keybase Documentation
Release

Author

January 24, 2015

Contents

Installation 3
Examples 5
2.1 GetaUser’sCredentials e 5
2.2 Verifying a Signature on String Data. oL 5
2.3 Verifying an Embedded SignatureonaFile oo oo, 6
2.4 Verify an Detached SignatureonaFile 7
2.5 Encrypting a Message foraKeybase User o .. 7
2.6 Encrypting a File fora Keybase User 7
The Keybase API 9
3.1 Keybase Common Methods e 9
3.2 The Keybase Class — Accessing Public UserData 9
3.3 The KeybasePublicKey Class — Public Key Records from the Keybase.io Data Store 11
34 The KeybaseAdmin Class — Manipulating User’s Public KeyData 15
3.5 TheKeybase Error Classes o o v i i v i i e e e e e e e e e e e e 15

Indices and tables 17

keybase Documentation, Release

What is Keybase? From their website:

Note: Keybase will be a public directory of publicly auditable public keys. All paired, for convenience, with unique
usernames.

It provides an easy way to publish public keys, have them validated against known good sources for users like Twitter,
email addresses and even web sites, and make all of this stuff discoverable. It’s trying to take away the mystery of
handing keys around so that cryptography can be more widely used by the masses.

The keybase python API allows you to search, download and use the stored keys in the Keybase directory. You
can do things like encrypt messages and files for a user or verify a signature on a file from a user. Eventually it will
be extended to allow you to administer Keybase user identities and their associated public/private keypairs via the
KeybaseAdmin class.

If you’re not familiar with public/private key encryption check out this tutorial or Laurent Luce’s excellent article
Python and cryptography with pycrypto.

Contents 1

https://keybase.io/
http://computer.howstuffworks.com/encryption3.htm
http://www.laurentluce.com/posts/python-and-cryptography-with-pycrypto/

keybase Documentation, Release

2 Contents

CHAPTER 1

Installation

Simply run:

pip install keybase-api

keybase Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Examples

2.1 Get a User’s Credentials

You can retrieve a specific user’s credentials from the Keybase data store like so:

kbase = Keybase(’irc’)

primary_key = kbase.get_public_key ()

primary_key.kid
u’0101f56ecf27564e5beclc50250d09%9efe963cad3138d4dc7£4646¢c77£6008cle23cf0a’

You can use the ascii or bundle properties on the primary_key object in the above example to get an ASCII
version of their primary public key, suitable for feeding in to a signature verification or encryption routine. You can
also use the primary_key object itself to do verification and encryption.

2.2 Verifying a Signature on String Data

Where the strings are clear-signed text strings that are produced using a gpg command like so:

gpg —-clearsign helloworld.txt —--local-user keybase.io/irc

These clear-signed text snippets are common in signed email. Where the body of the email is surrounded by the
signature like so:

Hash: SHA1
Hello, world!
Version: GnuPG vl

1QECBAEBAGAGBQJIJTWHSVAAOJEO7zMmcMHMCAYpEH/ j2hJApaHXS j0ddgbrmUdJ2z
vZ5DFDRIsyTPHrwt RILPH7tgdiAtUpyXLozL321JIR7sExzON17IKdpH1QnOy1I/
homVODm+AAJXWtbn08rDW2WWuW4+EBEY12Cfk2r1rF8KT+g3gcc2wle JSACKE7v+
jKo5SnvIwIMze+Msqgjcz/+hbKRAEEoD2z1ihe61i1MfbR1tCt 8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rC1W0dzW5kJIG+InbymtenaDNwoN1Fb6DHUdyF/ /REx
YJjJ6gqHETgFwtXPBiwrZf+VYt50njeWWoybYasfrJiXilgqnd6IM40QCG1ROUXhII=
=oUn0

