

Welcome to KHIVA’s documentation!

Contents:

	1. Modules

	2. FAQ

	3. License

	4. Authors
	4.1. Core Development Team

	4.2. Contributions

	5. How to contribute
	5.1. Guidelines
	5.1.1. Branching model

	5.1.2. Contribution process

Indices and tables

	Index

	Module Index

	Search Page

1. Khiva API

This is the list of namespaces that comprise the Khiva library.

	Namespace Array

	Namespace Clustering

	Namespace Dimensionality

	Namespace Distances

	Namespace Features

	Namespace Khiva

	Namespace LinAlg

	Namespace Matrix

	Namespace Normalization

	Namespace Polynomial

	Namespace Regression

	Namespace Regularization

	Namespace Statistics

1.1. Namespace Array

	
class KhivaArray : public IDisposable

	Khiva KhivaArray Class.

Public Types

	
enum DType

	KHIVA array available types.

Values:

	
F32

	Floating point of single precision. Khiva.DType.

	
C32

	Complex floating point of single precision. Khiva.DType.

	
F64

	Floating point of double precision. Khiva.DType.

	
C64

	Complex floating point of double precision. Khiva.DType.

	
B8

	Boolean. Khiva.DType.

	
S32

	32 bits Int. Khiva.DType.

	
U32

	32 bits Unsigned Int. Khiva.DType.

	
U8

	8 bits Unsigned Int. Khiva.DType.

	
S64

	64 bits Integer. Khiva.DType.

	
U64

	64 bits Unsigned Int. Khiva.DType.

	
S16

	16 bits Int. Khiva.DType.

	
U16

	16 bits Unsigned Int. Khiva.DType.

Public Functions

	
void Khiva.KhivaArray.Dispose()

	Dispose the KhivaArray.

	
T [] Khiva.KhivaArray.GetData1D< T >()

	Get the data of a 4 dimensional khiva array.

	Return

	1 dimensional array containing the data of the khiva array.

	Template Parameters

	
	T: The type of the elements of the array.

	
T [,] Khiva.KhivaArray.GetData2D< T >()

	Get the data of a 2 dimensional khiva array.

	Return

	2 dimensional array containing the data of the khiva array.

	Template Parameters

	
	T: The type of the elements of the array.

	
T [,,] Khiva.KhivaArray.GetData3D< T >()

	Get the data of a 3 dimensional khiva array.

	Return

	3 dimensional array containing the data of the khiva array.

	Template Parameters

	
	T: The type of the elements of the array.

	
T [,,,] Khiva.KhivaArray.GetData4D< T >()

	Get the data of a 4 dimensional khiva array.

	Return

	4 dimensional array containing the data of the khiva array.

	Template Parameters

	
	T: The type of the elements of the array.

	
void Khiva.KhivaArray.Display()

	Displays an KhivaArray.

	
override bool Khiva.KhivaArray.Equals(object o)

	Equals object method

	Return

	

	Parameters

	
	o: Object to compare

	
override int Khiva.KhivaArray.GetHashCode()

	GetHashCode object method

	Return

	Hashcode of the KhivaArray

	
KhivaArray Khiva.KhivaArray.Transpose(bool conjugate = false)

	Transposes array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	conjugate: If true a conjugate transposition is performed.

	
KhivaArray Khiva.KhivaArray.Col(int index)

	Retrieves a given column of array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	index: The column to be retrieved.

	
KhivaArray Khiva.KhivaArray.Cols(int first, int last)

	Retrieves a subset of columns of array, starting at first and finishing at last, both inclusive.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	first: Start of the subset of columns to be retrieved.

	last: End of the subset of columns to be retrieved.

	
KhivaArray Khiva.KhivaArray.Row(int index)

	Retrieves a given row of array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	index: The row to be retrieved.

	
KhivaArray Khiva.KhivaArray.Rows(int first, int last)

	Retrieves a subset of rows of array, starting at first and finishing at last, both inclusive.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	first: Start of the subset of rows to be retrieved.

	last: End of the subset of rows to be retrieved.

	
KhivaArray Khiva.KhivaArray.MatMul(KhivaArray rhs)

	Performs a matrix multiplication of lhs and rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	rhs: Right-hand side KHIVA array for the operation.

	
KhivaArray Khiva.KhivaArray.Copy()

	Performs a deep copy of array.

	Return

	KHIVA KhivaArray which contains a copy of array.

	
KhivaArray Khiva.KhivaArray.As(int type)

	Changes the type of array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	type: Target type of the output array.

Property

	
property Khiva::KhivaArray::Reference

	Getters and setters of the Reference parameter.

	
property Khiva::KhivaArray::Dims

	Gets the KhivaArray dimensions.

	
property Khiva::KhivaArray::ArrayType

	Gets the type of the array.

Public Static Functions

	
static KhivaArray Khiva.KhivaArray.CreateZeros< T >(long [] dims, uint nDims, bool doublePrecision = false)

	Creates KhivaArray of zeros.

	Return

	KhivaArray created.

	Template Parameters

	
	T: Type of the elements of the array.

	Parameters

	
	dims: Cardinality of dimensions of the data.

	nDims: Number of dimensions of the data.

	doublePrecision: If Complex array has double precision. Default to false.

	
static KhivaArray Khiva.KhivaArray.Create(IntPtr reference)

	Creates a khiva array object from reference.

	Return

	KhivaArray created.

	Parameters

	
	reference: Reference from which create the array.

	
static KhivaArray Khiva.KhivaArray.Create(KhivaArray other)

	Creates a khiva array object from copy.

	Return

	KhivaArray created.

	Parameters

	
	other: KhivaArray to copy.

	
static unsafe KhivaArray Khiva.KhivaArray.Create< T >(T [] values, bool doublePrecision = false)

	Creates a khiva array object.

	Return

	KhivaArray created.

	Template Parameters

	
	T: Type of the elements of the array.

	Parameters

	
	values: 1 dimensional array with the data.

	doublePrecision: If Complex array has double precision. Default to false.

	
static unsafe KhivaArray Khiva.KhivaArray.Create< T >(T values[,], bool doublePrecision = false)

	Creates a khiva array object.

	Return

	KhivaArray created.

	Template Parameters

	
	T: Type of the elements of the array.

	Parameters

	
	values: 2 dimensional array with the data.

	doublePrecision: If Complex array has double precision. Default to false.

	
static unsafe KhivaArray Khiva.KhivaArray.Create< T >(T values[,,], bool doublePrecision = false)

	Creates a khiva array object.

	Return

	KhivaArray created

	Template Parameters

	
	T: Type of the elements of the array.

	Parameters

	
	values: 3 dimensional array with the data.

	doublePrecision: If Complex array has double precision. Default to false.

	
static unsafe KhivaArray Khiva.KhivaArray.Create< T >(T values[,,,], bool doublePrecision = false)

	Creates a khiva array object.

	Return

	KhivaArray created.

	Template Parameters

	
	T: Type of the elements of the array.

	Parameters

	
	values: 4 dimensional array with the data.

	doublePrecision: If Complex array has double precision. Default to false.

	
static KhivaArray Khiva.KhivaArray.operator+(KhivaArray lhs, KhivaArray rhs)

	Adds two arrays.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator*(KhivaArray lhs, KhivaArray rhs)

	Multiplies two arrays.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator-(KhivaArray lhs, KhivaArray rhs)

	Subtracts two arrays.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator/(KhivaArray lhs, KhivaArray rhs)

	Divides two arrays.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator%(KhivaArray lhs, KhivaArray rhs)

	Performs the modulo operation of lhs by rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.Pow(KhivaArray lhs, KhivaArray rhs)

	Powers lhs with rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator &(KhivaArray lhs, KhivaArray rhs)

	Performs an AND operation (element-wise) with lhs and rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator|(KhivaArray lhs, KhivaArray rhs)

	Performs an OR operation (element-wise) with lhs and rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator^(KhivaArray lhs, KhivaArray rhs)

	Performs an eXclusive-OR operation (element-wise) with lhs and rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator<<(KhivaArray lhs, int shift)

	Performs a left bit shift operation (element-wise) to array as many times as specified in the parameter n.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: array KHIVA KhivaArray to shift.

	shift: Number of bits to be shifted.

	
static KhivaArray Khiva.KhivaArray.operator>>(KhivaArray lhs, int shift)

	Performs a right bit shift operation (element-wise) to array as many times as specified in the parameter n.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: array KHIVA KhivaArray to shift.

	shift: Number of bits to be shifted.

	
static KhivaArray Khiva.KhivaArray.operator-(KhivaArray rhs)

	Unary minus of one array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator!(KhivaArray lhs)

	Logical NOT operation to array.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: KHIVA KhivaArray to negate.

	
static KhivaArray Khiva.KhivaArray.operator<(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if lhs is lower than rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator>(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if lhs is greater than rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator<=(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if lhs is lower or equal than rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator>=(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if lhs is greater or equal than rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator==(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if rhs is equal to rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

	
static KhivaArray Khiva.KhivaArray.operator!=(KhivaArray lhs, KhivaArray rhs)

	Compares (element-wise) if lhs is not equal to rhs.

