

Knowledge Graph Embedding Server’s documentation

Introduction

You can skip this introduction if you know all about Knowledge graphs or you don’t
want to learn about them. Just go down to check how to install or run the service.

What are Knowledge Graphs?

There are many knowledge databases nowadays, and they are growing very
quickly. Some of them are open and have a very broad domain, like [DBpedia](http://es.dbpedia.org/) or
[Wikidata](http://wikidata.org/), both based in existent data on Wikipedia. Other knowledge databases
are based on very specific domains, like datos.bne.es, which stores
the information from Spanish National Library (Biblioteca Nacional de España)
in an open, machine readable, way.

Most of those knowledge databases can be seen as knowledge graphs, where facts
can be seen as triples: head, label and tail. This information is usually
stored using semantic web tools, like RDF and can be queried through some
languages like SPARQL.

What are Embeddings?

Embeddings are a way to represent all the relationships that exists on graphs,
and they are commonly represented as multidimensional arrays.
Those are useful to perform some machine learning tasks such as look for
similar entities. With some embeddings models you can also do some simple
algebraic operations with those arrays like adding them or substract and predict
new entities.

What is this server?

This server provides a vertical solution on the machine learning area,
going from the creation of datasets wich represents those knowledge graphs,
to methods to perform queries such as look for similar entities given another.
In the middle, the server provides training and indexing models that allows
the query operations shown above.

What is included here?

The vertical solution depicted above is available as a Python library, so
you can do a python3 setup.py install and that’s all. But you can also deploy a
web service using docker that is able to do almost every of those operations
through a HTTP client. You can take a look to the documentation and discover all the
things you can do on the Table of contents.

Installation/Execution

You can use the Python library as is, or you can start a server, and use all
the endpoints available.

Library installation

This repository provides a setuptools setup.py file to install the library
on your system. It is pretty easy. Simply make sudo python3 setup.py install and
it will install the library. Maybe some extra dependencies are required to run
into your system, if so, you can execute this to get them all installed:

conda install scikit-learn scipy cython

And if you are using normal python3:

pip3 install numpy scipy pandas sympy nose scikit-learn

But the recommended way to getthe REST service working is to execute into the
docker environment. You only need to have installed docker` and `docker-compose
in your system.

Service execution

To run the service, go to images folder, execute docker-compose up and you
will have a server on the port localhost:6789 ready to listen HTTP requests.

cd images/
docker-compose up -d
curl http://localhost:6789/datasets

After this you will have an HTTP REST server listening to the API. but if you
want to run the python library alone, you can connect to any of the docker
containers created:

docker exec -it images_web_1 /bin/bash

If you are experiencing troubles when executing the docker image, check your
user UID and change the user UID in all Dockerfiles` inside `images/ folder.
Then rebuild the images with: docker-compose build --no-cache

See more instructions about deployment at the Server deployment section.

Supported environment

The whole project has been built using Python 3.5 distributed by Anaconda,
inside a docker image. If you want to run the development environment, just
use this image recognai/jupyter-scipy-kge.

Indices and tables

Table of contents

	Modules
	Dataset module

	Algorithm module

	Server module

	REST Service
	Endpoints

	Service Architecture
	Server deployment

	Index

	Module Index

	Search Page

Modules

	Dataset module
	Introduction
	Binary Dataset

	Dataset Class
	Methods

	WikidataDataset
	Methods

	ESDBpediaDataset
	Methods

	Algorithm module
	Methods

	Experiment class
	Methods

	Server module
	Server class

	SearchIndex Class

Dataset module

Introduction

The dataset class is used to create a valid object with the main idea
to be used within the Experiment class. This approach allow us to
create easily different models to be trained, leaving the complexity
to the class itself.

You have different types of datasets. The main class of datasets is
kgeserver.dataset.Dataset, but this will allow to create basic datasets from
a csv or JSON file, without any restriction of triples or relations that may not
be useful for the dataset and makes the binary file very big.