These types of clear-signed strings can be verified like so:

keybase Documentation, Release

message_good = """
————— BEGIN PGP SIGNED MESSAGE—-———--
Hash: SHAL

Hello, world!
***** BEGIN PGP SIGNATURE————-—
Version: GnuPG vl

1QECBAEBAGAGBQJITWHSVAAOJEO7zMmcMHMCAYPEH/ j2hJApalXS j0ddgbrmUdJ2z
vZ5DFDRIsyTPHrwtRILPH7tgdiAtUpyXLozL321JIR7sExzON17IKdpH1QnOy1I/
homVODm+AAIXWtbn08rDW2WWuW4+EBEYy12Cfk2r1rF8KT+g3gcc2wlLe JSACKETv+
jKo5SnvIwIMze+Msqgjcz/+hbKRAEEoD2zihe611MfbR1tCt 8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rC1W0dzW5kJG+InbymtenaDNwoN1Fb6DHUdyYF //REx
YJJ6qHETqFwtXPBiwrZ f+VYt 50n jeWW6ybYasfrdiXilqnd6IM40QCGIROUXhII=
=oUn0

message_bad = """
Hash: SHAl

Hello, another world!
Version: GnuPG vl

1QECBAEBAGAGBQJITWHSVARAOJEO7 zMmcMHMCAYpEH/ j2hJApaHXS j0ddgbrmUdJ2z
vZ5DFDR9syTPHrwt RILPH7tgdiAtUpyXLozL321JIR7sExzON17IKdpH1QnOy1I/
h6mVODmM+AAJXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wlLe JSACKETv+
JKo5SnvIwIMze+Msgjcz/+hbKRAEEoD2zihe611MfbR1tCt8GALQVa8YEoHpgkcL
MWbXSCgM7Q0gf00kHWa3A8rC1W0dzW5kJG+InbymtenaDNwoN1Fb6DHUAyF //RExX
YJJ6qHETQFwt XPBiwrZf+VYt50njeW6ybYasfrJiXilgnd6IM4A0QCG1IROUXhII=
=oUn0

nmwn

kbase = Keybase (’irc’)

verified = kbase.verify (message_good)
assert verified

verified = kbase.verify (message_bad)

assert not verified

kbase.verify (message_bad, throw_error=True)
Traceback (most recent call last):

KeybasePublicKeyVerifyError: signature bad

In the message_bad case you can see that either the message was tampered with or the signature was faked. In

either case you shouldn’t trust it because it couldn’t be verified correctly.

2.3 Verifying an Embedded Signature on a File

Where the file was signed with a gpg command like so:

gpg -u keybase.io/irc —--sign helloworld.txt

So there is one, binary, file helloworld.txt .gpg that contains both the data and the signature on the data to

verify:

Chapter 2. Examples

keybase Documentation, Release

kbase = Keybase (’irc’)
verified = kbase.verify_ file(’helloworld.txt.gpg’)
assert verified

2.4 Verify an Detached Signature on a File

Where the file was signed with a gpg command like so:

gpg -u keybase.io/irc —--detach-sign helloworld.txt

So there are two files:

1. The original data file; and

2. The detached . sig file that contains the signature for the data.
In this case:

kbase = Keybase (’irc’)

fname = "helloworld.txt’

signame = ’"helloworld.txt.sig’

verified = kbase.verify_ file(fname, signame)
assert verified

2.5 Encrypting a Message for a Keybase User

Given some st r formatted data, you can create an ASCII armored, encrypted st r representation of that data suitable
for sending to the user. Only someone with the private key, presumably this Keybase user, will be able to decrypt this
data:

kbase = Keybase (’irc’)

instring = 'Hello, world!’
encrypted = kbase.encrypt (instring)
assert encrypted

assert not encrypted.isspace ()
assert encrypted != instring

This ASCII armored approach to encrypting is useful for embedding secret messages in to standard, plaintext commu-
nications like emails, tweets or text messages.

2.6 Encrypting a File for a Keybase User

You can create a binary, encrypted file for a user using their Keybase key. Only the user, with their private key, will be
able to decrypt the data. The input file contents does not have to be ASCII in this case:

kbase = Keybase (’irc’)
with open(’inputfile.bin’, ’'rb’) as infile:
with open(’/inputfile.bin.gpg’, ’'wb’) as outfile:
data = infile.read()
encrypted_data = kbase.encrypt (data, armor=False)
outfile.write (encrypted_data.data)
assert os.path.isfile(’inputfile.bin.gpg’)

2.4. Verify an Detached Signature on a File 7

keybase Documentation, Release

The user can now decrypt inputfile.bin.gpg with:

gpg —-decrypt inputfile.bin.gpg

They will be prompted for the private key’s password.