	Return

	KHIVA KhivaArray with the result of this operation.

	Parameters

	
	lhs: Left-hand side KHIVA array for the operation.

	rhs: Right-hand side KHIVA array for the operation.

Private Functions

	
void Khiva.KhivaArray.CleanUp()

	Clean up the array.

	
Khiva.KhivaArray.~KhivaArray()

	Destroy KhivaArray.

	
Khiva.KhivaArray.KhivaArray()

	Creates empty KhivaArray.

	
void Khiva.KhivaArray.DeleteArray()

	Decreases the references count of the given array.

1.2. Namespace Clustering

	
class Clustering

	Khiva Clustering class containing several clustering methods.

Public Static Functions

	
static Tuple<KhivaArray, KhivaArray> Khiva.Clustering.KMeans(KhivaArray arr, int k, float tolerance = 1e-10F, int maxIterations = 100)

	Calculates the k-means algorithm.

[1] S.Lloyd. 1982. Least squares quantization in PCM.IEEE Transactions on Information Theory, 28, 2, Pages 129-137.

	Return

	Tuple with the resulting means or centroids and the resulting labels of each time series which is the closest centroid.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	k: The number of means to be computed.

	tolerance: The error tolerance to stop the computation of the centroids.

	maxIterations: The maximum number of iterations allowed.

	
static Tuple<KhivaArray, KhivaArray> Khiva.Clustering.KShape(KhivaArray arr, int k, float tolerance = 1e-10F, int maxIterations = 100)

	Calculates the k-shape algorithm.

[1] John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate Clustering of Time Series. SIGMOD Rec. 45, 1 (June 2016), 69-76.

	Return

	Tuple with the resulting means or centroids and the resulting labels of each time series which is the closest centroid.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	k: The number of means to be computed.

	tolerance: The error tolerance to stop the computation of the centroids.

	maxIterations: The maximum number of iterations allowed.

1.3. Namespace Dimensionality

	
class Dimensionality

	Khiva Dimensionality class containing several dimensionality reduction methods.

Public Static Functions

	
static KhivaArray Khiva.Dimensionality.Paa(KhivaArray arr, int bins)

	Piecewise Aggregate Approximation (PAA) approximates a time series \(X\) of length \(n\) into vector \(\bar{X}=(\bar{x}_{1},…,\bar{x}_{M})\) of any arbitrary length \(M \leq n\) where each of \(\bar{x_{i}}\) is calculated as follows:
\[\bar{x}_{i} = \frac{M}{n} \sum_{j=n/M(i-1)+1}^{(n/M)i} x_{j}. \]

 Which simply means that in order to reduce the dimensionality from \(n\) to \(M\), we first divide the original time series into \(M\) equally sized frames and secondly compute the mean values for each frame. The sequence assembled from the mean values is the PAA approximation (i.e., transform) of the original time series.

	Return

	An array of points with the reduced dimensionality.

	Parameters

	
	arr: Set of points.

	bins: Sets the total number of divisions.

	
static KhivaArray Khiva.Dimensionality.Pip(KhivaArray arr, int numberIps)

	Calculates the number of Perceptually Important Points (PIP) in the time series.

[1] Fu TC, Chung FL, Luk R, and Ng CM. Representing financial time series based on data point importance. Engineering Applications of Artificial Intelligence, 21(2):277-300, 2008.

	Return

	KhivaArray with the most Perceptually Important number_ips.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series.

	numberIps: The number of points to be returned.

	
static KhivaArray Khiva.Dimensionality.PlaBottomUp(KhivaArray arr, float maxError)

	Applies the Piecewise Linear Approximation (PLA BottomUP) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

	Return

	The reduced number of points.

	Parameters

	
	arr: Expects a khiva_array containing the set of points to be reduced. The first component of the points in the first column and the second component of the points in the second column.

	maxError: The maximum approximation error allowed.

	
static KhivaArray Khiva.Dimensionality.PlaSlidingWindow(KhivaArray arr, float maxError)

	Applies the Piecewise Linear Approximation (PLA Sliding Window) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

	Return

	The reduced number of points.

	Parameters

	
	arr: Expects a khiva_array containing the set of points to be reduced. The first component of the points in the first column and the second component of the points in the second column.

	maxError: The maximum approximation error allowed.

	
static KhivaArray Khiva.Dimensionality.RamerDouglasPeucker(KhivaArray points, double epsilon)

	The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a curve that is approximated by a series of points. It reduces a set of points depending on the perpendicular distance of the points and epsilon, the greater epsilon, more points are deleted.

[1] Urs Ramer, “An iterative procedure for the polygonal approximation of plane curves”, Computer Graphics and Image Processing, 1(3), 244–256 (1972) doi:10.1016/S0146-664X(72)80017-0.

[2] David Douglas &; Thomas Peucker, “Algorithms for the reduction of the number of points required to represent a

digitized line or its caricature”, The Canadian Cartographer 10(2), 112–122 (1973). doi:10.3138/FM57-6770-U75U-7727

	Return

	KhivaArray with the x-coordinates and y-coordinates of the selected points (x in column 0 and y in column 1).

	Parameters

	
	points: KhivaArray with the x-coordinates and y-coordinates of the input points (x in column 0 and y in column 1).

	epsilon: It acts as the threshold value to decide which points should be considered meaningful or not.

	
static KhivaArray Khiva.Dimensionality.SAX(KhivaArray arr, int alphabetSize)

	Symbolic Aggregate approXimation (SAX). It transforms a numeric time series into a time series of symbols with the same size. The algorithm was proposed by Lin et al.) and extends the PAA-based approach inheriting the original algorithm simplicity and low computational complexity while providing satisfactory sensitivity and selectivity in range query processing. Moreover, the use of a symbolic representation opened a door to the existing wealth of data-structures and string-manipulation algorithms in computer science such as hashing, regular expression, pattern matching, suffix trees, and grammatical inference.

[1] Lin, J., Keogh, E., Lonardi, S. &; Chiu, B. (2003) A Symbolic Representation of Time Series, with Implications for Streaming Algorithms. In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, CA. June 13.

	Return

	An array of symbols.

	Parameters

	
	arr: KhivaArray with the input time series.

	alphabetSize: Number of element within the alphabet.

	
static KhivaArray Khiva.Dimensionality.Visvalingam(KhivaArray points, int numPoints)

	Reduces a set of points by applying the Visvalingam method (minimum triangle area) until the number of points is reduced to numPoints.

[1] M. Visvalingam and J. D. Whyatt, Line generalisation by repeated elimination of points, The Cartographic Journal, 1993.

	Return

	KhivaArray with the x-coordinates and y-coordinates of the selected points (x in column 0 and y in column 1).

	Parameters

	
	points: KhivaArray with the x-coordinates and y-coordinates of the input points (x in column 0 and y in column 1).

	numPoints: Sets the number of points returned after the execution of the method.

1.4. Namespace Distances

	
class Distances

	Khiva Distances class containing distances methods.

Public Static Functions

	
static KhivaArray Khiva.Distances.Dtw(KhivaArray arr)

	Calculates the Dynamic Time Warping Distance.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Distances.Euclidean(KhivaArray arr)

	Calculates euclidean distances between time series.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Distances.Hamming(KhivaArray arr)

	Calculates Hamming distances between time series.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Distances.Manhattan(KhivaArray arr)

	Calculates Manhattan distances between time series.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Distances.Sbd(KhivaArray arr)

	Calculates the Shape-Based distance (SBD). It computes the normalized cross-correlation and it returns 1.0 minus the value that maximizes the correlation value between each pair of time series.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Distances.SquaredEuclidean(KhivaArray arr)

	Calculates the Shape-Based distance (SBD). It computes the normalized cross-correlation and it returns 1.0 minus the value that maximizes the correlation value between each pair of time series.

	Return

	An upper triangular matrix where each position corresponds to the distance between two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the distance between time series 0 and time series 1.

	Parameters

	
	arr: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

1.5. Namespace Features

	
class Features

	Khiva Features class containing a number of features that can be extracted from time series. All the methods operate with instances of the ARRAY class as input and output.