You have several Datasets that work with some of the most well known and free
knowledge graphs on Internet. Those are:

	WikidataDataset:
This class can manage all queries from the Wikidata portal,
including wikidata id’s prepended with Q, like in Q1492.
It is fully ready to perform any you need with really good results.

	ESDBpediaDataset:
This class is not as well ready as Wikidata, but is able to perform
SPARQL Queries to get entities and relations on the Spanish DBpedia.

The most interesting feature that those Dataset class provides is to build a
local dataset with making multiple parallel queries to the SPARQL endpoints
to retrieve all information about a given topic. You can start by getting
a seed_vector of the entities you want to focus on and then build a
n levels graph by quering each entity to its relations with other new entities.

The seed vector can be obtained through the load_from_graph_pattern method.
After that, you should save it on a variable and pass it as an argument to
the load_dataset_recurrently method. This is the function that will make
several queries to fill the dataset with the desried levels of depth.

To save the dataset into a binary format, you should use the save_to_binary
method. This will allow to open the dataset later without executing any query.

Binary Dataset

The binary file of datasets are created using Pickle. It basicaly
stores all the entities, all the relations and all the triples. It also
stores some extra information to be able to rebuild the dataset later. The
binary file is stored like a python dictionary which contains the following
keys: __class__, relations, test_subs, valid_subs, train_subs
and entities.

The relations and entities entries are lists, and it’s length indicates
us the number of relations or entities the dataset has. The __class__ entry
is for internal use of the class kgeserver.dataset. The triples are stored
in three different entries, called test_subs, valid_subs and
train_subs. Those subsets are created to be used for the next module, the
algorithm module, wich will evaluate the dataset. This is a common practice
when machine learning algorithms are used. If you need all the triples, they can
be joined easily in python by adding the three lists between them:

triples = dataset["test_subs"] + dataset["valid_subs"] + dataset["train_subs"]

The split ratio commonly used is to use the 80% of the triples to train and the
rest of triples are divided equally between test and valid triples. You can
create a different split providing a value to dataset.train_split.
It also exists an dataset.improved_split method wich takes a bit longer to create,
but it is better to test the dataset.

Dataset Class

This class is used to create basic datasets. They can be filled with csv
files, JSON files or even simple sparql queries.

Methods

Here is shown all the different methods to use with dataset class

WikidataDataset

This class will enable you to generate a dataset from the information present in
Wikidata Knowledge base. This class only needs to get a simple graph pattern to
get started to build a dataset. An example of graph pattern that should be passed
to WikidataDataset.load_from_graph_pattern method:

"{ ?subject wdt:P950 ?bne . ?subject ?predicate ?object }"

It is required to bind at least three variables, because they will be used in
the next queries. Those variables should be called “?subject”,
“?predicate” and “?object”.

Methods

ESDBpediaDataset

In a similar way that it occurs with WikidataDataset, this class will allow
to you to create datasets from the spanish DBpedia. The graph pattern you
should pass to ESDBpediaDataset.load_from_graph_pattern method looks like this:

{ ?subject dcterms:subject <http://es.dbpedia.org/resource/Categoría:Trenes_de_alta_velocidad> . ?subject ?predicate ?object" }

As for WikidataDataset, you need to bind the same three variables: “?subject”,
“?predicate” and “?object”.

Methods

Algorithm module

This module contains several Class. The main purpose of the module is to
provide a clear training interface. It will train several models with
several distinct configs and choose the best one. After this, it will
create a ModelTrainer class ready to train the entire model.

Methods

Here is shown all the different methods to use with dataset class

Experiment class

This class is a modified version of the file which can be found on
https://github.com/mnick/holographic-embeddings/tree/master/kg/base.py,
and was created by Maximilian Nickel mnick@mit.edu.

Methods

Here is shown all the different methods to use with experiment class

Server module

The server class is used to predict triples or statements, or find similar
entities on the model.