8 Chapter 2. Examples

CHAPTER 3

The Keybase API

3.1 Keybase Common Methods

The following common, convenience methods exist to make it easier to work with GnuPG and the Keybase API in
your code.

keybase.gpg (binary=None)
Returns the full path to the gpg instance on this machine. It prefers gpg2 but will search for gpg if it cannot

find gpg2.

>>> len(gpg()) > 0

True

>>> len(gpg(’gpg’)) > 0
True

I implemented this because the gnupg.GPG class was having a hard time dealing with the fact that my
Homebrew-installed GPG instance was a symlink in the /usr/local/bin directory instead of a real path to
areal file.

If you want to use a binary with a specific name, supply the binary=bName option when you call gpg () and
it will use your custom binary name instead.

On windows you shouldn’t need to supply an extension to the command like . exe or . cmd — it will figure it
out for you.

Returns None if it cannot find a gpg2 or gpg instance in your PATH:

>>> gpg (' notagpgbinary’)

3.2 The Keybase Class — Accessing Public User Data

The Keybase class allows you to find users in the Keybase directory and access their stored public keys. Public keys
let you encrypt messages and files for a user; only the person holding the private key from the pair can decrypt a file
encrypted with the public key. Public keys also let you verify the signature on data; only the user with the private key
can create a signature that can be validated with the specific public key.

class keybase .Keybase (username)
A read-only view of a keybase.io user and their publically available keys. This class allows you to do interesting
things with someone’s public key data like encrypt a message for them or verify that a message they signed to
you was actually signed by them.

The public information is automatically retrieved when you build a new instance of the class.

keybase Documentation, Release

>>> kbase = Keybase(’irc’)

>>> kbase.username

"irc’

If the user cannot be found a keybase .KeybaseUserNotFound exception is raised:

>>> kbase = Keybase (’abcdefghijklmnol23notauserhahaha’)
Traceback (most recent call last):

KeybaseUserNotFound: User abcdefghijklmnol23notauserhahaha not found

Note: It does not allow you to manipulate the key data in the keybase.io data store in any way.

encrypt (data, **kwargs)
Equivalent to:

kbase = Keybase (’irc’)

pkey = kbase.get_public_key ()

verified = pkey.encrypt (data, =**kwargs)
assert verified

It’s a convenience method on the Keybase object to do data verification with the primary key.
For more information see keybase .KeybasePublicKey.encrypt.

get_public_key (keyname=’"primary’)
Returns a key named keyname as a keybase.KeybasePublicKey object if it exists in the current
Keybase instance. Defaults to a key named primary if you opt not to supply a keyname when you call
the method.

>>> kbase = Keybase(’irc’)

>>> primary_key = kbase.get_public_key ()

>>> primary_key.kid
u’0101£f56ecf27564e5beclc50250d09efe963cad3138d4dc7£4646c77£6008cle23cf0a’

Otherwise it returns None if a key by the name of keyname doesn’t exist for this user.

>>> kbase.get_public_key (' thiskeydoesnotexist’)

location
The geographical location of the person associated with this Keybase data.

>>> k = Keybase('irc’)
>>> k.location
u’Bay Area, California’

name
The full name of the person associated with this Keybase data.

>>> k = Keybase(’irc’)
>>> k.name
u’ Ian Chesal’

public_keys
A tuple of all the public keys available for this account. An empty tuple is returned if the instance isn’t
bound to a user or the user has no keys.

>>> kbase = Keybase(’'irc’)
>>> kbase.public_keys
(u” families’, u’primary’, u’sibkeys’, u’subkeys’)

10

Chapter 3. The Keybase API

keybase Documentation, Release

username
The username of the person associated with this Keybase data.

>>> k = Keybase(’irc’)
>>> k.username
rirc’

verify (data, throw_error=False)
Equivalent to:

kbase = Keybase(’irc’)

pkey = kbase.get_public_key ()
verified = pkey.verify (some_message)
assert verified

It’s a convenience method on the Keybase object to do data verification with the primary key.
For more information see keybase .KeybasePublicKey.verify.

verify file (fname, sigfname=None, throw_error="False)
Equivalent to:

kbase = Keybase (’irc’)

pkey = kbase.get_public_key ()

verified = pkey.verify_ file(fname, signame)
assert verified

It’s a convenience method on the Keybase object to do data verification with the primary key.

For more information see keybase .KeybasePublicKey.verify_ file.