Public Static Functions

	
static KhivaArray Khiva.Features.AbsEnergy(KhivaArray array)

	Calculates the sum over the square values of the time series.

	Return

	An array with the same dimensions as array, whose values (time series in dimension 0) contains the sum of the squares values in the time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.AbsoluteSumOfChanges(KhivaArray array)

	Calculates the sum over the absolute value of consecutive changes in the time series.

	Return

	An array with the same dimensions as array, whose values (time series in dimension 0) contains absolute value of consecutive changes in the time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.AggregatedAutoCorrelation(KhivaArray array, int aggregationFunction)

	Calculates the value of an aggregation function f_agg (e.g. var or mean) of the autocorrelation (Compare to http://en.wikipedia.org/wiki/Autocorrelation#Estimation), taken over different all possible lags(1 to length of x).

	Return

	An array whose values contains the aggregated correlation for each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	aggregationFunction: Function to be used in the aggregation.It receives an integer which indicates the function to be applied: { 0 : mean, 1 : median 2 : min, 3 : max, 4 : stdev, 5 : var, default : mean }

	
static Tuple<KhivaArray, KhivaArray, KhivaArray, KhivaArray, KhivaArray> Khiva.Features.AggregatedLinearTrend(KhivaArray array, long chunkSize, int aggregationFunction)

	Calculates a linear least-squares regression for values of the time series that were aggregated over chunks versus the sequence from 0 up to the number of chunks minus one.

	Parameters

	
	array: The time series to calculate the features of

	chunkSize: The chunk size used to aggregate the data.

	aggregationFunction: Function to be used in the aggregation. It receives an integer which indicates the function to be applied: { 0 : mean, 1 : median 2 : min, 3 : max, 4 : stdev, default : mean } /param>
	Return

	Tuple with the slope of the regression line, the intercept of the regression line, the correlation coefficient, the two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic and the standard error of the estimated gradient.

	
static KhivaArray Khiva.Features.ApproximateEntropy(KhivaArray array, int m, float r)

	Calculates a vectorized Approximate entropy algorithm. https://en.wikipedia.org/wiki/Approximate_entropy For short time-series this method is highly dependent on the parameters, but should be stable for N > 2000, see: Yentes et al. (2012) - The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets Other shortcomings and alternatives discussed in: Richman &; Moorman (2000) - Physiological time-series analysis using approximate entropy and sample entropy.

	Return

	The vectorized approximate entropy for all the input time series in array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	m: Length of compared run of data.

	r: Filtering level, must be positive.

	
static KhivaArray Khiva.Features.CrossCovariance(KhivaArray xss, KhivaArray yss, bool unbiased)

	Calculates the cross-covariance of the given time series.

	Return

	The cross-covariance value for the given time series.

	Parameters

	
	xss: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	yss: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	unbiased: Determines whether it divides by n - lag (if true) or n(if false).

	
static KhivaArray Khiva.Features.AutoCovariance(KhivaArray array, bool unbiased = false)

	Calculates the auto-covariance the given time series.

	Return

	The auto-covariance value for the given time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	unbiased: Determines whether it divides by n - lag (if true) or n(if false).

	
static KhivaArray Khiva.Features.CrossCorrelation(KhivaArray xss, KhivaArray yss, bool unbiased)

	Calculates the cross-correlation of the given time series.

	Return

	The cross-correlation value for the given time series.

	Parameters

	
	xss: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	yss: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	unbiased

	
static KhivaArray Khiva.Features.AutoCorrelation(KhivaArray array, long maxLag, bool unbiased)

	Calculates the autocorrelation of the specified lag for the given time series.

	Return

	The autocorrelation value for the given time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	maxLag: The maximum lag to compute.

	unbiased: Determines whether it divides by n - lag (if true) or n (if false)

	
static KhivaArray Khiva.Features.BinnedEntropy(KhivaArray array, int maxBins)

	Calculates the binned entropy for the given time series and number of bins.

	Return

	The binned entropy value for the given time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	maxBins: The number of bins.

	
static KhivaArray Khiva.Features.C3(KhivaArray array, long lag)

	Calculates the Schreiber, T. and Schmitz, A. (1997) measure of non-linearity for the given time series.

	Return

	The non-linearity value for the given time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	lag: The lag.

	
static KhivaArray Khiva.Features.CidCe(KhivaArray array, bool zNormalize)

	Calculates an estimate for the time series complexity defined by Batista, Gustavo EAPA, et al(2014). (A more complex time series has more peaks, valleys, etc.).

	Return

	The complexity value for the given time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	zNormalize: Controls whether the time series should be z-normalized or not.

	
static KhivaArray Khiva.Features.CountAboveMean(KhivaArray array)

	Calculates the number of values in the time series that are higher than the mean.

	Return

	The number of values in the time series that are higher than the mean.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.CountBelowMean(KhivaArray array)

	Calculates the number of values in the time series that are lower than the mean.

	Return

	The number of values in the time series that are lower than the mean.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.CwtCoefficients(KhivaArray array, KhivaArray width, int coeff, int w)

	Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the “Mexican hat wavelet” which is defined by:

.. math:: {2}{{3a} ^{ {1} { 4 }}} (1 - {x^2}{a^2}) exp(-{ x ^ 2}{2a^2})

where :math:a is the width parameter of the wavelet function.

This feature calculator takes three different parameter: widths, coeff and w.The feature calculator takes all the different widths arrays and then calculates the cwt one time for each different width array.Then the values for the different coefficient for coeff and width w are returned. (For each dic in param one feature is returned).

	Return

	Result of calculated coefficients.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	width: KhivaArray that contains all different widths.

	coeff: Coefficient of interest.

	w: Width of interest.

	
static KhivaArray Khiva.Features.EnergyRatioByChunks(KhivaArray array, long numSegments, long segmentFocus)

	Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the whole series. segment_focus should be lower than the number of segments.

	Return

	The energy ratio by chunk of the time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	numSegments: The number of segments to divide the series into.

	segmentFocus: The segment number (starting at zero) to return a feature on.

	
static KhivaArray Khiva.Features.FftAggregated(KhivaArray array)

	Calculates the spectral centroid(mean), variance, skew, and kurtosis of the absolute fourier transform spectrum.

	Return

	The spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier transform spectrum.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static Tuple<KhivaArray, KhivaArray, KhivaArray, KhivaArray> Khiva.Features.FftCoefficient(KhivaArray array, long coefficient)

	Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast fourier transformation algorithm.

	Return

	Tuple with the real part of the coefficient, the imaginary part of the coefficient, the absolute value of the coefficient and the angle of the coefficient.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	coefficient: The coefficient to extract from the FFT.

	
static KhivaArray Khiva.Features.FirstLocationOfMaximum(KhivaArray array)

	Calculates the first relative location of the maximal value for each time series.

	Return

	The first relative location of the maximum value to the length of the time series, for each time series.

	Parameters

	
	array: array Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.FirstLocationOfMinimum(KhivaArray array)

	Calculates the first location of the minimal value of each time series. The position is calculated relatively to the length of the series.

	Return

	The first relative location of the minimal value of each series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.FriedrichCoefficients(KhivaArray array, int m, float r)

	Coefficients of polynomial \(h(x)\), which has been fitted to the deterministic dynamics of Langevin model:
\[\dot(x)(t) = h(x(t)) + R \mathcal(N)(0,1) \]

 as described by[1]. For short time series this method is highly dependent on the parameters.

[1] Friedrich et al. (2000): Physics Letters A 271, p. 217-222 Extracting model equations from experimental data.

	Return

	The coefficients for each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	m: Order of polynom to fit for estimating fixed points of dynamics.

	r: Number of quantiles to use for averaging.

	
static KhivaArray Khiva.Features.HasDuplicates(KhivaArray array)

	Calculates if the input time series contain duplicated elements.

	Return

	KhivaArray containing True if the time series contains duplicated elements and false otherwise.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.HasDuplicateMax(KhivaArray array)

	Calculates if the maximum within input time series is duplicated.

	Return

	KhivaArray containing True if the maximum value of the time series is duplicated and false otherwise.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.HasDuplicateMin(KhivaArray array)

	Calculates if the minimum of the input time series is duplicated.

	Return

	KhivaArray containing True if the minimum of the time series is duplicated and false otherwise.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.IndexMassQuantile(KhivaArray array, float q)

	Calculates the index of the max quantile.

	Return

	The index of the max quantile q.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	q: The quantile.

	
static KhivaArray Khiva.Features.Kurtosis(KhivaArray array)

	Returns the kurtosis of array (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).

	Return

	The kurtosis of each array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.LargeStandardDeviation(KhivaArray array, float r)

	Checks if the time series within array have a large standard deviation.