Server class

Here is shown all the different methods to use with Server class

SearchIndex Class

This class is used to provide an extra layer to the server. Can perform loads
and savings to disk of the index.

Here is shown all the different methods to use with SearchIndex class

REST Service

El servicio REST está compuesto principalmente de un recurso dataset con
distintas operaciones

Endpoints

Aquí se detallarán todos los endpoints del servicio. El valor de la prioridad
que se muestra indica la importancia que se le va a dar a la implementación
de ese servicio. Cuanto menor sea, más importancia se le dará.

Datasets management

The /dataset collection contains several methods to create, add triples to
the dataset, train and generate search indexes.

It also contains these main params

{"entities", "relations", "triples", "status", "algorithm"}

The algorithm parameter contains all the information the dataset are trained with.
See /algorithm collection to get more information about this.

Dataset will be changing its status when actions such training or indexing
are performed. The status can only grow up. When a changing status is taking
place, the dataset cannot be edited. In this situations, the status will be
a negative integer.

status: untrained -> trained -> indexed

	
GET /datasets/(int: dataset_id)/

	Get all the information about a dataset, given a dataset_id

Sample request and response

GET /datasets/1/

{
 "dataset": {
 "relations": 655,
 "triples": 3307248,
 "algorithm": {
 "id": 2,
 "embedding_size": 100,
 "max_epochs": null,
 "margin": 2
 },
 "entities": 651759,
 "status": 2,
 "name": null,
 "id": 4
 }
}

	Parameters

	
	dataset_id (int) – Unique dataset_id

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Returns all information about a dataset.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset can’t be found.

	
POST /datasets/(int: dataset_id)/train?algorithm=(int: id_algorithm)

	Train a dataset with a given algorithm id. The training process can be
quite large, so this REST method uses a asynchronous model to perform
each request.

The response of this method will only be a 202 ACCEPTED status code, with
the Location: header filled with the task path element. See /tasks
collection to get more information about how tasks are managed on the
service.

The dataset must be in a ‘untrained’ (0) state to get this operation done.
Also, no operation such as add_triples must be being processed.
Otherwise, a 409 CONFLICT status code will be obtained.

	Parameters

	
	dataset_id (int) – Unique dataset_id

	Query Parameters

	
	id_algorithm (int) – The wanted algorithm to train the dataset

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – The requests has been accepted to the system and a task has
been created. See Location header to get more information.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset or the algorithm can’t be found.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset cannot be trained due to its status.

	
GET /datasets/

	Gets all datasets available on the system.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – All the datasets are shown correctly

	
POST /datasets?dataset_type=(int: dataset_type)

	Creates a new and empty dataset. To fill in you must use other requests.

You also must provide dataset_type query param. This method will create
a WikidataDataset (id: 1) by default, but you also can create different
datasets providing a different dataset_type.

Inside the body of the request you can provide a name and/or a description
for the dataset. The name must be unique. For example:

Sample request

POST /datasets

{"name": "films", "description": "A dataset with favourite films"}

Sample response

The location: header of the response will contain the relative URI for the
created dataset. Additionally, the body of the response will contain a
dataset object with only id argument filled in:

location: /datasets/32

{
 "dataset": {
 "id": 32
 }
}

	Query Parameters

	
	dataset_type (int) – The dataset type to be created. 0 is for a simple
Dataset and 1 is for WikidataDataset (default).

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – A new dataset has been created successfuly. See Location:
header to get the id and the new resource path.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The given name already exists on the server.

	
PUT /datasets/(int: dataset_id)

	Edits the description from a existing dataset.

Sample request

PUT /datasets

{"description": "A dataset with most awarded films"}

	Parameters

	
	dataset_id (int) – Unique dataset_id

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The dataset has been updated successfully. The updated
dataset will be returned in the response.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The provided dataset_id does not exist.