3.3 The KeybasePublicKey Class — Public Key Records from the
Keybase.io Data Store

class keybase .KeybasePublicKey (**kwargs)
A class that represents the public key side of a public/private key pair.

It is tied very closely to the keybase.io data that’s stored for public keys in user profiles in the data store. As
such, it’s meant to be initialized with a hash that contains the fields seen in a keybase.io public key record.

Under the hood it uses GnupGP’s gnupg . GPG class to do the heavy lifting. It creates a keystore that is unique
to this instance of the class and loads the public key in to this keystore.

You won’t be able to decrypt with this class because it only contains a public key, not a private key. But you can
encrypt and and sign:

>>> kbase = Keybase(’'irc’)

>>> pkey = kbase.get_public_key ()

>>> pkey.key_fingerprint

u’ 7cc0ceb678c37fc27da3ced94f56b7a6£0a32a0b9”

If a valid GPG instance cannot be created when you initialize a KeybasePublicKey a KeybasePublicKeyError
will be raised.

ascii
Synonym for bundle property.
bundle

The GPG key bundle. This is the ASCII representation of the public key data associated with the Keybase
key.

3.3. The KeybasePublicKey Class — Public Key Records from the Keybase.io Data Store 11

keybase Documentation, Release

cipher_algos

Returns a tuple of available cypher algorithms that you can use with this key to encrypt data. The available
algorithms depend entirely on the GPG version installed on the machine though most, if not all GPG
versions, support AES256.

>>> kbase = Keybase(’irc’)

>>> pkey = kbase.get_public_key ()
>>> /AES256’ in pkey.cipher_algos
True

compress_algos

Returns a tuple of available compression algorithms that you can use with this key to compress encrypted
data. The available algorithms depend entirely on the GPG version installed on the machine though most,
if not all GPG versions, support ZIP.

>>> kbase = Keybase(’'irc’)

>>> pkey = kbase.get_public_key ()
>>> 7 7IP’ in pkey.compress_algos
True

ctime

The datetime this key was created in the keybase database.

digest_algos

Returns a tuple of available digest algorithms that you can use with this key to hash data. The available
algorithms depend entirely on the GPG version installed on the machine though most, if not all GPG
versions, support SHA512.

>>> kbase = Keybase(’irc’)

>>> pkey = kbase.get_public_key ()
>>> /SHA512’ in pkey.digest_algos
True

encrypt (data, armor=True, cipher_algo=None, digest_algo=None, compress_algo=None)

Encrypt the message contained in the string data for the owner of this KeybasePublicKey instance.
If armor=True the output is ASCII armored; otherwise the output will be a gnupg._parsers.Crypt object.
If encryption fails a KeybasePublicKeyEncryptError is raised.

If it succeeds data object is returned. Assuming armor=True the returned data is just plain old ASCII
textasa str ().

Note: The remaining options are supplied for maximum flexibility with GPG but you can, for the most
part, just ignore them and go with the defaults if you want the simpilest (but still secure) path to encrypting

data with this API.

If cipher_algo is supplied it should be the name of a cipher algorithm to use. The
default algorithm is AES256 and you can get a list of available algorithms from the
keybase.KeybasePublicKey.crypto_algos () parameter.

If digest_algo is supplied it should be the name of a digest algorithm to use.
The default is SHAS512 and you can get a list of available algorithms from the
keybase.KeybasePublicKey.digest_algos () parameter.

If compress_algo is supplied it should be the name of a compression algorithm to
use. The default is ZIP and you can get a list of available algorithms from the
keybase.KeybasePublicKey.compress_algos () parameter.

For more information on how encryption works please see the gnupg.encrypt manual page.

12

Chapter 3. The Keybase API

https://python-gnupg.readthedocs.org/en/latest/gnupg.html#gnupg._parsers.Crypt

keybase Documentation, Release

A simple example:

kbase = Keybase(’irc’)

pkey = kbase.get_public_key ()
instring = "Hello, world!’
encrypted = pkey.encrypt (instring)
assert encrypted

assert not encrypted.isspace ()
assert encrypted != instring

key_fingerprint

The GPG fingerprint for the key.
key_ type

The Keybase key type for this key (integer).
kid

The Keybase key ID for this key.

mtime
The datetime this key was last modified in the Keybase database.

ukbid
The UKB ID for the key.

verify (data, throw_error=False)
Verify the signature on the contents of the string data. Returns True if the signature was verified with the
key, False if it was not. If you supply throw_error=True to the call then it will throw a KeybasePub-
licKey VerifyError on verification failure with a status message that tells you more about why verification
failed.