	Return

	KhivaArray containing True for those time series in array that have a large standard deviation.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	r: The threshold.

	
static KhivaArray Khiva.Features.LastLocationOfMaximum(KhivaArray array)

	Calculates the last location of the maximum value of each time series. The position is calculated relatively to the length of the series.

	Return

	The last relative location of the maximum value of each series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.LastLocationOfMinimum(KhivaArray array)

	Calculates the last location of the minimum value of each time series. The position is calculated relatively to the length of the series.

	Return

	The last relative location of the minimum value of each series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.Length(KhivaArray array)

	Returns the length of the input time series.

	Return

	The length of the time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static Tuple<KhivaArray, KhivaArray, KhivaArray, KhivaArray, KhivaArray> Khiva.Features.LinearTrend(KhivaArray array)

	Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length of the time series minus one.

	Return

	Tuple with the pvalues for all time series, the rvalues for all time series, the intercept values for all time series, the slope for all time series and the stderr values for all time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.LocalMaximals(KhivaArray array)

	Calculates all Local Maximals fot the time series in array.

	Return

	The calculated local maximals for each time series in array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.LongestStrikeAboveMean(KhivaArray array)

	Calculates the length of the longest consecutive subsequence in array that is bigger than the mean of array.

	Return

	The length of the longest consecutive subsequence in the input time series that is bigger than the mean.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.LongestStrikeBelowMean(KhivaArray array)

	Calculates the length of the longest consecutive subsequence in array that is below the mean of array.

	Return

	The length of the longest consecutive subsequence in the input time series that is below the mean.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.MaxLangevinFixedPoint(KhivaArray array, int m, float r)

	Largest fixed point of dynamics \(\max_x {h(x)=0}\) estimated from polynomial \(h(x)\), which has been fitted to the deterministic dynamics of Langevin model
\[\dot(x)(t) = h(x(t)) + R \mathcal(N)(0, 1) \]

 as described by Friedrich et al. (2000): Physics Letters A 271, p. 217-222 *Extracting model equations from experimental data.

	Return

	Largest fixed point of deterministic dynamics.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	m: Order of polynom to fit for estimating fixed points of dynamics.

	r: Number of quantiles to use for averaging.

	
static KhivaArray Khiva.Features.Maximum(KhivaArray array)

	Calculates the maximum value for each time series within array.

	Return

	The maximum value of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.Mean(KhivaArray array)

	Calculates the mean value for each time series within array.

	Return

	The mean value of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.MeanAbsoluteChange(KhivaArray array)

	Calculates the mean over the absolute differences between subsequent time series values in array.

	Return

	The maximum value of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.MeanChange(KhivaArray array)

	Calculates the mean over the differences between subsequent time series values in array.

	Return

	The mean over the differences between subsequent time series values.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.MeanSecondDerivativeCentral(KhivaArray array)

	Calculates mean value of a central approximation of the second derivative for each time series in array.

	Return

	The mean value of a central approximation of the second derivative for each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.Median(KhivaArray array)

	Calculates the median value for each time series within array.

	Return

	The median value of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.Minimum(KhivaArray array)

	Calculates the minimum value for each time series within array.

	Return

	The minimum value of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.NumberCrossingM(KhivaArray array, int m)

	Calculates the number of m-crossings. A m-crossing is defined as two sequential values where the first value is lower than m and the next is greater, or viceversa.If you set m to zero, you will get the number of zero crossings.

	Return

	The number of m-crossings of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	m: The m value.

	
static KhivaArray Khiva.Features.NumberCwtPeaks(KhivaArray array, int maxW)

	This feature calculator searches for different peaks. To do so, the time series is smoothed by a ricker wavelet and for widths ranging from 1 to max_w.This feature calculator returns the number of peaks that occur at enough width scales and with sufficiently high Signal-to-Noise-Ratio (SNR).

	Return

	The number of peaks for each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	maxW: The maximum width to consider.

	
static KhivaArray Khiva.Features.NumberPeaks(KhivaArray array, int n)

	Calculates the number of peaks of at least support \(n\) in the time series \(array\). A peak of support \(n\) is defined as a subsequence of \(array\) where a value occurs, which is bigger than its \(n\) neighbours to the left and to the right.

	Return

	The number of peaks of at least support \(n\).

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	n: The support of the peak.

	
static KhivaArray Khiva.Features.PartialAutocorrelation(KhivaArray array, KhivaArray lags)

	Calculates the value of the partial autocorrelation function at the given lag. The lag \(k\) partial autocorrelation of a time series \(\lbrace x_t, t = 1 \ldots T \rbrace\) equals the partial correlation of \(x_t\) and \(x_{t-k}\), adjusted for the intermediate variables \(\lbrace x_ { t-1}, \ldots, x_{t-k+1} \rbrace\) ([1]). Following[2], it can be defined as:

\[\alpha_k = \frac{ Cov(x_t, x_{ t - k} | x_{t-1}, \ldots, x_{t-k+1})} {\sqrt{ Var(x_t | x_{ t - 1}, \ldots, x_{t-k+1}) Var(x_{ t - k} | x_{t-1}, \ldots, x_{t-k+1})}} \]

 with(a) \(x_t = f(x_{ t - 1}, \ldots, x_{t-k+1})\) and(b) \(x_{t-k} = f(x_{ t - 1}, \ldots, x_{t-k+1})\) being AR(k-1) models that can be fitted by OLS.Be aware that in (a), the regression is done on past values to predict \(x_t \) whereas in (b), future values are used to calculate the past value \(x_{t-k}\). It is said in [1] that “for an AR(p), the partial autocorrelations \form#21 will be nonzero for \form#22

 and zero for \form#23.” With this property, it is used to determine the lag of an AR-Process.

[1] Box, G.E., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015). Time series analysis: forecasting and control. John Wiley & Sons. [2] https://onlinecourses.science.psu.edu/stat510/node/62

	Return

	Returns partial autocorrelation for each time series for the given lag.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	lags: Indicates the lags to be calculated.

	
static KhivaArray Khiva.Features.PercentageOfReoccurringDatapointsToAllDatapoints(KhivaArray array, bool isSorted = false)

	Calculates the percentage of unique values, that are present in the time series more than once.
\[len(different values occurring more than once) / len(different values) \]

 This means the percentage is normalized to the number of unique values, in contrast to the percentageOfReoccurringValuesToAllValues.

	Return

	Returns the percentage of unique values, that are present in the time series more than once.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	isSorted: Indicates if the input time series is sorted or not. Defaults to false.

	
static KhivaArray Khiva.Features.PercentageOfReoccurringValuesToAllValues(KhivaArray array, bool isSorted = false)

	Calculates the percentage of unique values, that are present in the time series more than once.
\[\frac{\textit{number of data points occurring more than once}}{\textit{number of all data points})} \]

 This means the percentage is normalized to the number of unique values, in contrast to the percentageOfReoccurringDatapointsToAllDatapoints.

	Return

	Returns the percentage of unique values, that are present in the time series more than once.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	isSorted: Indicates if the input time series is sorted or not. Defaults to false.

	
static KhivaArray Khiva.Features.Quantile(KhivaArray array, KhivaArray q, float precision = 1e8F)

	Returns values at the given quantile.

	Return

	Values at the given quantile.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	q: Percentile(s) at which to extract score(s). One or many.

	precision: Number of decimals expected. Defaults to 1e8F.

	
static KhivaArray Khiva.Features.RangeCount(KhivaArray array, float min, float max)

	Counts observed values within the interval [min, max).

	Return

	Values at the given range.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	min: Value that sets the lower limit.

	max: Value that sets the upper limit.

	
static KhivaArray Khiva.Features.RatioBeyondRSigma(KhivaArray array, float r)

	Calculates the ratio of values that are more than \(r*std(x)\) (so \(r\) sigma) away from the mean of \(x\).

	Return

	The ratio of values that are more than \(r*std(x)\) (so \(r\) sigma) away from the mean of \(x\).

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	r: Number of times that the values should be away from.

	
static KhivaArray Khiva.Features.RatioValueNumberToTimeSeriesLength(KhivaArray array)

	Calculates a factor which is 1 if all values in the time series occur only once, and below one if this is not the case. In principle, it just returns:

\[\frac{\textit{number_unique_values}}{\textit{number_values}} \]

	Return

	The ratio of unique values with respect to the total number of values.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.SampleEntropy(KhivaArray array)

	Calculates a vectorized sample entropy algorithm. https://en.wikipedia.org/wiki/Sample_entropy https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract For short time-series this method is highly dependent on the parameters, but should be stable for N > 2000, see: Yentes et al. (2012) - The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets Other shortcomings and alternatives discussed in: Richman & Moorman (2000) - Physiological time-series analysis using approximate entropy and sample entropy.

