, 0x0x0 Array{Floaté64, 3}, 0x0x0 Array{Floaté4, 3},
Any[], 2, Symbol[]

HO¥E W Y Y O W oW —

~

size(state.gradloglikelihood)
(0,)

size (state.gradlogtarget)
(2,)

BasicContMuvParameterState {N<:Reall} (size::Int, <optional arguments>)
Construct a basic continuous multivariate parameter state with a value of specified size.

Optional arguments:

emonitor::Vector{Bool}=fill (false, 9): 9-element Boolean vector indicating which of the
target-related fields are stored by the state.

ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.
e::Type{N}=Float64: the element type of the state value.

ediagnosticvalues::Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

state = BasicContMuvParameterState (3)

Klara.BasicContMuvParameterState{Floaté64} (
3-element Array{Floaté4, 1},

NaN, NaN, NaNl,

Float64[], Floaté64[], Floaté64[],

2.2. Built-in states 13

Klara User Guide, Release 0.5.3

0x0 Array{Floaté64, 2}, 0x0 Array{Floaté64, 2}, 0x0 Array{Floaté64, 2},
0x0x0 Array{Floaté64, 3}, 0x0x0 Array{Floaté64, 3}, 0x0x0 Array{Floaté4, 3},
Any[], 3, Symboll[]

W O¥ W W

state.size
3

diagnostics (state)
Dict{Symbol,Any} with 0 entries

BasicContMuvParameterState{N<:Reall} (size::Int, monitor::Vector{Symbol}, <optional argu-

ments>)
Construct a basic continuous multivariate parameter state with a value of specified size and tracked target-

related fields specified by monitor.

Optional arguments:
ediagnostickeys: :Vector{Symbol}=Symbol []: the diagnostic keys of the state.
e::Type{N}=Float64: the element type of the state value.

ediagnosticvalues::Vector=Array (Any, length(diagnostickeys)): the diagnostic
values of the state.

Examples:

BasicContMuvParameterState (
3, [:loglikelihood, :logtarget], [:accept], Floatl6, [true]

Klara.BasicContMuvParameterState{Floatl6} (
3-element Array{Floatl6, 1}
NaN16, NaN16, NaN1é6,
Floatlé6[], Floatlé6[], Floatlé6][],
0x0 Array{Floatlé, 2}, 0x0 Array{Floatl6, 2}, 0x0 Array{Floatlé6, 2},
0x0x0 Array{Floatl6, 3}, 0x0x0 Array{Floatlé6, 3}, 0x0x0 Array{Floatl6, 3},
Bool [true], 3, [:accept]

HO¥E Y YR YR Y W oW —

~

14 Chapter 2. Variable States

CHAPTER 3

Variable NStates (Chains)

Klara’s NState type system is used for storing several variable states. An instance nstate of some NState type
stores nstate.n number of states, each of which share the same type. NStates are useful for saving the output
of Monte Carlo simulations. A Markov chain generated by a Monte Carlo algorithm consists of a certain number of
states. An instance of some NState type can be used for saving the simulated Markov chain. For this reason, Klara
provides Chain aliases for NState types.

15

Klara User Guide, Release 0.5.3

16 Chapter 3. Variable NStates (Chains)

CHAPTER 4

Variable IOStreams

To be written up soon.

17

Klara User Guide, Release 0.5.3

18 Chapter 4. Variable I0Streams

CHAPTER B

Variables

To be written up soon.

19

Klara User Guide, Release 0.5.3

20

Chapter 5. Variables

CHAPTER O

Models

To be written up soon.

21

Klara User Guide, Release 0.5.3

22

Chapter 6. Models

CHAPTER /

Samplers

To be written up soon.

23

Klara User Guide, Release 0.5.3

24

Chapter 7. Samplers

CHAPTER 8

Tuners

To be written up soon.

25

Klara User Guide, Release 0.5.3

26

Chapter 8. Tuners

CHAPTER 9

Ranges

To be written up soon.

27

Klara User Guide, Release 0.5.3

28

Chapter 9. Ranges

cHAaPTER 10

Jobs

To be written up soon.

29

Klara User Guide, Release 0.5.3

30

Chapter 10. Jobs

cHAPTER 11

MCMC Stats

To be written up soon.

31

Klara User Guide, Release 0.5.3

32

Chapter 11. MCMC Stats

cHAPTER 12

Automatic Differentiation

To be written up soon.

33

Klara User Guide, Release 0.5.3

34

Chapter 12. Automatic Differentiation

cHAPTER 13

Examples

To be written up soon.

35

Klara User Guide, Release 0.5.3

36

Chapter 13. Examples

Bibliography

[1] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo methods. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123-214, 2011.

37

Klara User Guide, Release 0.5.3

38

Bibliography

Index

B

BasicContMuvParameterState { N<:Real } () (built-in func-
tion), 12—14

BasicContUnvParameterState { N<:Real }() (built-in func-
tion), 11, 12

BasicMav VariableState{ N<:Number}() (built-in func-
tion), 8

BasicMuv VariableState{ N<:Number}() (built-in func-
tion), 7

BasicUnvVariableState { N<:Number}() (built-in func-
tion), 7

D

diagnostics() (built-in function), 10

39

	Introduction
	Main principles of development
	Features
	Preliminary exposition of graph models

	Variable States
	Rationale behind states
	Built-in states

	Variable NStates (Chains)
	Variable IOStreams
	Variables
	Models
	Samplers
	Tuners
	Ranges
	Jobs
	MCMC Stats
	Automatic Differentiation
	Examples
	Bibliography