Failure status messages are:
einvalid gpg key
esignature bad
esignature error
edecryption failed
*no public key
*key exp
*key rev

For more information what these messages mean please see the gnupg._parsers.Verify manual
page.

>>> message_good = """
77777 BEGIN PGP SIGNED MESSAGE—-———-—
Hash: SHAI

Hello, world!
***** BEGIN PGP SIGNATURE—-———-—
Version: GnuPG vl

iQECBAEBAGAGBQJITWHSVAAOJEOQT7 zMmcMHMCAYpEH/ j2hJApaHXS j0ddgbrmUdJ2z
vZ5DFDRIsyTPHrwt ROLPH7tgdiAtUpyXLozL321JIR7sExzON17IKdpH1Qn0y1T/
h6emVODm+AAITXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLe JSACkE7v+
jKo5SnvIwIMze+Msqgjcz/+hbKRAEEoD2z1ihe611MfbR1tCt8GALQVa8YEoHpgkeL
MWbXSCgM7Q0gf00kHWa3A8rC1W0dzW5kJG+InbymtenaDNwoN1Fb6DHUdyF / /RExX

3.3. The KeybasePublicKey Class — Public Key Records from the Keybase.io Data Store 13

keybase Documentation, Release

YJJ6gHE7TgFwtXPBiwrZf+VYt50njeWW6ybYasfrJiXilgnd6IM40QCG1ROUXhII=
=0oUn0

wnn

>>> message_bad = """
Hash: SHAIL
Hello, another world!
Version: GnuPG vl

1QECBAEBAgGAGBQJITWHSVAAOCJEO7 zMmcMHMCAYPpEH/ j2hJApaHXS j0ddgbrmUdJ2z
vZ5DFDR9syTPHrwt RILPH7t gdiAt UpyXLozL321JIR7sExzONL7IKdpH1QnOy1I/
h6mVODm+AAIXWtbn08rDW2WWuW4+EBEy12Cfk2r1rF8KT+g3gcc2wLe JSACkET7v+
jKo58nvIwIMze+Msqgjcz/+hbKRAEEoD2z1ihe611MfbR1tCt8GALQVa8YEoHpgkeL
MWbXSCgM7Q0gf00kHWa3A8rC1W0dzW5kJIG+InbymtenaDNwoN1Fb6DHUAYF //REx
YJjJ6qHf 7TgFwtXPBiwrZf+VYt50njeWWoybYasfrJiXilgnd6IM40QCGLROUXhII=
=oUn0

mnon
>>> kbase = Keybase(’irc’)
>>> pkey = kbase.get_public_key ()
>>> verified = pkey.verify (message_good)
>>> assert verified
>>> verified = pkey.verify (message_bad)
>>> assert not verified
>>> pkey.verify (message_bad, throw_error=True)
Traceback (most recent call last):

KeybasePublicKeyVerifyError: signature bad

If you want to verify the signature on a file (either embedded or detached) please see
keybase.KeybasePublicKey.verify_file () method.

verify_ file (fname, sigfname=None, throw_error="False)

Verify the signature on a file named fname. This is a string file name, not a file object. If only a fname
is provided the method assumes the signature is embedded in the file itself. An embedded signature is
usually produced like so:

gpg —u keybase.io/irc —--sign helloworld.txt

If a sigfname argument is prodived it’s assumed to be a path to signature file for a detached signature.
A detached signature is usually produced like so:

gpg —u keybase.io/irc —--detach-sign helloworld.txt

Returns True if the signature is verifiable with the key, False if it is not verifiable.

If you supply the throw_error=True option to the call then it will throw a KeybasePublicKey Verify-
Error on verification failure with a status message that tells you more about why the verification failed.