	Return

	An array with the same dimensions as array, whose values (time series in dimension 0) contains the vectorized sample entropy for all the input time series in array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.Skewness(KhivaArray array)

	Calculates the sample skewness of array (calculated with the adjusted Fisher-Pearson standardized moment coefficient G1).

	Return

	KhivaArray containing the skewness of each time series in array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.SpktWelchDensity(KhivaArray array, int coeff)

	Estimates the cross power spectral density of the time series array at different frequencies. To do so, the time series is first shifted from the time domain to the frequency domain.

Welch’s method computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. [1] P.Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based on time

 averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. [2] M.S.Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika, vol. 37, pp. 1-16, 1950. [3] Rabiner, Lawrence R., and B. Gold. “Theory and Application of Digital Signal Processing” Prentice-Hall, pp. 414-419, 1975.

	Return

	KhivaArray containing the power spectrum of the different frequencies for each time series in array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	coeff: The coefficient to be returned.

	
static KhivaArray Khiva.Features.StandardDeviation(KhivaArray array)

	Calculates the standard deviation of each time series within array.

	Return

	The standard deviation of each time series within array.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.SumOfReoccurringDatapoints(KhivaArray array, bool isSorted = false)

	Calculates the sum of all data points, that are present in the time series more than once.

	Return

	Returns the sum of all data points, that are present in the time series more than once.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	isSorted: Indicates if the input time series is sorted or not. Defaults to false.

	
static KhivaArray Khiva.Features.SumOfReoccurringValues(KhivaArray array, bool isSorted = false)

	Calculates the sum of all values, that are present in the time series more than once.

	Return

	Returns the sum of all values, that are present in the time series more than once.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	isSorted: Indicates if the input time series is sorted or not. Defaults to false.

	
static KhivaArray Khiva.Features.SumValues(KhivaArray array)

	Calculates the sum over the time series array.

	Return

	An array containing the sum of values in each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.SymmetryLooking(KhivaArray array, float r)

	Calculates if the distribution of array looks symmetric. This is the case if
\[| mean(array) - median(array) | \lt r * (max(array) - min(array)) \]

	Return

	An array denoting if the input time series look symmetric.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	r: The percentage of the range to compare with.

	
static KhivaArray Khiva.Features.TimeReversalAsymmetryStatistic(KhivaArray array, int lag)

	This function calculates the value of:
\[\frac{1}{n-2lag} \sum_{i=0}^{n-2lag} x_{i + 2 \cdot lag}^2 \cdot x_ { i + lag } - x_{i + lag} \cdot x_ { i }^2 \]

 which is
\[\mathbb{E}[L^2(X)^2 \cdot L(X) - L(X) \cdot X^2] \]

 where \(\mathbb{E} \) is the mean and \(L \) is the lag operator. It was proposed in [1] as a promising feature to extract from time series.

[1] Fulcher, B.D., Jones, N.S. (2014). Highly comparative feature-based time-series classification. Knowledge and Data Engineering, IEEE Transactions on 26, 3026–3037.

	Return

	An array containing the time reversal asymmetry statistic value in each time series.

	Parameters

	
	array: xpects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	lag: The lag to be computed.

	
static KhivaArray Khiva.Features.ValueCount(KhivaArray array, float v)

	Counts occurrences of value in the time series array.

	Return

	An array containing the count of the given value in each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	v: The value to be counted.

	
static KhivaArray Khiva.Features.Variance(KhivaArray array)

	Computes the variance for the time series array.

	Return

	An array containing the variance in each time series.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Features.VarianceLargerThanStandardDeviation(KhivaArray array)

	Calculates if the variance of array is greater than the standard deviation. In other words, if the variance of array is larger than 1.

	Return

	An array denoting if the variance of array is greater than the standard deviation.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

1.6. Namespace Khiva

	
class Library

	Class to change internal properties of the Khiva library.

Public Types

	
enum Backend

	Khiva Backend.

Values:

	
KhivaBackendDefault = 0

	DEFAULT Backend.

	
KhivaBackendCpu = 1

	CPU Backend.

	
KhivaBackendCuda = 2

	CUDA Backend.

	
KhivaBackendOpencl = 4

	OPENCL Backend.

Property

	
property Khiva::Library::CurrentBackend

	Getters and setters for the Khiva backend.

	
property Khiva::Library::SupportedBackends

	Supported Khiva backends.

	
property Khiva::Library::BackendInfo

	Information getter for the current backend.

	
property Khiva::Library::Device

	Getter and setter for the Khiva device.

	
property Khiva::Library::DeviceCount

	Getter for the device count.

	
property Khiva::Library::Version

	Getter for the Khiva version.

Public Static Functions

	
static void Khiva.Library.PrintBackendInfo()

	Prints information of the current backend.

1.7. Namespace LinAlg

	
class LinAlg

	Khiva Linear Algebra class containing linear algebra methods.

Public Static Functions

	
static KhivaArray Khiva.LinAlg.Lls(KhivaArray a, KhivaArray b)

	Calculates the minimum norm least squares solution \(x\) \((\left\lVert{A·x - b}\right\rVert^2)\) to \(A·x = b\). This function uses the singular value decomposition function of Arrayfire.The actual formula that this function computes is \(x = V·D\dagger·U^T·b\). Where \(U\) and \(V\) are orthogonal matrices and \(D\dagger\) contains the inverse values of the singular values contained in D if they are not zero, and zero otherwise.

	Return

	Contains the solution to the linear equation problem minimizing the norm 2.

	Parameters

	
	a: A coefficient matrix containing the coefficients of the linear equation problem to solve.

	b: A vector with the measured values.

1.8. Namespace Matrix

	
class Matrix

	Khiva Matrix Profile class containing matrix profile methods.

Public Static Functions

	
static Tuple<KhivaArray, KhivaArray, KhivaArray> Khiva.Matrix.FindBestNDiscords(KhivaArray profile, KhivaArray index, long m, long n, bool selfJoin = false)

	Primitive of the findBestNDiscords function.

	Return

	Tuple with the distance of the best N discords, the indices of the best N discords and the indices of the query sequences that produced the “N” bigger discords.

	Parameters

	
	profile: The matrix profile containing the minimum distance of each subsequence.

	index: The matrix profile index containing the index of the most similar subsequence.

	m: Length of the matrix profile.

	n: Number of discords to extract.

	selfJoin: Indicates whether the input profile comes from a self join operation or not. It determines whether the mirror similar region is included in the output or not.

	
static Tuple<KhivaArray, KhivaArray, KhivaArray> Khiva.Matrix.FindBestNMotifs(KhivaArray profile, KhivaArray index, long m, long n, bool selfJoin = false)

	Primitive of the findBestNMotifs function.

	Return

	Tuple with the distance of the best N motifs, the indices of the best N motifs, the indices of the query sequences that produced the minimum reported in the motifs.

	Parameters

	
	profile: The matrix profile containing the minimum distance of each subsequence.

	index: The matrix profile index containing where each minimum occurs.

	m: Subsequence length value used to calculate the input matrix profile.

	n: Number of motifs to extract.

	selfJoin: Indicates whether the input profile comes from a self join operation or not. It determines whether the mirror similar region is included in the output or not.

	
static Tuple<KhivaArray, KhivaArray> Khiva.Matrix.Stomp(KhivaArray tssa, KhivaArray tssb, long m)

	Primitive of the STOMP algorithm.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

	Return

	Tuple with the matrix profile, which has the distance to the closer element of the subsequence from ‘tssa’ in ‘tssb’ and the matrix profile index, which points to where the aforementioned minimum is located.

	Parameters

	
	tssa: Query time series.

	tssb: Reference time series.

	m: Pointer to a long with the length of the subsequence.

	
static Tuple<KhivaArray, KhivaArray> Khiva.Matrix.StompSelfJoin(KhivaArray tss, long m)

	Primitive of the STOMP self join algorithm.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

	Return

	Tuple with the matrix profile, which has the distance to the closer element of the subsequence from ‘tss’ in a different location of itself and the matrix profile index, which points to where the aforementioned minimum is located.

	Parameters

	
	tss: Query and reference time series.

	m: Pointer to a long with the length of the subsequence.

	
static KhivaArray Khiva.Matrix.Mass(KhivaArray query, KhivaArray tss)

	Mueen’s Algorithm for Similarity Search.

The result has the following structure:
	1st dimension corresponds to the index of the subsequence in the time series.

	2nd dimension corresponds to the number of queries.

	3rd dimension corresponds to the number of time series.