	
POST /datasets/(int: dataset_id)/triples

	Adds a triple or a list of triples to the dataset. You must provide a JSON
object on the request body, as shown below on the example. The name of the
JSON object must be triples and must contain a list of all entities to be
introduced inside the dataset. These entities must contain
{"subject", "predicate", "object"} params. This notation is similar to other
known as head, label and tail.

Only triples can be added on a untrained (0) dataset.

Ejemplo

POST /datasets/6/triples

{"triples": [
 {
 "subject": {"value": "Q1492"},
 "predicate": {"value": "P17"},
 "object": {"value": "Q29"}
 },
 {
 "subject": {"value": "Q2807"},
 "predicate": {"value": "P17"},
 "object": {"value": "Q29"}
 }
]
}

	Parameters

	
	dataset_id (int) – Unique dataset_id

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The request has been successful

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset or the algorithm can’t be found.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset cannot be trained due to its status.

	
POST /datasets/(int: dataset_id)/generate_triples

	Adds triples to dataset doing a sequence of SPARQL queries by levels,
starting with a seed vector. This operation is supported only by
certain types of datasets (the default one, type=1)

The request will use asyncronous operations. This means that the request
will not be satisfied on the same HTTP connection. Instead, the service
will return a /task resource that will be queried with the progress
of the task.

The graph_pattern argument must be the where part of a SPARQL query. It
must contain three variables named as ?subject, ?predicate
and ?object. The service will try to make a query with these names.

You also must provide the levels to make a deep lookup of the entities
retrieved from previous queries.

The optional param batch_size is used
on the first lookup for SPARQL query. For big queries you must tweak this
parameter to avoid server errors as well as to increase performance. It is
the LIMIT statement when doing this queries.

Sample request

{
 "generate_triples":
 {
 "graph_pattern": "SPARQL Query",
 "levels": 2,
 "batch_size": 30000
 }
}

Sample response

The location: header of the response will contain the relative URI for the
created task resouce. Additionally, it is possible to get the task id from
the response in json format.

location: /tasks/32

{
 "message": "Task 32 created successfuly",
 "status": 202,
 "task": {
 "id": 32
 }
}

	Parameters

	
	dataset_id (int) – Unique identifier of dataset

	Status Codes

	
	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The provided dataset_id does not exist.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset_id does not allow this operation

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – A new task has been created. See /tasks resource
to get more information.

	
POST /datasets/(int: dataset_id)/embeddings

	Retrieve from the trained dataset the embeddings from a list of entities.

If on the request list the user requests for a entity that does not exist,
the response won’t contain that element. The 404 error is limited to the
dataset, not the entities inside the dataset.

The dataset must be in trained status (>= 1), because a model must exist to
extract triples from. If not, a 409 CONFLICT will be returned.

This could be useful if it is used with /similar_entities endpoint, to find
similar entities given a different embedding vector.

Sample request

POST /datasets/6/embeddings

{"entities": [
 "http://www.wikidata.org/entity/Q1492",
 "http://www.wikidata.org/entity/Q2807",
 "http://www.wikidata.org/entity/Q1"]
}

Sample response

{ "embeddings": [
 [
 "Q1",
 [0.321, -0.178, 0.195, 0.816]
],
 [
 "Q2807",
 [-0.192, 0.172, -0.124, 0.138]
],
 [
 "Q1492",
 [0.238, -0.941, 0.116, -0.518]
]
]
}

Note: The upper vectors are only shown as illustrative, they are not real values

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Operation was successful

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset ID does not exist

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset is not on a correct status

	
POST /datasets/(int: dataset_id)/generate_index?n_trees=(int: n_trees)

	Generates an Spotify Annoy index to use dataset services. The execution
of this action is needed to use triples-prediction_ services.

See more info on Server module.

Sample request

POST /datasets/1/generate_index

Sample response

{
 "status": 202,
 "message": "Task 4 created successfuly"
}

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	n_trees (int) – Number of trees to generate with Annoy

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – The request has been accepted in the system and a task has
been created. See Location header to get more information.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset can’t be found.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset cannot be trained due to it’s status.