Failure status messages are:
einvalid gpg key
esignature bad
esignature error

edecryption failed

14

Chapter 3. The Keybase API

keybase Documentation, Release

*no public key
*key exp
*key rev

For more information what these messages mean please see the gnupg._parsers.Verify manual
page.
An embedded signature example:

kbase = Keybase (’irc’)

pkey = kbase.get_public_key ()

verified = pkey.verify_ file(’helloworld.txt.gpg’)
assert verified

A detached signature example:

kbase = Keybase(’irc’)

pkey = kbase.get_public_key ()

fname = "helloworld.txt’

signame = ’"helloworld.txt.sig’

verified = pkey.verify_ file(fname, signame)
assert verified

3.4 The KeybaseAdmin Class — Manipulating User’s Public Key Data

The KeybaseAdmin class lets you authenticate as a user to the Keybase.io public data store and manipulate the
stored public keys for the user. You can add and revoke keys, create new keys and validate other user’s keys.

Note: This class is currently not implemented! Anything you read here is planned, not real, at this point.

3.5 The Keybase Error Classes

class keybase .KeybaseError
General error class for Keybase errors.

class keybase .KeybaseUnboundInstanceError
Thrown when calling a Keybase object method that requires the object be bound to a real user in the keybase
store and the instance hasn’t had such a binding established yet.

class keybase .KeybaseUserNotFound
Thrown when calling Keybase.lookup(username) and the username cannot be located in the keybase.io public
key repository.

class keybase .KeybaseLookupInvalidError
Thrown when calling Keybase.lookup(username) on an instance that has already been bound to a valid user via
another lookup() call.

class keybase .KeybasePublicKeyError
Thrown when a KeybasePublicKey cannot be created successfully.

class keybase .KeybasePublicKeyVerifyError
Thrown when a KeybasePublicKey cannot verify the signature on a data object.

class keybase .KeybasePublicKeyEncryptError
Thrown when a KeybasePublicKey cannot perform encryption on some data object.

3.4. The KeybaseAdmin Class — Manipulating User’s Public Key Data 15

keybase Documentation, Release

16 Chapter 3. The Keybase API

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

17

keybase Documentation, Release

18 Chapter 4. Indices and tables

Index

A

ascii (keybase.KeybasePublicKey attribute), 11

B

bundle (keybase.KeybasePublicKey attribute), 11

C

cipher_algos (keybase.KeybasePublicKey attribute), 12

compress_algos (keybase.KeybasePublicKey attribute),
12

ctime (keybase.KeybasePublicKey attribute), 12

D

digest_algos (keybase.KeybasePublicKey attribute), 12

E

encrypt() (keybase.Keybase method), 10
encrypt() (keybase.KeybasePublicKey method), 12

G

get_public_key() (keybase.Keybase method), 10
gpg() (in module keybase), 9

K

key_fingerprint (keybase.KeybasePublicKey attribute), 13
key_type (keybase.KeybasePublicKey attribute), 13
Keybase (class in keybase), 9

KeybaseError (class in keybase), 15
KeybaseLookuplnvalidError (class in keybase), 15
KeybasePublicKey (class in keybase), 11
KeybasePublicKeyEncryptError (class in keybase), 15
KeybasePublicKeyError (class in keybase), 15
KeybasePublicKey VerifyError (class in keybase), 15
KeybaseUnboundInstanceError (class in keybase), 15
KeybaseUserNotFound (class in keybase), 15

kid (keybase.KeybasePublicKey attribute), 13

L

location (keybase.Keybase attribute), 10

M

mtime (keybase.KeybasePublicKey attribute), 13

N

name (keybase.Keybase attribute), 10

P

public_keys (keybase.Keybase attribute), 10

ukbid (keybase.KeybasePublicKey attribute), 13
username (keybase.Keybase attribute), 10

V

verify() (keybase.Keybase method), 11

verify() (keybase.KeybasePublicKey method), 13
verify_file() (keybase.Keybase method), 11
verify_file() (keybase.KeybasePublicKey method), 14

19

	Installation
	Examples
	Get a User's Credentials
	Verifying a Signature on String Data
	Verifying an Embedded Signature on a File
	Verify an Detached Signature on a File
	Encrypting a Message for a Keybase User
	Encrypting a File for a Keybase User

	The Keybase API
	Keybase Common Methods
	The Keybase Class – Accessing Public User Data
	The KeybasePublicKey Class – Public Key Records from the Keybase.io Data Store
	The KeybaseAdmin Class – Manipulating User's Public Key Data
	The Keybase Error Classes

	Indices and tables