For example, the distance in the position (1, 2, 3) correspond to the distance of the third query to the fourth time series for the second subsequence in the time series.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

	Return

	Resulting distances.

	Parameters

	
	query: Array whose first dimension is the length of the query time series and the second dimension is the number of queries.

	tss: Array whose first dimension is the length of the time series and the second dimension is the number of time series.

	
static Tuple<KhivaArray, KhivaArray> Khiva.Matrix.FindBestNOccurrences(KhivaArray query, KhivaArray tss, long n)

	Calculates the N best matches of several queries in several time series. The result has the following structure:

	1st dimension corresponds to the nth best match.

	2nd dimension corresponds to the number of queries.

	3rd dimension corresponds to the number of time series.

For example, the distance in the position (1, 2, 3) corresponds to the second best distance of the third query in the fourth time series. The index in the position (1, 2, 3) is the is the index of the subsequence which leads to the second best distance of the third query in the fourth time series.

	Return

	Tuple with the resulting distances and indexes.

	Parameters

	
	query: Array whose first dimension is the length of the query time series and the second dimension is the number of queries.

	tss: Array whose first dimension is the length of the time series and the second dimension is the number of time series.

	n: Number of matches to return.

1.9. Namespace Normalization

	
class Normalization

	Khiva Normalization class containing several normalization methods.

Public Static Functions

	
static KhivaArray Khiva.Normalization.DecimalScalingNorm(KhivaArray tss)

	Normalizes the given time series according to its maximum value and adjusts each value within the range (-1, 1).

	Return

	An array with the same dimensions as tss, whose values (time series in dimension 0) have been normalized by dividing each number by 10^j, where j is the number of integer digits of the max number in the time series.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static void Khiva.Normalization.DecimalScalingNorm(ref KhivaArray tss)

	Same as decimal_scaling_norm, but it performs the operation inplace, without allocating further memory.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Normalization.MaxMinNorm(KhivaArray tss, double high, double low, double epsilon = 0.00000001)

	Normalizes the given time series according to its minimum and maximum value and adjusts each value within the range[low, high].

	Return

	KhivaArray with the same dimensions as tss, whose values (time series in dimension 0) have been normalized by maximum and minimum values, and scaled as per high and low parameters.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	high: Maximum final value (Defaults to 1.0).

	low: Minimum final value (Defaults to 0.0).

	epsilon: Safeguard for constant (or near constant) time series as the operation implies a unit scale operation between min and max values in the tss.

	
static void Khiva.Normalization.MaxMinNorm(ref KhivaArray tss, double high, double low, double epsilon = 0.00000001)

	Same as max_min_norm, but it performs the operation inplace, without allocating further memory.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	high: Maximum final value (Defaults to 1.0).

	low: Minimum final value (Defaults to 0.0).

	epsilon: Safeguard for constant (or near constant) time series as the operation implies a unit scale operation between min and max values in the tss.

	
static KhivaArray Khiva.Normalization.MeanNorm(KhivaArray tss)

	Normalizes the given time series according to its maximum-minimum value and its mean. It follows the following formulae:
\[\acute{x} = \frac{x - mean(x)}{max(x) - min(x)}. \]

	Return

	An array with the same dimensions as tss, whose values (time series in dimension 0) have been normalized by subtracting the mean from each number and dividing each number by \(max(x) - min(x)\), in the time series.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static void Khiva.Normalization.MeanNorm(ref KhivaArray tss)

	Normalizes the given time series according to its maximum-minimum value and its mean. It follows the following formulae:
\[\acute{x} = \frac{x - mean(x)}{max(x) - min(x)}. \]

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Normalization.ZNorm(KhivaArray tss, double epsilon)

	Calculates a new set of times series with zero mean and standard deviation one.

	Return

	KhivaArray with the same dimensions as tss where the time series have been adjusted for zero mean and one as standard deviation.

	Parameters

	
	tss: Time series concatenated in a single row.

	epsilon: Minimum standard deviation to consider. It acts as a gatekeeper for those time series that may be constant or near constant.

	
static void Khiva.Normalization.ZNorm(ref KhivaArray tss, double epsilon)

	Adjusts the time series in the given input and performs z-norm inplace(without allocating further memory).

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	epsilon: Minimum standard deviation to consider. It acts as a gatekeeper for those time series that may be constant or near constant.

1.10. Namespace Polynomial

	
class Polynomial

	Khiva Polynomial class containing a number of polynomial methods.

Public Static Functions

	
static KhivaArray Khiva.Polynomial.PolyFit(KhivaArray x, KhivaArray y, int deg)

	Least squares polynomial fit. Fit a polynomial \(p(x) = p[0] * x^{deg} + ... + p[deg]\) of degree \(deg\) to points \((x, y)\). Returns a vector of coefficients \(p\) that minimises the squared error.

	Return

	Polynomial coefficients, highest power first.

	Parameters

	
	x: x-coordinates of the M sample points \((x[i], y[i])\).

	y: y-coordinates of the sample points.

	deg: Degree of the fitting polynomial.

	
static KhivaArray Khiva.Polynomial.Roots(KhivaArray p)

	Calculates the roots of a polynomial with coefficients given in \(p\). The values in the rank-1 array \(p\) are coefficients of a polynomial.If the length of \(p\) is \(n+1\) then the polynomial is described by:
\[p[0] * x ^ n + p[1] * x ^{n-1} + ... + p[n - 1] * x + p[n] \]

	Return

	KhivaArray containing the roots of the polynomial.

	Parameters

	
	p: KhivaArray of polynomial coefficients.

1.11. Namespace Regression

	
class Regression

	Khiva Regression class containing regression methods.

Public Static Functions

	
static Tuple<KhivaArray, KhivaArray, KhivaArray, KhivaArray, KhivaArray> Khiva.Regression.Linear(KhivaArray xss, KhivaArray yss)

	Calculates a linear least-squares regression for two sets of measurements. Both arrays should have the same length.

	Return

	Tuple with the slope of the regression line, the correlation coefficient, the two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic and the standard error of the estimated gradient.

	Parameters

	
	xss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	yss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

1.12. Namespace Regularization

	
class Regularization

	Khiva Regularization class containing different regularization methods.

Public Static Functions

	
static KhivaArray Khiva.Regularization.GroupBy(KhivaArray array, int aggregationFunction, int nColumnsKey = 1, int nColumnsValue = 1)

	Group by operation in the input array using n_columns_key columns as group keys and n_columns_value columns as values.The data is expected to be sorted.The aggregation function determines the operation to aggregate the values.

	Parameters

	
	array: Expects an input array whose dimension zero is the length of the time series(all the same) and dimension one indicates the number of time series.

	aggregationFunction: Function to be used in the aggregation. It receives an integer which indicates the function to be applied: { 0 : mean, 1 : median 2 : min, 3 : max, 4 : stdev, 5 : var, default : mean } /param>
	Return

	An array with the values of the group keys aggregated using the aggregation_function.

	Parameters

	
	nColumnsKey: Number of columns conforming the key.

	nColumnsValue: Number of columns conforming the value (they are expected to be consecutive to the column.

1.13. Namespace Statistics

	
class Statistics

	Khiva Statistics class containing statistics methods.

Public Static Functions

	
static KhivaArray Khiva.Statistics.CovarianceStatistics(KhivaArray tss, bool unbiased)

	Returns the covariance matrix of the time series contained in tss.

	Return

	The covariance matrix of the time series.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	unbiased: Determines whether it divides by n - 1 (if false) or n (if true).

	
static KhivaArray Khiva.Statistics.KurtosisStatistics(KhivaArray tss)

	Returns the kurtosis of tss (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).

	Return

	The kurtosis of tss.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Statistics.LjungBox(KhivaArray tss, long lags)

	The Ljung–Box test checks that data within the time series are independently distributed (i.e. the correlations in the population from which the sample is taken are 0, so that any observed correlations in the data result from randomness of the sampling process). Data are no independently distributed, if they exhibit serial correlation.

The test statistic is:

\[Q = n\left(n + 2\right)\sum_{ k = 1}^h\frac{\hat{\rho}^2_k}{n-k} \]

where ‘’n’’ is the sample size, \(\hat{\rho}k \) is the sample autocorrelation at lag ‘’k’‘, and ‘’h’’ is the number of lags being tested.Under \(H_0 \) the statistic Q follows a \(\chi^2{ (h)} \). For significance level \(\alpha\), the \(critical region\) for rejection of the hypothesis of randomness is:

\[Q > \chi_{1-\alpha,h}^2 \]

where \(\chi_{1-\alpha,h}^2 \) is the \(\alpha\)-quantile of the chi-squared distribution with ‘’h’’ degrees of freedom.