	
POST /datasets/(int: dataset_id)/generate_autocomplete_index

	Creates a task to build an autocomplete index

The task will perform a request to SPARQL endpoint for each entity. This
will extract the labels, description and altLabels and store it on an
Elasticsearch database.

It is also possible give the languages desired to build the autocomplete
index, allowing not only having english language, but others available on
the endpoint. You must specify in the body a param named langs with a list
with all language codes in ISO 639-1 format.

Sample request

POST /datasets/6/generate_autocomplete_index

{
 "langs" : [
 "en", "es"
]
}

Sample response

{
 "status": 202,
 "message": "Task 73 created successfuly"
}

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – The request has been accepted in the system and a task has
been created. See Location header to get more information.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset can’t be found.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The dataset cannot be trained due to it’s status.

Algorithms

The algorithm collection is used mainly to create and see the different algorithms
created on the server.

The hyperparameters that are allowed currently to tweak are:
- embedding_size: The size of the embeddigs the trainer will use
- margin: The margin used on the trainer
- max_epochs: The maximum number of iterations of the algorithm

	
GET /algorithms/

	Gets a list with all the algorithms created on the service.

	
GET /algorithms/(int: algorithm_id)

	Gets only one algorithm

	Parameters

	
	algorithm_id (int) – The algorithm unique identifier

	
POST /algorithms/

	Create one algorithm on the service. On success, this method will return
a 201 CREATED status code and the header parameter Location: filled with
the relative path to the created resource.

The body of the request must contain all parameters for the new algorithm.
See the example below:

Sample request

POST /algorithms

{
 "algorithm": {
 "embedding_size": 50,
 "margin": 2,
 "max_epochs": 80
 }
}

Sample successfull response
The response when creating a new algorithm gives the location header filled
with the URI of the new resource. It also returns the HTTP 202 status code,
and the body has information about the request in json format.

location: /algorithm/2

{
 "status": 202,
 "algorithm": {
 "id": 2
 },
 "message": "Algorithm 2 created successfuly"
}

	Status Codes

	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – The request has been processed successfuly and a new
resource has been created. See Location: header
to get the new path.

Tasks

The task collection stores all the information that async request need. This
collection are made mainly to get the actual state of tasks, but no to edit or
delete tasks (Not implemented).

	
GET /tasks/(int: task_id)?get_debug_info=(boolean: get_debug_info)&?no_redirect=(boolean: no_redirect)

	Shows the progress of a task with a task_id. The finished tasks can be
deleted from the system without previous advise.

Some tasks can inform to the user about its progress. It is done through
the progress param, which has current and total relative arguments, and
current_steps and total_steps absolute arguments. When a task involves
some steps and the number of small tasks to be done in next step cannot
be discovered, the current and total will only indicate progress in current
step, and will not include previous step, expected to be already done, or next
step which is expected to be empty.

The resource has two optional parameters: get_debug_info and no_redirect.
The first one, get_debug_info set to true on the query params will return
additional information from the task. The other param, no_redirect will
avoid send a 303 status to the client to redirect to the created resource.
Instead it will send a simple 200 status code, but with the location header
filled.

	Parameters

	
	task_id (int) – Unique task_id from the task.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Shows the status from the current task.

	303 See Other [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4] – The task has finished. See Location header to find the
resource it has created/modified. With no_redirect query
param set to true, the location header will be filled, but
a 200 code will be returned instead.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The given task_id does not exist.

Triples prediction

	
GET /datasets/(int: dataset_id)/similar_entities/(string: entity)?limit=(int: limit)?search_k=(int: search_k)

	

	
POST /datasets/(int: dataset_id)/similar_entities?limit=(int: limit)?search_k=(int: search_k)

	Get the limit entities most similar to a entity inside a dataset_id.
The given number in limit excludes the entity given itself.