[1] G.M.Ljung G. E.P.Box (1978). On a measure of lack of fit in time series models. Biometrika, Volume 65, Issue 2, 1 August 1978, Pages 297–303.

	Return

	The Ljung-Box statistic test.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	lags: Number of lags being tested.

	
static KhivaArray Khiva.Statistics.MomentStatistics(KhivaArray tss, int k)

	Returns the kth moment of the given time series.

	Return

	The kth moment of the given time series.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	k: The specific moment to be calculated.

	
static KhivaArray Khiva.Statistics.QuantileStatistics(KhivaArray tss, KhivaArray q, float precision = 1e-8F)

	Returns values at the given quantile.

	Return

	Values at the given quantile.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.NOTE: the time series should be sorted.

	q: Percentile(s) at which to extract score(s). One or many.

	precision: Number of decimals expected.

	
static KhivaArray Khiva.Statistics.QuantilesCutStatistics(KhivaArray tss, float quantiles, float precision = 1e-8F)

	Discretizes the time series into equal-sized buckets based on sample quantiles.

	Return

	Matrix with the categories, one category per row, the start of the category in the first column and the end in the second category.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.NOTE: the time series should be sorted.

	quantiles: Number of quantiles to extract. From 0 to 1, step 1/quantiles.

	precision: Number of decimals expected.

	
static KhivaArray Khiva.Statistics.SampleStdevStatistics(KhivaArray tss)

	Estimates standard deviation based on a sample. The standard deviation is calculated using the “n-1” method.

	Return

	The sample standard deviation.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

	
static KhivaArray Khiva.Statistics.SkewnessStatistics(KhivaArray tss)

	Calculates the sample skewness of tss (calculated with the adjusted Fisher-Pearson standardized moment coefficient G1).

	Return

	KhivaArray containing the skewness of each time series in tss.

	Parameters

	
	tss: Expects an input array whose dimension zero is the length of the time series (all the same) and dimension one indicates the number of time series.

2. FAQ

	What are the Khiva Array restrictions?

Khiva Arrays can have up to 4 dimensions, each one needs to have the same length and the same type.

	Can I use the Khiva package without having a GPU for computation?

Of course. It is right that Khiva algorithms are designed to run on GPU, but a CPU backend could be set.

	What OS are supported?

Nowadays, Khiva is supported on Windows, Linux and MacOS.

3. License

Mozilla Public License, version 2.0

1. Definitions

1.1. "Contributor"

 means each individual or legal entity that creates, contributes to the
 creation of, or owns Covered Software.

1.2. "Contributor Version"

 means the combination of the Contributions of others (if any) used by a
 Contributor and that particular Contributor's Contribution.

1.3. "Contribution"

 means Covered Software of a particular Contributor.

1.4. "Covered Software"

 means Source Code Form to which the initial Contributor has attached the
 notice in Exhibit A, the Executable Form of such Source Code Form, and
 Modifications of such Source Code Form, in each case including portions
 thereof.

1.5. "Incompatible With Secondary Licenses"
 means

 a. that the initial Contributor has attached the notice described in
 Exhibit B to the Covered Software; or

 b. that the Covered Software was made available under the terms of
 version 1.1 or earlier of the License, but not also under the terms of
 a Secondary License.

1.6. "Executable Form"

 means any form of the work other than Source Code Form.

1.7. "Larger Work"

 means a work that combines Covered Software with other material, in a
 separate file or files, that is not Covered Software.

1.8. "License"

 means this document.

1.9. "Licensable"

 means having the right to grant, to the maximum extent possible, whether
 at the time of the initial grant or subsequently, any and all of the
 rights conveyed by this License.

1.10. "Modifications"

 means any of the following:

 a. any file in Source Code Form that results from an addition to,
 deletion from, or modification of the contents of Covered Software; or

 b. any new file in Source Code Form that contains any Covered Software.

1.11. "Patent Claims" of a Contributor

 means any patent claim(s), including without limitation, method,
 process, and apparatus claims, in any patent Licensable by such
 Contributor that would be infringed, but for the grant of the License,
 by the making, using, selling, offering for sale, having made, import,
 or transfer of either its Contributions or its Contributor Version.

1.12. "Secondary License"

 means either the GNU General Public License, Version 2.0, the GNU Lesser
 General Public License, Version 2.1, the GNU Affero General Public
 License, Version 3.0, or any later versions of those licenses.

1.13. "Source Code Form"

 means the form of the work preferred for making modifications.

1.14. "You" (or "Your")

 means an individual or a legal entity exercising rights under this
 License. For legal entities, "You" includes any entity that controls, is
 controlled by, or is under common control with You. For purposes of this
 definition, "control" means (a) the power, direct or indirect, to cause
 the direction or management of such entity, whether by contract or
 otherwise, or (b) ownership of more than fifty percent (50%) of the
 outstanding shares or beneficial ownership of such entity.

2. License Grants and Conditions

2.1. Grants

 Each Contributor hereby grants You a world-wide, royalty-free,
 non-exclusive license:

 a. under intellectual property rights (other than patent or trademark)
 Licensable by such Contributor to use, reproduce, make available,
 modify, display, perform, distribute, and otherwise exploit its
 Contributions, either on an unmodified basis, with Modifications, or
 as part of a Larger Work; and

 b. under Patent Claims of such Contributor to make, use, sell, offer for
 sale, have made, import, and otherwise transfer either its
 Contributions or its Contributor Version.

2.2. Effective Date

 The licenses granted in Section 2.1 with respect to any Contribution
 become effective for each Contribution on the date the Contributor first
 distributes such Contribution.

2.3. Limitations on Grant Scope

 The licenses granted in this Section 2 are the only rights granted under
 this License. No additional rights or licenses will be implied from the
 distribution or licensing of Covered Software under this License.
 Notwithstanding Section 2.1(b) above, no patent license is granted by a
 Contributor:

 a. for any code that a Contributor has removed from Covered Software; or

 b. for infringements caused by: (i) Your and any other third party's
 modifications of Covered Software, or (ii) the combination of its
 Contributions with other software (except as part of its Contributor
 Version); or

 c. under Patent Claims infringed by Covered Software in the absence of
 its Contributions.

 This License does not grant any rights in the trademarks, service marks,
 or logos of any Contributor (except as may be necessary to comply with
 the notice requirements in Section 3.4).

2.4. Subsequent Licenses

 No Contributor makes additional grants as a result of Your choice to
 distribute the Covered Software under a subsequent version of this
 License (see Section 10.2) or under the terms of a Secondary License (if
 permitted under the terms of Section 3.3).

2.5. Representation

 Each Contributor represents that the Contributor believes its
 Contributions are its original creation(s) or it has sufficient rights to
 grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

 This License is not intended to limit any rights You have under
 applicable copyright doctrines of fair use, fair dealing, or other
 equivalents.

2.7. Conditions

 Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
 Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

 All distribution of Covered Software in Source Code Form, including any
 Modifications that You create or to which You contribute, must be under
 the terms of this License. You must inform recipients that the Source
 Code Form of the Covered Software is governed by the terms of this
 License, and how they can obtain a copy of this License. You may not
 attempt to alter or restrict the recipients' rights in the Source Code
 Form.

3.2. Distribution of Executable Form

 If You distribute Covered Software in Executable Form then:

 a. such Covered Software must also be made available in Source Code Form,
 as described in Section 3.1, and You must inform recipients of the
 Executable Form how they can obtain a copy of such Source Code Form by
 reasonable means in a timely manner, at a charge no more than the cost
 of distribution to the recipient; and

 b. You may distribute such Executable Form under the terms of this
 License, or sublicense it under different terms, provided that the
 license for the Executable Form does not attempt to limit or alter the
 recipients' rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

 You may create and distribute a Larger Work under terms of Your choice,
 provided that You also comply with the requirements of this License for
 the Covered Software. If the Larger Work is a combination of Covered
 Software with a work governed by one or more Secondary Licenses, and the
 Covered Software is not Incompatible With Secondary Licenses, this
 License permits You to additionally distribute such Covered Software
 under the terms of such Secondary License(s), so that the recipient of
 the Larger Work may, at their option, further distribute the Covered
 Software under the terms of either this License or such Secondary
 License(s).

3.4. Notices

 You may not remove or alter the substance of any license notices
 (including copyright notices, patent notices, disclaimers of warranty, or
 limitations of liability) contained within the Source Code Form of the
 Covered Software, except that You may alter any license notices to the
 extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

 You may choose to offer, and to charge a fee for, warranty, support,
 indemnity or liability obligations to one or more recipients of Covered
 Software. However, You may do so only on Your own behalf, and not on
 behalf of any Contributor. You must make it absolutely clear that any
 such warranty, support, indemnity, or liability obligation is offered by
 You alone, and You hereby agree to indemnify every Contributor for any
 liability incurred by such Contributor as a result of warranty, support,
 indemnity or liability terms You offer. You may include additional
 disclaimers of warranty and limitations of liability specific to any
 jurisdiction.