The POST method allows any representation of the wanted resource. See the
example below. You can provide an entity as an URI or other similar
representation, even an embedding. The type param inside entity JSON object
must be “uri” for a URI or similar representation and “embedding” for an
embedding.

The search_k param is used to tweak the results of the search. When this
value is greater, the precission of the results are also greater, but the
time it takes to find the response is also bigger.

Sample request

GET /datasets/7/similar_entities?limit=1&search_k=10000

{ "entity":
 {"value": "http://www.wikidata.org/entity/Q1492", "type": "uri"}
}

Sample response

{ "similar_entities":
 { "response":
 [
 {"distance": 0, "entity": "http://www.wikidata.org/entity/Q1492"},
 {"distance": 0.8224636912345886, "entity": "http://www.wikidata.org/entity/Q15090"}
],
 "entity": "http://www.wikidata.org/entity/Q1492",
 "limit": 2
 },
 "dataset": {
 "entities": 664444,
 "relations": 647,
 "id": 1,
 "status": 2,
 "triples": 3261785,
 "algorithm": 100
 }
}

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	Query Parameters

	
	limit (int) – Limit of similar entities requested. By default this is
set to 10.

	search_k (int) – Max number of trees where the lookup is performed.
This increase the result quality, but reduces the
performance of the request. By default is set to -1

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The request has been performed successfully

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset or the entity can’t be found

	
POST /datasets/(int: dataset_id)/distance

	Returns the distance between two elements. The lower the number is,
most probable to be both the same triple. The minimum distance is 0.

Request Example

POST /datasets/0/similar_entities

{
 "distance": [
 "http://www.wikidata.org/entity/Q1492",
 "http://www.wikidata.org/entity/Q5682"
]
}

HTTP Response

{
 "distance": 1.460597038269043
}

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The request has been performed successfully

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset or the entity can’t be found

	
POST /datasets/(int: dataset_id)/suggest_name

	Gives a list of autocomplete suggestions. For each entity, this will show
labels on every language available, descriptions and altLabels.

If any suggestion is available, this will return an empty list.

Request Example

POST /datasets/7/suggest_name

{
 "input": "human"
}

HTTP Response

[
 {
 "text": "humano",
 "entity": {
 "alt_label": {
 "es": [
 "humano",
 "Homo sapiens sapiens",
 "persona",
],
 "en": [
 "people",
 "person",
 "human being"
]
 },
 "label": {
 "en": "human",
 "es": "ser humano",
 },
 "entity": "Q5",
 "description": {
 "en": "common name of Homo sapiens (Q15978631), unique extant species of the genus Homo",
 "es": "especie animal perteneciente a la familia Hominidae, única superviviente del género Homo",
 }
 }
 }
]

	Parameters

	
	dataset_id (int) – Unique id of the dataset

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The request has been performed successfully

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The dataset or the entity can’t be found

Service Architecture

The service has an architecture based in docker containers. Currently it uses
three different containers:

	Web container: This container exposes the only open port of all system.
Provides a gunicorn web server that accepts HTTP requests to the REST API
and responds to them.

	Celery Container: This container is running on the background waiting for
a task on its queue. It contains all library code and celery.

	Redis container: The redis key-value storage is a dependency from Celery.
It also stores all the progress of the tasks running on Celery queue.

Server deployment

The old version of this repository didn’t had any Dockerfile or image available
to run the code. This has changed, and two containers has been created to hold
both web server and asyncronous task daemon (celery).

Also, a simple container orchestation with docker-compose has been used. You can
see all the information inside images/ folder. It contains two Dockerfiles and
a docker-compose.yml that allows to build instantly the two images and connect
the containers. To run them you only have to clone the entire repository and
execute those commands:

cd images/
docker-compose build
docker-compose up

The previous method is still available if you can’t use docker-compose on your
machine

Images used

The previous image used on developement environment was recognai/jupyter-scipy-kge.
This image contains a lot of code that the library and rest service does not use.

Using continuumio/miniconda3 docker image as base, it is possible to install
only the required packages, minimizing the overall size of the container.

Both containers will launch a script on startup that will reinstall the kge-server
package on python path, to get latest developement version running, and then
will launch the service itself: gunicorn or celery worker.

Standalone containers to use in production are not still available.

Filesystem permissions

The images used creates a new user called kgeserver with 1001 as its UID and
owns to the users group. This is helpful for a user running in development
environment. But the docker-compose file mounts some folders from host machine
that can create some PermissionError exceptions. To avoid them, always use
write permissions for users group. You are also
free to modify the Dockerfile to solve the UID issues you could have
inside your system.

The docker-compose command will create inside both celery and web containers
a data volume which is mounted on the root of the github repository.

Ports

Currently, while development is taking place, the port which is being used is
6789, but you can change this easily on the docker_compose.yml file.

How to build documentation

This documentation page is built using sphinx framework, and is written in
reStructuredText. To build some documentation strings, it needs to have
some python libraries installed like numpy or scikit-learn. It
exists one image to build this docs automatically, just running a docker container

cd images/sphinx-doc
docker build -t sphinx-doc .
docker run --rm -v $PWD/../..:/home/kgeserver/kge-server sphinx-doc html

You may noticed the last argument called html. It is the argument that will
be passed to the make argument. In this case, calling to html will lead to a
new doc/build/html folder with all new generated docs.

 HTTP Routing Table

 /algorithms |
 /datasets |
 /datasets?dataset_type=(int:dataset_type) |
 /tasks

 		 	

 		
 /algorithms	

 	
 	
 GET /algorithms/	

 	
 	
 GET /algorithms/(int:algorithm_id)	

 	
 	
 POST /algorithms/	

 		 	

 		
 /datasets	

 	
 	
 GET /datasets/	

 	
 	
 GET /datasets/(int:dataset_id)/	

 	
 	
 GET /datasets/(int:dataset_id)/similar_entities/(string:entity)?limit=(int:limit)?search_k=(int:search_k)	

 	
 	
 POST /datasets/(int:dataset_id)/distance	

 	
 	
 POST /datasets/(int:dataset_id)/embeddings	

 	
 	
 POST /datasets/(int:dataset_id)/generate_autocomplete_index	

 	
 	
 POST /datasets/(int:dataset_id)/generate_index?n_trees=(int:n_trees)	

 	
 	
 POST /datasets/(int:dataset_id)/generate_triples	

 	
 	
 POST /datasets/(int:dataset_id)/similar_entities?limit=(int:limit)?search_k=(int:search_k)	

 	
 	
 POST /datasets/(int:dataset_id)/suggest_name	

 	
 	
 POST /datasets/(int:dataset_id)/train?algorithm=(int:id_algorithm)	

 	
 	
 POST /datasets/(int:dataset_id)/triples	

 	
 	
 PUT /datasets/(int:dataset_id)	

 		 	

 		
 /datasets?dataset_type=(int:dataset_type)	

 	
 	
 POST /datasets?dataset_type=(int:dataset_type)	

 		 	

 		
 /tasks	

 	
 	

 Index

Index

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Knowledge Graph Embedding Server’s documentation

 		
 Modules

 		
 Dataset module

 		
 Introduction

 		
 Dataset Class

 		
 WikidataDataset

 		
 ESDBpediaDataset

 		
 Algorithm module

 		
 Methods

 		
 Experiment class

 		
 Server module

 		
 Server class

 		
 SearchIndex Class

 		
 REST Service

 		
 Endpoints

 		
 Datasets management

 		
 Algorithms

 		
 Tasks

 		
 Triples prediction

 		
 Service Architecture

 		
 Server deployment

 		
 Images used

 		
 Filesystem permissions

 		
 Ports

 		
 How to build documentation