4. Inability to Comply Due to Statute or Regulation

 If it is impossible for You to comply with any of the terms of this License
 with respect to some or all of the Covered Software due to statute,
 judicial order, or regulation then You must: (a) comply with the terms of
 this License to the maximum extent possible; and (b) describe the
 limitations and the code they affect. Such description must be placed in a
 text file included with all distributions of the Covered Software under
 this License. Except to the extent prohibited by statute or regulation,
 such description must be sufficiently detailed for a recipient of ordinary
 skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically if You
 fail to comply with any of its terms. However, if You become compliant,
 then the rights granted under this License from a particular Contributor
 are reinstated (a) provisionally, unless and until such Contributor
 explicitly and finally terminates Your grants, and (b) on an ongoing
 basis, if such Contributor fails to notify You of the non-compliance by
 some reasonable means prior to 60 days after You have come back into
 compliance. Moreover, Your grants from a particular Contributor are
 reinstated on an ongoing basis if such Contributor notifies You of the
 non-compliance by some reasonable means, this is the first time You have
 received notice of non-compliance with this License from such
 Contributor, and You become compliant prior to 30 days after Your receipt
 of the notice.

5.2. If You initiate litigation against any entity by asserting a patent
 infringement claim (excluding declaratory judgment actions,
 counter-claims, and cross-claims) alleging that a Contributor Version
 directly or indirectly infringes any patent, then the rights granted to
 You by any and all Contributors for the Covered Software under Section
 2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
 license agreements (excluding distributors and resellers) which have been
 validly granted by You or Your distributors under this License prior to
 termination shall survive termination.

6. Disclaimer of Warranty

 Covered Software is provided under this License on an "as is" basis,
 without warranty of any kind, either expressed, implied, or statutory,
 including, without limitation, warranties that the Covered Software is free
 of defects, merchantable, fit for a particular purpose or non-infringing.
 The entire risk as to the quality and performance of the Covered Software
 is with You. Should any Covered Software prove defective in any respect,
 You (not any Contributor) assume the cost of any necessary servicing,
 repair, or correction. This disclaimer of warranty constitutes an essential
 part of this License. No use of any Covered Software is authorized under
 this License except under this disclaimer.

7. Limitation of Liability

 Under no circumstances and under no legal theory, whether tort (including
 negligence), contract, or otherwise, shall any Contributor, or anyone who
 distributes Covered Software as permitted above, be liable to You for any
 direct, indirect, special, incidental, or consequential damages of any
 character including, without limitation, damages for lost profits, loss of
 goodwill, work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses, even if such party shall have been
 informed of the possibility of such damages. This limitation of liability
 shall not apply to liability for death or personal injury resulting from
 such party's negligence to the extent applicable law prohibits such
 limitation. Some jurisdictions do not allow the exclusion or limitation of
 incidental or consequential damages, so this exclusion and limitation may
 not apply to You.

8. Litigation

 Any litigation relating to this License may be brought only in the courts
 of a jurisdiction where the defendant maintains its principal place of
 business and such litigation shall be governed by laws of that
 jurisdiction, without reference to its conflict-of-law provisions. Nothing
 in this Section shall prevent a party's ability to bring cross-claims or
 counter-claims.

9. Miscellaneous

 This License represents the complete agreement concerning the subject
 matter hereof. If any provision of this License is held to be
 unenforceable, such provision shall be reformed only to the extent
 necessary to make it enforceable. Any law or regulation which provides that
 the language of a contract shall be construed against the drafter shall not
 be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

 Mozilla Foundation is the license steward. Except as provided in Section
 10.3, no one other than the license steward has the right to modify or
 publish new versions of this License. Each version will be given a
 distinguishing version number.

10.2. Effect of New Versions

 You may distribute the Covered Software under the terms of the version
 of the License under which You originally received the Covered Software,
 or under the terms of any subsequent version published by the license
 steward.

10.3. Modified Versions

 If you create software not governed by this License, and you want to
 create a new license for such software, you may create and use a
 modified version of this License if you rename the license and remove
 any references to the name of the license steward (except to note that
 such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary
 Licenses If You choose to distribute Source Code Form that is
 Incompatible With Secondary Licenses under the terms of this version of
 the License, the notice described in Exhibit B of this License must be
 attached.

Exhibit A - Source Code Form License Notice

 This Source Code Form is subject to the
 terms of the Mozilla Public License, v.
 2.0. If a copy of the MPL was not
 distributed with this file, You can
 obtain one at
 http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - "Incompatible With Secondary Licenses" Notice

 This Source Code Form is "Incompatible
 With Secondary Licenses", as defined by
 the Mozilla Public License, v. 2.0.

4. AUTHORS

4.1. Core Development Team

	Justo Ruiz-Ferrer (justo.ruiz@shapelets.io)

	Antonio Vilches (antonio.vilches@shapelets.io)

	Oscar Torreno (oscar.torreno@shapelets.io)

	David Cuesta (david.cuesta@shapelets.io)

4.2. Contributions

	Luis Sanchez (luis.sanchez@shapelets.io)

5. How to contribute

We have just started! Our aim is to make the Khiva library the reference library for time series analysis in the fastest fashion.
To achieve this target we need your help!

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. If you
want to add one or two interesting feature calculators, implement a new feature selection process or just fix 1-2 typos,
your help is appreciated.

If you want to help, just create a pull request on our github page.

5.1. Guidelines

5.1.1. Branching model

Our branching model has one permanent branch, master. We aim at using master as the main branch, where all
features are merged. In this sense, we also use the master branch to contain the release versions of the Python Khiva library
by means of git tags.

5.1.2. Contribution process

In order to contribute to the code base, we follow the next process:

1. The main branch is master, every developer should pull the current status of the branch before stating to develop any new feature.
git pull

2. Create a new branch with the following pattern “feature/[name_of_the_feature]”
git checkout -b feature/example_feature

3. Develop the new feature on the the new branch. It includes testing and documentation.
git commit -a -m “Bla, Bla, Bla”

git push

4. Open a Pull Request to merge the feature branch in to master. Currently, a pull request has to be reviewed at least by
one person.

	Finally, delete the feature branch.

6. Move back to master branch.
git checkout master

7. Pull the latest changes.
git pull

Index

 K

K

 	
 	Khiva::Clustering (C++ class)

 	Khiva::Dimensionality (C++ class)

 	Khiva::Distances (C++ class)

 	Khiva::Features (C++ class)

 	Khiva::KhivaArray (C++ class)

 	Khiva::KhivaArray::B8 (C++ enumerator)

 	Khiva::KhivaArray::C32 (C++ enumerator)

 	Khiva::KhivaArray::C64 (C++ enumerator)

 	Khiva::KhivaArray::DType (C++ enum)

 	Khiva::KhivaArray::F32 (C++ enumerator)

 	Khiva::KhivaArray::F64 (C++ enumerator)

 	Khiva::KhivaArray::S16 (C++ enumerator)

 	Khiva::KhivaArray::S32 (C++ enumerator)

 	Khiva::KhivaArray::S64 (C++ enumerator)

 	Khiva::KhivaArray::U16 (C++ enumerator)

 	
 	Khiva::KhivaArray::U32 (C++ enumerator)

 	Khiva::KhivaArray::U64 (C++ enumerator)

 	Khiva::KhivaArray::U8 (C++ enumerator)

 	Khiva::Library (C++ class)

 	Khiva::Library::Backend (C++ enum)

 	Khiva::Library::KhivaBackendCpu (C++ enumerator)

 	Khiva::Library::KhivaBackendCuda (C++ enumerator)

 	Khiva::Library::KhivaBackendDefault (C++ enumerator)

 	Khiva::Library::KhivaBackendOpencl (C++ enumerator)

 	Khiva::LinAlg (C++ class)

 	Khiva::Matrix (C++ class)

 	Khiva::Normalization (C++ class)

 	Khiva::Polynomial (C++ class)

 	Khiva::Regression (C++ class)

 	Khiva::Regularization (C++ class)

 	Khiva::Statistics (C++ class)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to KHIVA’s documentation!

 		
 Modules

 		
 FAQ

 		
 License

 		
 Authors

 		
 Core Development Team

 		
 Contributions

 		
 How to contribute

 		
 Guidelines

 		
 Branching model

 		
 Contribution process

_static/ajax-loader.gif

